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A Regression Perspective on Generalized
Distance Covariance and the Hilbert–Schmidt
Independence Criterion
Dominic Edelmann and Jelle Goeman

Abstract. In a seminal paper, Sejdinovic et al. (Ann. Statist. 41 (2013)
2263–2291) showed the equivalence of the Hilbert–Schmidt Independence
Criterion (HSIC) and a generalization of distance covariance. In this paper,
the two notions of dependence are unified with a third prominent concept
for independence testing, the “global test” introduced in (J. R. Stat. Soc. Ser.
B. Stat. Methodol. 68 (2006) 477–493). The new viewpoint provides novel
insights into all three test traditions, as well as a unified overall view of the
way all three tests contrast with classical association tests. As our main re-
sult, a regression perspective on HSIC and generalized distance covariance
is obtained, allowing such tests to be used with nuisance covariates or for
survival data. Several more examples of cross-fertilization of the three tra-
ditions are provided, involving theoretical results and novel methodology.
To illustrate the difference between classical statistical tests and the unified
HSIC/distance covariance/global tests we investigate the case of association
between two categorical variables in depth.

Key words and phrases: Distance covariance, distance correlation, Hilbert–
Schmidt Independence Criterion, global test, equivalence, locally most pow-
erful.

1. INTRODUCTION

During the last three decades, we have witnessed major
developments in statistical methods for high-dimensional
datasets. While the most prominent developments may
concern statistical modeling and variable selection [13,
65, 71], there have also been important contributions to
hypothesis testing. Three concepts for independence test-
ing that enjoy great popularity are the distance covari-
ance [59, 64], the Hilbert–Schmidt Independence Crite-
rion (HSIC) [21, 23] and a family of locally most power-
ful score tests known as “global tests” [16, 18].

Distance covariance, proposed by Gabór Székely et al.
[59, 64], is a concept for testing and quantifying gen-
eral dependencies. Its most salient property is that—in
contrast to classical covariance—its population version
equals zero if and only if the random variables under
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consideration are independent, implying that distance co-
variance is able to detect arbitrary association between
datasets. It features a strikingly simple sample version,
making it simple to use in applications [32, 33, 39, 44].
There is already a large literature on the theory of distance
covariance [7, 8, 62, 66]; see [9] for an overview. Partic-
ularly important is the extension to generalized distance
covariance [30, 38], that enables independence testing in
general metric spaces.

Around the same time that distance covariance was
first introduced, a different notion of independence—the
Hilbert–Schmidt Independence Criterion—gained popu-
larity in the machine learning community [21, 23]. At its
inception, HSIC was already formulated for general mea-
surable spaces, as it is based on kernel functions rather
than distances. HSIC and distance covariance have some
obvious similarities, which generated early conjectures
[22] of some conceptual equivalence. The exact equiva-
lence of HSIC with an extension of the generalized dis-
tance covariance proposed in [38] was eventually proven
in [51], opening up a vivid exchange between the two
communities [4, 28, 53].

We will link these two testing traditions to a third tra-
dition: the family of global tests [16–18, 24], developed
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for high-dimensional datasets in biomedical applications
from a tradition of goodness-of-fit tests [35, 55]. This type
of test includes popular tests for genetic data such as the
Sequence Kernel Association test (SKAT) [68] and other
genotype-phenotype tests [41]. Global tests are closely
connected to the classical RV coefficient [47]. In con-
trast to distance covariance or HSIC, global tests are for-
mulated as locally most powerful tests on specific sta-
tistical models, restricting them to the detection of pre-
specified types of association. However, global tests dif-
fer markedly from the classical tests for the models they
are defined in (such as for example the F-test in linear
regression): unlike classical tests, global tests are not in-
variant under affine transformations of the data. While
this may seem like a severe drawback on first sight, it
has been shown that it is necessary to give up affine in-
variance in order to obtain a test with nontrivial power in
high-dimensional data [18].

Interestingly, also distance covariance and HSIC are
noninvariant under affine transformations, and both can
be applied for testing independence in high-dimensional
data. Moreover, the linear global test statistic shows a
clear similarity to the sample versions of distance covari-
ance and HSIC, suggesting possible relations between the
three measures.

In this article, we investigate analogies between gen-
eralized distance covariance, HSIC and global tests. We
unify the concepts of generalized distance covariance,
HSIC and global tests to derive interesting theoretical in-
sights as well as novel statistical methodology. A large
part of the paper is devoted to practical implications aris-
ing from the cross-fertilization between the three differ-
ent traditions. In particular, global tests may profit from
reformulating them as HSIC or generalized distance co-
variance test to enable detection of nonlinear associations;
conversely, the formulation of generalized distance co-
variance or HSIC as global tests gives these tests a foun-
dation in an underlying model. This may provide a bet-
ter understanding against which alternatives the tests pos-
sess good power, and allows well-motivated extensions of
these tests. We provide examples of extensions to models
with nuisance covariates, goodness-of-fit testing, survival
analysis, and heavy-tailed data. Finally, the unification of
the three theories allows the transfer of important results
and concepts, such as ways to approximate the distribu-
tion of the test statistic, or the notion of distance correla-
tion as an effect size measure.

The first main result of the paper is in Section 5, in
which we show how HSIC and distance covariance tests
may be seen as global tests, and global tests as HSIC or
distance covariance tests. In particular, HSIC and distance
covariance sample measures can be expressed as global
test statistics involving the induced feature maps of their
corresponding kernels or premetrics; the linear global test

is simply a special case of generalized distance covari-
ance and HSIC using squared Euclidean distance or the
linear kernels, respectively. We also formulate the equiv-
alence of generalized distance covariance and HSIC in a
slightly more general way than given in [51], strengthen-
ing this connection. Section 5 further explores the nature
of the equivalence by showing how special cases of gener-
alized distance covariance and HSIC can be formulated as
locally most powerful tests in Gaussian regression mod-
els. This provides insights into the statistical properties of
these tests. We also investigate connections to kernel prin-
cipal component analysis (kPCA) and kernel partial least
squares (kPLS). Practical implications of the equivalence
of the three theories, in Section 6, include a generaliza-
tion of the concept of the distance correlation coefficient,
a celebrated concept for quantifying dependence between
random vectors [59, 64]. Section 7 shows the applica-
bility of the results of the paper, demonstrating how the
model-based formulation of generalized distance covari-
ance/HSIC can be used to develop novel tests for complex
associations in various statistical models, such as in mod-
els involving nuisance covariates, in survival models and
in heavy-tailed data. Finally in Section 8 we derive and
investigate a test for association between two categorical
variables that can be equivalently derived from all three
traditions. This test contrasts markedly from the classi-
cal chi-squared test and provides insight into the common
philosophy of HSIC, distance covariance and global tests.

All proofs for novel results are provided in the Supple-
mentary Material [10].

2. PROBLEM DESCRIPTION

Consider two jointly distributed random variables X

and Y defined on measurable spaces X and Y , respec-
tively, where we suppress the σ -algebras for simplicity.
The joint distribution of X and Y will be denoted by PXY ,
while PX and PY denote the marginal distributions. For
n ∈ N, we will further denote i.i.d. samples of (X,Y ) by
X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn). In this work, we
consider various test statistics for testing the null hypoth-
esis of independence between X and Y , that is,

H0 : PXY = PX PY

given samples X and Y . To emphasize their purpose,
the test statistics will carry a hat, whereas their corre-
sponding sample measure/almost sure limit is denoted by
the respective expression without hat (i.e., T̂ denotes a
test statistic, whereas T denotes its respective population
measure).

All considered test statistics T̂ have in common that
their respective population measure T equals zero under
the null hypothesis of independence, that is,

PXY = PX PY =⇒ T = 0.
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For some of the test statistics (such as for example, stan-
dard distance covariance or certain instances of HSIC),
the reverse implication

T = 0 =⇒ PXY �= PXPY ,

also holds, implying that T characterizes independence
between X and Y .

The following notation will be used throughout the
manuscript. For each p ∈ N, 〈·, ·〉 denotes the standard in-
ner product on Rp and ‖ · ‖ the corresponding Euclidean
norm. 1 = (1, . . . ,1) denotes a vector of ones, where the
length of the vector will be clear from the context and Ip

denotes the identity matrix in Rp . For any matrix M, Mt

will refer to its transpose.

3. THE HILBERT–SCHMIDT INDEPENDENCE
CRITERION

3.1 Definition

The Hilbert–Schmidt Independence Criterion (HSIC) is
a statistic for independence testing established in [21, 23].
To define HSIC, consider a measurable space Z , where
we suppress the σ -algebra in the notation for reasons of
simplicity. We call a function k : Z ×Z →R a kernel if it
is symmetric in its arguments and satisfies the property of
positive definiteness, that is, for all n ≥ 1, z1, . . . , zn ∈ Z
and a1, . . . , an ∈R, we have

n∑
i,j=1

aiaj k(zi, zj ) ≥ 0.

Given kernels kX : X × X → R and kY : Y × Y → R,
for which E|kX (X,X′)| + |kY(Y,Y ′)| < ∞ the HSIC
statistic is defined as [51]

HSICkX ,kY (X,Y )

= E
[
kX

(
X,X′){kY(

Y,Y ′) − kY
(
Y,Y ′′)

− kY
(
Y ′, Y ′′) + kY

(
Y ′′, Y ′′′)}],

(1)

where (X,Y ), (X′, Y ′), (X′′, Y ′′), (X′′′, Y ′′′) are i.i.d.
copies of (X,Y ).

It is easy to show that HSICkX ,kY (X,Y ) ≥ 0 and that
independence of X and Y induces HSICkX ,kY (X,Y ) =
0. However, the reverse holds true only under a stronger
condition on the kernels: HSICkX ,kY (X,Y ) = 0 implies
the independence of X and Y if and only if the kernels kX
and kY are characteristic. A kernel kX is characteristic if

PX = PZ ⇔ E
[
kX (x,X)

] = E
[
kX (x,Z)

]
for all x ∈ X and random variables X and Z on X . We
easily see that the linear kernel k(x, x′) = 〈x, x′〉 is char-
acteristic if and only if X contains no more than two el-
ements. On the other hand, the Gaussian kernel, cf. Sec-
tion 3.2, is characteristic on Rp , p ∈N.

Remembering that we denote i.i.d. joint samples of
(X,Y ) by X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn), we
define the (i, j)th element of the kernel matrices KX and
KY by KX

i,j = kX (Xi,Xj ) and KY
i,j = kY(Yi, Yj ), re-

spectively, and denote the double-centered versions by

K̃
X = (I − H)KX(I − H),

K̃
Y = (I − H)KY (I − H),

where H = 1
n

11t . Then a consistent sample version for
HSICkX ,kY (X,Y ) is given by

(2) ĤSICkX ,kY (X,Y ) = 1

n2

n∑
i,j=1

K̃
X
i,j K̃

Y
i,j .

Since both K̃
X

and K̃
Y

are symmetric, it is easily
shown that an alternative representation for the right-hand

side of equation (10) is 1
n2 tr(K̃

X
K̃

Y
). Moreover, since

(I −H) is idempotent it is sufficient to center only one of
the two distance matrices, removing the tilde above one
of the two matrices in equation (10).

3.2 Feature Maps

It is useful to decompose kernel functions into feature
maps. A feature map for a kernel k on Z is a function
�(k) = (�

(k)
1 , . . . ,�

(k)
d ) : Z → Rd , such that k(z, z′) =

〈�(k)(z),�(k)(z′)〉, where 〈·, ·〉 denotes the standard in-
ner product in Rd ; we here allow for d = ∞ (countable).
There are many prominent kernels for which such a fea-
ture map can be derived, such as the Gaussian kernel, the
discrete kernel or the polynomial kernel; conditions under
which feature maps exist are provided by Mercer’s theo-
rem [40] and its numerous extensions [57, 58].

If feature maps for kernels kX and kY exist,
ĤSICkX ,kY (X,Y ) can be written as a linear association
test between the features,

1

n2

dX∑
l=1

dY∑
m=1

n∑
i=1

[(
�

(kX )
l (Xi)

− �
(kX )
l (X)

) (
�

(kY )
m (Yi) − �

(kY )
m (Y )

)]2
,

(3)

where �
(kX )
l (X) = 1

n

∑n
i=1 �

(kX )
l (Xi), and �

(kY )
m (Y ) =

1
n

∑n
i=1 �

(kY )
m (Yi). Denoting the usual covariance by Cov,

we directly obtain the following decomposition of the
population measure:

HSICkX ,kY (X,Y )

=
dX∑
l=1

dY∑
m=1

Cov2(
�

(kX )
l (X),�

(kY )
m (Y )

)
.

(4)

In the following, we state some prominent kernel func-
tions together with their corresponding feature maps,
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where we restrict ourselves on kernels on Rp and discrete
sets.

The Gaussian kernel is arguably the most popular ker-
nel used for HSIC. For x, x′ ∈ Rp , it is defined as

k
(
x, x′) = exp

(−∥∥x − x′∥∥2
/2σ 2)

,

where ‖ · ‖ denotes the Euclidean distance. Denoting
x = (x1, . . . , xp), a feature map for the Gaussian kernel
is given by

�(x) =
(

exp
(−‖x‖2

2iσ 2

)√(
i

n1, . . . , np

)

× x
n1
1 · · ·xnp

p

(
√

i!σ 2)1/i

)
i∈{0,...,∞},∑nj=i

.

For p = 1, this reduces to

�(x) =
(√

1

i!σ 2 exp
(
− x2

2σ 2

)
xi

)
i∈{0,...,∞}

.

The discrete kernel function is useful for testing inde-
pendence on unordered finite sets (i.e., categorical data).
Notably, let X = {x1, . . . , xm} be a finite set. Then the dis-
crete kernel k :X ×X → {0,1} is defined as

k
(
x, x′) = 1{x=x′}.

The corresponding premetric is the discrete metric

ρ
(
x, x′) = 1{x �=x′},

and a feature map is given by

�(x) = (1{x=xi })i∈{1,...,m}.
Tests based on discrete kernels will be studied in more
detail in Section 8.

The polynomial kernel for x, x′ ∈Rp is defined as

(5) k
(
x, x′) = (〈

x, x′〉 + c
)b

.

Using the binomial theorem, equation (5) reads

k
(
x, x′) =

b∑
k=0

(
b

i

) 〈
x, x′〉icb−i .

A feature map can be obtained by expanding 〈x, x′〉i . For
example, for b = 2, p = 2 and x = (x1, x2), a feature map
is given by

�(x) = (
c,

√
cx1,

√
cx2,

√
2x1x2, x

2
1 , x2

2
)
.

The linear kernel arises as a special case of the polyno-
mial kernel with b = 1, that is,

(6) k
(
x, x′) = 〈

x, x′〉,
the feature map of the linear kernel is the identity function
�(x) = x.

There are a large number of other kernels that have
proven to be useful in applications such as spline kernels,
ANOVA kernels and kernels tailored for applications in
text analyses; for a (nonextensive) overview we refer to
[26].

4. GENERALIZED DISTANCE COVARIANCE

4.1 Definition

We start this section by introducing the standard version
of distance covariance as defined by Gábor Székely and
his coauthors [59, 64] and extend this definition to general
premetric spaces thereafter.

Distance covariance and distance correlation have been
proposed by [59, 64] as alternatives to the classical covari-
ance and Pearson correlation. Consider jointly distributed
random vectors X ∈ Rp and Y ∈ Rq with finite first mo-
ments and denote by

fX,Y (s, t) = exp
{√−1

(〈X, s〉 + 〈Y, t〉)}
the joint characteristic function of (X,Y ). The distance
covariance is defined as a weighted L2-norm of the dif-
ference between fX,Y (s, t) and the product of the cor-
responding marginal characteristic functions fX(s) =
fX,Y (s,0) and fY (t) = fX,Y (0, t). More precisely, denot-
ing by | · |C the modulus in C, and by ‖s‖ the Euclidean
norm in Rp , and defining the constants

cp = π(p+1)/2

�((p + 1)/2)
,

p ∈N, the distance covariance is defined for random vec-
tors X ∈ Rp and Y ∈Rq with finite first moments as

V2(X,Y ) = 1

cpcq

∫
Rp+q

∣∣fX,Y (s, t) − fX(s)fY (t)
∣∣2
C

× dsdt

‖s‖p+1 ‖t‖q+1 .

(7)

Since the integrand is nonnegative, it is obvious that
V2(X,Y ) ≥ 0. Moreover, since fX,Y (s, t) equals the
product of its marginals only in the case of indepen-
dence between X and Y , one immediately recognizes that
V2(X,Y ) = 0 if and only if X and Y are independent.

For the purpose of establishing empirical versions of
the distance covariance, an alternative representation of
V2(X,Y ) for X, Y with finite second moments was de-
rived in [59, 64],

V2(X,Y ) = E
[∥∥X − X′∥∥∥∥Y − Y ′∥∥]

+E
[∥∥X − X′∥∥]

E
[∥∥Y − Y ′∥∥]

− 2E
[(∥∥X − X′∥∥)(∥∥Y − Y ′′∥∥)]

,

(8)

where (X′, Y ′) and (X′′, Y ′′) denote i.i.d. copies of
(X,Y ).

Several authors have considered generalizations of the
concept of distance covariance, for example, by replacing
the inverse of cpcq‖s‖p+1‖t‖q+1 in equation (7) with al-
ternative weights [4] or by applying metrics different from
the Euclidean distance ρ(x, x′) = ‖x −x′‖ in equation (8)
[30, 38, 51].
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In this paper, we will consider a slight but novel ex-
tension of the version of generalized distance covariance
defined by Dino Sejdinovic and his coauthors [51]. In the
following, we will call a function ρ : Z ×Z → [0,∞) on
a set Z a premetric if it is symmetric in its arguments and
satisfies

x = y ⇒ ρ(x, y) = 0.

Then (Z, ρ) is called a premetric space. A premetric
space (Z, ρ) is said to have negative type [51], Defini-
tion 2, if for all n ≥ 2, z1, . . . , zn ∈ Z and a1, . . . , an ∈ R

with
∑n

i=1 ai = 0,
n∑

i,j=1

aiajρ(zi, zj ) ≤ 0.

Now let ρX and ρY denote premetrics of negative type on
X and Y . Then, extending the definition of [51] to random
variables with finite first moments of the corresponding
premetrics, we define the generalized distance covariance
as follows.

DEFINITION 1. For any two premetric spaces of neg-
ative type (X , ρX ) and (Y, ρY) and random variables X,
Y with values in X and Y , respectively, define the squared
generalized distance covariance as

V2
ρX ,ρY (X,Y )

= E(ρX
(
X,X′)(ρY

(
Y,Y ′) − ρY

(
Y,Y ′′)

− ρY
(
Y ′, Y ′′) + ρY

(
Y ′′, Y ′′′)),

(9)

where (X,Y ), (X′, Y ′), (X′′, Y ′′), (X′′′, Y ′′′) are i.i.d.
copies of (X,Y ).

PROPOSITION 1. If E|ρX (X,X′) + ρY(Y,Y ′)| < ∞,
then V2

ρX ,ρY (X,Y ) < ∞.

It is easy to see that V2
ρX ,ρY (X,Y ) ≥ 0 and that inde-

pendence of X and Y implies V2
ρX ,ρY (X,Y ) = 0. How-

ever, the reverse implication holds only true if the pre-
metrics (X , ρX ) and (Y, ρY) are of strong negative type,
that is, if

PX = PZ

⇔
∫
X

∫
X

ρX
(
x, x′) d

(
PX(x)

− PZ(x)
)

d
(
PX

(
x′) − PZ

(
x′)) = 0

for all distributions PX and PZ ; similarly for ρY .
Consider now i.i.d. joint samples X = (X1, . . . ,Xn)

and Y = (Y1, . . . , Yn) of X and Y , and define the (i, j)th
element of the distance matrices DX and DY by DX

i,j =
ρX (Xi,Xj ) and DY

i,j = ρY(Yi, Yj ), respectively. Then
defining the double-centered versions

D̃
X = (I − H)DX(I − H),

D̃
Y = (I − H)DY (I − H),

where H = 1
n

11t , a consistent empirical estimator for (9)
is given by [64],

V̂2
ρX ,ρY (X,Y ) = 1

n2

n∑
i,j=1

D̃
X
i,j D̃

Y
i,j

= 1

n2 tr
(
D̃

X
D̃

Y )
.

(10)

As with HSIC, the tilde above one of the two matrices in
(10) may be removed.

4.2 Equivalence of Generalized Distance Covariance
and HSIC

The similarity of the definitions and properties of Sec-
tions 3 and 4 have raised conjectures about the equiva-
lence of generalized distance covariance and HSIC [22],
which was indeed derived in [51]. Extended to the defi-
nition of generalized distance covariance in Definition 1,
this equivalence is expressed by the following theorem.

THEOREM 1. HSICkX ,kY is equivalent to the general-
ized distance covariance V2

ρ(·,·;kX ),ρ(·,·;kY ), where the pre-
metric ρ(z1, z2;k) induced by a kernel k is defined via

ρ(z1, z2;k)

= 1

2

(
k(z1, z1) + k(z2, z2) − 2k(z1, z2)

)
.

(11)

Conversely, V2
ρX ,ρY is equivalent to the Hilbert–Schmidt

Independence Criterion HSICk(·,·;ρX ,x0),k(·,·;ρY ,y0), where
the kernel k(z1, z2;ρ, z0) induced by a premetric ρ is de-
fined via

k(z1, z2;ρ, z0)

= ρ(z1, z0) + ρ(z2, z0) − ρ(z1, z2),
(12)

and x0 ∈X , y0 ∈ Y are arbitrary.

The proof of Theorem 1 follows directly from [2], p.
74, Lemma 2.1.

Moreover, it is straightforward to show the equality of
the corresponding empirical versions given in equations
(10) and (2); see [53] for details.

By means of Theorem 1, we obtain that the Gaussian
kernel in the HSIC formulation corresponds to the metric

ρ
(
x, x′) = 1 − exp

(−∥∥x − x′∥∥2
/2σ 2)

in the generalized distance covariance formulation. The
discrete kernel corresponds to the discrete metric

ρ
(
x, x′) = 1{x �=x′}.

The linear kernel k(x, x) = 〈x, x′〉 in Rp corresponds to
one-half of the corresponding squared Euclidean distance

p
(
x, x′) = 1

2

∥∥x − x′∥∥2
.

On the other hand, Theorem 1 also allows us to repre-
sent the classical squared distance covariance as Hilbert–
Schmidt Independence Criterion.
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COROLLARY 1. The classical squared distance co-
variance can be expressed as

V2(X,Y ) = HSICkp,kq (X,Y ),

where kp is given by

(13) kp

(
x, x′) = ‖x‖ + ∥∥x′∥∥ − ∥∥x − x′∥∥,

and kq is defined analogously on Rq .

This formulation enables the derivation of a feature map
for the classical distance covariance, which we present in
the following section.

4.3 A Feature Map for the Classical Distance
Covariance

For establishing feature maps for the classical distance
covariance V2(X,Y ) (cf. equation (7) or (8)), we focus on
the bivariate case, that is, real-valued random variables X

and Y . Moreover, we will need to assume that both X and
Y are bounded and we will further assume w.l.o.g. (V2 is
linear in its arguments) that X,Y ∈ [0,1]. In that case, we
have

(14) kp

(
x, x′) = 2 min

(
x, x′).

While this kernel does not play a major role in ma-
chine learning applications, it is well-known in the fields
of probability theory and stochastic processes, where it
equals two times the covariance function of a Brown-
ian motion. In order to obtain series representations for
Brownian motion, numerous expansions of the kernel in
(14) have been derived [37]. Using these classical expan-
sions, we obtain several feature maps that are valid for
x, x′ ∈ [0,1]. We mention �(x) = {�k(x)}∞k=1 with

�k(x) = 2
sin(π(k − 1

2)x)

(k − 1
2)π

,

and �(x) = {�k(x)}∞k=0 with

�0(x) = √
2x,

�k(x) = 2
sin(πkx)

πk
, k = 1, . . . ,

(15)

similar expressions can be derived for x, x′ ∈ [a, b].
Combining equations (15) and (4) yields the following

proposition.

PROPOSITION 2. For jointly distributed random vari-
ables X, Y on [0,1], it holds that

V2(X,Y ) = 4 Cov2(X,Y ) + 8
∞∑

k=1

(
Cov2

(
X,

sin(πkY )

πk

)

+ Cov2
(

sin(πkX)

πk
,Y

))

+ 16
∞∑

j,k=1

Cov2
(

sin(πjX)

πj
,

sin(πkY )

πk

)
.

Applying the bilinearity of squared distance covariance
and regular covariance, we find a lower bound to the dis-
tance covariance in terms of the usual covariance.

COROLLARY 2. For jointly distributed random vari-
ables X ∈ [a, b] and Y ∈ [c, d], it holds

V2(X,Y ) ≥ 4

(b − a) (c − d)
Cov2(X,Y ).

5. A REGRESSION PERSPECTIVE ON HSIC AND
GENERALIZED DISTANCE COVARIANCE

5.1 The Global Test

In the same period that HSIC and distance covariance
were developed, a novel type of tests was proposed for ap-
plications in genomics. These global tests were defined as
locally most powerful tests for the global null hypothesis
in generalized linear regression models [15, 17, 18].

We will show in this section that the global test for the
linear model arises as a special case of HSIC and general-
ized distance covariance, by applying the linear kernel on
both variables under consideration. Conversely, we will
show that HSIC and generalized distance covariance can
be written in the form of a linear global test statistic pro-
vided that corresponding feature maps exist. As one of
the main results of this article, we finally obtain Theo-
rem 3, stating that in certain instances, HSIC and general-
ized distance covariance can be derived from locally most
powerful tests.

Consider an empirical Bayes linear model with fixed
and known intercept μ ∈ R and error variance σ 2,

(16) yi |β ∼ N
(
μ + βtXi, σ

2)
,

where β is a random variable with β = τb, E[b] = 0 and
E[bbt ] = Ip . Here τ ∈ R is left as a fixed and unknown
parameter, and no assumptions are made on the distribu-
tion of the marginals of b. We denote by 	(β) the likeli-
hood of β in (16). In this model we consider the problem
of testing the null hypothesis

H0 : τ 2 = 0.

Obviously, τ 2 = 0 if and only if β = 0 a.s. Hence, H0 is
equivalent to

H0 : β = 0.

Testing H0 is now performed by integrating out β . Let-
ting Eβ|τ 2[·] denote the expectation over the distribution
of β for fixed τ 2, we obtain the marginal likelihood of τ 2

as [18]

(17) 	
(
τ 2) = Eβ|τ 2

[
	(β)

]
.

Since the marginal model is based on a prior distribu-
tion on the regression parameters, but the parameter τ 2 of
the prior is treated as fixed and unknown, one may regard
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this approach as empirical Bayesian. This could be seen as
a slight abuse of terminology, since the subsequent use of
the model is different from the empirical Bayes method-
ology introduced by Robbins [46]. We refer to [18] for a
discussion of this issue.

In [18], the locally most powerful test statistic corre-
sponding to the likelihood 	(τ 2) is shown to be equivalent
to

(18)
1

n2

n∑
i,j=1

〈Xi,Xj 〉(yi − μ)(yj − μ).

In most practical circumstances μ will be unknown. To
circumvent this problem, we switch to the profile likeli-
hood [17], substituting μ by its maximum likelihood esti-
mate μ̂ = 1

n

∑n
i=1 yi . We obtain the pivot

(19) ĜT (X,y) = 1

n2

n∑
i,j=1

〈Xi,Xj 〉 (yi − μ̂)(yj − μ̂).

This is what is introduced in [17] as the global test for
the Gaussian linear model. In [6], it was shown that the
argument similarly extends to multivariate responses Y ∈
Rq , deriving that

(20) ĜT (X,Y ) =
n∑

i,j=1

〈Xi,Xj 〉 〈Yi − μ̂, Yj − μ̂〉,

where μ̂ is the vector of coefficient-wise means, can be
regarded as a pivot to the locally most powerful test in
certain multivariate Gaussian linear models.

Comparing equations (20), (2) and (10), we obtain the
following theorem.

THEOREM 2. Let X and Y be samples of jointly dis-
tributed random vectors X ∈ Rp , Y ∈Rq . Then,

ĜT (X,Y ) = ĤSICkp,kq (X,Y ) = V̂2
ρpρq

(X,Y ),

where kp(x, x′) = 〈x, x′〉 and kq(y, y′) = 〈y, y′〉 are the
corresponding linear kernels and ρp(x, x′) = 1

2‖x −x′‖2,
ρq(y, y′) = 1

2‖y − y′‖2 are one half of the squared Eu-
clidean distances. On the other hand, whenever feature
maps for the kernels kX and kY exist, then

ĤSICkX ,kY (X,Y ) = V̂ 2
ρ(·,·;kX ),ρ(·,·;kY )(X,Y )

= ĜT
(
X�(kX )

,Y�(kY ))
,

where X�(kX ) ∈Rn×dX is the matrix with entries

(21) X�(kX )

ij = �
(kX )
j (Xi),

and dX is the dimension of the feature map of kX ; dY and

Y�(kY ) ∈Rn×dY are defined analogously.

5.2 HSIC and Generalized Distance Covariance as
Locally Most Powerful Tests in Gaussian
Regression Models

By the construction of HSIC and distance covariance as
global tests, they inherit the property of being locally most
powerful for specific models. This is given as Lemma
1. This lemma gives insight into the power properties of
these methods, as it specifies exactly against which alter-
native the tests are optimal. In this section, we derive such
consequences of Theorem 2, focusing on the case of a uni-
variate response y with linear kernel, but general X.

LEMMA 1 (Lemma 4, [18]). Consider the setting of
the Gaussian linear model (16) with β ∈ Rp , β = τb,
E[b] = 0 and E[bbt ] = Ip . Let ω(β) = Py|β(ĜT(X,y) ≥
k) denote the power function of the global test. Let
ω(β) = Py|β(A) be the power function of any test for
H0 : β = 0. Then either of

(i) ω(0) = ω(0)

(ii) ω(0) ≤ ω(0) and k ≥ 0

implies

Eξ

[
d

dτ 2 ωξ(0)

]
≤ Eξ

[
d

dτ 2 ωξ (0)

]
,

where ωξ(τ ) = ω(τξ), ωξ (τ ) = ω(τξ) and ξ has a uni-
form distribution on the unit p-ball. The same result holds
when ξ has any other distribution on the unit p-ball such
that E[ξ ] = 0 and E[ξξ t ] = Ip .

Gaussian process regression [43] is an approach for
modeling nonlinear relations that has recently gained pop-
ularity in the area of machine learning. In Gaussian re-
gression, one assumes that the response data y is gener-
ated by a zero-mean Gaussian process V (·) on the pre-
dictors X, say yi = V (Xi) + μ. In most cases, it seems
more appropriate to assume that we are given noisy ob-
servations of the Gaussian process [43], p. 16, say

(22) yi = μ + V (Xi) + εi,

where εi ∼ N (0, σ 2). A direct consequence of Lemma
1 is that HSIC and distance covariance tests can be in-
terpreted as locally most powerful tests in Gaussian pro-
cess regression models of the form (22). In fact, V (·) is
not required to be Gaussian, but can be replaced by any
mean zero stochastic process with the same covariance
function. The connection between stochastic process re-
gression, HSIC and distance covariance has been inde-
pendently explored by [28], however, without making the
link to locally most powerful tests.

THEOREM 3. Let V : X → R be a stochastic pro-
cess with E[V (s)] ≡ 0 and E[V (s)V (t)] = k(s, t) for
some kernel function k(·, ·). For i = 1, . . . , n, consider the
model

yi ∼ N
(
μ + ri, σ

2)
,
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where ri = τV (Xi), τ ∈ R, further denote its likelihood
by g(ri). Then the locally most powerful test statistic for
testing H0 : τ 2 = 0 against H1 : τ 2 > 0 in the marginal
model

(23) 	
(
τ 2) = EV (·)|τ 2

[
n∏

i=1

g(ri)

]
,

is (up to translation and multiplication by constants)

(24)
1

n2

n∑
i,j=1

k(Xi,Xj )(yi − μ)(yj − μ).

REMARK 1. Plugging in μ̂ = 1
n

∑n
i=1 yi , a pivot for

the locally most powerful test is given by

ĤSICk,l(X,y) = V̂2
ρ,euc(X,y),

where l(y, y′) = yy′, euc(y, y′) = 1
2 |y − y′|2 and ρ(·, ·)

is obtained from k(·, ·) via equation (11).

We note that Theorem 3 does not require the existence
of feature maps for the kernel k(·, ·). While the Theo-
rem is based on a fixed sample X, it can still be inter-
preted as a result for testing the null hypothesis of inde-
pendence between X and y. In particular, τ 2 = 0 implies
that PY |X = PY , which is well known to characterize in-
dependence.

The central message of Theorem 3 is that it gives an
alternative model-based interpretation of generalized dis-
tance covariance and HSIC, that provides a deeper un-
derstanding of these measures. Notably, such tests can
be interpreted as locally most powerful test statistics in
stochastic process regression models. The stochastic pro-
cess model gives an indication which alternatives the test
is targeted against, since the test is equivalent to a test that
is optimally focused to detect that alternative.

We note that finite sample local optimality of the test
statistic can not be guaranteed for the test statistic based
on the profile likelihood and not the original likelihood
since the locally most powerful test is the unavailable or-
acle test that knows the value of μ. Yet, from the above
considerations, one may expect that these statistics will
have comparably (relative to other tests) high power for
alternatives with small τ 2, since it differs from the locally
most powerful test only by a single, easily estimable pa-
rameter.

The results of this section rely on results from the global
test literature that use a single simple response y. It is
yet an open problem to generalize them to a general-
dimensional Y with general kernel. That is, it is not yet
clear what model would lead to HSIC as the locally most
powerful test.

In the setting with general kernels kX on X and kY on
Y we obtain the following result for the population mea-
sures (see also [4]). This result has been shown for stan-
dard distance covariance and the linear multivariate global
test without using kernels in [6, 59].

PROPOSITION 3. Let VX and VY be stochastic pro-
cesses with mean 0 and covariance functions kX and kY ,
respectively. Then

HSICkX ,kY (X,Y )

= V2
ρX ,ρY (X,Y )

= E(VX ,VY )

[
Cov2(

VX (X),VY(Y )|VX ,VY
)]

,

(25)

where ρX (·, ·) and ρY(·, ·) are obtained from kX (·, ·) and
kY(·, ·) via equation (11).

5.3 Eigenvalue Decompositions

We have shown that in the special case of a univariate y

with a linear kernel HSIC/generalized distance covariance
arise from locally most powerful tests in certain Gaus-
sian regression models. We will now provide additional
insight how this property arises. A deeper understanding
can be obtained by decomposing the data matrices using
kernel principal component analysis (kPCA) [50]. What’s
more, since this decomposition holds for all instances of
HSIC/generalized distance covariance and not only for
settings in which a linear kernel is used on the response,
we see that the local optimality property at least partly
translates to this more general setting.

PROPOSITION 4. Let K̃X and K̃Y denote the double-
centered kernel matrix corresponding to the samples X
and Y , respectively, and consider the decompositions

K̃X =
n∑

i=1

λ̂X
i Qi, K̃Y =

n∑
i=1

λ̂Y
i Pi,

where λ̂X
i is the ith largest eigenvalue of K̃X and Qi =

viv
t
i , where vi is the corresponding eigenvector of K̃X .

Similarly for K̃Y , λ̂Y
i is the ith largest eigenvalue of K̃Y

and Pi = wiw
t
i , where wi is the corresponding eigenvec-

tor of K̃Y . Further denote by Ĉor the empirical correla-
tion. Then

ĤSICkX,kY
(X,Y )

= V̂2
ρX,ρY

(X,Y )

= 1

n2

n∑
i=1

n∑
j=1

λ̂X
i λ̂Y

j Ĉor
2
(wj , vi).

(26)

The vector vi is the projection of the data matrix X
on its ith kernel principal component, centered and nor-
malized to an empirical variance of 1

n−1 ; the vector wj

is the projection of the data matrix Y on its j th kernel
principal component, similarly standardized as vi . Since
λ̂X

1 ≥ · · · ≥ λ̂X
n and λ̂Y

1 ≥ · · · ≥ λ̂Y
n , this decomposition

shows that HSIC and generalized distance covariance put
more weight on the directions of the first kernel principal
components and hence focus on the main axes of variation
in feature space.
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The decomposition of Proposition 4 as a weighted aver-
age gives insight into the power properties of the test. The
test statistic is large whenever the large variance kernel
principle components of X are strongly correlated with
the large variance kernel principle components of Y . In
settings for which the the maximal correlation is small,
there is little hope to detect possible associations linked
with directions of small variation. In this case, it is ob-
viously preferable to focus on alternatives that are asso-
ciated with larger (kernel) principal components. Decom-
position (26) gives an alternative insight into the local op-
timality property of Theorem 3; see also [18], Section 7,
for a detailed discussion of this issue for the global test
case of the linear model with univariate response.

Proposition 4 also points to the most important contrast
between the tests discussed in this article, and classical
tests, such as the F-test in linear regression. Such tests
typically put the same weight on all independent direc-
tions of the data, regardless of the eigenvalues. While this
is feasible if the number of nonzero eigenvalues p0 satis-
fies p0 � n, it is not possible to have power into all di-
rections for p0 > n; this was a motivation for introducing
the global test ([18], Section 1). For kernel tests based on
characteristic kernels, the dimension of feature space is
infinite; consequently we cannot achieve power for all di-
rections in feature space. The three tests handle this prob-
lem in precisely the same way: by preferring alternatives
that are associated with changes in axes of high varia-
tion in the original space (global test) or feature space
(HSIC/generalized distance covariance).

As in [18], we can contrast HSIC/distance covari-
ance/global test with an F -like test, constructed by putting
different weights on the kernel principal components
in decomposition (26). In general, we may always ob-
tain an alternative pre-weighted test statistic of the form∑n

i=1
∑n

j=1 aibj (w
t
j vi)

2 where a = (a1 . . . , an) ∈ Rn and
b = (b1, . . . bn) ∈ Rn. One could example choose the
sequence ai = 1{i≤γ (n)}1{λ̂X

i >0}, bi = 1{i≤δ(n)}1{λ̂Y
j >0},

where γ : N → N and δ : N → N are monotonously
increasing functions. This choice would imply equally
weighting the correlation between the first γ (n) kernel
PCs of X and the first δ(n) kernel PCs of Y . Note that an
F-test-type choice would be achieved by setting γ (n) = n

and δ(n) = n. This would lead to a test that is affine in-
variant in X and Y . However, such a test is not feasible
if there is variation in all n kernel PCs, such as in case of
high-dimensional data or for continuous data with char-
acteristic kernels; it is easy to see that the test statistic in
equation (26) is then constant.

The decomposition (26) also suggests an approximation
of the distribution of the statistic n ĤSICkX,kY

(X,Y ), via

(27)
n∑

i=1

n∑
j=1

λ̂X
i

n

λ̂Y
j

n
Z2

ij ,

with Z2
ij ∼ χ2

1 , for the purpose of calculating p-values for
corresponding independence tests. It is straightforward to
show (see [17]) that this approximation is exact for the
Gaussian model with known intercept and known σ 2, that
is, in the setting of Theorem 3, and adjustments for esti-
mation of μ and σ 2 are straightforward [17]. For HSIC
and distance covariance, similar procedures have been
proposed in [29, 42, 69]; however, in these traditions, it
is more common to use two-moment gamma approxima-
tions [23, 29, 42] or permutation tests [16, 23, 64] Re-
cently, a procedure based on matching the first three mo-
ments of the statistic to a Pearson type III distribution
[3] has been shown to markedly outperform two-moment
gamma approximations in practice.

Finally, for a univariate response y with a linear kernel
on y, we establish an interesting link to kernel partial least
squares (kPLS) regression [48, 49]. For this purpose, we
first give a connection of the global test with classical PLS
that has been first stated in [15].

LEMMA 2. Define the first component of PLS regres-
sion [67] as the linear combination t = Xw (‖w‖ = 1)
satisfying

Ĉov(t,y) = max‖u‖=1
Ĉov(X u,y).

Then

ĜT(X,y) = (n − 1)2

n2 Ĉov
2
(t,y),

where Ĉov is the standard sample covariance.

The result of Lemma 2 directly carries over to HSIC
and generalized distance covariance, respectively.

THEOREM 4. Let k(·, ·) be a kernel with correspond-
ing feature map �(·). Now define the first component
of kernel PLS regression as the linear combination t =
X�(k)w (‖w‖ = 1) satisfying

Ĉov(t,y) = max‖u‖=1
Ĉov

(
X�(k) u,y

)
,

where X�(k) is defined via equation (21). Then

ĤSICk,l(X,y) = V̂2
ρ,euc(X,y) = (n − 1)2

n2 Ĉov
2
(t,y),

where l(y, y′) = yy′, euc(y, y′) = 1
2 |y − y′|2 and ρ(·, ·)

is obtained from k(·, ·) via equation (11).

6. GENERALIZED CORRELATION COEFFICIENTS

Since distance covariance shares many commonalities
with classical covariance [11, 59, 64], it is natural to stan-
dardize distance covariance to a distance correlation, a
measure quantifying the strength of association between
datasets. We will extend the concept of distance correla-
tion to general premetrics, so that it applies to HSIC and
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global test as well, through Theorem 2. We define the gen-
eralized distance correlation (see also [51], Appendix A)
and a corresponding sample measure as

R2
ρX ,ρY (X,Y ) = V2

ρX ,ρY (X,Y )

VρX ,ρX (X,X)VρY ,ρY (Y,Y )
,

(28)

R̂2
ρX ,ρY (X,Y ) = V̂2

ρX ,ρY (X,Y )

V̂ρX ,ρX (X,X) V̂ρY ,ρY (Y ,Y )
,

where ρX and ρY are premetrics on the spaces X and Y .
In the case that V̂2

ρX ,ρY (X,Y ) is the global test statistic,
that is, if ρX and ρY are one half the squared Euclidean
distance, this leads to an improved version of the global
test correlation coefficient proposed in [6], Section 2.3, in
the sense that it satisfies a set of axiomatic properties; see
Proposition 5.

Proposition 5 gives some important properties of gener-
alized distance correlation, several of which were already
stated in [51], Appendix A. These properties suggest that
generalized distance correlation may be used for interpret-
ing the strength of dependence between random variables.

PROPOSITION 5.

(i) 0 ≤ R2
ρX ,ρY (X,Y ) ≤ 1.

(ii) If ρX and ρY are of strong negative type, then

R2
ρX ,ρY (X,Y ) = 0 ⇐⇒ X and Y are independent.

(iii) If X = Y and ρX = ρY , then

X = Y =⇒R2
ρX ,ρY (X,Y ) = 1.

Moreover, if X and Y are vector spaces over a field F ,
then:

(iv) If ρX (x1, x2) = ρX (x1 + c, x2 + c) and ρY(y1, y2) =
ρY(y1 + d, y2 + d) for all x1, x2, c ∈ X and all
y1, y2, d ∈ Y , then

R2
ρX ,ρY (X + c,Y + d) =R2

ρX ,ρY (X,Y ),

for all c ∈X , d ∈ Y .
(v) If there exist functions g : F\{0} →R+, h : F\{0} →

R+, such that ρX (ax1, ax2) = g(a)ρX (x1, x2) and
ρY(by1, by2) = h(b)ρY(y1, y2) for all x1, x2 ∈ X ,
y1, y2 ∈ Y and nonzero scalars a, b ∈ F , then

R2
ρX ,ρY (aX,bY ) = R2

ρX ,ρY (X,Y ),

for nonzero scalars a, b ∈ F .

Properties analogous to (iv) and (v) also hold when the
corresponding properties are satisfied for the premetric-
induced kernels instead of the premetrics themselves.
Moreover, analogous properties may also be derived for
the sample measure R̂2

ρX ,ρY (X,Y ). We remark that the

invariance properties (iv) and (v) are satisfied for stan-
dard distance correlation and the (new) correlation mea-
sure based on the linear global test statistic, while cor-
relation measures based on higher-order polynomial ker-
nels satisfy neither of (iv) and (v), and the Gaussian kernel
does not satisfy (v).

The generalized distance correlation can be seen as an
alternative to classical R squared measures “with a dif-
ferent interpretation and different properties” [6]. Given
a data matrix of predictors X ∈ Rn×p and a response
y ∈Rn, the classical R squared may be retained as

R̂2
ρp,ρ1

(
X �

−1/2
X ,y

)
,

where for x1, x2 ∈ Rq , ρq(x1, x2) = 1
2‖x1 − x2‖2 and �X

is the empirical covariance matrix of X. A similar mea-
sure based on distance correlation is the affinely invari-
ant distance correlation [7, 64]; for multivariate Gaussian
data the affinely invariant distance correlation is just a de-
terministic function of the classical R squared [7, 8, 64].

A drawback when using the empirical version of gen-
eralized distance correlation for measuring independence
is that these measures are often severely biased. Notably,
when fixing the sample size n while letting the dimen-
sions p of X and q of Y go to infinity, it may happen that
R̂2

ρX ,ρY (X,Y ) converges to 1 even under independence
of X and Y [60]. Even when only one of the dimensions
is high, large difficulties in the interpretation of distance
correlation may arise ([11], Section 4).

To obtain better interpretable results for the classical
distance correlation, it has been proposed [11, 60] to
use U-statistic versions of the corresponding squared dis-
tance covariances and distance standard deviations. A U-
statistic estimator of the squared generalized distance co-
variance is given by

(29)

�̂ρX ,ρY (X,Y )

= 1

n (n − 3)

[
n∑

i,j=1

ρX (Xi,Xj )ρY(Yi, Yj )

+ 1

(n − 1) (n − 2)

n∑
i,j=1

ρX (Xi,Xj )

·
n∑

i,j=1

ρY(Yi, Yj )

− 2

(n − 2)

n∑
i,j,k=1

ρX (Xi,Xj )ρY(Yi, Yk)

]
,

Analogous U-statistic estimators for HSIC and the
global test can be straightforwardly established using the
equivalence results derived in this work.

For the classical distance correlation, it has been shown
that an empirical distance correlation based on U-statistic
estimates of the distance covariance and distance standard
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deviations gives more meaningful results than the esti-
mator in (28) [11], Section 4; this phenomenon similarly
arises for the generalized distance correlation. It is hence
recommended to use U-statistic estimators also for gener-
alized distance correlations based on HSIC or the global
test.

7. MODEL-BASED EXTENSIONS OF HSIC AND
GENERALIZED DISTANCE COVARIANCE

We have seen in Section 5 that, if the linear kernel or
quadratic Euclidean distance, respectively, are applied on
the univariate response data y, the corresponding HSIC
and generalized distance covariance arise from locally
most powerful test statistics in certain stochastic process
regression models. Global tests arising from locally most
powerful tests have been derived for Empirical Bayes ver-
sions of general statistical models in [18] with a special
focus on generalized linear models in [17]. We now ex-
tend these results using stochastic processes to obtain use-
ful model-based extensions of HSIC and generalized dis-
tance covariance.

THEOREM 5. Let V : X → R be a stochastic process
with E[V (s)] ≡ 0 and E[V (s)V (t)] = k(s, t) for some
kernel function k(·, ·). For i ∈ {1, . . . , n}, let Xi ∈ X and
consider a statistical model with likelihood

(30) gi(ri) = exp
(
fi(ri)

)
,

where ri = τV (Xi) with τ ∈ R. We further assume that,
for all i, the first two derivatives of fi exist almost every-
where and are bounded in a neighborhood of 0. Then the
locally most powerful test statistic for testing H0 : τ 2 = 0
against H1 : τ 2 > 0 in the marginal model

(31) 	
(
τ 2) = EV (·)|τ 2

[
n∏

i=1

gi(ri)

]
,

is (up to translation and multiplication by constants)

(32)

1

2

(
n∑

i=1

k(Xi,Xi)
∂2fi(0)

(∂ri)2

+
n∑

i,j=1

k(Xi,Xj )
∂fi(0)

∂ri

∂fj (0)

∂rj

)
.

If fi does not depend on i, the statistic in (32) can easily
be recognized as a V-statistic of order two, so that testing
can be carried out using standard theory [34]. In many ap-
plications, however, either fi depends on i, or some of the
model parameters are not known and pivot statistics must
be found. In such case, tailored procedures for calculating
p-values must be developed for different models, cf. [17]
for the generalized linear model, and [12, 15] for survival
analysis models.

In the remainder of this section, we present several use-
ful extensions of HSIC and generalized distance covari-
ance emerging from statistics of the form (32). We empha-
size that this list is not exhaustive and many more inter-
esting test statistics can be established using the same the-
ory. As an example, the results for generalized linear mod-
els [17] may be extended to Bayesian generalized kernel
models [70] in the future.

7.1 Linearly Adjusting for Nuisance Covariates

In applications it is often necessary to correct for nui-
sance covariates, for example, confounders. Consider for
example the problem that motivated the original global
test [16] of testing whether the expression of certain
groups of genes (defined, e.g., via pathway or gene ontol-
ogy terms) is associated with some clinical response, say
response to treatment or development of a certain disease.
In this case, a practitioner will often need to adjust for
clinical covariates that act as confounders, having an im-
pact on both the response and the gene expression. A di-
rect application of Theorem 5 yields the following corol-
lary.

COROLLARY 3. Let V : X → R be a stochastic pro-
cess with E[V (s)] ≡ 0 and E[V (s)V (t)] = k(s, t) for
some kernel function k(·, ·). For i ∈ {1, . . . , n}, let Xi ∈X
and Zi = (1,Z1, . . . ,Zp0)

t ∈ R(p0+1). Consider a statis-
tical model with likelihood

gi(ri) = exp
(
fi(ri + ci)

)
,

where ri = τV (Xi), τ ∈ R and ci = γ tZi with known
regression coefficients of the nuisance covariates γ =
(μ, γ1, . . . , γp0). We further assume that, for all i, the
first two derivatives of fi exist almost everywhere and
are bounded in a neighborhood of 0. Then the locally
most powerful test statistic for testing H0 : τ 2 = 0 against
H1 : τ 2 > 0 in the marginal model

(33) 	
(
τ 2) = EV (·)|τ 2

[
n∏

i=1

gi(ri)

]
,

is (up to translation and multiplication by constants),

(34)

1

2

(
n∑

i=1

k(Xi,Xi)
∂2fi(ci)

(∂ri)2

+
n∑

i,j=1

k(Xi,Xj )
∂fi(ci)

∂ri

∂fj (cj )

∂rj

)
.

Consider, for example, the model y = (y1, . . . , yn)
t ,

(35) yi ∼N
(
ci + ri, σ

2)
,

where ri = τV (Xi) and V is a Gaussian process with co-
variance function k and σ 2 > 0. Then the locally most
powerful test for testing H0 : τ 2 = 0 is

(36)
n∑

i,j=1

k(Xi,Xj )(yi − ci)(yj − cj ).
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Plugging in the ML estimates for the regression coeffi-
cients γ and simplifying the outcome, we obtain as pivot
statistic

(37)
n∑

i,j=1

K̃
Z
ij L̃

Z
ij ,

where L̃
Z = (I − HZ)YY t (I − HZ), K̃

Z = (I − HZ) ×
K(I − HZ), HZ = Z(ZtZ)−1Zt and K is the matrix of
which the (i, j)th entry is given by k(Xi,Xj ). If there are
no nuisance covariates, that is, γ = μ, (37) simplifies to
the standard HSIC/generalized distance covariance with
a linear kernel on y. With nuisance covariates, we obtain
a novel version of HSIC/generalized distance, linearly ad-
justed for the influence of Z. This test statistic differs from
the standard HSIC test statistic only in the hat matrix HZ

used, that orthogonalizes the kernel matrix to all columns
of Z = (Z1, . . . ,Zn)

t rather than only the intercept, as H

in the usual HSIC did.
In the presence of nuisance parameters, corresponding

permutation tests (and bootstrap tests) are only valid un-
der the highly restrictive assumption that the nuisance co-
variates are independent of the covariates X. A valid al-
ternative in this setting is given by the sign-flipping test
[25], approximating the distribution of (37) under the null
by

(38)
n∑

i,j=1

K̃
Z
ij L̃

Z
ij gjg

t
j ,

where, for j ∈ {1, . . . ,B}, gj = (gj1, . . . , gjn)
t are ran-

dom functions in {−1,1}n. This, however, may lead to
conservative tests. An asymptotically exact test based on
(37) can be established by replacing the score contri-
butions in the corresponding tests by the efficient score
contributions; see [25] for details. An alternative way to
obtain asymptotically exact tests in Gaussian regression
models with nuisance covariates is to apply a rotation-
based test [54]; however, this method relies on the as-
sumption of normally distributed errors.

7.2 Goodness-of-Fit Testing

Goodness-of-fit tests may be established in a similar
way as the tests in Section 7.1, and also require the ad-
justment for nuisance covariates. As an example consider
the null model

(39) yi ∼ N
(
β t X̃i , σ

2)
, β ∈Rp+1, σ 2 > 0,

where X̃i = (1,Xi1, . . . ,Xip) ∈ Rp+1 is the ith obser-
vation of X, expanded to include an intercept, and β =
(μ,β1, . . . , βp) is the vector of regression coefficients.
Also, we denote by X̃ = (X̃1, . . . , X̃n)

t the data matrix
expanded by a column of ones. This model may be em-
bedded into the more general model

(40)
yi ∼ N

(
β t X̃i + h(Xi), σ

2)
,

β ∈ Rp+1, σ 2 > 0, h ∈H,

where H = {h : Rp �→ R|h(x) = ∑d
j=1 �j(x)} and � =

(�1, . . . ,�d) is a feature map of a kernel k (possibly d =
∞).

We could then be interested in testing whether the
model (39) is adequate for expressing the relation be-
tween yi and Xi , compared to the more general model
(40), that is, testing h(·) = 0. Along the lines of Sec-
tion 7.1, we may derive a suitable test statistic for this
purpose, given by

(41)
n∑

i,j=1

K̃
X̃
ij L̃

X̃
ij ,

where L̃
X̃ = (I − HX̃)YY t (I − HX̃), K̃

X̃ = (I − HX̃) ×
K(I − HX̃), HX̃ = X̃(X̃

t
X̃)−1X̃

t
and K is the matrix

of which the (i, j)th entry is given by k(Xi,Xj ). Sim-
ilar tests may be constructed for other statistical mod-
els, such as proportional hazards regression. For comple-
mentary details about goodness-of-fit tests derived from
global tests, we refer the reader to [55].

7.3 Heavy-Tailed Data

In Section 5, we have shown that certain instances of
HSIC and generalized distance covariance arise as lo-
cally most powerful models of the form (16), assuming a
Gaussian distribution of the errors. In settings with heavy-
tailed responses such an assumption is sub-optimal and
may lead to low power of the corresponding tests. The
following corollary presents a test for t-distributed errors.

COROLLARY 4. Let V : X → R be a stochastic pro-
cess with E[V (s)] ≡ 0 and E[V (s)V (t)] = k(s, t) for
some kernel function k(·, ·). For i ∈ {1, . . . , n}, let Xi ∈ X
and

(42) yi = μ + V (Xi) + σεν,

where ri = τV (Xi), τ ∈ R and εν follows a t-distribution
with ν degrees of freedom; denote its likelihood by g(ri).
Then the locally most powerful test statistic for testing
H0 : τ 2 = 0 against H1 : τ 2 > 0 in the marginal model

(43) 	
(
τ 2) = EV (·)|τ 2

[
n∏

i=1

g(ri)

]
,

is given by (up to translation and multiplication by con-
stants)

n∑
i,j=1

k(xi, xj )

× yi − μ

(yi − μ)2 + σ 2ν

yj − μ

(yj − μ)2 + σ 2ν

+
n∑

i=1

k(xi, xi)
(yi − μ)2 − σ 2ν

((yi − μ)2 + σ 2ν)2 .
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In practice, typically neither of the parameters σ 2, ν or
μ will be known, which makes it necessary to plug in ML
estimates of the parameters, which may be obtained using
the Expectation Maximization (EM) algorithm [36].

7.4 Survival Models

Consider a proportional hazards survival model, where
the hazard of individual i at time t is given by

hi(t) = h(t) exp(ri),

with ri = τV (Xi), where V is a Gaussian process with
covariance function k and h(t) is the baseline hazard. We
allow the follow-up times to be right-censored, assuming
that the censoring times and survival times are indepen-
dent given the covariates. This is essentially a classical
Cox model allowing for nonlinear relations between the
predictor X and the log-hazard ratio. Given that the haz-
ard functions are known, the full likelihood in this model
can be written in the form stated in equation (30) with

fi(ri) = �i

(
log

(
h(ti)

) + ri
) − H(ti) exp(ri),

where H(·) is the cumulative hazard function and ti and
�i denote the follow-up time and censoring indicator of
the ith individual respectively.

Applying Theorem 5 yields that the locally most pow-
erful test statistic in this model is given by

1

2

(
−

n∑
i=1

k(Xi,Xi)H(ti)

+
n∑

i,j=1

k(Xi,Xj )
(
�i − H(ti)

)(
�j − H(ti)

));
(44)

see [15] for details on the corresponding linear test. In
practice the baseline hazard will be unknown. To solve
this problem, we plug in estimates for H(ti), i = 1, . . . , n,

Ĥ (ti) = ∑
tj≤ti

�j

R(tj )
,

where R(t) is the number of individuals at risk at time t .
In contrast to the global test for the standard Cox model in
[15], the resulting statistics is also able to detect alterna-
tives in which the log-hazard ratio is a nonlinear function
of the predictors. We note that a very similar test has been
proposed in [5]. The test statistic (44) can be extended to
a stratified proportional hazards model of the form

hi(t) = h(i)(t) exp(ri),

where h(i)(·) is the baseline hazard of the ith stratum, see
[12] for the derivation in the case where k is the linear ker-
nel. As special cases of the stratified model, we may ob-
tain test statistics for conditional logistic regression, com-
peting risks and multistate models [12].

8. INDEPENDENCE TESTING USING THE DISCRETE
KERNEL

A particularly interesting choice for a kernel function
in HSIC, which has gained surprisingly little attention in
literature, is the discrete kernel, which corresponds to the
discrete distance in generalized distance covariance, cf.
Section 3.2. The discrete kernel is invaluable for tests in-
volving categorical data, which are ubiquitous in many
applications. In this section, we present discrete tests fol-
lowing from the considerations in Sections 3.2 and 7.

Section 8.1 considers that only one of the two kernels
is discrete, showing up important connections between in-
dependence testing and location testing of m samples; we
note that some of these results have been independently
derived in [52]. This subsection establishes a link between
HSIC and distance covariance tests and (multinomial) lo-
gistic regression.

Next, Section 8.2 discusses a test between two sets of
categorical data. This second test is particularly interest-
ing since it arises naturally and identically from all three
traditions discussed in this work. For HSIC and distance
covariance, it results from applying the discrete kernel or
discrete distance, respectively on both datasets. Within the
global test framework, it arises a a locally most powerful
test in a multinomial logistic regression model with a cat-
egorical predictor. By contrasting this test to the classical
chi-square test for m × r contingency tables, we provide
additional insight into commonality between the three tra-
ditions considered in this article, and their contrast to stan-
dard tests.

8.1 Testing Independence Between Categorical and
Continuous or Ordinal Data

If the discrete kernel is applied to one variable and a dif-
ferent kernel is applied to another variable, we typically
obtain tests that can be used for testing independence be-
tween categorical and continuous or ordinal data. Let d

denote the discrete kernel on Y .
We first consider that Y contains only two elements.

Without loss of generality we assume that Y = {0,1},
while X may be any arbitrary set. For observations X ∈
X n and y ∈ {0,1}n, we now study ĤSICkX ,d , where kX
is an arbitrary kernel on X .

From Theorem 5 and the considerations in [14, 17], it
follows directly that ĤSICkX ,d is a pivot for the locally
most powerful test for the null hypothesis H0 : τ 2 = 0 in
a binomial regression model with logit link,

(45) yi ∼ B
(

1,
expμ+V (Xi)

1 + expμ+V (Xi)

)
,

where B(N,p) denotes the binomial distribution and V (·)
is a stochastic process with covariance function τ 2kX .

From another viewpoint, ĤSICkX ,d can be regarded as
measure of distance between the distributions of the Xi
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for which yi = 0 and the Xi for which yi = 1. Proposition
6 states that ĤSICkX ,d is just a multiple of the squared
empirical maximum mean discrepancy (MMD) with ker-
nel function kX , a well-known distance between probabil-
ity distributions used in machine learning [19, 20].

PROPOSITION 6. Let kX denote an arbitrary ker-
nel on some set X and let d denote the discrete ker-
nel on {0,1}. Also, for any S = {s1, . . . , sl} ⊂ {1, . . . , n}
with s1 < s2 . . . < sl , let XS

j = Xsj for j ∈ {1, . . . , l}
and XS = (XS

1 , . . . ,XS
l ). Moreover, for j = 0,1, denote

Sj = {i ∈ {1, . . . , n}|yi = j} and nj = |Sj |. Then it holds
that

(46) ĤSICkX ,d(X,y) = 2n2
0n

2
1

n4 M̂MD
2
kX

(
XS0,XS1

)
,

where M̂MDkX is the empirical version of the maximum
mean discrepancy [19], Eq. (6).

Choosing for kX the kernel function corresponding to
distance covariance, the expression in (46) reduces to a
multiple of the squared classical energy distance [61, 63].
Using the linear kernel leads to a linear two-sample test
that is applicable in high dimensions and was previously
studied in [1, 56].

When Y consists of more than two elements, say Y =
{0,1 . . . ,m}, we can use the results in [14] and proceed
along the lines of Section 7 to see that HSICkX ,d is a pivot
for the locally most powerful test for τ 2 = 0 in an over-
parametrized multinomial model of the form

yi ∼ M
(

1,
expμ+V0(Xi)∑m

g=0 expμ+Vg(Xi)
, . . . ,

(47)

× expμ+Vm(Xi)∑m
g=0 expμ+Vg(Xi)

)
,

where M(N,p0, . . . , pm) denotes the multinomial dis-
tribution with parameters N,p0, . . . , pm and V1(·), . . . ,
Vm(·) are independent Gaussian processes with covari-
ance function τ 2kX .

Useful representations for the discrete kernel with more
than two elements can be traced back to the two-elements
case. In particular, as noted in [14], the feature map rep-
resentation d(y1, y2) = (1{y1=0}, . . . ,1{y1=m})t (1{y2=0},
. . . ,1{y2=m}), directly implies that

(48) ĤSICkX ,d(X,y) = 1

2

m∑
j=0

ĤSICkX ,d(j)(X,y),

where d(j) = 1{y1=j,y2=j} + 1{y1 �=j,y2 �=j} is the discrete
kernel on the set {{j},Y\{j}}. This leads to the follow-
ing corollary of Proposition 6.

COROLLARY 5. Let kX denote an arbitrary kernel
on some set X and let d denote the discrete kernel on

{0, . . . ,m}. Also, for any S = {s1, . . . , sl} ⊂ {1, . . . , n}
with s1 < s2 . . . < sl , let XS

j = Xsj for j ∈ {1, . . . , l} and

XS = (XS
1 , . . . ,XS

l ). Moreover, for j = 0, . . . ,m, denote
Sj = {i ∈ {1, . . . , n}|yi = j} and nj = |Sj |. Then we have

ĤSICkX ,d(X,y)

=
m∑

j=0

n2
j (n − nj )

2

n4 M̂MD
2
kX

(
XSj ,XY\Sj

)
.

(49)

If n0 = · · · = nm and kX is the distance covariance
kernel, representation (49) reduces to a multiple of the
DISCO statistic [45], equation (2.3). Also, if n0 = · · · =
nm and kX is the linear kernel, ĤSICkX ,d(X,y) is a multi-
ple of the SST (sum of squared error due to treatments) in
a classical ANOVA [45], p. 4. With unequal n0, . . . , nm,
however, the test statistic can be markedly different from
these classical tests. In particular, as can be understood
from the decomposition in Section 5.3, the test puts larger
weight on the outcome categories i with large sample size
ni . This is a sensible property, since there is more power
to be had for these outcome categories [18]. Since the test
puts weight zero to outcome categories i with ni = 0, the
test adapts more naturally to sparse contexts than its clas-
sical counterparts.

8.2 An Alternative to the Chi-Square Independence
Test for Categorical Data

All three traditions of testing can be used to construct a
test between two sets of categorical data, and the resulting
test is the same. For HSIC and distance covariance, the
test is derived by applying discrete kernels or distances,
respectively, on both X and Y . From the global test per-
spective, the same test arises as a locally most powerful
test in a multinomial regression model with categorical
predictors, cf. the model in (47). In the remainder of this
section, we will derive and analyze this test, and contrast
its properties with those of the classical chi-square test.

THEOREM 6. Let X = {0, . . . ,m} and Y = {0, . . . , r}
and denote the discrete kernels on X and Y by dm and dr ,
respectively. We further consider the m × r contingency
table of the sample (X,Y ). The entry in the (j, l)th cell
will be denoted by njl , that is,

njl =
n∑

i=1

1{Xi=j,Yi=l},

moreover let nk· and n·l denote the respective row and
column sums, that is,

nj · =
n∑

l=1

njl =
n∑

i=1

1{Xi=j },

n·l =
n∑

k=1

njl =
n∑

i=1

1{Yi=l}.
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Finally, let

n∗
j l = 1

n
nj ·n·l

be the expected value of njl under independence of X and
Y (and with fixed marginal frequencies). Then

(50) HSICdm,dr = 1

n2

m∑
j=0

r∑
l=0

(
njl − n∗

j l

)2
.

The asymptotic distribution of the statistic in (50) is a
Gaussian quadratic form with a finite number of nonzero
weights, as stated by the following theorem.

THEOREM 7. Let pj = P(X = j), j = 0, . . . ,m and
ql = P(Y = l), l = 0, . . . , r . Also define the matrices LX ∈
R(m+1)×(m+1) and LY ∈R(r+1)×(r+1) via

LX
jl = pl

(
1{j=l} − pj − pl +

m∑
k=0

p2
k

)
,

LY
jl = ql

(
1{j=l} − qj − ql +

r∑
k=0

q2
k

)
,

and denote by λX
0 ≥ · · · ≥ λX

m−1 and λY
0 ≥ · · · ≥ λY

r−1 the
nonzero eigenvalues of LX and LY , respectively. Then, for
n → ∞,

n ĤSICdm,dr

D−→
m−1∑
j=0

r−1∑
l=0

λX
j λY

l Z2
j l,

where the Zjl are independent standard normally dis-
tributed random variables

We note that while a more technical formulation of The-
orem 6 has been given in [38], Remark 4.12, the statement
of Theorem 7 is new, to the best knowledge of the authors.

REMARK 2. We remark that the result of Theorem 7
yields a procedure for approximating p-values requiring
only the calculation of the eigenvalues of two square ma-
trices with m + 1 and r + 1 rows, respectively, instead of
the calculation of the eigenvalues of two quadratic matri-
ces with n rows. To the best knowledge of the authors,
no general closed form expressions for matrices of the
form of LX (or LY , respectively) are known. However,
assuming w.l.o.g. that p0 ≥ · · · ≥ pm, it follows directly
from the interlacing property in [27], Theorem 3, that, for
j = 0, . . . ,m − 1,

pj+1 ≤ λX
j ≤ pj ,

and similarly for the eigenvalues of LY .

Since the discussed discrete test arises naturally from
all three traditions discussed in this article, it is insightful
to contrast the test statistic in Theorem 7,

(51) n ĤSICdm,dr = 1

n

m∑
j=0

r∑
l=0

(
njl − n∗

j l

)2
,

with the standard chi-square test statistic for testing inde-
pendence in (m + 1) × (r + 1) contingency tables, which
is given by

(52)

Ŝ =
m∑

j=0

r∑
l=0

(njl − n∗
j l)

2

n∗
j l

= 1

n

m∑
j=0

r∑
l=0

(njl − n∗
j l)

2

p∗
j l

,

where p∗
j l = n∗

j l

n
is the estimated probability of observing

(Xi, Yi) = (j, l) under the null hypothesis.
A comparison between the test statistics (51) and (52)

will point to general differences between the unified test-
ing concept in this article and standard tests. The only
arithmetic difference between (51) and (52) is the addi-
tional normalizing factor (p∗

j l)
−1 in each summand of the

chi-square test statistic. The missing normalizing factor
in equation (51) implies that this test gives relatively large
weight to deviations in categories in which the expected
count is large. More precisely, is does not down-weight
such deviations like the chi-square test. The test, there-
fore, is relatively more directed against alternatives that
are associated with deviations from the expected num-
ber of counts n∗

j l in cells with large n∗
j l , which is closely

connected with the local optimality property underly-
ing HSIC/generalized distance covariance/global tests, cf.
also Section 5.3.

For further investigation of the alternatives against
which the presented test is directed, it is useful to con-
sider the decomposition in equation (26),

(53) n ĤSICdm,dr = n

m∑
j=0

r∑
l=0

λ̂X
j

n

λ̂Y
l

n

(
wt

l vj

)2
,

and comparing it with the corresponding representation of
the chi-square statistic,

(54) Ŝ = n

m∑
j=0

r∑
l=0

(
wt

l vj

)2
.

While n ĤSICdm,dr is specifically directed against alterna-
tives associated with large variation in feature space, the
chi-square statistic assigns equal weights to all directions.
This implies lower power of the chi-square statistic for
the alternatives associated with large variation in feature
space, which correspond to frequent values of X and Y ,
respectively, and higher power for the alternatives associ-
ated with small variation in feature space, corresponding
to rare values of X and Y . Comparison of equations (53)
and (54) also explains the different asymptotic distribu-
tions of ĤSICdm,dr and Ŝ. Notably, the χ2

mr limit distri-
bution of the chi-square statistic is simply a consequence
of the standardizing factors (p∗

kl)
−1 of the summands in

(52).
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The comparison above is highly analogous to the differ-
ence between the global test for linear regression and the
classical F-test [18]. In that comparison, the striking prop-
erty of the F-test was the invariance under affine transfor-
mations. While this is a classic (and usually considered
desirable) property, it is the noninvariance of the global
test, which enables the functionality in high dimensions.
When contrasting now the discrete global test in equation
(51) with the chi-square test, the noninvariance property
in feature space of the latter does not seem particularly
meaningful. The main advantage, and presumably one of
the main reasons to originally construct the chi-square test
in this way, is the simple asymptotic distribution of the
chi-square test statistic. The discrete test in equation (51)
on the other hand features the local optimality property;
by focusing on cells with a high expected count, it prefers
to focus on alternatives for which we can have consider-
able power even if the dependence between X and Y is
weak. Moreover, since the test statistic does not feature
the standardizing factor (p∗

kl)
−1 in each summand, it may

be expected that parametric versions of the test also per-
form well when some expected cell counts are low or even
zero; this is not the case for the chi-square test.

In view of these advantages, the discrete global test
should be considered a serious competitor for the clas-
sical chi-square test. Generalizations to ordinal data can
be derived starting from [31].

9. DISCUSSION

We have established a unification of generalized dis-
tance covariance, HSIC and locally most powerful global
tests that, we think, leads to a better understanding of
all three theories. Most importantly, we have provided
model-based interpretations of HSIC and generalized dis-
tance covariance, see Section 5. As implied by this central
observation, a large new family of tests arises (Section 7)
which may be very useful for applications. This family
can be regarded as either an extension of generalized dis-
tance covariance and HSIC to generalized linear regres-
sion models or as a kernel version of the global test. A
way of obtaining further generalizations of all three mea-
sures is to apply different weight functions in equation
(26), as we discussed in Section 5.3.

Besides exploring the connection of generalized dis-
tance covariance, HSIC and global tests and extending
their unified concept, we have contrasted them to classi-
cal tests such as the F-test for linear regression or the chi-
square test. We found that the main difference between
the two approaches is that that the classical tests satisfy
an invariance property in feature space, which does not
hold for generalized distance covariance, HSIC or global
tests. We have also pointed out that it is precisely this lack
of this invariance property that provides nontrivial power

when testing in high dimensions or for general associa-
tions.

In many applications, variation is closely related to sig-
nal strength; in this context the property of affine invari-
ance looks rather unnatural. In many applications, axes
of large variation will usually be related to signal, while
axes of small variations may often be explained by noise
[18]. Following this argumentation, we conclude that non-
invariant tests represent serious competitors to classical
tests for problems where affinely invariant standard tests
are routinely applied, such as the contingency table case
of Section 8.2 or survival analysis [12]. We see global
tests, HSIC tests and distance covariance tests as exam-
ples of a broader class of noninvariant tests; we believe
that viewing them in this way provides a starting point for
further exploration of their properties, both in their own
right and in contrast to classical tests.

SUPPLEMENTARY MATERIAL

Supplement to “A Regression Perspective on Gener-
alized Distance Covariance and the Hilbert–Schmidt
Independence Criterion” (DOI: 10.1214/21-STS841
SUPP; .pdf). Supplementary information.
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