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Abstract

Background: The COVID-19 pandemic has challenged healthcare systems and research worldwide. Data is collected
all over the world and needs to be integrated and made available to other researchers quickly. However, the various
heterogeneous information systems that are used in hospitals can result in fragmentation of health data over multiple
data ‘silos’ that are not interoperable for analysis. Consequently, clinical observations in hospitalised patients are not
prepared to be reused efficiently and timely. There is a need to adapt the research data management in hospitals to
make COVID-19 observational patient data machine actionable, i.e. more Findable, Accessible, Interoperable and
Reusable (FAIR) for humans and machines. We therefore applied the FAIR principles in the hospital to make patient
data more FAIR.

Results: In this paper, we present our FAIR approach to transform COVID-19 observational patient data collected in
the hospital into machine actionable digital objects to answer medical doctors’ research questions. With this objective,
we conducted a coordinated FAIRification among stakeholders based on ontological models for data and metadata,
and a FAIR based architecture that complements the existing data management. We applied FAIR Data Points for
metadata exposure, turning investigational parameters into a FAIR dataset. We demonstrated that this dataset is
machine actionable by means of three different computational activities: federated query of patient data along open
existing knowledge sources across the world through the Semantic Web, implementing Web APIs for data query
interoperability, and building applications on top of these FAIR patient data for FAIR data analytics in the hospital.

Conclusions: Our work demonstrates that a FAIR research data management plan based on ontological models for
data and metadata, open Science, Semantic Web technologies, and FAIR Data Points is providing data infrastructure
in the hospital for machine actionable FAIR Digital Objects. This FAIR data is prepared to be reused for federated
analysis, linkable to other FAIR data such as Linked Open Data, and reusable to develop software applications on top
of them for hypothesis generation and knowledge discovery.

Keywords: Patient data, Ontologies, FAIR, Research data management, Hospital, Open science

*Correspondence: M.Roos@lumc.nl
1Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands
Full list of author information is available at the end of the article

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13326-022-00263-7&domain=pdf
http://orcid.org/0000-0002-8691-772X
mailto: M.Roos@lumc.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Queralt-Rosinach et al. Journal of Biomedical Semantics           (2022) 13:12 Page 2 of 19

Background
The COVID-19 pandemic has challenged healthcare and
research data management systems worldwide to pro-
vide reusable patient data for rapid and efficient transla-
tional research. Clinical data, laboratory measurements,
and various omics data such as transcriptomics and
metabolomics, are routinely collected from hospitalized
COVID-19 patients to inform medical doctors about
patients’ health status and to support research on treat-
ment options. Analysing data integrated from multiple
sources in a hospital, complemented with data from
other hospitals and public knowledge bases, can generate
critical information about disease mechanisms to sup-
port diagnosis, prognosis and decisions on interventions.
However, research and clinical data are often not prepared
for instant secondary use involving multiple sources. This
was already an obstacle for efficient clinical and biomedi-
cal research in general, but a pandemic of a poorly under-
stood novel disease that overloads hospitals’ capacity has
revealed the significance of this problem.
Integrative analysis is challenged by software systems

used to collect these various types of data from patients
in hospitals. Different formats may be used (e.g. CSV or
JSON) and the semantics of data are often underspeci-
fied and captured in a proprietary syntax or by different
standards (e.g. HL7 FHIR or OpenEHR). This can result
in fragmentation over multiple ‘silos’ that are not suffi-
ciently interoperable for instant computational analysis.
Reuse and reproducibility are further hampered by miss-
ing or unstandardised provenance, such as the time and
date at which data were collected (e.g. scans may be per-
formed on a different day than blood measurements).
Furthermore, to expand analysis beyond one hospital,
information on consent and regulations that control data
access, reuse, and sharing are often unclear and not easily
assessable. Complete harmonization of access regulations
between institutes and countries is not realistic, but analy-
sis could still be efficient if access regulations were at least
computationally assessable.
Ideally, hospital systems are set up with integrative,

federated data analytics in mind. Global leaders in data
science have posed that this can be achieved by apply-
ing agreed upon standards to make data globally findable,
accessible, interoperable, and reusable for humans and
computers, also referred to by as ‘the FAIR principles’ [1].
Indeed, projects such as the GO FAIR Virus Outbreak
Data Network (VODAN) [2], the ZonMW Covid pro-
gram [3], the Trusted World of Corona (TWOC) [4], and
ELIXIRCovid project [5] embrace FAIR principles as a key
element of their COVID-19 data management strategy. A
quintessential objective is turning data and data contain-
ers into machine actionable FAIR Digital Objects (FDOs),
in this paper defined as resources in a digital, machine

understandable form including explanatory metadata and
addressable by a globally unique persistent and resolv-
able identifier; a formal framework for FDOs is under
development, see [6, 7]. This will optimize the ability to
integrate and visualise data from many sources, facilitate
fine-grained data access regulation, and allow for decen-
tralised and machine assisted analysis [8]. The latter is
further enabled by the development of infrastructure that
supports ‘data visiting’ [9, 10]. This is attractive for clini-
cal data because (i) existing systems can be complemented
with data visiting functions, thereby keeping their other
functions in place, (ii) the output of an analysis is gener-
ally less privacy sensitive than the input. In Europe, the
General Data Protection Regulation (GDPR) policy sup-
ports data visiting by requiring that access regulations for
personal data are clearly defined [11].
Methods to facilitate the implementation of FAIR prin-

ciples, or ‘FAIRification’, are currently being investigated
in multiple projects and initiatives. We use ‘FAIRification’
to denote the process towards achieving FAIRification
goals, irrespective of specific implementation choices per
principle. We have previously published a generic work-
flow [12], as a basis for specialised variations such as for
rare disease registries [13]. Related activities are the devel-
opment of the FAIR cookbook in the FAIRplus project
[14, 15], the three point framework for FAIRification of
metadata by the VODAN GO FAIR network [16], and
the organisation of a FAIRification steward team to sup-
port rare disease registries reach their FAIR goals [17].
The application of FAIR principles in hospitals is starting
to be adopted in Europe as a key strategy for nationwide
healthcare research data infrastructure [18, 19]. Cross
connections through multinational collaborations, such
as in ELIXIR and GO FAIR, and domain specific col-
laborations such as via globally operating patient organ-
isations, could support convergence of FAIR implemen-
tation choices to further facilitate the adoption of FAIR
principles and thereby efficient analysis across multiple
hospitals in multiple countries.
At the Leiden University Medical Centre (LUMC), the

implementation of FAIR principles for COVID-19 data
is part of a multidisciplinary collaboration, coined ‘The
BEAT-COVID project’. This collaboration was initiated
in March 2020 to face the multiple analysis challenges
of the COVID-19 pandemic. The LUMC is a tertiary
care, teaching and research hospital in the Netherlands
that encompasses clinical and research groups with exper-
tise on immunology, biomedicine, data management and
data science. The groups work together on collecting and
sharing different types of patient data, analyses, findings,
expertise, and novel solutions implemented in the hospi-
tal (e.g. see [20]). One of the challenges is to implement
a FAIR Research Data Management plan (RDM) com-
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prising FAIRification of priority resources and a FAIR
based architecture that complements the existing data
management systems in the hospital.
We hypothesise that the use of existing ontologies and

ontological models will enable turning patient data into
machine readable digital objects that are prepared for sec-
ondary use. Our objective is to develop ontological models
that represent and link the data records and metadata of
the datasets in the existing LUMC data management sys-
tems (Fig. 1). In our ontology centred approach, data can
stay in existing systems but are made accessible ’in terms
of ’ the central data linking model to create a virtual ware-
house. We reused existing ontological models such as the
core ontological model for common data elements devel-
oped in the European Joint Programme on Rare Diseases
(EJP RD) for patient registries [21], and the Data Cata-
logue Vocabulary (DCAT) for datasets [22]. The metadata
is made accessible by a FAIR Data Point (FDP) instance
[23]. FDPs ensure that BEAT-COVID resources can be
found and used through queryingmachine readable meta-
data. It includes the pointers to access the content of the
resource for analysis workflows, if access is permitted.
By using ontologies, patient data in the hospital are vir-
tually linked with other ontologically described data in
the hospital, but also public Linked ‘Open’ Data (LOD).
This can boost the potential for knowledge discovery and
data+knowledge driven analytics. Interestingly, ontolo-
gies may also be used to describe data access restrictions

[24, 25] to complement FAIR metadata with information
that supports data safety and patient privacy.
In this paper, we describe and implement our approach

for FAIRification of COVID-19 observational patient data
in an academic hospital. We selected cytokine measure-
ments of hospitalised patients as our primary objective
of FAIRification and development of the FAIR RDM. We
synthesized an artificial dataset mimicking original lab-
oratory data obtained from patient samples to study the
data lifecycle without the risk of violating patient privacy.
Our main result is the FAIRification in the hospital. We
also show that our FAIRifcation approach is providing
cytokine measurements as FDOs and is enabling appli-
cations on top of this FAIR patient data for analytics.
Importantly, this work has been done in close collabora-
tion with clinicians and data managers who are familiar
with the existing hospital data systems and data lifecycles
to establish best practices for making data FAIR in the
hospital. We demonstrate that a FAIR RDM plan based
on describing data and metadata by ontologies delivers an
infrastructure that complements existing infrastructure
with FDOs that are prepared for integrative and feder-
ated analysis. We show our first results and the solutions
that are currently being developed as LUMC research data
management procedures. We finally discuss what FAIRifi-
cation entails in a ‘real world’ hospital situation involving
different stakeholders and departments, and future chal-
lenges such as data access regulation in a FAIR ecosystem.

Fig. 1 Illustration of the central concepts of the envisioned FAIR based architecture: the central star represents the data linking model for
interoperability that the sources refer to (data and metadata), the small stars next to each source represent what is used of the central model to
describe the source (thereby becoming ‘self-describing’), the arrows represent workflows or scripts: for the source systems to map or convert source
data and metadata to the central data linking model, for retrieving data from across the sources through the central data linking model, and for
analysis. FAIR Data Points provide access to the ‘ontologised’ metadata and data (not shown)
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Results
FAIR status of patient data in existing systems
Our FAIR assessment of the cytokine data in existing
systems revealed that while the structure and findability
improved with each step of the data management lifecy-
cle, no FAIR standards were applied to make the data and
metadata globally understandable ‘for machines’, such as
for automated computer processing (Table 1). The orig-
inal data from the clinical laboratory that measured the
cytokine levels was well structured, but not in a uniform,
globally machine readable way. The data were further pre-
processedmanually and transferred to the Electronic Data
Capture (EDC) software Castor [26]. Although this cap-
tured data electronically and in a uniform way, there were
no ontological representations added to the data collec-
tion forms to create a FAIR dataset. Data was subsequently
transferred fromCastor into the Opal data warehouse sys-
tem [27], conform the standard workflow for preparing
data for research at the LUMC. Opal is a generic system to
bring datasets from different systems in the hospital into
one warehouse, supporting transformations and annota-
tion on the data level with a vocabulary chosen by the user.
Opal provides researchers at the LUMC a central access
point to research data that are syntactically machine read-
able. It offers APIs that bioinformaticians can incorporate
in their workflows. Anonymised data of daily parame-
ters from patient records was imported into Opal without
including retrievable patient identifiers in the research
environment of the hospital on almost real time.
Opal’s native metadata tool Mica [28] provides anno-

tation on the dataset level such as how, when, where, by
whom, under what conditions data has been collected.
This information is subsequently published in a Web por-
tal. Therefore, Mica provides resource information that
is human readable on the Web. This metadata is not
also available in a machine readable form. Findability for
machines can be improved by adding a machine readable

Table 1 FAIR assessment of existing systems containing cytokine
data

Existing system FAIR assessment

Original cytokine dataset (Excel) Structured, but custom-built, thus
not in a uniform, globally machine
readable way.

Dataset in Castor EDC Structured in a uniform way, but no
standards were applied to create a
FAIR dataset.

Dataset in Opal Structured, findable through the
central LUMC warehouse and
accessible through an API, but no
global machine readable standards
were applied to represent the data
and metadata for machine
processing.

ontological representation. Our automated FAIR assess-
ment of a dataset described in Mica (see here) showed
specifically which FAIR improvements could be made to
make the metadata descriptions in Mica more machine
actionable and standardized. Although Mica implements
unique identifiers, these were not persistent in our case,
and they were also not explicitly defined in the metadata.
This creates challenges for data accessibility and reusabil-
ity. Some systems, notably Opal [29], provide handles to
integrate FAIR features, but we chose to first incorpo-
rate independent components to minimize requirements
for other systems and thereby optimize reusability of the
approach.

Coordinated FAIRification
A coordinated FAIRification process with BEAT-COVID
colleagues was set up to improve the machine readability,
global interoperability, and findability of the COVID-19
data. We developed ontological models for data record
in collaboration with data collectors, data managers, data
analysts and medical doctors. Similarly, we developed
machine actionable metadata to improve the findability,
accessibility, and reusability of the datasets in collabora-
tion with IT and database managers. Both tasks were per-
formed in parallel and in a synergistic way to consistently
support the entire data management lifecycle for data
analysis, and they are ongoing for additional data types.
While the BEAT-COVID project group was maintaining
one-hour bi-weekly video calls for general update and
logistic discussions, specific video calls were set up with
the required experts and duration for the topic at hand.
These regular and iterative meetings with all stakehold-
ers were necessary to enable the development of optimal
semantic modelling and computational standardization.

Representing patient data as FAIR digital objects
Central to our approach to implementing FAIR principles
‘for machines’ is the composition of ontological models
from existing commonly used ontologies. These mod-
els serve as reference for the data in the source systems,
creating a larger ‘virtual’ data warehouse. In this section
we present the ontological models and FAIR infrastruc-
ture that were set up to represent patient data as FDOs
discoverable for analytics. FDOs are broadly speaking a
digital object identified by a Globally Unique, Persistent
and Resolvable IDentifier (GUPRID) and described by
metadata [6]. In the Materials and methods section, we
explicitly describe how we represent patient data as FDOs
where GUPRIDs role are defined.

Ontological datamodel for interoperability of clinical
measurements
To create a user centred research driven data infrastruc-
ture, we used the medical research questions as drivers

https://fairsharing.github.io/FAIR-Evaluator-FrontEnd/#!/evaluations/4081
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for the data modelling. Important for our approach was
to enable a high level of interoperability of patient data
within the hospital. To that end we targeted all the
FAIR principles that enable interoperability, which are I1
((meta)data use a formal, accessible, shared, and broadly
applicable language for knowledge representation), I2
((meta)data use vocabularies that follow FAIR principles),
and I3 ((meta)data include qualified references to other
(meta)data). We first created a general concept model for
the questions to extend with relevant clinical data, and
mapped recurrent important terms mentioned by med-
ical doctors into terms in Open Biological Biomedical
Ontologies (OBO) ontologies [30, 31] described in the
Web Ontology Language (OWL) [32]. When we received
the first actual data, cytokine measurements on samples

collected from clinically admitted patients, we created an
ontological model in Resource Description Framework
(RDF) [33] for this data (see Fig. 2). The cytokine model
is based on the core semantic model that was developed
in the EJP RD for common data elements in rare disease
patient registries. This is a simple model that abstracts
that every element in a patient registry is the outcome of a
process, so that process becomes the core concept of the
model [34]. We reused this model jointly with the quan-
titative trait semantic model [35] to capture clinical data
measurements, where the ‘process of measurement’ is the
core concept. Reusing these existing ontological mod-
els for observational data in the LUMC supports FAIR
data. Not only does it allow interoperability with patient
registries and quantitative traits, but also the common

Fig. 2 Ontological data model for the cytokine measurements patient dataset
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Fig. 3 Semantic module to represent disease severity score phenotypes calculated in the hospital

biomedical ontologies used allow data integration with
external knowledge such as LOD.
We also modelled a new semantic module for disease

severity score phenotypes following the same EJP RD core
model, see Fig. 3. Apart from tracking the Apache IV
Severity Score [36] and the SOFA Severity Score [37],
medical doctors defined the Leiden Severity Score to
obtain daily scores of disease severity for both COVID-
19 patients admitted to the ward and ICU (Intensive Care
Unit), more detailed information in the Materials and
methods section. All these scores are based on lab results
and clinical data and reflect the actual disease severity
of the patient on that day and are informative for doc-
tors to make decisions about patient care management.
The ontological linking data model, and its modules (lab
measurements, biosamples and disease severity score), are
publicly available on GitHub - data model.

Ontological metadatamodel for COVID-19 resources
To allow the metadata of COVID-19 resources in the
hospital to be findable, accessible, and reusable by both
humans and machines, we provided an ontological model
to expose it in a machine readable way. The FAIR prin-
ciples that we prioritised were those about the use of
globally unique and persistent identifiers for data and
metadata, and providing rich metadata. We also followed
the best practice of using resolvable identifiers. In par-
ticular, for findability we targeted F1 ((meta)data are
assigned a globally unique and persistent identifier), F2
(data are described with rich metadata), and F3 (meta-
data clearly and explicitly include the identifier of the
data it describes), for accessibility A1 ((meta)data are
retrievable by their identifier using a standardized com-
munications protocol), and A1.1 (the protocol is open,
free, and universally implementable), and for reusabil-
ity R1 (meta(data) are richly described with a plurality
of accurate and relevant attributes), R1.1 ((meta)data are

released with a clear and accessible data usage license),
R1.2 ((meta)data are associated with detailed provenance),
and R1.3 ((meta)data meet domain-relevant community
standards). We targeted these principles to enable a high
level of machine actionability for evidence-based analysis
within the hospital and across public biomedical research
resources. Not yet prioritised were F4 ((meta)data are reg-
istered or indexed in a searchable resource), A1.2 (the
protocol allows for an authentication and authorization
procedure, where necessary), and A2 (metadata are acces-
sible, even when the data are no longer available), because
federated discovery and learning with real world obser-
vations across hospitals is planned for future iterations of
FAIRification. A1.2 is especially relevant in the case of
sensitive patient health data. In practice, we designed a
model by extending the DCAT2 based metadata model1
that is to manage the metadata of common datasets.
With four additional metadata elements from three stan-
dard ontologies, including the property “TYPE” from the
DCAT2, the properties “DESCRIBES” and “DATA INPUT
OF” from the Allotrope Foundation Ontologies (AFO)2,
and the property “HAS QUALITY” from the OBO Rela-
tions Ontology (RO)3, the metadata model features finer
semantic granularity. In Fig. 4, we show how we can spec-
ify that the BEAT-COVID data resource in our project is
a knowledge base, that describes COVID-19, that is sup-
posed to contain data input of clinical studies, and that has
synthetic quality by means of these four object property
values or edges in the RDF graph. This makes the struc-
tured semantics of the metadata of COVID-19 resources
richer and more precise. The metadata model is publicly
available on GitHub - metadata model.

1https://www.w3.org/TR/vocab-dcat-2/
2https://www.allotrope.org/ontologies
3http://www.obofoundry.org/ontology/ro.html

https://github.com/LUMC-BioSemantics/beat-covid/tree/master/fair-data-model/cytokine/model-triples
https://github.com/LUMC-BioSemantics/beat-covid/tree/master/fair-metadata-model
https://www.w3.org/TR/vocab-dcat-2/
https://www.allotrope.org/ontologies
http://www.obofoundry.org/ontology/ro.html
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Fig. 4 Ontological metadata model instantiated as an RDF graph. The four lower edges are the four additional metadata elements for COVID-19
data resource description

FAIR data point for assessing themetadata of BEAT-COVID
patient data
The basic idea of an FDP is to support scalable and
transparent “routing” of data resources through stored
metadata. The metadata stored and managed by an FDP
makes the data resources described by the metadata
semantically findable and reusable by machines. As an
open gateway, it also makes different data resources
accessible under defined constraints. Based on the
designed ontological metadata model, we implemented
an FDP to describe datasets in Opal and to publish FAIR
metadata of these datasets on the Internet as complemen-
tary to the Mica system. This FDP publishes structured
metadata for machines to automatically find BEAT-
COVID datasets and to interpret how to access and use
the data stored in Opal, for instance to those algorithms
visiting the data with the right access (Fig. 5). Important
to the FDP approach is that the data never leave its
repository thereby protecting patient data and ensuring
only authorized users have access. We performed an
automated FAIR assessment of the same dataset from
Mica described in the FDP. The results can be found
here and showed that various aspects of the metadata

description were improved in comparison to the Mica
analysis results. For instance, FDP evaluation resulted
in better identifier description of the (meta)data. With
the publication of the BEAT-COVID resource metadata
into the FDP we expect to increase the discoverability of
COVID-19 patient data in the LUMC and to enable feder-
ated analytics for extended populations. To point out that
an FDP is accessible and readable by machines through
a REST API, and by humans through a Graphical User
Interface (GUI). Note that the BEAT-COVID resource
metadata is not all human readable. This is because the
GUI of the current version of FDP only renders to the
last fragment of a URI (Uniform Resource Identifier). For
instance, the URI “www.example.org/ExOn/description”
renders to the label “description” and the URI
“www.example.org/ExOn/EL_00001” renders to the label
“EL_00001”. We are working on a more appropriate solu-
tion to display the “LABEL” property from RDF Schema4,
following the best practice to always provide this label for
humans. The FDP is publicly available at https://w3id.
org/biosemantics-lumc/beat-covid/fdp/.

4https://www.w3.org/TR/rdf-schema/

https://fairsharing.github.io/FAIR-Evaluator-FrontEnd/#!/evaluations/5589
https://w3id.org/biosemantics-lumc/beat-covid/fdp/
https://w3id.org/biosemantics-lumc/beat-covid/fdp/
https://www.w3.org/TR/rdf-schema/
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Fig. 5 Integration of our ontological approach with existing systems

Integrating the ontological models with the existing research
data warehouse
Our next step was to add access to patient measurements
as instances of the ontological model (‘ontologised data’)
as a feature to the existing RDM. In Fig. 5, we show how
ontologised data is integrated with the existing Opal and
Mica data management system. Our objective was to use
the Opal and Mica systems as a foundation for FAIRi-
fication in the LUMC. While the Opal system manages
integration of datasets in the hospital, the Mica system
adds valuable metadata about the data resources. Even
though Opal and Mica do not directly provide semantic
modelling functionality, they do provide a basic annota-
tion functionality that we used as the basis for connecting
the ontological models. To instantiate the ontological link-
ing data model in RDF, we developed an ‘RDFizer’ Python
script as a minimal prototype for patient data FAIRifi-
cation (see yellow arrow from Opal to Triple Store in
Fig. 5). Our current prototype uses CSV files with syn-
thetic cytokine data as input to connect data from Opal
to the ontological model that we developed for this data,
thereby creating ‘ontologised data’ in RDF. Opal allows
exporting datasets to CSV through its export function
API5.
Conversely, REST Web APIs can be generated from

the ontologised data using the grlc server [38] (see yel-
low arrow from Triple Store to Opal in Fig. 5). grlc is a
tool to automatically convert SPARQL queries into REST
Web APIs and make selected RDF data accessible to the
Web. Moreover, it can translate SPARQL [39] queries
stored and documented in GitHub repositories to Linked
5https://opaldoc.obiba.org/en/latest/python-user-guide/export/export-csv.
html

Data APIs on the fly. Essentially, it includes an additional
DCAT2 data distribution interface (REST APIs) on top
of the existing SPARQL endpoint. To demonstrate this
additional way of reusing FAIR patient data, we imple-
mented a set of Web API endpoints to retrieve patient
data in RDF. We first developed data retrieval SPARQL
queries, and then we ‘decorated’ and uploaded them in a
GitHub repository - grlc queries to be interpreted by the
grlc server and build the REST API interface automati-
cally. The SPARQL queries are examples of the potential
power to execute sophisticated federated analysis that can
be extended as more data resources become available. The
Web API endpoints are publicly available at http://grlc.io/
api-git/LUMC-BioSemantics/beat-covid-RESTful-API.

Querying FAIR patient data with LOD for medical questions
To showcase that the FAIR RDM and the derived data
infrastructure allow answering medical questions by
querying patient data in terms of the ontological model
and together with external open science knowledge, we
performed two simple SPARQL queries on the synthetic
cytokine data (Table 2). The queries were defined to
answer the initial real world medical doctors’ hypothe-
sis related to cytokines FAIR data. From clinical prac-
tice, doctors observed different disease courses with dif-
ferent cytokine related immune responses and different

Table 2 Example queries using external LOD resources

Question Result

Count number of patients LUMC query

Retrieve measured cytokines in the LUMC
with protein annotation from the UniProt
knowledgebase

Federated query

https://opaldoc.obiba.org/en/latest/python-user-guide/export/export-csv.html
https://opaldoc.obiba.org/en/latest/python-user-guide/export/export-csv.html
https://github.com/LUMC-BioSemantics/beat-covid-RESTful-API
http://grlc.io/api-git/LUMC-BioSemantics/beat-covid-RESTful-API
http://grlc.io/api-git/LUMC-BioSemantics/beat-covid-RESTful-API
https://github.com/LUMC-BioSemantics/beat-covid/blob/master/fair-data-model/cytokine/sparql-queries/count-number-of-patients.rq
https://github.com/LUMC-BioSemantics/beat-covid/blob/master/fair-data-model/cytokine/sparql-queries/lod/retrieve-protien-annotation.rq
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prognoses, and potentially different disease molecular
mechanisms. To personalize different treatment strate-
gies, doctors need to know what the clinical parameters
are that can be used as biomarkers for predicting the dis-
ease course of a patient. Cytokine levels could be such
biomarkers. To stratify patients, we first defined the query
to count the number of patients in the LUMC. Then, we
defined a second query to link each measured clinical
parameter with biological protein information from exter-
nal sources in order to build patient cytokine profiles that
can characterize individual immune responses at differ-
ent time points. Queries such as these provide the basis
for further analysis of prognostic indicators and disease
mechanisms.
The first query demonstrates that clinical information

from the LUMC can be queried, while the second demon-
strates that queries can run across LUMC clinical data and
external biomedical databases such as the UniProt pro-
tein knowledgebase by means of the federated SPARQL
query shown in Fig. 6. The SPARQL queries are avail-
able on GitHub - queries. The aforementioned grlc server
provides an additional RESTWeb API for these queries.

Discussion
FAIRification in the hospital
The COVID-19 pandemic revealed how critically impor-
tant it can be that patient data from multiple systems
in the hospital are prepared for instant integrative anal-
ysis across those systems, as well as across hospitals and
countries. This would be feasible if the hospital had a
FAIR RDM plan that implied making patient data avail-
able as FDOs and thereby findable, accessible, interopera-

ble, and reusable for computers [1]. However, COVID-19
patient data are not yet natively collected as FAIR data.
Therefore, we have described a strategy to facilitate the
adoption of the FAIR principles in the hospital based on
the FAIR architecture shown in Fig. 1 that complements
an existing data management infrastructure. The strat-
egy applies ontologies to increase the interoperability and
machine readability of patient data records and patient
datasets.We demonstrated that in the hospital (i) ontolog-
ical models can complement existing data infrastructure,
and (ii) they are an appropriate mechanism to formally
capture agreement between stakeholders on what their
data mean. They combine precise semantics for humans
and corresponding actionable semantics for computers.
Additional benefits are that they are extendible and they
allow replacement with an improved ontological model
(or adding multiple models). A similar ontology based
approach is also applied to provide patient derived data
as FDOs in biomedical and rare disease research such
as in the EJP RD [21]. Interestingly, the results that we
reused from the EJP RD project were addressing similar
requirements as we had for COVID-19 data.

Coordination with different stakeholders
The development of the FAIR RDM plan was made pos-
sible by a coordinated interdisciplinary effort. In our
experience, FAIRification requires at least data producers,
data consumers, and FAIR data modellers [13, 40]. This is
because the essential step of capturing themeaning of data
in terms of ontologies requires the combined expertise of
these stakeholders. In our case, this was available through
the BEAT-COVID collaboration. The collaboration is pro-

Fig. 6 Federated SPARQL query crossing FAIR patient data with the UniProt knowledgebase

https://github.com/LUMC-BioSemantics/beat-covid/tree/master/fair-data-model/cytokine/sparql-queries
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viding user needs, technical requirements, insight in exist-
ing procedures and best practices regarding the man-
agement of the data lifecycle in the hospital. A clear
challenge for our FAIRification process was communica-
tion between the different stakeholders with very different
backgrounds. This was further hampered by the commu-
nication limitations due to the pandemic itself. Tomitigate
the communication gap, we recordedmeetings and shared
material that was presented during the meetings. We also
plan to organize Bring Your OwnData workshops tomake
stakeholders who are not FAIR experts more aware of the
advantages that FAIR brings [41–43]. Under pressure of
the urgency of the pandemic, we worked without dedi-
cated FAIR stewards for this project. However, in going
forward, this role seems essential to manage the necessary
communication between disciplines [44].

Establishing goals for FAIRification
Questions of researchers in the hospital were used as the
drivers to establish FAIRification goals and to plan a FAIR
RDM. The FAIRification preparation consisted of several
meetings with medical doctors and clinical researchers.
The focus of the meetings with domain experts was two-
fold: (i) to identify the FAIRification goals, and (ii) to
extract a set of specific research questions that drive the
(meta)data modelling step. Both aims are related, because
being able to answer at least the driving research ques-
tions is one of the main goals of FAIRification. The list of
research questions included ‘What are the clinical param-
eters that can predict the disease course of a patient?’,
‘What are the biological pathways underlying patient
symptoms and disease phenotypes?’, ‘How could biological
pathways be positively or adversely affected by a particu-
lar treatment?’. The results of these meetings were guiding
how data in the hospital should be interrelated and in
what context they should be interpreted. We used this
to define domain semantics in the context of testing and
generating hypothesis with the help of OWL ontologies.
The extendibility of ontologies mitigates the risk of lim-
iting applications, because of initial overfitting on driving
questions. Wider reusability of the FAIR RDM is a pri-
mary objective. To ensure that we are correctly capturing
the semantics of knowledge and data, we are also explor-
ing a formal method to validate the (meta)data models by
the use of Competency Questions (CQs) and goal mod-
elling. This will again rely on working with domain experts
in close interdisciplinary collaboration. These research
questions also facilitate communication between people
of different expertise.

Technical and social challenges and opportunities
For developing our approach within the BEAT-COVID
collaboration, we took into account (i) the emergency of
the situation, (ii) that various data management systems

are in place at the hospital, (iii) that different types of
data need to be prepared for timely exchange and efficient
research. Consequently, our challenge was two-fold (i) to
adapt our generic FAIRification workflow [12] in a hos-
pital setting, (ii) to require minimal technical knowledge
transfer, taking the opportunity of the combined exper-
tise in the hospital that BEAT-COVID brought together.
Key to our method is the development of two ontologi-
cal models, one to enable analysis across clinical data (e.g.
symptoms), investigational parameters (e.g. cytokinemea-
surements), and data outside of the hospital, and another
to represent the metadata of the patient data resources
to increase the findability, accessibility and reusability. A
metadata store was deployed conform to the FDP speci-
fication to provide access to this metadata. The metadata
also includes a reference to access the ontological data.
We demonstrated that Linked Data and Semantic Web
technologies such as OWL ontologies, Triple Stores and
the SPARQL query language provide the means to query
patient data across sources in terms of the ontologies
(Table 2). Taken together, these provide the FDOs for
COVID-19 patient data and the basis for instant integra-
tive federated analysis in the hospital.
While our ontological models aim to reflect our shared

understanding of the data, a lack of tools still makes it
challenging to transform health data to common data
models such as HL7 FHIR [45], and for publishing it
to findable resources [46]. There is a need for FAIRi-
fier tools that support stakeholders in a clinical setting in
every step from FAIR RDM planning to FAIR data cre-
ation, publication, evaluation, and reuse. Integration of
FAIR implementations in existing data management tools
such as Castor EDC can lower the burden substantially
[40]. Similarly, the vocabulary and annotation features of
Opal and Mica provide handles for future integration of
FAIRification. The reuse of an abstract ontological data
model, such as the EJP RD core model, in combination
with the implementation of FDPs may further reduce
thresholds for implementation and FAIR data reuse. An
additional practical and technical challenge thereby is to
protect patient identifying information but at the same
time to have clinical data available close to real time. Clas-
sically most studies would retrieve data in retrospect from
patient records. However, in the combat against COVID-
19, first analyses were done when patients where still
hospital admitted. Advanced data encryption was used
to retrieve daily updates from patient records without
including retrievable patient identifiers in the research
data infrastructure. Although the big commitment of the
BEAT-COVID group is facilitating the progress, other
challenges for FAIRification in the hospital were ’social’,
presumably because stakeholders are not familiar with the
steps that are needed to make a resource reusable by com-
puters across multiple locations. We propose that a FAIR
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data policy is put in place for health research data conform
[47]. To pave the way, there are several ongoing efforts to
meet the need for education, such as FAIR training for
researchers, clinicians and different types of stakeholders
in organizations such as ELIXIR TeSS [48] and the EJP RD
project for rare diseases.

Patient data accessibility hurdles
Protecting patient data and privacy is a major concern and
it is part of FAIRification to make a clear reference to how
data are protected. As researchers, we must establish data
management mechanisms that ensure that patient privacy
is preserved and its usage under control. There are sev-
eral options to deal with data privacy and safety such as
using anonymised datasets, using substitute synthetic rep-
resentations of sensitive datasets, and having the legal and
ethical framework in place for the processing of sensi-
tive personal data in the sense of the GDPR. As first step,
the hospital needs to develop and implement a data gov-
ernance policy that clearly specifies how to extract and
apply the data as approved by the patient in the informed
consent. Delaying data governance may delay the FAIR-
ification process because it needs to be clear what data
will be available and in which form to plan the FAIRifica-
tion, but also to specify data governance in the metadata
of the resource when an algorithm visits the data to use.
Then, underdeveloped metadata in data accessibility and
data privacy hampers interoperability outside of the hos-
pital. Consequently, it hampers data visiting, which means
it hampers federated query and learning over FDPs and,
therefore, limits hospital research capacity for analysis.
Also, very important for accessibility and data privacy is
that the digital objects per se can accommodate the crite-
ria and protocols necessary to comply with regulatory and
governance frameworks. Ontologies can aid in opening
and protecting patient data by exposing logical definitions
of data use conditions. Indeed, there are ontologies to
define access and reuse conditions for patient data such
as the Informed Consent Ontology (ICO) [24], the Global
Alliance for Genomics and Health Data Use Ontology
(DUO) standard [25], and the Open Digital Rights Lan-
guage (ODRL) vocabulary recommended by W3C6. The
first two are OBO ontologies for the formal specification
the former of the patient informed consent and its pro-
cess for research studies in the medical field, and the latter
of the consented data use conditions and restrictions for
research with large genomics and health data repositories.
We are furthermore considering if the ODRL can serve
as a common language to express access permissions for
machines, similar to howDCAT2 provides a common lan-
guage for resource metadata. Finally, it is worth noting
that privacy preserving methods are available if data of

6https://www.w3.org/TR/odrl-vocab/

the same person in multiple systems are required for a
federated analysis [49, 50].

International adoption of the FAIR principles for health
data of hospitalised patients
Themethod for FAIRification that we described is focused
on patient derived health data, down to the data record
level. Twomain outcomes are that we produced FAIR data
for hospitalized patients, and we demonstrated that this
data is instantly reusable for various secondary uses: for
building software applications (and analysis workflows)
via REST Web APIs, for querying cross-domain patient
data and open public knowledge to add richer context
to answer healthcare questions. While there are several
projects that develop FAIRification procedures, they pre-
dominantly focus on life sciences data [14, 15, 51]. FAIR
data in health is gaining momentum, and we already can
find dedicated projects such as FAIR4Health [52] to use
FAIR data in health to improve research. Our method has
the same basis as the procedure followed earlier for rare
disease patient registries (e.g. VASCA [13]), but here we
integrated it with the hospital infrastructure, and demon-
strated how the adoption of FAIR principles can be facil-
itated in the hospital through interdisciplinary collabora-
tion. Hence, our experience may be valuable to national
and global consensus on implementing FAIR principles
in hospitals by the clinical community. For instance, the
Dutch national Health Research Infrastructure (Health-
RI) has stated that data stewardship at the Dutch Univer-
sity Medical Centres should adhere to the FAIR Princi-
ples [53]. Similar nationwide initiatives to improve health
data reuse can be seen in Switzerland (Swiss Personal-
ized Health Network [18]) and Germany (NFDI4Health
[19]). These initiatives rely on a federated infrastructure,
enhanced data interoperability and data linkage in com-
pliance with privacy regulations for research. Our exam-
ple has shown that FAIRification within the hospital can
contribute to this infrastructure.

Limitations and future work
We observed a number of limitations of our approach to
enabling instant analysis of COVID-19 data across multi-
ple hospital systems. First, we observed that the interdis-
ciplinary collaboration and the willingness to implement
FAIR principles, because of the pandemic, are not suffi-
cient to provide easy access to data for implementing the
FAIR services. A partial solution, at least to speed up the
deployment of the FAIR services, could be to have syn-
thetic patient data available. This could, for instance, be
instantiated by Synthea [54, 55] from data in HL7 FHIR
format. Second, at this time we have not incorporated a
way to formally express patient consent and data usage
conditions in our FAIRmetadata. Currently, there are sev-
eral efforts in human data communities to identify which

https://www.w3.org/TR/odrl-vocab/
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elements are required, and standards are under develop-
ment to capture these in machine readable ontological
form, such as by ICO and DUO. These can be linked
into our FDP metadata model in the future. Third, we
have not specifically addressed tooling (including stan-
dards) to support hospital data stewards in FAIR data
management. This could pertain to tools for capturing
FAIRification goals, ontological data modelling, data con-
version, and mapping. Data modelling and mapping were
the most time consuming steps. For some of our data
types it was difficult to identify an appropriate ontology
term that we could incorporate trivially in our OBO-
based application ontology. For instance, to map 103
cytokine measurement datum types, we needed two dif-
ferent ontologies7 8), which is not a best practice. The
majority could be mapped to the Experimental Factor
Ontology (EFO) [56], which is not an OBO ontology. And,
we could not find some specific data types in any ontology.
Therefore, we mapped them to a more general class, for
instance we mapped specific interleukins measurement
datum types such as for ‘interleukin-11’, ‘interleukin-26’
or ‘interleukin-32’ (among others) to the general data
item class ‘blood interleukin measurement’9, which is the
superclass of ‘blood interleukin-6 level’ class10, or we
mapped specific measurement process types such as for
‘Tumor Necrosis Factor Ligand Superfamily Member 14’
cytokine to the general process class ‘Cytokine Measure-
ment’11. We expect new limitations once we analyze new
omics datasets and clinical observations. Also, tools that
evaluate the ‘FAIRness’ of data can guide the FAIRifica-
tion process. This partly depends on the standards used by
the domain of the data community providers [57], but it is
not always clear what these standards are, if any. Current
ongoing work in the FAIRification ’world’ is to identify
these community specific FAIR requirements and imple-
mentation choices. For instance, we envision as future
work the establishment of FAIR maturity indicators for
clinical data. Finally, we aim to progress on the opportuni-
ties for advancing research with FAIR patient data, further
developing a FAIR Web API service to complement Opal
APIs and knowledge graph based learning techniques. We
would like to highlight the following developments.

Evaluation of ontological datamodels
We are evaluating the ontological models using CQs that
are based on realistic questions posed by data model users

7The Clinical Measurement Ontology (CMO), OBO Foundry, http://www.
ontobee.org/ontology/CMO
8The Experimental Factor Ontology (EFO), EMBL-EBI, https://www.ebi.ac.
uk/efo/
9The ’blood interleukin measurement’ class from CMO, OBO Foundry, http://
purl.obolibrary.org/obo/CMO_0001925
10The ’blood interleukin-6 level’ class from CMO, OBO Foundry, http://purl.
obolibrary.org/obo/CMO_0001926
11The ’Cytokine Measurement’ class from the NCI Thesaurus OBO Edition
(NCIT), OBO Foundry, http://purl.obolibrary.org/obo/NCIT_C74804

[58], which are proposed asmeans to verify the scope (e.g.,
what is relevant to solve the challenges) and the relation-
ships between concepts (e.g., check for missing or redun-
dant relationships). A preliminary set of CQs from meet-
ings with domain experts is available on GitHub - CQs.

COVID-19 hypothesis generation tool
We are developing a COVID-19 Hypothesis Generation
tool for the LUMC based on the structured reviews for
data and knowledge driven framework [59], as a means
to exploit the FAIRification work for aiding medical
doctors and researchers to answer their research ques-
tions. This framework has previously been used to sup-
port rare disease researchers to explore hypotheses as
paths in case specific knowledge graph for their obser-
vations in the lab. After creating a preliminary knowl-
edge graph with the FAIR synthetic cytokine data, we
aim to incorporate background knowledge. The pre-
liminary knowledge graph is available for browsing at
LUMC BEAT-COVID Knowledge Graph.

Federated analytics across hospitals
We also aim to show how this FAIR infrastructure allows
to query FAIR data from the BEAT-COVID project in
the LUMC across other hospitals’ FAIR data without data
leaving their source, i.e. the ‘data visiting’ approach. In
the VODAN project, the GO FAIR VODAN in a box
FDP [60] was used to test the trains and tracks of the
PHT concept [61] and demonstrated the first intercon-
tinental FDP SPARQL VODAN Africa proof of concept
[62] developed by VODAN Africa and Asia - GO FAIR
[2] query AllegroGraph WebView [63]. Secure FDP tech-
nology testing must be developed to implement trusted
access control policies and to enable visiting synthetic
datasets and pseudo-anonymised healthcare data. We aim
to build on the VODAN and TWOC experiences and
prepare an FDP instance that publishes BEAT-COVID
metadata to be automatically found and used in trusted
automated analytics workflows across multiple hospitals.

Conclusion
We demonstrated that a FAIR research data management
plan approach based on ontological models, open Sci-
ence, Semantic Web technologies, and FDPs is a powerful
method for generating FAIR patient data at source. FAIR-
ification is providing data infrastructure that improves
findability, accessibility, interoperability and reusability
of patient real world observations in the hospital. Most
importantly, we shown that FAIR patient data is machine
actionable as digital objects linkable to LOD for analysis
and ready to be used to develop applications for hypoth-
esis generation and knowledge discovery on top. Finally,
this work (in progress) showed what FAIRification entails
in a real world hospital situation with existing infras-
tructure, different stakeholders and departments and the

http://www.ontobee.org/ontology/CMO
http://www.ontobee.org/ontology/CMO
https://www.ebi.ac.uk/efo/
https://www.ebi.ac.uk/efo/
http://purl.obolibrary.org/obo/CMO_0001925
http://purl.obolibrary.org/obo/CMO_0001925
http://purl.obolibrary.org/obo/CMO_0001926
http://purl.obolibrary.org/obo/CMO_0001926
http://purl.obolibrary.org/obo/NCIT_C74804
https://github.com/LUMC-BioSemantics/beat-covid/tree/master/fair-data-model/cytokine/competency-questions
https://w3id.org/biosemantics-lumc/beat-covid/neo4jgraph/browser/
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GDPR, and we discussed obstacles, challenges, solutions
and future directions. We aim to provide a state of the
art research data infrastructure in the hospital to deliver a
federated solution enabling data access across the country
and international borders, and accelerating research and
translation to healthcare.

Materials andmethods
Materials
FAIR digital objects and globally unique persistent identifiers
(GUPRIDs)
The FAIR principles, specifically F1, include the require-
ment that metadata and data should be identified by
GUPRIDs. In addition to this, the FAIR principle A1
requires that metadata and data are retrievable by their
identifiers using a standardized communications protocol.
As such, we set up our persistent identifiers according to
these requirements for data and metadata (and the FDP
itself as well):

Data The patient synthetic cytokines lab measurements
dataset, which in turn is described by metadata records
as FDOs themselves, is identified and retrievable by the
W3ID persistent identifier service12 base https://w3id.
org/biosemantics-lumc/beat-covid/, e.g. the RDF distri-
bution GUPRID is https://w3id.org/biosemantics-lumc/
beat-covid/rdf/beat-covid.ttl, and accessible through the
LUMC BEAT-COVID FDP.

Metadata The metadata of the patient cytokines dataset
is identified and retrievable by the PURL persistent
identifier service13 base http://purl.org/biosemantics-
lumc/test-fdp/dataset/ and the GUPRID is http://purl.
org/biosemantics-lumc/test-fdp/dataset/91603187-9281-
4588-8c4d-de9108171f85, and accessible through the
LUMC BEAT-COVID FDP.
Ontologies
We mapped to Open Biological Biomedical Ontologies
or OBO ontologies to facilitate biomedical integrative
analytics since these ontologies are developed to be inter-
operable, logically well-formed and scientifically accurate
by the community following the OBO principles [30, 31].
For data annotation with OBO ontologies we mainly used
the Ontobee software system14, the Ontology Lookup Ser-
vice from the EBI15, and the NCBO BioPortal16 as search
engines to find ontological terms. See the description of
the ontologies used for each model below.

Datamodel. For basic knowledge representation in RDF:
RDF vocabulary or RDF17, RDF Schema or RDFS18,

12https://w3id.org/
13http://www.purlz.org/
14http://www.ontobee.org/
15https://www.ebi.ac.uk/ols/index
16https://bioportal.bioontology.org/
17https://www.w3.org/2001/sw/RDFCore/Schema/200212bwm/
18https://www.w3.org/TR/rdf-schema/

DCMI Metadata Terms – Dublin Core or DCT19, XML
Schema or XSD20. For general Science and provenance
representation: Semanticscience Integrated Ontology or
SIO21, The PROV ontology or PROV-O22. For biological
and biomedical domain representation: OBO ontologies23
(such as NCIT, IAO, OBI, RO, CMO and LABO), the
Experimental Factor Ontology or EFO24. For the BEAT-
COVID study specific representation: The BEAT-COVID
Ontology or BCO25 developed for the formal representa-
tion of cytokine data model in OWL2.

Metadata model. For basic DCAT based metadata rep-
resentation: RDF Vocabulary or RDF26, Data Catalog
Vocabulary - version 2 or DCAT227, DCMI Metadata
Terms – Dublin Core or DCT28, FOAF Vocabulary or
FOAF29. For the BEAT-COVID study representation:
RDF Schema or RDFS30, XML Schema or XSD31, FDP
Ontology or FDP-O32, the W3C Linked Data Platform
Vocabulary or LDP33, OBO ontologies34 (such as NCIT,
MONDO, IAO, RO, OGMS, EXO and DO), Semantic-
science Integrated Ontology or SIO35, Wikidata Vocab-
ulary36, Allotrope Foundation Ontology or AFX37, the
DataCite Ontology38.

Data
The BEAT-COVID dataset we based our ontological mod-
els was an anonymized longitudinal set of cytokine lev-
els measured on COVID-19 hospitalized patients in the
LUMC. We created a cut shorter and synthetic pilot ver-
sion of the dataset to proof our concept approach for
FAIRification in the hospital. We created the synthetic
dataset using randomization functions in excel. The syn-
thetic dataset contains 9 rows of measurement records
on 103 cytokines performed in 4 different panels using
Luminex technology. The dataset contains basic informa-
tion for each record, such as the record timestamp, the

19https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
20https://www.w3.org/TR/xmlschema11-1/
21https://github.com/MaastrichtU-IDS/semanticscience
22https://www.w3.org/TR/prov-o/
23https://obofoundry.org/
24https://www.ebi.ac.uk/efo/
25https://github.com/LUMC-BioSemantics/beat-covid/blob/
acd7aadef06643e160712eec5486b9e8ba484713/fair-data-model/cytokine/
owl/cytokine_ontological_model.owl
26https://www.w3.org/TR/rdf11-concepts/
27https://www.w3.org/TR/vocab-dcat-2/
28https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
29http://xmlns.com/foaf/spec/
30https://www.w3.org/TR/rdf-schema/
31https://www.w3.org/TR/xmlschema11-1/
32https://w3id.org/fdp/fdp-o#
33https://www.w3.org/ns/ldp
34https://obofoundry.org/
35https://github.com/MaastrichtU-IDS/semanticscience
36ttps://www.wikidata.org/
37https://akswnc7.informatik.uni-leipzig.de/dstreitmatter/archivo/purl.
allotrope.org/voc--afo--REC--2021--03--afo/2021.07.04-010558/voc--afo--
REC--2021--03--afo_type=pyLodeDoc.html
38https://sparontologies.github.io/datacite/current/datacite.html
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date of sampling, the age of the patient, the date of mea-
surement and the cytokine levels. Example to data records
in tabular format is available on this GitHub - synthetic
data link.
Software
We used several technologies in the different steps of our
method. The FAIRification tools and versions used are
described within each step in the Methods section below.
The software and tools we used to build three different
applications on top of FAIR data, were:

Data analytics with Semantic Web technologies. We
used the W3C recommended SPARQL query language
[39] to perform data analytics over the LUMCRDF patient
data and across diverse external data sources in LOD.
We used the free edition of GraphDB Triple Store v9.7.0,
where the data is natively stored as RDF.

Web API development. We used grlc v1.3.6 [38] to
enable programmatic access to FAIR data in the hospi-
tal. Grlc is a lightweight server that automatically builds
consistent, well documented and neatly organized Linked
Data APIs on the fly, with no input required from users
beyond a URL path to a GitHub repository hosting a set of
SPARQL queries that complies with the specific grlc syn-
tax39. It provides three basic operations: 1. generates the
Swagger spec of a specified GitHub repository; 2. gener-
ates the Swagger UI to provide an interactive user facing
frontend of the API contents; and 3. translates SPARQL
queries into HTTP requests to call the operations of the
API against a SPARQL endpoint with parameters set in
the queries.

Hypothesis generation tool. We used the Neo4j graph
database framework [64] as used in the structured reviews
approach [59] for storage, management and mining of
FAIR patient data. The graph database technology has
been shown to facilitate management and exploration of
biomedical knowledge [65]. Neo4j graph database enables
users to query the knowledge graph using the Cypher
query language, either through an API or a GUI. RDF data
was imported into the Neo4j Community Server v4.2.5
graph database through the Neo4j neosemantics toolkit
v4.2.0 [66].
Note that we created a GUPRID for each soft-

ware/service application based on the W3ID persistent
identifier service, i.e. for the FDP, for the Triple Store,
and for the Neo4j browser (see Availability of data and
materials section).

Methods
We defined and implemented a method to make COVID-
19 observational patient data in the hospital FAIR. This
method is described in a detailed FAIRification workflow
39https://github.com/CLARIAH/grlc

illustrated in Fig. 7 and is an adapted version of the work-
flow presented by Jacobsen et al. [12]. We explicitly add
the result obtained in each step, where applicable. We
also include in which steps the FAIR experts worked in
collaboration with other members of the BEAT-COVID
group.

Pre-FAIRification
Step 1: identify FAIRification objective
The first step was to determine the objective for making
COVID-19 observational patient data FAIR in the hospital
to define the specific FAIR requirements, implementa-
tions and workflow of this study. Medical doctors have
pressing questions at point of care such as ‘What are the
clinical parameters that can predict the disease course of
a patient?’, ‘What are the biological pathways underlying
patient symptoms and disease phenotypes?’, and ‘How can
a patient be positively or adversely affected by a particular
treatment?’. The FAIRification objective was therefore to
prepare the diverse COVID-19 observational patient data
to answer these questions. To this end, data needs to be
integrated in a network and systems medicine approach
[67], combined with external biomedical knowledge, and
ready for computational analysis as illustrated in Fig. 1.

Step 2 and step 3: analyze data andmetadata
Research data management in the hospital. From
admission date until discharge, patient data were col-
lected by different departments. The types of COVID-19
observational data relevant for research, and so for FAIRi-
fication, were diverse: demographics information, clinical
information, laboratory measurements, transcriptomics
(RNA-Seq) data, metabolomics data, and if the patient
was transferred to ICU, then data related to ICU out-
come. The format depends on the different EDC systems
used. Within LUMC, clinical and preclinical information
were collected in HiX [68] and Castor EDCs [26], whereas
ICU data was managed by the MetaVision software [69].
These EDC systems have different data access interfaces
and use different technologies. To provide a single point of
data access, research data were combined in the Opal data
warehousing system. Opal is the OBiBa’s (Open Source
Software for Epidemiology) core database application to
store data in central data repositories that integrate under
a uniform interface data collected from multiple sources,
and it provides tools to import, transform and describe
data [27]. Patient data was anonymised before importing it
into Opal using advanced data encryption. Descriptions of
the datasets, i.e metadata, stored in Opal were published
on the Web through the Mica software application. Mica
is used to createWeb data portals for large scale studies or
multiple study consortia. It provides a structured descrip-
tion of consortia, study catalogues and datasets, annotated
and searchable data dictionaries, and data access request

https://github.com/LUMC-BioSemantics/beat-covid/blob/acd7aadef06643e160712eec5486b9e8ba484713/fair-data-model/cytokine/synthetic-data/BEAT-COVID1_excel_export_2020-05-28_Luminex_synthetic-data.csv
https://github.com/LUMC-BioSemantics/beat-covid/blob/acd7aadef06643e160712eec5486b9e8ba484713/fair-data-model/cytokine/synthetic-data/BEAT-COVID1_excel_export_2020-05-28_Luminex_synthetic-data.csv
https://github.com/CLARIAH/grlc
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Fig. 7 BEAT-COVID FAIRification workflow to make the data management and infrastructure in the hospital more FAIR. Collaborators and results are
described in every step where applicable

management. It is built upon a multitier architecture con-
sisting of a REST application server for data management
and administration, and clients to create and display data
on the Web [28]. Opal and Mica are two standalone but
interoperable software applications that provide features
for management, harmonization, and analysis of epidemi-
ological datasets [29, 70].

FAIR analysis of COVID-19 observational patient
data. To improve the findability, accessibility, interop-
erability, and reusability of digital assets, we performed
a FAIR analysis of (meta)data, i.e. an analysis of the
FAIR status of data and metadata. We analysed data and
databases to evaluate the FAIRification effort needed [12].
We started by analysing observational clinical measure-
ments. We first got access to laboratory measurements of
immunoresponse clinical parameters, cytokine levels, col-
lected on different time points per patient to monitor its
condition progress. Access to data was provided to us as
an anonymised dataset. Then, we analysed the databases
where these data were stored, which were first in Castor
databases since this was the primary EDC system used
in the hospital, second in Opal data warehouse since this
system was used to integrate and store data from the
various data sources. We investigated the representation

(structure and format) and meaning (semantics) of the
data, and the tools and technologies of each database
system to optimize the FAIRification process of data.

FAIRification
Step 2a and step 4a: improving interoperability with
semantic web technologies and a linking datamodel
We described a synthetic cytokines dataset with ontolo-
gies. In Europe, GDPR imposes obligations onto organi-
zations anywhere, so long as they target or collect data
related to people in the EU. To comply with GDPR, we
created a synthetic dataset of cytokine measurements, i.e.
substituted synthetic representations of sensitive datasets,
by using randomization for modelling patient data. This
dataset contains basic information related to cytokine
measurements and biosamples used per patient and time
point, and a patient clinical identifier to link to clinical
data. With the goals to answer research questions of med-
ical doctors and make patient data machine readable to
enable interoperability within data resources in the hospi-
tal and with external open science datasets such as LOD,
we designed ontological models for cytokine lab measure-
ments, biosamples and severity scores to represent data
based on the Linked Data principles [71] and Semantic
Web technologies such as the W3C recommended RDF
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and OWL standards [32, 33]. Our approach was to define
a conceptual model as an abstract and reusable model to
capture as much of patient data (measurements, biosam-
ples and score phenotypes), by using standard common
schemas and well established ontologies and vocabular-
ies widely used by the biomedical community such as
the ones in the OBO Foundry [30]. With this approach
we created an ontological linking model for cytokines
measurements dataset from the laboratory.

Step 3a and step 4b: improving findability, accessibility,
interoperability and reusability with semantic web
technologies, ametadatamodel and FAIR data points
With the goals to answer research questions of med-
ical doctors and make resource metadata human and
machine readable to enable cross-resource data analytics,
we designed a metadata ontological model and imple-
mented an FDP instance [23] to make LUMC COVID-
19 digital objects findable for machines on the Internet.
An FDP is a Web application that enables data own-
ers to expose information about their datasets using rich
machine actionable metadata. It allows creating, storing,
and serving FAIR metadata about datasets and its dis-
tributions for both humans and machines. An FDP does
not enable open access, but the metadata is expected
to include information about what the resource contains
and how datasets and content can be accessed under
defined conditions. Opening up FAIR (meta)data by pub-
lishing them on an FDP allows algorithms to search these
(meta)data, looking for patterns [72]. Mica is a tool to
expose datasets from an Opal database on the Inter-
net through Web portals that allow (meta)data descrip-
tions. An FDP provides additional means to expose FAIR
metadata, i.e. machine actionable, via the FDP specifica-
tion, a standardized metadata ontological model based
on DCAT [22]. FDP also exposes (meta)data via a REST
Web API that enables client applications to automate
retrieval, aggregation and filtering (meta)data from dis-
tributed FDPs. We used FDP v1.10.0.

Step 5 and step 6: make (meta)data as linked data and host
FAIR data
To host and publish patient data, we cut the original
synthetic cytokine patient dataset into a few rows. We
generated patient Linked Data using this synthetic patient
data we created as input and instantiating the linking
data ontological model. To do it we developed ‘RDFizer’
a FAIRification tool in Python 3 that parses and converts
the synthetic data CSV file into RDF. To host the generated
FAIR data, we used the free edition of GraphDB Triple
Store [73] v9.7.0 where the data is natively stored as RDF.
We implemented an FDP instance where the metadata
ontological model is described and published as DCAT
based Linked Data.

Post-FAIRification
Step 7: assessment and software applications
Evaluation We evaluated the discoverability of the
BEAT-COVID resource by means of the FAIR Maturity
Indicators evaluator tool [74]. We have evaluated our
ontological models by means of several CQs [58] (in
progress).We have answered the questions using SPARQL
queries for the sake of reusability, then users can reuse the
queries if they want updated answers in the future.

Built applications on top of FAIR data. We imple-
mented three different applications: 1. SPARQL federated
queries for data analytics with Semantic Web technolo-
gies; 2. Web API service for programmatic access; 3.
Knowledge graph based hypothesis generation tool. See
software details in theMaterials section.

Severity score calculation
The severity score is based on the 4C mortality score
developed by Knight et al. [75]. The 4C mortality score
is a prediction score calculated at admission. The severity
score calculated in our cohort represents the daily clinical
disease severity, and thus is dependent on parameters that
can change from day to day. Therefore, the fixed param-
eters of the 4C score were removed (i.e. age, sex at birth,
number of comorbidities), and daily oxygen flow for non-
ICU patients (l/min) and p/f ratio (kPa) and FiO2 (%) for
ICU patients were added to our severity score.
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