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Abstract
A clear margin is an important prognostic factor for most solid tumours treated by surgery. Intraoperative fluorescence imag-
ing using exogenous tumour-specific fluorescent agents has shown particular benefit in improving complete resection of 
tumour tissue. However, signal processing for fluorescence imaging is complex, and fluorescence signal intensity does not 
always perfectly correlate with tumour location. Raman spectroscopy has the capacity to accurately differentiate between 
malignant and healthy tissue based on their molecular composition. In Raman spectroscopy, specificity is uniquely high, 
but signal intensity is weak and Raman measurements are mainly performed in a point-wise manner on microscopic tis-
sue volumes, making whole-field assessment temporally unfeasible. In this review, we describe the state-of-the-art of both 
optical techniques, paying special attention to the combined intraoperative application of fluorescence imaging and Raman 
spectroscopy in current clinical research. We demonstrate how these techniques are complementary and address the technical 
challenges that have traditionally led them to be considered mutually exclusive for clinical implementation. Finally, we present 
a novel strategy that exploits the optimal characteristics of both modalities to facilitate resection with clear surgical margins.

Keywords Raman spectroscopy · Fluorescence imaging · Image-guided surgery · Tumour differentiation · Resection 
margin assessment · Multimodal optical diagnostics

Introduction

Cancer is the leading cause of premature death in Europe 
and the USA and one of the most important public health 
issues worldwide [1, 2]. Depending on the tumour type and 
stage, different treatment options are available. Surgery is 
the main treatment modality for most solid tumours, often 
integrated in a more extensive (neo-)adjuvant treatment 
strategy. Surgical resection is generally aimed at complete 
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macroscopic and microscopic removal of the cancer. How-
ever, inadequate resection of the tumour (i.e. presence of 
cancer cells at the margin or < 5 mm from the resection 
surface) frequently occurs. The worldwide extent of this 
problem is illustrated in Table 1, showing the percentage 
of positive surgical margins for the most common cancer 
types. Although a clear surgical margin may not be pivotal 
in all cancer types (e.g. during debulking procedures for 
brain tumours [3]), it is the main prognostic factor for sur-
vival in most types of cancer. Moreover, inadequate surgical 
tumour resection most often warrants adjuvant treatment, 
which is associated with increased morbidity and costs. Dur-
ing the operation, an oncologic surgeon takes into account 
all relevant clinical information that is available, includ-
ing cancer type, tumour differentiation, and preoperative 
imaging reports. However, the actual surgical cut is based 
on subjective tactile and visual assessment of the tissue to 
determine which tissue needs to be excised. Although the 
primary aim is to completely excise the tumour, precise mar-
gin delineation is imperative in many delicate areas where 
wider resections inevitably lead to increased morbidity and 
loss of functionality.

Over the past two decades, important advances have been 
made to improve assessment of surgical margins by the 
introduction of intraoperative imaging techniques. Besides 
frozen section analysis, several optical methods have been 
studied to perform intraoperative margin assessment in sur-
gical oncology, including optical coherence tomography 
(OCT) [36], photoacoustic tomography, terahertz imag-
ing, second harmonic generation, confocal microscopy, 
fluorescence (lifetime) imaging, autofluorescence imaging 
(AFI), narrow-band imaging, hyper-spectral imaging, diffuse 
reflectance spectroscopy, Fourier transform infrared spec-
troscopy, and Raman spectroscopy (RS) [37–42]. Among 
them, intraoperative fluorescence imaging (FLI) using exog-
enous tumour-specific fluorescent agents has shown to be 
particularly beneficial for surgical margin assessment in 
clinical trials [43–54], and it has been shown that RS can 

objectively discriminate between normal and malignant tis-
sue [55–59]. Intraoperative FLI provides a wide-field real-
time tumour-specific image to guide the surgical resection. 
However, detection and interpretation of the fluorescent 
signal are complex, and are influenced by optical tissue 
properties, targeting specificity of fluorescent agents and 
accuracy of the imaging system. Each of these factors has 
an effect on image resolution, sensitivity, and/or specific-
ity of the technique [60]. RS on the other hand provides 
detailed identification of malignant tissues with high sen-
sitivity and specificity [61]. It does not provide the surgeon 
with a wide-field image because it generally requires ‘point’ 
(i.e. of small tissue volumes) measurements of the tissue. 
This compromises the possibility of scanning the complete 
resection surface.

In this review, we describe the state-of-the-art of FLI and 
RS and include an overview of the advantages and limita-
tions for their use in image-guided cancer surgery. Next, we 
demonstrate how these two techniques are complementary 
and how they can overcome each other’s disadvantages and 
limitations. Finally, we highlight the technical challenges 
that need to be addressed to implement this novel approach 
into clinical practice.

Image‑guided cancer surgery using 
fluorescence imaging

Intraoperative FLI of tumour tissue requires the systemic 
administration of a cancer-specific exogenous fluorescent 
agent that can identify the tumour using a spectrum of tar-
geting strategies, including antibodies, small peptides, and 
activatable fluorophores [62–64]. The use of fluorophores 
that emit light in the first near-infrared (NIR-I) range 
(650–900 nm) results in deeper tissue penetration of the 
photons and lower autofluorescence from surrounding tis-
sues [65–67]. Because the human eye is insensitive to light 
in this spectrum, dedicated intraoperative camera systems 

Table 1  Percentage of 
positive surgical margins for 
the most common cancer 
types (estimated new cases 
worldwide, 2020). *Males and 
females combined

Cancer type (solid tumours only) Estimated new 
cases [4]*

Incidence [4]* Positive margins

Breast 2,261,419 12% 20–70% [5–8]
Trachea, lung, and bronchus 2,206,771 11% 5–17% [9–12]
Prostate 1,414,259 7% 7–75% [13–16]
Colorectal 1,931,590 10% 12–58% [17–19]
Urinary bladder 573,278 3% 0–25% [20–22]
Kidney and renal pelvis 431,288 2% 7–11% [23–26]
Uterine corpus 417,367 2% 4–17% [8, 27]
Pancreas 495,773 3% 18–85% [28–31]
Thyroid 586,202 3% 10–11% [8, 32, 33]
Lip, oral cavity 377,713 2% 5–43% [34, 35]
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are required to detect the fluorescent signal [45, 68–71]. Fig-
ure 1 shows the clinical status of targeted fluorescent agents 
in the visible channel, NIR-I-700-nm channel, and NIR-I-
800-nm channel together with their excitation and emission 
wavelengths.

FLI exhibits several favourable characteristics for clinical 
translation. Preclinical studies have demonstrated low toxic-
ity with high sensitivity and specificity for tumour detection 
using targeted fluorescent agents [62, 63, 72, 73]. Besides 
the minimal risks associated with the use of lasers in the 
imaging system, there are no safety issues for the clinicians 
because no ionising radiation is used, and the technique is 
capable of real-time detection without interfering with the 
surgical field. Importantly, the whole-field imaging facili-
tates analysis of the complete surgical margin and remaining 
wound bed.

The simultaneous development of clinically available 
fluorescent agents and intraoperative camera systems over 
the past decade has now positioned intraoperative FLI as 
a promising real-time detection modality for surgeons in 
oncology. Since the first clinical trial of FLI with tumour-
specific NIR fluorescent agents [45], ground-breaking results 
have been reported in patients with various cancer types, 
consistently showing excellent safety records [43–54, 74]. 
Indocyanine green (ICG), a nonspecific and US Food and 
Drug Administration approved compound, has commonly 
been used for FLI in various settings [75, 76]. Methylene 
blue (MB) was approved as the second NIR fluorescent 
agent for fluorescence-based intraoperative imaging [77]. 
Fluorescein sodium, 5-ALA, and Cytalux/Pafolacianine are 
three other clinically approved fluorescent agents. To date, 
fluorescent agents [78, 79] have been developed for detec-
tion of cancer cells [80–83], sentinel lymph nodes [43, 71, 
84, 85], atherosclerosis [86, 87], arthritis [88–90], ureters 
[91–93], bile ducts [94], and nerves [95, 96]. For visualisa-
tion of these fluorescent agents, specialised intraoperative 
imaging systems have been developed for open surgery [45, 
46, 63, 68–70, 97, 98], endoscopy [99], laparoscopy [100], 
thoracoscopy [101], and robotic surgery [102, 103]. Fig-
ure 2 shows the intraoperative impact of using fluorescence-
guided surgeries.

Despite a strong driving force coming from the auspi-
cious results of these trials, there is still a fundamental 
controversy in the scientific field on how to cope with the 
complex process of optical imaging. Optical properties of 
the tissue can attenuate fluorescence signals; light scatter-
ing, for example, may cause blurred images. In addition, 
tumour-to-background ratios are influenced by nonspe-
cific autofluorescence of the surrounding healthy tissues, 
although this disturbance is lower in the NIR region. Fur-
ther, fluorescence intensity is further dependent on many 
factors, such as the concentration and fluorescence quantum 
yield of the fluorescent agent, the affinity of the fluorescent 

agent, the abundance of target receptors or epitopes, and the 
imaging system [60]. Innovative calculation methods have 
been developed that can partly correct for the perturbation 
caused by tissue optical properties, but a millimetre-scale 
sharp delineation of the tumour remains challenging in many 
cases [98, 104–107]. Considering all these factors, sufficient 
understanding of these processes by the surgeon is essential 
to adequately interpret the intraoperative fluorescence image 
at hand.

Intraoperative use of Raman spectroscopy

Raman spectroscopy is an optical technique that can be 
used for real-time characterisation of biological tissue in 
and ex vivo. A Raman spectrum of tissue is a representation 
of the molecular composition of that tissue. As cancer alters 
the molecular composition of tissue, RS can be used for dis-
crimination between tumour and healthy tissue. Contrary to 
FLI, the technique does not require preparation or staining 
of the tissue to be analysed, which facilitates clinical appli-
cation. With the use of optical fibres, many body locations 
can be assessed in vivo using hand-held RS probes [113]. 
RS has a high diagnostic accuracy for cancer detection, with 
reported overall diagnostic sensitivities and specificities 
between 73 and 100% and 66 and 100%, respectively [114]. 
Its intraoperative application has recently been explored in 
brain tumour biopsies [115] and brain tumour surgery [116, 
117], as well as in debulking procedures of ovarian cancer 
[118]. RS can further be used for peripheral nerve visualisa-
tion and identification and sparing of vital structures during 
oncological surgery [119, 120].

The two regions of the Raman spectrum that are rel-
evant to cancer diagnostics are the fingerprint and the 
high wavenumber (HWVN) regions (Fig.  3d, e). Most 
biomedical research on RS studies the fingerprint region 
(~ 400–2000  cm−1). This region is rich in spectral features, 
including the biochemical signatures associated with lipids, 
proteins, nucleic acids (DNA), and blood [121]. However, 
processing times in this region are long; signal intensity is 
relatively low, and molecular discrimination is generally 
based on minute spectral differences, necessitating complex 
and robust machine learning algorithms [61, 122]. Further-
more, in vivo applications for RS require fibre optic probes. 
These fibres, made of fused silica, generate intense back-
ground emission requiring complex optical filtering [123]. 
Contrary to the fingerprint region, no Raman signal is gen-
erated in fused silica in the HWVN region, which ranges 
from ~ 2400 to 3800  cm−1. In addition to its amenability 
for use with optical fibres, the signal in the HWVN region 
is much more intense than in the fingerprint region. While 
it contains less detailed spectral information, the HWVN 
region can be utilised to distinguish malignant from healthy 
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tissue with a more straightforward approach. An additional 
benefit of performing RS in the HWVN over the fingerprint 
region is the greater spectral distance from fluorescence 
emission, when excited with a red or NIR laser. As a result, 
the Raman signal in the HWVN region experiences less 
interference with that of fluorescence as compared to the 
fingerprint region.

In oral cancer, it has been demonstrated that HWVN 
Raman spectra can identify cancer ex vivo based on the 
water concentration in freshly excised specimens [55]. This 
water concentration differs consistently across the bor-
der between tumour and healthy surrounding tissue over 
a distance of about 5 mm [124]. The water concentration 
averages from 76% in the tumour to about 54% in the sur-
rounding healthy tissue. The variation in water concentra-
tion inside tumour tissue appeared to be much lower (8%) 
than that in the healthy tissue (24%) [124]. Acquisition of 
HWVN Raman spectra occurred in a point-based manner, 
i.e. grid-wise measurements of microscopic tissue volumes 
with instant signal processing (< 0.1 s).

Based on these findings, the development of an automated 
fibre optic needle probe for determination of the water con-
centration profile across the margins of a resection specimen 
has been initiated. The needle probe is placed on the resec-
tion surface and then driven into the tissue while recording 
spectra at regular distance intervals along its path. The goal 
is to measure the distance between resection surface and 
tumour border in this way, to enable rapid and objective 
margin assessment without the need for specimen grossing 
[125–127manuscript in preparation Aaboubout et al.].

The combination of other imaging modalities with selec-
tive sampling of suspicious areas by RS as a powerful label-
free analytical technique has also been explored [128, 129]. 
Such approaches include MRI, second harmonic generation, 
OCT, AFI, total internal reflection fluorescence, or quanti-
tative phase microscopy [130–138]. In general, the basic 
concept behind these multimodal approaches is to combine 
the high sensitivity of an imaging modality (i.e. rapid iden-
tification of areas that need further inspection) with the high 
selectivity of RS tissue analysis.

The potential complementary value 
of combined fluorescence imaging 
and Raman spectroscopy

In FLI, the signal originates from the interaction of light 
with the administrated fluorescent agent binding in the 
tumour. In RS, however, the signal originates from the 

interaction of light with the tissue itself, regardless of the 
specificity of fluorescent agent binding. Owing to the dis-
tinctly different physical signal origins of FLI and RS, the 
provided information is complementary.

FLI allows for real-time whole-field imaging of the 
surgical field, with high signal intensity. However, fluo-
rescence signal intensity is limited by intrinsic optical 
tissue properties as well as the concentration and fluo-
rescent quantum yield of the fluorescent agent [60]. On 
the other hand, RS can detect tumour with uniquely high 
specificity, but the signal intensity is very weak and can 
be hindered by photon shot noise originating from light 
interaction with components of the specimen present in 
the cross-section of the illumination and detection paths 
[139]. Additionally, its limitation to point measurements 
does not allow for real-time, whole-field tissue analysis. 
Therefore, a combination of FLI that has high sensitivity 
at the expense of a somewhat lower specificity, with RS 
that provides high specificity would be very advantageous. 
FLI would be employed in vivo for real-time identifica-
tion of fluorescence, followed by objective verification of 
malignancy with RS to yield superior diagnostic accuracy 
over either modality used in isolation.

Other than helping to distinguish malignant from healthy 
tissue (i.e. during excision with tumour-free margins and 
debulking procedures), FLI has additional advantages for 
surgical oncology. Due to its ability to scan large surfaces, 
FLI is a useful tool for identifying additional occult lesions 
as well as relevant vital structures that require preservation 
during cancer surgery [140]. FLI has been employed to iden-
tify separately located clinically occult tumours in a variety 
of contexts, including peritoneal metastases [141], senti-
nel lymph nodes [142], pulmonary [143], and abdominal 
[144] lesions. Such findings have been described to result in 
improved survival rates, changes in personalised treatment, 
and reduced morbidity associated with damage to healthy 
surrounding structures.

Besides securing adequate margins and achieving con-
servative resection during cancer surgery, RS can comple-
ment FLI in several other ways. When fluorescent areas are 
detected in the wound bed or elsewhere in the scanned sur-
face (e.g. abdomen), RS could be the ideal tool to instantly 
assess this suspect region, thereby confirming or ruling out 
the presence of occult lesions. For unanticipated intraopera-
tive findings such as the detection of clinically occult peri-
toneal metastases during colorectal cancer surgery [141], 
subsequent in vivo RS could be used to confirm malignancy 
without the need for time-consuming fresh frozen section-
ing. Even in case of a clinically suspicious non-fluorescent 
lesion, RS can provide timely analysis. Similarly, RS has 
potential for use as an additional confirmation of fluorescent 
findings during debulking procedures and in the identifica-
tion of vital structures.

Fig. 1  Excitation and emission wavelengths of approved and clinical 
fluorescent agents in the visible channel, NIR-700-nm channel, and 
NIR-800-nm channel (data collected from [108–112])

◂
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However, laser-induced fluorescence itself can be a lim-
iting factor for Raman measurements. Because fluorescent 
signals are generally orders of magnitude stronger, obscur-
ing the Raman signal, these techniques were traditionally 

considered mutually exclusive. Figure 3 shows this interfer-
ence in preliminary tests where RS was performed utilising 
the standard excitation wavelength of 671 nm on freshly 
excised tissue of a patient after injection of a fluorescent 

Fig. 2  (Top) Schematic illustration of the intraoperative impact of 
using fluorescence-guided surgeries. (Bottom) Implementation of flu-
orescence guidance. Following the administration of the fluorescent 
agent, the tissues of interest can be visualised with a dedicated NIR 
camera in real-time during open or laparoscopic surgery. In addition 

to guiding the surgeon during the resection, rapid feedback on the 
presence of fluorescence can be provided by imaging the resected tis-
sue on a back table with a NIR camera and microscope in the operat-
ing room (taken from [79] with permission)
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agent in the NIR-800-nm channel. The interface can be 
eliminated by shifting the excitation wavelength to 976 nm.

Combining FLI with RS indeed requires careful match-
ing of excitation and emission wavelengths of RS and the 
exogenous fluorescent agents; several groups have studied 

various approaches to deal with this issue. The excitation of 
fluorescent labels can be avoided by shifting the wavelength 
of the Raman laser to a longer wavelength [145].

In a study using phantoms and breast specimens stained 
with patent blue dye (BD), it was demonstrated that 

Fig. 3  FLI and RS image of tissue section of colorectal cancer con-
taining cRGD-ZW800-1 and surrounding healthy tissue. Ethical 
approval for collection of this tissue falls under the METC LUMC, 
as part of studies registered in the European Trials Database under 
numbers 2016–000,397-38 and 2017–002,772-60 [73]. Tumour is 
delineated by the red dotted line; tissue is delineated by blue dotted 
line (a, b, and c). a Haematoxylin and eosin–stained slide. b Fluores-
cent image showing colocalisation of signal with tumour. c Cluster 

analysis of the Raman image illustrating that the tumour area cannot 
be characterised by RS because the fluorescence signal is too strong. 
d Fluorescence spectrum of cRGD-ZW800-1 showing overlap with 
the acquired Raman signal at an excitation wavelength of 671  nm. 
HWVN region provides stronger Raman signal intensity than other 
Raman regions and overlaps with the tail of fluorescence emission. 
e Space between fluorescence spectrum of cRGD-ZW800-1 and the 
acquired Raman signal at an excitation wavelength of 976 nm
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fluorescence induction from surgical pigments could be cir-
cumvented by combining a laser with a longer wavelength 
(785  nm vs. 685  nm) with an indium gallium arsenide 
(InGaAs) camera capable of measuring the water/total area 
ratio of the HWVN spectrum [146]. Noting that haemoglo-
bin and BD have no adverse effect on water content analy-
sis, the Raman system was shown to accurately distinguish 
tumour from healthy tissue, as well as differentiate between 
normal and metastatic axillary lymph nodes in the presence 
of BD [147].

Another study combined fingerprint RS with wide-field 
AFI spectral imaging for intraoperative margin assessment 
in breast-conserving surgery [130]. AFI was employed to 
effectively ‘screen out’ the adipose tissue, enabling RS to 
more efficiently target the non-adipose tissue regions that 
are at a higher risk of malignancy, with superior diagnostic 
value as a result.

When it comes to the combination of FLI and RS, 5-ami-
nolevulinic acid (5-ALA) is the most frequently studied fluo-
rescent agent. In 2006, in vivo fingerprint RS was studied 
on bladder cancer biopsies obtained under the guidance 
of 5-ALA-induced protoporphyrin IX (PPIX) FLI [148]. 
Although a NIR laser emitting at 830 nm was used to reduce 
the interference of PPIX fluorescence emission in the visible 
area, additional fluorescence background was observed in 
the sample obtained from fluorescent areas, obscuring the 
RS signal and requiring algorithmic removal. Therefore, a 
new classification algorithm was trained based on biopsies 
with 5-ALA, which improved accuracy (from sensitivity and 
specificity of 43% and 71%, to 75% and 89%, respectively) 
[149]. Furthermore, it was demonstrated how the classifi-
cation accuracy could be further improved by combining 
fluorescence and RS information on biopsies with 5-ALA 
(sensitivity and specificity of 100% and 81%, respectively).

More recently, ex vivo RS was performed to differentiate 
glioma from normal brain in the presence of 5-ALA [150]. 
It was shown that RS could identify glioma with an accuracy 
of 0.85–1.00 (along with a 95% confidence interval) using a 
785-nm laser and collecting Raman spectra in the fingerprint 
region. In optical tissue phantoms, tumour margin could be 
delineated using this approach [151]. Additionally, finger-
print RS was studied on tissues containing verteporfin and 
temoporfin, two fluorescent agents (photosensitisers) with 
activation at ~ 690 and ~ 650 nm, respectively [152]. With 
fluorescence emission similar to PPIX (600–800 nm), both 
agents were shown to be compatible with a 785-nm excita-
tion Raman system. However, no clinical in vivo intraopera-
tive studies have been reported yet.

To summarise, several studies showed successful Raman 
measurements in the presence of fluorescent agents with 
emission in the visible and NIR-700-nm channel regions. 
However, to the best of our knowledge, there is no report 
on performing Raman measurements with the agents in the 

NIR-800-nm channel (e.g. ICG). ICG is the most widely 
used fluorescent agent in clinical trials of fluorescence-
guided surgery (FGS) [43, 153]. It has peak fluorescence 
emission in the NIR-I region and a long emission tail that 
extends into the NIR-II (1000–1700 nm) region [154], which 
is very challenging to combine with RS because of reduced 
Raman scattering at higher wavelengths, as well as the lim-
ited quantum efficiency of silicon-based CCD detectors, 
which declines to below 30% beyond 1000 nm.

A novel HWVN RS system was recently developed to 
characterise tumour in highly pigmented skin lesions (i.e. 
melanomas) [155–157]. These melanocytic lesions have 
absorption characteristics at long wavelengths, similar to 
NIR fluorophores. Tissue characterisation was still feasi-
ble after increasing the laser excitation wavelen161. gth to/
beyond the NIR region (> 900 nm), demonstrating that the 
combined and simultaneous use of FGS with NIR fluoro-
phores and RS is technically feasible. Using this HWVN 
RS system, resection margins can be improved by utilis-
ing the optimal characteristics of FLI in the NIR region 
with tumour-specific fluorescent agents, combined with the 
specificity of RS based on differences in water concentra-
tion in this region. A laser excitation wavelength of 976 nm 
in combination with a novel low-noise InGaAs detector 
showed perfect elimination of laser-induced fluorescence of 
pigmented tissues. Collection of Raman signal in the short-
wave infrared (SWIR) region with a high quantum efficiency 
(> 90%) up to 1570 nm showed minimal fluorescence contri-
bution in the obtained spectra excited with 976-nm laser. RS 
with a low-noise InGaAs multichannel detector in the SWIR 
region can open up possibilities of combining RS and FLI 
in a clinical, intraoperative setting, even in the presence of 
fluorescent agents in the NIR-800-nm channel.

Although RS is generally a label-free method, systemic 
injection of molecular imaging agents for Raman signal 
enhancement has recently been studied preclinically for mar-
gin assessment purposes. By selectively accumulating in the 
tumour tissue, multi-purpose nanoparticles could be used for 
FLI while simultaneously enhancing the Raman signal, as 
well as providing the option of photothermal tumour abla-
tion [158–160]. This promising approach still awaits clinical 
translation.

Conclusion and future work

While combining FLI with RS to achieve both whole-field 
imaging of the surgical field and objective margin verifi-
cation would be very advantageous, these techniques have 
traditionally been considered mutually exclusive. Careful 
matching of RS excitation wavelengths and fluorophore 
emission wavelengths is required, presenting various tech-
nical hurdles. This issue could be solved by quantification 
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of differences in water concentration in the HWVN region. 
After FLI with tumour-specific fluorescent agents, HWVN 
RS may be used to assess margin adequacy. In addition, 
evidence for the utility of RS in the identification of occult 
lesions and vital structures underlines its potential as an 
adjunct to FGS in all its basic applications. It is worth men-
tioning that intraoperative imaging techniques can also be 
beneficial for other applications, not limited to cancer sur-
gery. These include delineation of targeted borders for pre-
cise surgical resections, evaluation of vascular perfusion, 
and identification of vital structures, such as nerves or ure-
ters [140]. The synergistic effect of FLI and RS could also 
be exploited for these applications.
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