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Introduction

In this paper, we discuss practical challenges 
in ex-ante life cycle assessment (LCA) of 
emerging technologies, i.e., barriers to hands-on 
implementation, as opposed to the conceptual 
challenges that recent contributions to the literature 
have been focusing on (see Giesen et al., 2020; 
Thonemann et al., 2020; Villares et al., 2017). We will 
illustrate the discussion with the case of emerging 
photovoltaics (PV), namely multijunction III-V / silicon 
tandem cell (III-V / Si). This case application helps 
structure the ex-ante LCA exercise and highlights the 
challenges of applying LCA early on in technology 
development, while providing sufficient general 
elements that apply to other emerging technologies.2

Written from the perspective of LCA analysts, the 
paper is organized around the LCA method. LCAs 
can be conducted at various stages of a technology 
development process, requiring different types of 
information at the various stages. By illustrating with 
the case study of emerging photovoltaics, the paper 
explores the importance of product performance 
optimization during technological development, and 
how it is directly linked to environmental performance 
during the use phase. It also demonstrates how the 
design and manufacturing choices that technology 
developers are confronted with can greatly influence 
environmental performance over the future product’s 
life cycle. The approach that emerges is one in which 
the LCA method remains flexible throughout the 
technology development process to accommodate 
its dynamic nature and the numerous uncertainties 
inherent in it.

1.

Why we need ex-ante LCA

LCA is the method of choice to assess product and 
service systems that span the global economy and 
trigger environmental trade-offs across multiple 
impact pathways. For several decades now, LCA has 
been used to quantify the environmental impacts of 
products or services across their full life cycle, from 
the extraction of raw materials up to the end-of-life 
(EOL), and across a wide range of impact categories, 

2	 See the paper written for the ESET project by Christian Moretti, “Ensuring the environmental sustainability of emerging 
technologies applications using bio-based residues” (2022).

from climate change to toxicity and acidification 
(Hellweg & Canals, 2014). A series of ISO standards 
(ISO, 2006b, 2006a) formalised the use and 
application of LCA. These LCA studies have mostly 
been ex-post assessments of well-defined systems, 
namely systems for which sufficient data and 
knowledge were available, given that the systems 
have already been operating at an industrial scale. 
Ex-post LCA studies can guide decision-makers 
and consumers on the environmental hotspots in 
the life cycle of a product system and can be used 
to compare environmental benefits and trade-offs 
vis-à-vis an incumbent product system performing 
a similar function. While useful for decision-makers, 
ex-post LCA studies can have limited use when 
they call for changes that are likely to be costly or 
unfeasible (Cucurachi et al., 2018). 

Assessing a system that is still being designed or 
that is still in development has the advantage that 
changes are still possible. A designer of a novel or 
emerging technology, for instance, would have the 
choice to use the results of an LCA study to avoid 
designs that require manufacturing processes or 
features that lead to an increase in environmental 
sustainability impacts from a sustainability 
perspective. Furthermore, ex-ante LCA accounts for 
the process optimizations required to mass-produce 
and deploy an emerging technology at an industrial 
scale (Bergerson et al., 2020; Giesen et al., 2020). 
Additional advantages of performing an ex-ante 
LCA are the close collaboration with technology 
developers and other stakeholders, the ability to 
put claims of environmental sustainability to early 
scrutiny, to support early design improvements and 
sound investments with information about potential 
large-scale environmental impacts at hand, to avoid 
technological lock-ins, to identify early hotspots or 
comparative advantages/disadvantages, and to warn 
decision-makers about critical material and process 
choices. Ex-ante LCA has been gaining traction, 
and scholars and practitioners have been working 
in the past few years to develop new methods 
that are suited to assess emerging systems and 
technologies (we refer the reader to Bergerson et al. 
(2020) and Giesen et al. (2020) for the classification 
of alternative modes of LCA to assess systems 
prospectively).
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2.

Background: Ex-ante  
challenges
Ex-ante LCA studies fall into the methodological 
quandary known as the Collingridge dilemma 
(Buckley et al., 2017), which postulates that impacts 
cannot be easily predicted until the technology is 
extensively developed and widely used, while control 
or change is difficult when the technology has 
become entrenched.

Several scholars have highlighted the different 
nature and challenges of conducting an ex-ante 
LCA compared to the standard practice of LCA, as 
defined by the ISO 14040 standards (see Guinée, 
2001 for an operational guide to the ISO standards). 
Technology-specific guidelines are also available. 
For example, readers can consult Langhorst et al. 
(2022) for guidelines on the LCA of CO2 utilization 
technologies and the report published by the 
European Commission’s Knowledge Centre for 
Bioeconomy (2022) for the application of ex-ante 
LCA to bio-based systems. In the next sections, we 
will assess some of the challenges in turn. Here, 
we provide a short review of the challenges and the 
phases of LCA in the order of which they need to be 
tackled.

Several aspects of the goal and scope phase, the 
initial phase of any LCA study, become critically 
important to define for emerging technologies due 
to the need to understand the product’s ultimate 
functional performance, i.e., how much service 
it can deliver or needs it can satisfy per unit of 
product and under what conditions. By calculating 
impacts on the basis of a specific functional unit, 
the analyst is able to capture trade-offs between 
the functional performance of the system and the 
related environmental impacts. Giesen and co-
authors (2020) stress the difficulties in defining a 
functional unit for technologies that are yet to be 
implemented on the market, as well as in finding a 
relevant incumbent technology performing a similar 
function for benchmarking (see also Arvidsson et al., 
2017; Hetherington et al., 2014; Wender & Seager, 
2011). This challenge of comparing an emerging vs. 
an incumbent technology is highlighted by several 
review studies (Arvidsson et al., 2017; Hetherington et 
al., 2014; Moni et al., 2020; Thonemann et al., 2020). 
A screening of alternatives should be conducted 
(Langhorst et al., 2022), and Moni and co-authors 
(2020) suggest defining and assessing multiple 
functional units and their alternatives, if needed, so 

that the full spectrum of potential alternatives can be 
covered. The identification of the functional unit(s) 
for the system under assessment is also strictly 
connected to the expectation of the developer of 
an emerging technology regarding the functional 
performance of the system both in the lab and at 
an industrial scale. An important decision that the 
analyst needs to make during the goal and scope 
phase of LCA relates to the identification of the 
system boundaries of the ex-ante study. System 
boundaries set the criteria and specify which 
unit processes are part of the product system 
(Thonemann et al., 2020). When assessing alternative 
systems performing a similar function, but which are 
at different technology readiness levels (TRLs), the 
system boundaries should be as broad as possible 
and must be harmonized between alternatives. A 
clear point of attention regards the EOL of emerging 
technologies, and whether the EOL should be 
included in the assessment given the uncertainty of 
which EOL will become available in the future.

During the life cycle inventory (LCI) phase, the analyst 
faces challenges related to data availability and 
coverage (Giesen et al., 2020; Moni et al., 2020; 
Thonemann et al., 2020). This mainly concerns data 
on material and energy inputs and outputs (flows) in all 
processes that will be part of the product/service’s life 
cycle, and which ultimately trigger the environmental 
impacts. Data available in standard LCA databases 
might be obsolete, unavailable, or not representative, 
thus requiring the analyst to rely on scenarios, 
proxies, or gap-filling strategies. As for the specific 
technology under assessment, the analyst may face 
the challenge of modelling processes that are still at 
the lab scale, and that are bound to change should 
the technology penetrate the market and become 
industrially available. A parametrized system, where 
inputs/outputs are expressed as a function of variable 
parameters, may be better suited in conducting an 
ex-ante assessment (Blanco, Cucurachi, Guinée, et 
al., 2020). Additionally, upscaling techniques may be 
used to upscale processes from lab to industrial scale 
(Piccinno et al., 2016). 

The life cycle impact assessment (LCIA) is dedicated 
to the characterization of potential impacts from the 
system of interconnected processes inventoried at 
the LCI stage. This is generally done by multiplying 
the aggregated input/output exchanges of materials 
and energy with the environment by characterization 
factors that quantify the impact resulting from each 
exchange. Standard characterization models used 
at the LCIA phase may not be fully suited to assess 
novel materials in emerging technologies, thus 
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leaving unclassified flows and impacts as a result 
(Giesen et al., 2020). Due to a lack of data, such 
unclassified flows and results leave the decision-
maker with a false sense of confidence about the 
realistic performance of the emerging technology 
under assessment (we further refer the reader to 
Moni et al., 2020).

In the final interpretation phase, the analyst 
evaluates the results of the study and assesses the 
implications of modelling choices on the results and 
the potential impacts of uncertainty and assumptions 
on the results of the study. In an ex-ante LCA study, 
scenario techniques (Bisinella et al., 2021) and 
advanced techniques of uncertainty and global 
sensitivity analysis aid the analyst in stress-testing 
the assumptions in the system and identifying the 
relevant inputs in the model that are potential drivers 
of uncertainty and key to make an informed decision 
on the system under assessment.

In the remainder of this paper, we discuss the above 
challenges in more detail and use the case of an 
emerging solar PV technology, the multijunction 
III-V / silicon tandem solar cell, to illustrate the 
following practical strategies to overcome the 
challenges:

1.	 Parametrized use-phase modelling (goal and 
scope phase)

2.	 Upscaling based on process engineering 
principles (LCI phase)

3.	 Expert elicitation (LCI phase)
4.	 Modelling technological pathways (LCI phase)
5.	 Using future background scenario LCI databases 

(LCI phase)
6.	 Assessing future impacts (LCIA phase)
7.	 Modelling EOL scenarios (goal and scope, and 

LCI phases)
8.	 Recognizing what matters in the LCA model 

(interpretation phase)

2.1	 Case study of emerging 
photovoltaics

Crystalline silicon cells (c-Si) have been dominating 
the photovoltaic electricity (PV) market for over two 
decades, largely due to the availability and low cost 
of silicon and their relatively good performance in 
converting energy from sunlight. Industrially available 
c-Si cells today have conversion efficiencies of 
ca. 22%, while the record-holding lab prototypes 
are pushing towards the thermodynamic limit of 
29.4% (Ehrler et al., 2020). Cost reduction has been 

exponential, reaching $0.20/Wp in 2020 (Benda & 
Černá, 2020). But after decades of research and 
development (R&D), marginal increases in c-Si 
efficiency and decreases in cost are more difficult to 
attain. Still, solar PV is expected to be a key player 
in the energy transition, and the most optimistic 
scenarios see installed capacity reaching 70 TW 
in 2050, up from 760 GW in 2020 (Jaxa-Rozen 
& Trutnevyte, 2021). In such a future, the market 
dominance of c-Si may be challenged by higher-
efficiency cells if they can achieve a lower cost per 
watt. The emerging PV landscape is dynamic and 
diverse, with many novel combinations of materials 
and processing methods being proposed to achieve 
the lowest cost-per-watt ratios. At the same time, the 
focus on the cost per kW ratio could distract from the 
original goal of reducing the environmental burdens 
of energy systems. Emerging PV is, therefore, a very 
well-suited and justified domain for the application of 
ex-ante LCA.

The multijunction III-V / silicon tandem cell (III-V / Si) 
concept is an emerging PV technology that 
combines c-Si bottom cells with top absorber layers 
made from group III-V materials (gallium, indium, 
arsenide and phosphide) (Cariou et al., 2018). This 
combination allows such cells to reach conversion 
efficiencies well beyond c-Si’s theoretical limit. With 
significantly less time and resources invested in R&D, 
III-V / Si cell efficiencies close to 36% have already 
been demonstrated at the lab scale (Essig et al., 
2017). Recent R&D efforts have targeted potential 
pathways to improve cost and environmental 
competitiveness via more efficient III-V layer 
deposition, enhanced waste treatment, recycling of 
metals, and low-cost preparation of the c-Si growth 
substrate (Blanco, Cucurachi, Dimroth, et al., 2020; 
Fraunhofer ISE, n.d.). In this paper, we use such 
advancements to illustrate the challenges of applying 
LCA to an evolving system at a low TRL.

3.

Goal and scope

During the goal and scope definition phase, important 
choices are made, and boundary conditions are 
defined for conducting an LCA study. The objective of 
an ex-ante LCA is to quantify the future environmental 
impacts of an emerging technology (Moni et al., 
2020), e.g., to require funding or benchmark a system 
in comparison to an alternative. In comparative 
studies, the emerging technology is frequently 
compared to an incumbent technology, defined as the 
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system in the technology landscape that performs a 
similar function as that of the emerging technology 
(Giesen et al., 2020). While in conventional LCA 
the incumbent systems are typically well-defined 
(European Commission’s Knowledge Centre, 2022), 
in an ex-ante LCA study the incumbent systems may 
become clearer to the analyst only as the technology 
evolves, thus after iterations of the assessment are 
carried out in close coordination with technology 
developers. This process could take years, making 
finding a balance between timeliness and accuracy 
challenging but necessary.

The transparent definition of a reference year for the 
analysis, geographical context and technological 
landscape allows for modelling scenarios that 
consider all the relevant operating conditions (see 
also Bisinella et al., 2021; European Commission’s 
Knowledge Centre, 2022). It is recommended at this 
stage that the analyst formulates the expected delay 
until there is industrial production, together with the 
specific TRL of the system under assessment (Moni 
et al., 2020). In the case of low TRL levels, the system 
is considered to be in the conceptual development 
phase and, thus, extensive process changes are 
expected due to further research developments 
(Gavankar et al., 2012). In comparative assessment, it 
is important to account for the TRL of the emerging 
technology and the related incumbent technology 
and to discuss the implications of TRL on the 
potential performance of the systems.

3.1	 Functional performance

Once the objective of the study is clearly defined, a 
functional unit (FU) can be defined, i.e., a “quantitative 
description of the service performance (the needs 
fulfilled) of the investigated product system(s)” 
(Rebitzer et al., 2004). Challenges in ex-ante LCA 
may arise regarding the precise identification of the 
function of the technology under assessment. At the 
earliest stages of innovation, it might be challenging 
for the analyst and technology developer to fully 
define the ultimate function of emerging technology, 
and this may be influenced by future consumer 
behaviour, i.e., how they use the technology. It is also 
possible that multiple functions may be identified 
and studied, and they may require comparison with 
multiple incumbent technologies, e.g., batteries 
may be used for frequency/voltage regulation of the 
energy grid or for energy storage in residential units.

Another key challenge is that the functional 
performance (i.e., the efficiency in delivering the 

required function) of the technology, once it is 
market-ready, is often uncertain. Performance 
improvement is often the main target of R&D, and 
performance gradually (sometimes significantly) 
improves as the technology progresses from one 
TRL to the next (see Table 1). 

Technology
Functional 
unit example

Example performance 
improvements targeted 
in R&D

PV panels 1 kWh 
generated 
electricity

Increase panel 
conversion efficiency, 
reduce degradation

Batteries 1 kWh 
delivered 
electricity

Increase roundtrip 
efficiency, increase 
cycle life

Electric 
vehicles

1 km 
transport

Increase engine 
efficiency, increase 
components’ lifetime

Carbon 
capture  
and storage

1 kg 
captured 
carbon

Increase adsorber 
efficiency and lifetime

Bioproducts 1 kg biomass Increase bioreactor 
yield

Table 1 | Examples of emerging technologies typically 
evaluated in ex-ante LCA and how their expected functional 
performance can evolve throughout R&D

Functional performance — and its determining 
factors — are often the most influential unresolved 
aspects for LCAs of emerging technologies. In an 
LCA model, the performance of a service (such as 
generating electricity, transporting passengers, or 
providing novel nutrition sources) is a use-phase 
activity that is downstream of most other activities 
in the value chain. Better performance will demand 
less from the upstream supply chain to deliver the 
same amount of service. Therefore, it is of the utmost 
importance that this aspect is carefully modelled and 
analysed via uncertainty and sensitivity analysis (see 
section 6).

As can be gathered from above, we recommend 
detailed modelling of functional performance 
aspects, which can then be subject to 
comprehensive uncertainty and sensitivity analyses 
(section 6). We also recommend erring on the 
side of over-parametrization rather than under-
parametrization in this part of the model, as 
important opportunities for optimising designs for 
increased sustainability may be revealed.

9
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Ex-ante practical strategy 1: 
Parametrized use-phase modelling 

The relevance of functional performance is well 
illustrated by the case of emerging PV. For PV, 
the functional unit is often defined as “1 kWh 
(kilowatt-hour) of DC electricity generated 
by a photovoltaic module” (Directorate-
General for the Environment of the European 
Commission, 2020). The key quantity of 
interest for calculating life cycle impacts is the 
size of the PV installation required to generate 
this amount of electricity. This size will depend 
on several performance-related factors, 
according to the formula: 

A = E / (I ∙ η ∙ PR ∙ LT)

Where A is the size of the PV installation 
(in m2), E is the required electricity given by 
the FU (i.e., 1 kWh), I is the incoming solar 
irradiation (kWh/m2 ∙ a), η is the panel’s 
conversion efficiency, PR is a performance 
ratio expressed as a percentage, and LT is the 
expected useful lifetime of the panels, in years. 
Any performance improvement in conversion 
efficiency, performance ratio, or panel lifetime 
will proportionally reduce the installation size 
A required to generate 1 kWh of electricity, 
therefore reducing the consumption of 
materials and reducing the impacts of these 
materials per kWh of electricity generated.

Figure 1 | Comparative impact results of III-V / Si future scenarios compared to the reference c-Si system with an improved 
panel conversion efficiency of 30%, degradation rate of 0.5% per year, extended lifetime of 35 years and performance ratio 
of 80%. CC: climate change; AC: acidification; FET: freshwater ecotoxicity; FEU: freshwater eutrophication; MEU: marine 
eutrophication; TEU: terrestrial eutrophication; HC: human toxicity, cancer effects; IRH: ionising radiation; HNC: human 
toxicity, non-cancer effects; OD: stratospheric ozone depletion; POC: photochemical ozone formation; PM: particulate 
matter; WRD: water resource depletion; RDF: fossil resource depletion; LU: land use; RDM: mineral resource depletion.

Furthermore, solar cells can be expected to 
degrade over time, lowering their efficiency (η). 
Degradation is thus an additional key performance 
factor. The Product Environmental Footprint 
Category Rules (PEFCR) put forth by the European 
Union prescribe a degradation rate of 0.7% each 
year for all PV technologies, only to be revised if a 
different value can be substantiated by long-term 
testing (> 10 years). In the context of emerging 
PV technologies, this is naturally not feasible. Yet 
our goal of understanding potential impacts and 
improvement pathways requires an analysis of 
potential performance, especially if improved solar 
cell efficiency and stability (and/or panel lifetime) are 
key features of the PV technology being evaluated.

The III-V / Si technology can offer important 
improvements in several of the factors which should 
be captured by an ex-ante LCA. Figure 1 shows the 
comparative LCA impacts for III-V / Si PV vs c-Si, 
taking the PEFCR recommended baseline values: 
annual irradiance (1700 kWh/m2), PV system lifetime 
(30 years), performance ratio for roof-mounted 
systems (75%) and a degradation rate of 0.7% per 
year. The initial conversion efficiency of 27% is taken 
based on what has been achieved to date for III-V / Si. 
Technically feasible and foreseeable performance 
optimizations are assessed by extending lifetime 
to 35 years, increasing efficiency to 30%, reducing 
degradation to 0.5%/year and increasing the 
performance ratio to 80% (see figure 1: LT_opt,  
Eff_opt, Deg_opt, PR_opt, respectively).

CC AC FET FEU MEU TEU HC IR HNC OD POC PM RDW RDF LU RDM

150%

100%

50%

0%

III-V/Si (baseline) LT_opt Eff_opt Deg_opt PR_opt c-Si
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4.

Future LCI: Foregrounds 
and backgrounds

The emerging technology system and incumbent 
system/systems under assessment can be defined 
as the foreground system, i.e., the part of the system 
that the analysts model themselves. For the case 
of emerging technologies, the foreground system 
is also typically under the direct control of the 
technology developer with whom the LCA analyst 
collaborates, meaning that specific processes in 
the emerging technology product system could be 
influenced and changed given adequate resources 
and guarantees of acceptable trade-offs on the 
functional performance. For example, nitrogen could 
be used instead of hydrogen when non-reactive 
gas streams are required in a chemical processing 
step, should the LCA analyst signal an environmental 
preference for the first option as compared to the 
latter. 

The technological context in which the emerging 
technology and incumbent technology (or 
technologies) are embedded can be defined 
as the background system, i.e., the part of the 
system for which LCA analysts typically use LCI 
databases (e.g., ecoinvent Wernet et al., 2016). An 
example of unit processes in the background is the 
service of electricity provision from the grid, which 
does influence the performance of the emerging 

Ex-ante practical strategy 2: Upscaling 
based on process engineering principles

Piccinno et al. (2016) offer excellent guidance for 
upscaling chemical processes in LCA models, 
based on process engineering principles and 
well-known practices in the chemical industries. 
The approach can be illustrated with the front 
metal contacts (fingers and busbars) of the III-V / Si 
cells case study. Current industry practice is to 
screen-print the metal contacts using silver paste. 
However, silver is expensive and is ranked high 
vs. other metals in terms of potential ecotoxicity 
impacts in LCA impact assessment models. A 
proposed innovation is to replace it with copper 

technology, but depends on policy decisions and a 
country’s macro-economic context.

While modelling choices related to the foreground 
and background systems are decided upon during 
the goal and scope phase, they do have an impact 
on the inventory data used at the LCI phase. The 
literature suggests avoiding temporal mismatches 
between foreground systems and background 
systems (Arvidsson et al., 2017; Giesen et al., 2020; 
Mendoza Beltran et al., 2020; Thonemann et al., 
2020), although this is often not possible.

4.1	 Upscaling the foreground

Lab- and pilot-scale processes are often how 
technologies are built up and transformed during 
R&D. However, these processes are highly inefficient 
in their use of energy and materials, and as a result, 
would likely have disproportionate environmental 
impacts if introduced in an LCA model. Given that 
such processes will not be used to manufacture the 
technology at an industrial scale, the results of a lab/
pilot-scale LCA model could provide, at best, limited 
insight and, at worst, distorted conclusions as to the 
future environmental performance of the technology. 
One of the foremost challenges encountered by ex-
ante LCA practitioners is, thus, the lack of knowledge 
of how each lab/pilot-scale process being tested by 
technology developers will be optimized for industrial 
mass production.

nano ink, with the caveat that copper ink must 
be sintered (dried and consolidated) in an 
oxygen-free environment to avoid damage. This 
environment is provided by a constant flow of 
nitrogen gas with formic acid (Hermerschmidt 
et al., 2018). A laboratory setup for this sintering 
step is depicted in figure 2.

An LCA of III-V / Si including this lab-scale 
process would quickly raise a flag since sintering 
would introduce climate change impacts orders 
of magnitude larger than all other processes and 
components of the PV installation. Most of the 
burden would be traced to the large consumption 
of formic acid per solar cell processed (figure 3, 

9
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top). But this is an unrealistic representation, 
as such a process is by no means scalable. 
Following the guidance of Piccinno et al. (2016), 
we establish that the formic acid is mostly non-
reacting and therefore would likely be recirculated 
in an industrial setting, greatly reducing the 

environmental burden of this step (figure 3, 
bottom). The reader is referred to Piccinno et 
al. (2016) for additional strategies regarding the 
consumption of energy and reactants, as well as 
reactor geometry and waste handling.

Figure 2 | Lab-scale demonstration 
of copper ink sintering of front 
contacts in sample 1 cm2 sized solar 
cells (credits: Mirella El Gemayel).

Figure 3 | Process contributions to climate change impacts of III-V / Si panels with lab-scale (top) and industrial-scale 
(bottom) sintering of front contacts (left) and upscaled sintering (right) (credits: Mirella El Gemayel).

9
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Table 2 | Description of future foreground scenarios for MOVPE optimization

Ex-ante practical strategy 3: 
Expert elicitation for hotspots

A similar situation is encountered in the 
deposition step of PV cell fabrication, where 
the top III-V layers are placed on top of the 
silicon wafer (Blanco, Cucurachi, Dimroth, et al., 
2020). With current technology, this deposition 
is done in metalorganic vapour phase epitaxy 
(MOVPE) reactors operating at high temperatures 
(> 900°C) with low throughputs (e.g., 31 round 
4-inch wafers per 2.5-hour run). The combination 
of low-throughput and high-energy demand in 
a manufacturing step is likely to make it an LCA 
hotspot and is something for ex-ante practitioners 
to be on the watch for. This is confirmed for the 
III-V/Si case, as seen in figure 3. Thousands of 
MOVPE reactors would be required to reach the 

targeted industrial-scale production capacity of 
billions of cells per year. The capital expenditure 
and operational costs of such a reactor fleet 
would render the III-V/Si technology technically 
and economically inviable. The MOVPE reaction 
will necessarily have to be optimized, and the 
question then is how to do so and to what extent. 

In a European project in which the authors were 
involved (Fraunhofer ISE, n.d.), a focus group 
involving engineering experts was created to 
discuss what improvements are necessary and 
also feasible and foreseeable in the MOVPE 
process. The output of this expert elicitation 
was a roadmap with eight milestones, each 
representing an optimization of the MOVPE 
process needed to approach industrial-scale 
production and cost targets.

Milestone Description

III-V/Si P Present MOVPE reactor configuration with a throughput of 31 small 4-inch round wafers per run 
and runtime of 2.5 h

M1 Change shape and size of wafer handled by the reactor to larger 156.75 x 156.75 mm square wafers

M2 Increase throughput to 50 wafers per run

M3 Reduce runtime to 1 h by minimizing intermediate steps and increasing some deposition rates

M4 Reduce runtime to 0.5 h by minimizing intermediate steps and increasing some deposition rates

M5 Increase reactor deposition efficiency from 50% to 60% (reduce III-V material consumption)

M6 Reduce equipment power load of MOVPE reactor from 15 kW to 5 kW

M7 Reduce cooling power load from 16 kW to 5 kW

M8 Reduce facilities ventilation power load from 39 kW to 20 kW

Recalculation of the LCA for each milestone 
showed that a combination of steps would 
suffice to achieve a comparative environmental 
advantage for the III-V / Si tandem cells (see 
figure 4). This result is remarkable, considering 
that the incumbent c-Si cells are already mass-
produced in assembly lines that handle > 5000 
square wafers per hour. Such an approach can 

be replicated in additional contexts in which an 
LCA analyst is collaborating with technology 
developers early in R&D to elicit feasible 
technological roadmaps to assess via LCA. The 
reader is referred to (Morgan, 2014; O’Hagan, 
2019; Wang et al., 2012) for in-depth descriptions 
of structured elicitation protocols.
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Figure 4 | Life cycle environmental impacts of generating 1 kWh with a III-V/Si tandem module on a slanted-roof 
installation, following MOVPE process optimizations M1—M8 (Table 2). Impacts are shown relative to incumbent 
c-Si modules (red dashed line = 100%). CC: climate change; AC: acidification; FET: freshwater ecotoxicity; 
FEU: freshwater eutrophication; MEU: marine eutrophication; TEU: terrestrial eutrophication; HC: human toxicity, 
cancer effects; IRH: ionising radiation; HNC: human toxicity, non-cancer effects; OD: stratospheric ozone depletion; 
POC: photochemical ozone formation; PM: particulate matter; WRD: water resource depletion; RDF: fossil resource 
depletion; LU: land use; RDM: mineral resource depletion

CC AC FET FEU MEU TEU HC IR HNC OD POC PM RDW RDF LU RDM
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4.2	 Projecting changes  
in the background

As technologies progress from TRL1 to 9 (usually 
10+ years), background supply chains can also 
be expected to evolve. For example, most global 
scenarios agree that energy grids around the 
world will likely turn towards less carbon-intensive 
sources, and economies will become more circular, 
reducing waste and consumption of raw materials. 
The number of interconnected processes in any 
product’s background can easily exceed 10,000. 
Background LCA databases such as ecoinvent 
(Wernet et al., 2016) take a long time to compile 
and update, and even the most current databases 
often reflect technologies from 5—10 years ago. 
However, a technology may be better situated to take 
advantage of background trends than the incumbent 
technology. For example, this would be the case 
if it uses a material with a better outlook towards 
recyclability and reusability in the future. If future 
recycling trends are expected to better incorporate 
the materials in novel technology designs, this 
competitive advantage should be captured by an 
ex-ante LCA. 

The matter of static or outdated background data 
has received considerable attention from LCA 
practitioners in recent years. One of the first practical 

solutions was proposed by Mendoza-Beltran et al. 
(2020), who translated future scenarios from the 
Integrated Model to Assess the Global Environment 
(IMAGE) models, developed and maintained by PBL 
Netherlands Environmental Assessment Agency 
(Stehfest et al., 2014), into future background LCA 
databases. The implementation of Mendoza-Beltrán 
et al. (2020) is based on the Shared Socioeconomic 
Pathways (SSPs) scenarios, which represent 
five storylines on possible human development 
trajectories and global environmental change in the 
twenty-first century. For example, the SSP2 scenario, 
“medium challenges to mitigation and adaptation” 
represents a balanced, leaning toward conservative, 
view of how energy markets may evolve over the next 
decades (O’Neill et al., 2014, 2017; Riahi et al., 2017; 
Stehfest et al., 2014).

Figure 5 illustrates how applying the SSP2 
background scenario affects the climate change 
impact scores of III-V / Si panels over the next three 
decades. The improvements are gradual, suggesting 
that the SSP2 scenario is indeed conservative. We 
note that the incumbent technology (PERC c-Si) 
will also be subject to the same changes in the 
background energy supplies; therefore, it is of value 
to reveal whether and to what extent these changes 
are more beneficial to the emerging technology than 
to the incumbent one.
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Figure 5 | Evolution of 
the climate change 
impact score of each 
future foreground 
scenario (milestones 
1—8, see the previous 
section) modelled on 
future background 
SSP2-450 scenarios 
from IMAGE for the 
period 2020—2060

4.3	 Competing processing  
and material alternatives

Another situation often encountered by ex-ante LCA 
analysts is that competing processing methods or 
materials will be tested by technology developers for 
different technology components. This will be evident 
in the foreground but may take place in background 
systems as well. The uncertainty, then, is not how 
much a given quantity such as energy consumption 

or processing runtime of a reactor will change, 
but whether an entirely different type of process, 
material, or equipment will be used to balance 
product performance with industrial scalability. 
Insofar as these decisions are not resolved (which 
may only happen at higher TRLs), the LCA analyst 
is challenged with assessing and communicating 
the impacts of numerous possible technological 
configurations, which can quickly become 
impracticable.
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Ex-ante practical strategy 4: Defining 
and modelling technological pathways

Blanco et al. (2020) propose a probabilistic 
method for incorporating all possible 
combinations of process/materials choices (i.e., 
technological pathways) in a single LCA model, 
where the competing alternatives are selected 
stochastically in a Monte Carlo simulation 
according to their expected chances of success. 

The output of such a model (i.e., the impact score) 
is in the form of a probability distribution rather 
than a single-point value. The approach can be 
visualized in figure 6. The challenging aspect of 
this approach is justifying the expected chance 
of success that is given to each alternative. 
Here, the analyst can resort to expert elicitation 
protocols such as those applied in strategy 3. 
(Morgan, 2014; O’Hagan, 2019; Wang et al., 2012).

A or B

Process A

Process C Use

Raw material A PA = 0.4

PB = 0.6

Product C F.U.
Energy A

Raw material B

Energy B

Process B
Impact

Figure 6 | Visualization of 
Monte Carlo propagation of 
competing for technological 
pathways.  
PA: expected chance of 
success of process A.  
PB: expected chance of 
success of process B
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4.4	 End-of-life treatment,  
emissions and impacts

Where the product or function of a technology 
(and its embedded system) serves a mature 
market, “cradle-to-gate” system boundaries may 
be appropriate for the goals of an LCA. However, 
emerging technologies may often provide a distinct 
product or service for which a market is not well 
established, which warrants careful consideration 
of market effects and the EOL phase (Bergerson 
et al., 2019). While a cradle-to-gate assessment 
of an emerging technology may require looking 
10—15 years in the future, incorporating the EOL 
phase — which may take place 30 or more years 
later — really stretches the foresight capacity of the 
tools available to support LCA. Yet often the life cycle 
impacts of a technology are materialized in the EOL 
phase. This is especially the case for impacts such 
as ecotoxicity, acidification and eutrophication, which 
are triggered by chemical releases after incineration 
or landfilling of the technology’s components. 
Other impacts, such as mineral resource depletion, 
will largely depend on the recyclability of such 
components, specifically if closed recycling loops 
are implemented. Emissions from waste streams in 
LCA are calculated from generic incineration/landfill 
models with a limited degree of product specificity 
(Wernet et al., 2016). Preserving a cause-effect 

Ex-ante practical strategy 5: 
Modelling EOL scenarios

A simplified model can be developed for the EOL 
phase by considering the different components 
of the product in terms of their separability 
and expected economic value upon eventual 
recovery. Scenarios can then be developed 
for the recovery of economically attractive 
materials. The analyst is encouraged to report 
on the potential benefits (avoided impacts) from 
eventual product recovery separately, clearly 
stating all assumptions. Separation techniques 
applied to similar technologies may be reported in 
patents, giving clues as to the types of processing 
required, e.g., mechanical crushing, chemical, 
or thermal treatment. Here, it may be possible to 
highlight potential hotspots if high temperatures 
or hazardous chemicals are involved. As for 

recycling rejects or components that are not 
expected to become economically/technically 
recyclable, modelling specific emissions in a 
landfill or incineration facility will typically be 
beyond the scope of an LCA exercise. At the 
very least, it is useful to map out potential waste 
streams; if the waste is hazardous, it will likely be 
disposed of in an underground or security landfill, 
where foreseeable emissions are negligible. 
Incinerated wastes will produce solid waste, 
such as ash, which is sent to secure landfills 
or, in some cases, reintroduced in construction 
materials (Blasenbauer et al., 2020). Other 
types of waste may end up in less stringent 
landfills; for these cases, the analyst can assume 
a conservative scenario where an important 
fraction of the waste is eventually released to the 
surrounding soil environment.

link between the discarded product and its EOL 
emissions would require a specific emissions model 
to be developed, making this a very challenging 
aspect to model as no data can be collected for EOL 
situations, and recycling tests are seldom included in 
R&D programmes of novel technologies.

5.

Future impacts: 
Novel materials and 
evolving landscapes

LCA allows for the characterization of impacts across 
a broad set of impact categories and regions of the 
globe, accounting for a broad range of emissions 
and their potential impacts. However, technology 
develops faster than LCIA models (Temizel-Sekeryan 
& Hicks, 2021). As highlighted by Giesen and 
co-authors (2020), it is important to realize that in ex-
ante LCA studies, potential environmental impacts of 
new technologies are not automatically covered by 
the existing impact categories commonly used in ex-
post LCA studies. As a result, applying the current set 
of impact categories and characterization models 
to a novel or emerging technology may result in 
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in freshwater, according to the commonly used 
USEtox database is 194,000 CTU (comparative 
toxicity units) per kg of copper (2017). In contrast, 
Temizel-Sekeryan & Hicks propose a range 
between 2.19 × 103 and 2.34 × 105 CTU for silver 
nanoparticles. In both cases, the underlying 
uncertainties are very large and any treatment of 
these types of impacts must give uncertainty and 
variability due consideration. Alternatively, Song 
et al. (2017) propose assessing novel chemistries 
and materials by using artificial neural networks, 
thus using current knowledge of existing 
chemistries to assess in silico the impacts of 
novel chemistries and materials.

Another important consideration related to 
characterization factors in LCIA is that several 
impact categories calculate impacts relative to an 
evolving baseline. The most obvious examples are 
biotic and abiotic resource depletion, where the 
existing reserves are likely to change considerably 
in the time it takes for a technology to climb the 
technology development ladder from low TRL 
to TRL 9. A resource consumption now may be 
less “damaging” than the same consumption in 
10 years. Baustert et al. (2022) have addressed 
this for the case of water scarcity in recent work, 
offering characterization factors projected to the 
year 2050. To our knowledge, no similar work has 
been conducted to date for minerals or other 
types of resources.

Ex-ante practical strategy 6: Updating 
characterization factors

The case of front metal innovation discussed in 
strategy 2 also provides a good illustration of the 
uncertain impacts of novel chemistries. While 
metallization inks for commercial c-Si PV cells are 
made of bulk silver paste, R&D is pushing towards 
the use of copper, as well as smaller particle 
sizes in the ink formulation, i.e., nano inks. Smaller 
particle sizes mean increased surface area, 
which has been linked to different intrinsic toxicity 
potentials than the bulk version of the same 
metal. Furthermore, nano-sized particles are 
subject to different transport mechanisms once 
released (e.g., particle aggregation), resulting 
in different fate and exposure factors. Thus, the 
databases with toxicity characterization factors, 
which were developed over several decades, 
may significantly under/overestimate the toxicity 
potential of novel material structures. 

Updating toxicity characterization factors 
involves extensive lab testing and knowledge 
of a complex domain that is often beyond the 
reach of LCA practitioners. Fortunately, there is a 
growing body of literature aiming to fill this gap for 
nanomaterials, see e.g., Temizel-Sekeryan & Hicks 
(2021) (silver), Salieri et al. (2015) (TiO2), Miseljic & 
Olsen (2014) (silver and carbon nanotubes), Pini 
et al. (2016) (TiO2), Pu et al. (2016) (copper). The 
characterization factor for bulk copper releases 

3	 See the paper written for the ESET project by Rainer Sachs, “Risk governance of emerging technologies: Learning from the past” 
(2022).

unclassified and uncharacterized flows, due to a lack 
of models and data. 

While unclassified and uncharacterized flows may 
be deemed negligible in a comparative context 
with shared background and foreground data, 
the lack of specific characterization models or 
characterization factors does have an impact on 
the possibility of intervening early in R&D to avoid 
environmental burdens (Giesen et al., 2020). 
An LCA analyst, for instance, would not be able 
to calculate the potential toxicity impacts of an 

emerging technology that would make use of a 
newly synthesized chemistry. This is due to the 
lack of an adequate characterization model able to 
characterize the cause-effect impact pathway of 
the said chemistry. The exclusion of these impacts, 
in such a case, could communicate to the decision-
maker an artificial sense of safety 3, which would only 
be due to an imperfect assessment. In a comparative 
assessment, such a sense of safety may also shift 
the preference from the incumbent technology to the 
emerging one.
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6.

Interpretation: Recent 
developments in 
uncertainty analysis and 
global sensitivity analysis
In recent years, the treatment of uncertainty in 
LCA has garnered increasing attention among 
LCA practitioners. While uncertainty analysis is 
mandated in the ISO 14040 standards for LCA (ISO, 
2006b), it has been ignored in most studies or 
conducted only at a very superficial level. Current 
LCA databases have become much larger and more 
complex, and, as a result, the sources of uncertainty 
in the underlying data have increased significantly. 
Therefore, more comprehensive methods for 
analyzing and interpreting uncertainty in LCA models 
are needed, particularly when assessing emerging 
technologies.

Ex-ante practical strategy 7: Recognizing 
what matters in the LCA model

Given the many different futures that can unfold, 
one of the key aspects of understanding and 
interpreting large uncertainties in an ex-ante LCA 
model is sensitivity analysis. Perhaps the most 
commonly applied method for sensitivity analysis 
in LCA is “one factor at a time” (OFAT) (Groen 
et al., 2017). OFAT analyses, which are a form of 
scenario analysis, consist of varying the values 
of selected input parameters and investigating 
how these variations are reflected in the model’s 
output. OFAT analyses have several limitations, 
particularly their ad-hoc nature, given that the 
tested parameters are chosen subjectively by the 
practitioner. 

A more thorough and systematic type of analysis 
is global sensitivity analysis (GSA) (Plischke et al., 
2013), which systematically tests all of the model’s 
uncertain input parameters and ranks them in 

terms of their contribution to the model output’s 
uncertainty (e.g., contribution to variance). 
Several authors have argued strongly for the 
application of GSA in LCA, as it provides very 
valuable information on which input parameters 
should be investigated further to reduce the 
LCA model’s output uncertainty (Cucurachi et 
al., 2016; Groen et al., 2017; Lacirignola et al., 
2017; Ravikumar et al., 2018). Cucurachi and co-
authors (2021) provide a protocol and software 
application to assess the importance of uncertain 
input parameters across all phases of an LCA 
model, including background and foreground 
contributions, and the use of the uncertain 
characterization model at the LCIA phase. The 
authors show, using a case study of III-V solar 
PV, that the proposed method and software 
application is suitable for the study of emerging 
technologies.

7.

Outlook and 
generalization

Ex-ante LCA faces an overwhelming dearth of data, 
rapidly evolving technology designs, and limited time 
to adjust and reinterpret the models. In this paper, 
we used the case of emerging PV technologies to 
inventory, assess and provide practical guidance to 
tackle many challenges of conducting an LCA study 
at the earliest stages of technological innovation. 

The traditional approach of only producing the 
assessments when a technology is fully developed, 
allowing for both models and data collection to be 
refined, has long been the standard of conventional 
ex-post assessments. Such an approach guarantees 
more accurate results at the expense of the 
risk of inaction because a technology is already 
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entrenched. We have shown that the ex-ante LCA 
alternative, combined with adequate screening tools 
and computational tools (e.g., for parametrization, 
uncertainty, GSA) can already guide decisions in the 
earlier phases of technology development. Such 
an approach requires close collaboration between 
LCA analysts and the relevant stakeholders, from 
the definition of the goal and scope of the analysis 
to all subsequent phases of LCA, including the 
interpretation of results. Similarly, substantial 
interdisciplinary work is required to build and extend 
the ex-ante LCA toolbox, calling for a necessary 
hybridization of LCA models with risk assessment 
models, technology and innovation theory, and data 
scientists, among other disciplinary experts.
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