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Abstract

Gauss’s class number one problem, solved by Heegner, Baker, and Stark, asked for all
imaginary quadratic fields for which the ideal class group is trivial. An application of this
solution gives all elliptic curves that can be defined over the rationals and have a large
endomorphism ring (CM). Analogously, to get all CM curves of genus two defined over
the smallest number fields, we need to find all quartic CM fields for which the CM class
group (a quotient of the ideal class group) is trivial. We solve this CM class number one
problem. We prove that the list given in Bouyer–Streng [LMS J Comput Math
18(1):507–538, 2015, Tables 1a, 1b, 2b, and 2c] of maximal CM curves of genus two
defined over the reflex field is complete. We also prove that there are exactly 21 simple
CM curves of genus two over C that can be defined over Q.
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Mathematics Subject Classification: 11G15, 11R29, 14K22, 14H45

1 Introduction
The endomorphisms of an elliptic curve E : y2 = x3+ax+bwith a, b ∈ Q are the rational
maps E → E sending the point O at infinity to O itself. These endomorphisms form a
ring known as the endomorphism ring, and for most elliptic curves, this ring is simply Z,
its elements corresponding only to repeated chord-and-tangent additions.
In the casewhere the endomorphism ring is different fromZ, it is isomorphic to an order

O = Z[ 12 (
√
D + D)] in an imaginary quadratic field K = Q(

√
D) with D ≡ 0, 1 mod 4

and D < 0. This is called the case of complex multiplication (CM) as the period lattice
� = {∫

γ
(2y)−1dx : γ ∈ π1(E(C))} ⊂ C of E has non-real complex multiplications into

itself in the sense that α� ⊂ � for all α ∈ O ⊂ C.
The question of finding all imaginary quadratic fields K corresponding to CM ellip-

tic curves E with rational a, b is equivalent to Gauss’ class number one problem of
finding all imaginary quadratic fields of class number one. This problem was finally
solved by Heegner [1], Baker [2] and Stark [3]; the fields are K ∼= Q(

√
D) where

−D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}.
We consider an analogous problem for curves of genus 2. The period lattice� becomes

a four-dimensional lattice in C
2 and the integral domains of largest rank that can appear

inside the endomorphism ring of � (or, equivalently, in the endomorphism ring of the
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Jacobian of the curve) are ordersO in CM number fields of degree four. In the case where
this maximum is attained, we say that the curve has CM by the quartic orderO.
There are two types of quartic CM fields whose orders can appear as endomorphism

rings of curves of genus two over C: the cyclic ones and and the non-Galois ones. For
non-Galois fields, it is known that the corresponding curves cannot be defined over Q, as
their fields of moduli always contain a real quadratic field (the real quadratic subfield of
the reflex field). So in order to get a list that also features non-Galois CM fields, we find
all CM fields for which there are curves that can be defined over this quadratic field.
The solution (of Uchida [4], Setzer [5] and Louboutin-Okazaki [6]) of the usual class

number one problem for quartic CM fields does not suffice any more. Instead, we need
to find all quartic CM fields for which a certain quotient of the class group (which we call
the CM class group) is trivial.
Murabayashi and Umegaki [7] already found all non-biquadratic quartic CM fields K

for which there exists a curve of genus 2 over Q with CM by the maximal order OK . We
extend their list by also including curves with CMby non-maximal orders and curves with
CM defined over the reflex field.
Lists of fields and curveswere givenby vanWamelen [8], Bouyer–Streng [9], andBisson–

Streng [10]. We prove that their lists are complete.

Theorem 3.26 There exist exactly 63 isomorphism classes of non-Galois quartic CMfields
with CM class number one. The fields are exactly those listed in Table 3.

Theorem 4.7 There exist exactly 20 isomorphism classes of cyclic quartic CM fields with
CM class number one. The fields are exactly those listed in Table 4.

Theorem 5.6 There exist exactly 21 curves C/Q of genus 2 up to Q-isomorphism such
that End(J (C)Q) is an order in a quartic number field. The fields and 19 of the curves are
those given in van Wamelen [8]. The other two curves are y2 = x6 − 4x5 + 10x3 − 6x − 1
and y2 = 4x5 + 40x4 − 40x3 + 20x2 + 20x + 3, which are given in Theorem 14 of Bisson–
Streng [10].

Theorem 5.7 There are exactly 231 curves of genus 2 over Q up to isomorphism, such
that End(J (C)Q) is the ring of integers of a quartic CM field K and C has field of moduli
contained in the reflex field. The corresponding CM fields K are those of Tables 3 and 4,
and the curves are those of [9, Tables 1a, 1b, 2b, and 2c].

Theorem 5.8 There are exactly 301 curves of genus 2 over Q up to isomorphism, such that
End(J (C)Q) is an order in a quartic CM field K and C has field of moduli contained in the
reflex field. The corresponding CM fields K are those of Tables 3 and 4.

Remark 1.1 We restrict to non-biquadratic quartic CM fields in Theorems 3.26 and 4.7
as they correspond to curves with absolutely simple Jacobian. The first steps towards
the degenerate case of split Jacobians are made by Gélin, Howe, Ritzenthaler [11], and
Narbonne [12].

In Sect. 2, we define the notions that appear in Theorems 3.26 and 4.7. In Sect. 3, we
prove Theorem 3.26. The plan is as follows.We first show that there are only finitelymany
non-Galois quartic fields with CMclass number one by bounding their discriminant using
a combination of genus theory and bounds of Louboutin [13] (Sect. 3.1). The bound will



P. Kılıçer, M. Streng Res. Number Theory            (2023) 9:15 Page 3 of 29    15 

be too large for practical purposes, but with a careful analysis of how the ramified primes
decompose in K , we improve the bound (Sects. 3.2–3.6), as well as find a formula that is
useful for enumerating the CM fields (Sect. 3.7). We then list all the candidate fields and
check them with a computer.
Section 4 proves Theorem 4.7 in the same way. Finally, in Sect. 5, we give the relation

with curves of genus two and derive Theorems 5.6–5.8.
We now mention some of the main difficulties compared to Murabayashi and

Umegaki [7,14]. First of all, they consider only the cyclic case, while the Galois group
is more complicated in the non-Galois case, leading to many more different splitting
types of ramified primes (Table 1). We therefore needed new ideas for proving that the
ramified primes have square norm, which is important for showing that the discriminant
grows quickly with the number of ramified primes. The many splitting types also made
it more difficult to give an explicit formula for the CM fields in terms of the ramified
primes, which is important for listing the fields, so we develop various tricks for obtaining
such a formula. Moreover, the relative class number bounds for the main result of [7]
are so small that all the fields they need are already listed by Park and Kwon [15], while
in our case the bounds are too large for using existing tables even in the cyclic case. So
we had to enumerate the fields on a computer ourselves, and as this results in fields of
large discriminant, we needed to develop tricks for checking whether they have CM class
number one without computing class groups.
Subsequent work applies our methods also to curves of genus three (Kılıçer [16, Chap-

ter 3] and Kılıçer–Labrande–Lercier–Ritzenthaler–Sijsling–Streng [17]) and to curves of
genus six (Somoza [18]).

2 CM fields
In this section, we define the CM class group, which appears in the main theorems. In
Sect. 5 we link this to the fields of definition of curves and abelian varieties with CM. We
refer to Shimura–Taniyama [19] and Lang [20] for further information.
A CMfield is a totally imaginary quadratic extensionK of a totally real number fieldK+,

that is, K = K+(
√
D), where the number field K+ and the element D ∈ K+ are such that

all complex embeddings of K+ are real and map D to a negative number. For every CM
field K , we will use the notation K+ to denote this maximal totally real subfield.
Let K be a CM field of degree 2g . The automorphism of K given by ρ :

√
D �→ −√

D
and fixing K+ corresponds to complex conjugation for every embedding K → C. We
call ρ complex conjugation and denote it also by ·. For embeddings φ of K into any field,
we denote φ ◦ · by φ. Note that if the codomain of φ is a CM field or C, then we have
· ◦ φ = φ.
LetN be a field of characteristic 0 with algebraic closureN , and assume thatN contains

the image of every embedding K → N . A CM type of K with values in N is a subset
� ⊂ Hom(K,N ) that contains exactly one element of each of the g complex conjugate
pairs. For example, in the case g = 1, a CM type � consists of one embedding, which is
often taken to be the identity, so CM types are not mentioned in the literature for the case
g = 1. By abuse of notation, we also refer to the pair (K,�) as a CM type.
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A CM type (K,�) is primitive if there is no CM subfield K1 � K for which the set
{φ|K1 : K1 → N } is a CM type.
It is sometimes computationally convenient to identifyK with a subfield ofN bymaking

a choice of one embedding, and we do so from now on. We also assume from now on
that N is a Galois extension of Q.
The reflex field of (K,�) is a CM field given by

Kr = Q({
∑

φ∈�

φ(x) | x ∈ K }) ⊂ N

and satisfies Gal(N/Kr) = {σ ∈ Gal(N/Q) : σ� = �}. If the CM field K is Galois over Q

and the CM type � is primitive (which is always true for g = 1), then the reflex field Kr is
equal to K , but in general, the fields K and Kr do not even have to have the same degree.
Let

�N = {σ ∈ Gal(N/Q) : σ|K ∈ �}.
Then the set �r = {σ−1|Kr : σ ∈ �N } is a CM type of Kr , and the pair (Kr,�r) is called
the reflex of (K,�).
The type norm of (K,�) is the multiplicative map

N� : K → Kr,

x �→
∏

φ∈�

φ(x),

satisfying N�(x)N�(x) = NK/Q(x) ∈ Q. The type norm induces a homomorphism
between the groups of fractional ideals IK and IK r by sending b ∈ IK to b′ ∈ IK r such
that b′ON = ∏

φ∈�

φ(b)ON (Shimura–Taniyama [19, Proposition 29 in Sect. 8.3]).

Lemma 2.1 (cf. Example Sect. 8.4(2) of [19]) Let K be a quartic CM field and N the
normal closure of K . Then one of the following holds.

(1) K = N and Gal(K/Q) ∼= C2 × C2,
(2) K = N and Gal(K/Q) ∼= C4 ,
(3) [N : K ] = 2 and Gal(N/Q) ∼= D4 .

In case (1), the field K has no primitive CM types. In cases (2) and (3), all CM types of K
are primitive and for all pairs � and 
 of CM types of K there is an automorphism γ of N
such that 
 = γ�.

Proof Everything except the last sentence is in Example Sect. 8.4(2) of [19]. In cases
(2) and (3) a primitive CM type �0 is given in loc. cit. as follows. In case (2), we have
Gal(K/Q) = 〈y〉 and �0 = {1, y}. In case (3), we have Gal(K/Q) = 〈x, y〉 with y of order 4
and x of order 2 with xyx = y3 and �0 = {idK , y|K }. In both cases we can compute that
the four CM types yi�0 are distinct for i = 0, 1, 2, 3. As there are only four CM types, this
proves existence of γ and primitivity of �.

Thanks to Lemma 2.1 we can say that a quartic CM field is primitive or non-primitive
without referring to a specific CM type. Moreover, in the primitive case the isomorphism
class of the reflex field does not depend on the specific CM type.
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Our goal is to find all quartic fields whose orders can occur as the geometric endomor-
phism ring of the Jacobian of a curve of genus two defined over the reflex field. We will
see in Proposition 5.1 that these are exactly the primitive quartic CM fields for which the
following group is trivial.

Definition 2.2 We define the CM class group of a CM type (K,�) to be the quotient
IK r/I0(�r) where

I0(�r) := {b ∈ IK r : N�r (b) = (α) and αα ∈ Q for some α ∈ K×}. (2.1)

Lemma 2.3 Let K be a primitive quartic CM field. Then the isomorphism class of the CM
class group of (K,�) depends only on K , not on �.

Proof Let � and 
 be two CM types of K . By the final sentence of Lemma 2.1, we have

 = γ ◦ � for some γ ∈ Gal(N/Q).
Denote the reflex fields of (K,�) and (K,
) by Kr

� and Kr

 . From the definition of the

reflex, we get an isomorphism γ0 = γ|Kr
�
: Kr

� → Kr

 , and an equality 
r = �r ◦ γ −1

0 .
From the final equality, we get 
r ◦ γ0 = �r . and hence

N
r ◦ γ0 = N�r . (2.2)

The isomorphism γ0 also induces an isomorphism IK r
�

→ IK r


, which by (2.1) and (2.2)

maps I0(�r) onto I0(
r). This proves that γ0 induces an isomorphism from the CM class
group of (K,�) to the CM class group of (K,
). �

Definition 2.4 We say that a CM field K is a PQ1 field (for “Primitive Quartic of CM
class number 1”) if

(1) it has degree 4 over Q;
(2) it is non-Galois or cyclic; and
(3) the CM class group of K is trivial (note that this condition does not depend on the

CM type by Lemma 2.3).

Our main results, Theorems 3.26 and 4.7, give the complete list PQ1 fields. See Proposi-
tion 5.1 below for what this has to do with curves of genus 2 andwhywe call this a solution
to the CM class number one problem for curves of genus 2.

3 Non-Galois PQ1 fields
Our main results, Theorems 3.26 and 4.7, together give the complete list of PQ1 fields.
In Sect. 3, we prove the hardest case, the case of non-Galois fields (Theorem 3.26). The

plan is as follows. We first show that there are only finitely many non-Galois PQ1 fields
by bounding their discriminant (Sect. 3.1). However, the bound we obtain there is too
large for practical purposes. To find a better upper bound, in Sects. 3.2–3.4, we explore
the ramification behaviour of primes in N/Q. This study allows us to construct the reflex
fields Kr of PQ1 fields explicitly (see Sect. 3.5), as well as obtain much sharper bounds
(Sect. 3.6). Finally, in Sect. 3.7, we give an algorithm that computes all PQ1 fields and
hence proves Theorem 3.26.
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3.1 A first bound

In this section we will find an explicit upper bound for the discriminants of non-Galois
PQ1 fields (Proposition 3.11).
We first prove the following relation between the relative class number h∗

K := hK /hK+
and the number tK of primes in K+ that are ramified in K .

Proposition 3.1 Let K be a non-Galois PQ1 field. Then we have h∗
K = 2tK−1, where tK is

the number of primes in K+ that are ramified in K .
Moreover, we have h∗

Kr = 2tKr−1, where tKr is the number of primes in K r+ that are
ramified in Kr.

Remark 3.2 The analogueof this result in the casewhereK/Q is cyclic quartic is (i) ⇒ (iii)
of Proposition 4.5 in Murabayashi [14].

Remark 3.3 Combining Proposition 3.1 with a result of Louboutin that gives roughly
h∗
K �

√
dK /dK+ (where dM denotes the discriminant of a number field M), we will get

roughly
√
dK /dK+ � 2tK−1. As tK grows, the left hand side grows more quickly than the

right, so this relation will give a bound on tK . In turn, this will give a bound on h∗
K and on

the discriminant (Proposition 3.11).

The proof of Proposition 3.1 has two main steps. In the first step (Lemma 3.4) we cut
the relative class number h∗

K up into a part that is 2tK−1 and another part. In the second
step (Lemma 3.6) we show that the other part is 1 for PQ1 fields.
Recall that IK is the group of fractional ideals in K , let PK ⊂ IK be the subgroup of

principal fractional ideals, and let H = Gal(K/K+) = 〈·〉. Then the fixed subgroup IHK
is the group of fractional ideals that are equal to their complex conjugate, and we have
PH
K = PK ∩ IHK . We get the following genus theory result.

Lemma 3.4 Let K be a CM field and let μK be the group of roots of unity in K . If O×
K =

μKO×
K+ , then h∗

K = 2tK−1[IK : IHK PK ].

Proof We have the exact sequence

1 → IK+ → IHK →
⊕

p prime of K+
Z/eK/K+ (p)Z → 1 (3.1)

and
⊕

p prime of K+
Z/eK/K+ (p)Z ∼= (Z/2Z)tK .

The map ϕ : IHK → IK /PK induces an isomorphism

IHK /PH
K

∼= im(ϕ) = IHK PK /PK

so by (3.1), we have

hK+ = [IK+ : PK+ ] = [IHK : PH
K ][PH

K : PK+ ]
[IHK : IK+ ]

= 2−tK [IHK PK : PK ][PH
K : PK+ ],

hence

h∗
K := hK

hK+
= 2tK

[IK : IHK PK ]
[PH

K : PK+ ]
.
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It now suffices to prove [PH
K : PK+ ] = 2.

Define ϕ : O×
K → O×

K by ϕ(ε) = ε/ε. Then by the assumption O×
K = μKO×

K+ , we have
ϕ(ε) = ζ/ζ = ζ 2, where ε = ζ ε0 with ζ ∈ μK and ε0 ∈ O×

K+ . Hence im(ϕ) = μ2
K .

There is a group homomorphism λ : PH
K →μK /μ2

K given by λ((α)) = α/α. Indeed, the
map λ is well-defined because every generator of the ideal (α) equals ε ·α for some ε ∈ O×

K
and ε/ε ∈ μ2

K . As K = K+(
√−β) with a totally positive element β in K+, we have

λ((
√−β)) = −1, which is non-square if 4 � #μK , so λ is surjective. Now suppose 4 | #μK .

Let ζ ∈ μK be an element of order the largest power of 2. Then we have λ((1 + ζ )) =
(1 + ζ )/(1 + ζ−1) = ζ , which is a non-square so λ is surjective.
It now suffices to prove that the kernel is PK+ . Suppose α ∈ K×+ . Then λ((α)) = α/α = 1,

hence (α) ∈ ker(λ). Conversely, suppose λ((α)) = 1. Then we have α/α = ζ 2 for some
ζ ∈ μK , hence (α) = (α/ζ ) ∈ PK+ . �

Corollary 3.5 Let K be a non-Galois quartic CM field. If K has no roots of unity other
than ±1, then h∗

K = 2tK−1[IK : IHK PK ].

Proof We haveO×
K = O×

K+ by [21, Lemma 1] so the result follows from Lemma 3.4. �

Lemma 3.6 Let K be a primitive quartic CM field and let � be a CM type of K . Then we
have [IK : IHK PK ] ≤ [IK r : I0(�r)]. Moreover, we have [IK r : IH ′

Kr PKr ] ≤ [IK r : I0(�r)], where
H ′ = Gal(Kr/Kr+).

Proof To prove the first assertion, we show that the kernel of the map N� : IK →
IK r/I0(�r) is contained in IHK PK . For any a ∈ IK , we can compute (see [22, (3.3)], which
applies as we have [Kr : Q] = 22; or in detail, see [23, Lemma I.8.4]):

N�rN�(a) = NK/Q(a)
a

a
. (3.2)

Suppose N�(a) ∈ I0(�r). Then NK/Q(a)aa = (α), where α ∈ K× and αα =
NKr/Q(N�(a)) = NK/Q(a)2 ∈ Q. So a

a = (β), where β = NK/Q(a)−1 ·α, and hence ββ = 1.
There is a γ ∈ K× such that β = γ /γ (this is a special case of Hilbert’s Theorem 90,
but can be seen directly by taking γ = ε + βε for any ε ∈ K with γ �= 0). Thus we have
a = γ a · ( 1

γ
) ∈ IHK PK and therefore [IK : IHK PK ] ≤ [IK r : I0(�r)].

For the second assertion, we show I0(�r) ⊂ IH ′
Kr PKr . By swapping (K,�) with (Kr,�r)

in (3.2), we get

N�N�r (b) = NKr/Q(b)
b

b
. (3.3)

Suppose b ∈ I0(�r). Then we have NKr/Q(b)bb = (α), where α ∈ Kr× and αα =
N�(NKr/Q(b)) = NKr/Q(b)2 ∈ Q. We finish the proof of b ∈ IH ′

Kr PKr exactly as above.
�

Remark 3.7 The second assertion in Lemma 3.6 is also in Proposition A7-(ii) of
Shimura [22]. Murabayashi [14] uses this result to show h∗

K = 2tK−1 for cyclic quartic
CM fields. In the non-Galois case, we use the first assertion to show hK = 2tK−1 and the
second to show hKr = 2tKr−1, see the following proof.
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Proof of Proposition 3.1 In case K ∼= Q(ζ5), we have h∗
K = h∗

Kr = tK = tK r = 1 so the
result follows. In all other cases, we haveμK = {±1} andμKr = {±1}, so by Corollary 3.5,
we have h∗

K = 2tK−1[IK : IHK PK ] and h∗
Kr = 2tKr−1[IK r : IHr

Kr PKr ]. As (K,�) has CM
class number one, we have [IK r : I0(�r)] = 1, so Lemma 3.6 gives [IK : IHK PK ] = [IK r :
IHr
Kr PKr ] = 1. This proves h∗

K = 2tK−1 and h∗
Kr = 2tKr−1. �

We get the following consequence, which will be very useful later.

Corollary 3.8 If K is a non-Galois PQ1 field, then we have tK = tK r .

Proof By Proposition 3.1, we have h∗
K = 2tK−1 and h∗

Kr = 2tKr−1. By Louboutin [21,
Theorem A], we have h∗

K = h∗
Kr so we get tK = tK r . The result h∗

K = h∗
Kr also follows

from Shimura [22, Proposition A.7-(i)] or Uchida [24, proof of Corollary], combined with
Washington [25, Proposition 4.16]. For context: the idea behind the proof of h∗

K = h∗
Kr

in [21,22,24] is to first show an identity of L-functions and then combine this with the
analytic class number formula. �

The next step is to use the following bound from analytic number theory. Let dM denote
the discriminant of a number fieldM.

Proposition 3.9 (Louboutin) Let N be the normal closure of a non-Galois quartic CM
field K . Assume d1/8N ≥ 222. Then

h∗
K ≥ 2√

eπ2

√
dK /dK+

(log(dK /dK+ ) + 0.057)2
. (3.4)

Proof This is Remark 27 (1) of Louboutin [13]. �

Lemma 3.10 For real numbers D ≥ 1 and non-negative integers t, let

f (D) = 2√
eπ2

√
D

(log(D) + 0.057)2
and g(t) = 2−t+1f (5��t/2���t/2�),

where �t is the product of the first t prime numbers. Then f (D) increases monotonically
for D ≥ 52 and g(t) increases monotonically for t ≥ 12.

Proof The function f (D) is differentiable for D ≥ 1 and the derivative of f (D) is positive
for D ≥ 52. Hence f (D) increases monotonically for D ≥ 52.
We will now show that g(t + 1) ≥ g(t) for all t ≥ 13. Let pt denote the t-th prime

number, so �t+1 = pt+1�t . By the equality � t+1
2 � = � t

2�, we have
��(t+1)/2���(t+1)/2�

��t/2���t/2�
= p�(t+1)/2�.

Therefore, we get

g(t + 1)
g(t)

=
√p�(t+1)/2�

2
· (log(5��t/2���t/2�) + 0.057)2

(log(5��t/2���t/2�p�(t+1)/2�) + 0.057)2
.

We claim that the second factor is > 1
2 for t ≥ 8. Assuming the claim for now, for t ≥ 12

we have
g(t + 1)
g(t)

>

√p�(t+1)/2�
2

1
2

> 1



P. Kılıçer, M. Streng Res. Number Theory            (2023) 9:15 Page 9 of 29    15 

so that g increases monotonically for t ≥ 12.
Proof of the claim. By Bertrand’s postulate [26], we have ps+1 < 2ps for all integers

s ≥ 1. So we get for all integers s ≥ 4:

p4s+1 < 24p4s < 26p2s p2s−1 < 5�2
s .

For all integers t ≥ 8, taking s = �t/2� gives
p4�(t+1)/2� = p4s+1 < 5�2

s ≤ 5��t/2���t/2�,

so

log(p�(t+1)/2�) <
1
4
log(5��t/2���t/2�) < (

√
2 − 1) log(5��t/2���t/2�),

hence

log(5��t/2���t/2�) + log(p�(t+1)/2�) + 0.057 <
√
2(log(5��t/2���t/2�) + 0.057),

which proves the claim. �

Proposition 3.11 For every non-Galois PQ1 field K , we have

dK /dK+ < 2 · 1019.

Proof LetN be a normal closure ofK . IfdN < 2228, thendK /dK+ < dK < 2224 < 2·1019.
So from now on, assume dN ≥ 2228.
Take f and g be as in Lemma 3.10. The quotient dK /d2K+ is the norm of the relative

discriminant of K/K+, which is divisible by the product of the norms of the primes of K+
that are ramified in K/K+. Moreover, as K+ is a quadratic field, we have dK+ ≥ 5. Hence
we get dK /dK+ ≥ 5��tK /2���tK /2�, where tK is the number of primes of K+ that are
ramified in K .
By Lemma 3.10, the value f (D) increases monotonically for D ≥ 52. As we have

dK /dK+ ≥ 5��tK /2���tK /2� > 52 for tK ≥ 3, we get f (dK /dK+ ) ≥ f (5��tK /2���tK /2�)
if tK ≥ 3. Therefore, under the assumption I0(�r) = IK r , by Proposition 3.1, we obtain (if
tK ≥ 3)

2tK−1 ≥ f (dK /dK+ ) ≥ f (5��tK /2���tK /2�) (3.5)

and hence g(tK ) ≤ 1.
On the other hand, by Lemma 3.10 the value g(t) increases monotonically for t ≥ 13.

We have g(t) > 1 if t = 20. Therefore, we get tK ≤ 19.
Using (3.5) now gives f (dK /dK+ ) ≤ 218. On the other hand, we have f (2 · 1019) > 218,

so monotonicity of f gives dK /dK+ < 2 · 1019. �

The bound that we get in Proposition 3.11 is unfortunately too large to list all non-Galois
PQ1 fields.

3.2 Strategy

Next we study ramification of primes in a normal closure N/Q of K in order to find a
sharper upper bound.
The main idea is to show that, under the assumption I0(�r) = IK r , almost all rational

primes that are ramified inKr/Kr+ are inert inKr+ (Proposition3.18) hence contribute extra
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N

N+KK ′ Kr K ′r

K+ Kr
+T

Q

1

〈y2〉〈x〉〈xy2〉 〈xy〉 〈xy3〉

〈x, y2〉 〈xy, y2〉〈y〉

G

Fig. 1 Diagram of subfields and subgroups

strongly to dKr/dKr+ . This implies that dKr/dKr+ grows as the square of the product of such
ramified primes. We thus get a new lower bound on the class number that grows much
faster with tK than what we had in (3.5). This gives us a better upper bound on dKr/dKr+
in Theorem 3.21.
As inert primes are generated by prime numbers, this will also make it easier to write

down a formula for the fields that we are interested in (Proposition 3.19).
We begin by exploring the ramification behaviour of primes in N/Q.

3.3 Non-Galois quartic CM fields

Let K/Q be a non-Galois quartic CM field with real quadratic subfield K+. By Lemma 2.1,
the normal closure N is a dihedral CM field of degree 8 with Galois group

G := Gal(N/Q) = 〈x, y : y4 = x2 = (xy)2 = id〉.

We give the diagram of subgroups of G and the corresponding subfields of N in Fig. 1.
Complex conjugation · is y2 in this notation and the CM field K is the subfield of N fixed
by 〈x〉. Let � be a CM type of K with values in N . Without loss of generality (by changing
the embedding of K intoN and/or swapping y with y−1 if needed), we have � = {id, y|K }.
Then the reflex field Kr of � is the fixed field of 〈xy3〉, which is a non-Galois quartic CM
field non-isomorphic toK with reflex type�r = {id, y3|Kr }, (see [19, Examples 8.4., 2(C)]).
Denote the quadratic subfield of Kr by Kr+.
Let N+ be the maximal totally real subfield of N , and let T be the quadratic subfield

of N+ such that N/k is cyclic.

3.4 Classification of the ramified primes in N/Q

We will use the following well-known result.

Lemma 3.12 Let M/L be a Galois extension of number fields and q be a prime of M over
an odd prime number. Then there is no surjective homomorphism from a subgroup of the
inertia group Iq to a Klein four group V4.

Proof Suppose that there is a surjective homomorphism from a subgroup of Iq to V4.
In other words, there exists a biquadratic intermediate extension E/F of M/L such that
p = q∩F is totally ramified in E/F . Denote the three quadratic intermediate extensions by
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Ei = F (√αi) for i = 1, 2, 3.Without loss of generality, take αi ∈ OF with ordp(αi) ∈ {0, 1}
for each i. NoteOEi containsOF [

√
αi] of relative discriminant 4αi overOF . Since p is odd,

this implies that the relative discriminant �(Ei/F ) of OEi has ordp(�(Ei/F )) = ordp(αi).
At the same time, we have E3 = F (√α1α2) so p ramifies in Ei for an even number of i’s.
Contradiction. �

Lemma 3.13 Let (K,�) be a primitive quartic CM type. Then the following assertions
hold.

(i) If a prime p is ramified in both K+ and Kr+, then it is totally ramified in K/Q and
Kr/Q.

(ii) If an odd prime p is ramified in K+ (in K r+, respectively) as well as in the field T of
Fig. 1, then p splits in K r+ (in K+, respectively). Moreover, at least one of the primes
above p in Kr+ is ramified in Kr/Kr+ (in K/K+, respectively).

Proof In Table 1, we collect results about the primes in N and their factorization. The
columns I and D list all possible inertia groups I and decomposition groups D of prime
ideals of ON that are ramified over a rational prime p. The six columns after that list
the factorization of p in some of the subfields of N listed in Fig. 1. By Lemma 3.12, cases
(11)–(15) only occur for odd p. We will explain other columns (and prove the data in
those columns) when we need them.
From the factorization columns, both statements (i) and (ii) follow. �

Remark 3.14 It is also possible to prove Lemma 3.13 directly without a table, see the first
author’s PhD thesis [16, Lemma 2.3.7]. However, since we will need the table anyway, we
gave a proof using the table.

Lemma 3.15 Let K be a non-Galois PQ1 field. If K r has a prime p of prime norm p
with p = p, then we have K+ = Q(√p).
In particular, if p is totally ramified in K r/Q, or splits in K r+/Q and at least one of the

primes over p in K r+ ramifies in K r/Kr+, then we have K+ = Q(√p).

Proof Since (K,�) is a PQ1 type, it follows that

N�r (p) = (α) for some α ∈ K×such that αα = NKr/Q(p) = p.

As p = p, we have (α) = (α). So we get α = εα for a unit ε in O×
K with εε = 1. It follows

that ε is a root of unity. Since μK = {±1}, we get α2 = ±p. The case α2 = −p is not
possible, since K has no imaginary quadratic intermediate field. Hence we have α2 = p
and so √p ∈ K+. �

Proposition 3.16 Let K be a non-Galois PQ1 field. Then K+ = Q(√p), where p is a prime
number.

Proof Suppose that there is an odd prime p that is ramified in K+. Then p is ramified
either in K+ and Kr+ or in K+ and T .
If p is ramified in bothK+ andKr+, then by Lemma 3.13-(i), the prime p is totally ramified

in Kr/Q. If p is ramified in K+ and T , then by Lemma 3.13-(ii), the prime p splits in Kr+
and at least one of the primes over p in Kr+ ramifies in Kr/Kr+. In both cases, Lemma 3.15
tells us that K+ = Q(√p).
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Table 1 Ramification table of a non-Galois quartic CM field

Case I D Decomposition of p N�r (pK r ,1)
√
p ∈ K+

in N in K in K+ in T in K r+ in K r

(1)* 〈y2〉 〈y2〉 p2N,1p
2
N,xp

2
N,yp

2
N,xy p2K,1p

2
K,y pK+ ,1pK+ ,y pk,1pk,y pK r+ ,1pK r+ ,y p2K r ,1p

2
K r ,y pK,1pK,y �

(2) 〈y2〉 〈y〉 p2N,1p
2
N,x p2K,1 pK+ ,1 pk,1pk,x pK r+ ,1 p2K r ,1 p

(3) 〈y2〉 〈x, y2〉 p2N,1p
2
N,y p2K,1p

2
K,y pK+ ,1pK+ ,y pk,1 pK r+ ,1 p2K r ,1 p

(4)* 〈y2〉 〈xy, y2〉 p2N,1p
2
N,y p2K,1 pK+ ,1 pk,1 pK r+ ,1pK r+ ,y p2K r ,1p

2
K r ,y pK,1 �

(5) (a) 〈x〉 〈x〉 p2N,1p
2
N,yp

2
N,y2

p2
N,y3

pK,1p
2
K,ypK,y2 pK+ ,1pK+ ,y p2k,1 p2K r+ ,1 p2K r ,1p

2
K r ,y2

pK,1pK,y

(b) 〈xy2〉 〈xy2〉 p2N,1p
2
N,yp

2
N,y2

p2
N,y3

p2K,1pK,ypK,y3 pK+ ,1pK+ ,y p2k,1 p2K r+ ,1 p2K r ,1p
2
K r ,y pK,1pK,y3

(6) (a) 〈x〉 〈x, y2〉 p2N,1p
2
N,y pK,1p

2
K,y pK+ ,1pK+ ,y p2k,1 p2K r+ ,1 p2K r ,1 p

(b) 〈xy2〉 〈x, y2〉 p2N,1p
2
N,y p2K,1pK,y pK+ ,1pK+ ,y p2k,1 p2K r+ ,1 p2K r ,1 p

(7) (a) 〈xy〉 〈xy〉 p2N,1p
2
N,yp

2
N,y2

p2
N,y3

p2K,1p
2
K,y3

p2K+ ,1 p2k,1 pK r+ ,1pK r+ ,y p2K r ,1pK r ,ypK r ,y3 pK,1pK,y3 �
(b) 〈xy3〉 〈xy3〉 p2N,1p

2
N,yp

2
N,y2

p2
N,y3

p2K,1p
2
K,y p2K+ ,1 p2k,1 pK r+ ,1pK r+ ,y pK r ,1p

2
K r ,ypK r ,y2 p2K,1 �

(8) (a) 〈xy〉 〈xy, y2〉 p2N,1p
2
N,y p2K,1 p2K+ ,1 p2k,1 pK r+ ,1pK r+ ,y p2K r ,1pK r ,y pK,1 �

(b) 〈xy3〉 〈xy, y2〉 p2N,1p
2
N,y p2K,1 p2K+ ,1 p2k,1 pK r+ ,1pK r+ ,y pK r ,1p

2
K r ,y p �

(9) 〈y〉 〈y〉 p4N,1p
4
N,x p4K,1 p2K+ ,1 pk,1pk,x p2K r+

p4K r ,1 p2K,1 �
(10) 〈y〉 G p4N,1 p4K,1 p2K+ ,1 pk,1 p2K r+ ,1 p4K r ,1 p2K,1 �
(11)* 〈x, y2〉 〈x, y2〉 p4N,1p

4
N,y p2K,1p

2
K,y pK+ ,1pK+ ,y p2k,1 p2K r+ ,1 p4K r ,1 pK,1pK,y �

(12)* 〈x, y2〉 G p4N,1 p2K,1 pK+ ,1 p2k,1 p2K r+ ,1 p4K r ,1 pK,1 �
(13) 〈xy, y2〉 〈xy, y2〉 p4N,1p

4
N,y p4K,1 p2K+ ,1 p2k,1 pK r+ ,1pK r+ ,y p2K r ,1p

2
K r ,y p2K,1 �

(14) 〈xy, y2〉 G p4N,1 p4K,1 p2K+ ,1 p2k,1 pK r+ ,1 p2K r ,1 p

(15) G G p8N,1 p4K,1 p2K+ ,1 p2k,1 p2K r+ ,1 p4K r ,1 p2K,1 �
This table lists all 19 pairs (I,D)where 1 �= I ) D ≤ D4 = 〈x, y〉 and D/I is cyclic, partitioned into 15 conjugacy classes (1)–(15).
In particular, it contains all possible inertia and decomposition groups of ramified primes ofN . This table is a corrected
subset of [27, Table 5]: we restricted to I �= 1 and corrected some entries in cases (4), (8), (10) and (15).
The cases (11)–(15) can only occur for p = 2 by Lemma 3.12. If there is a check mark in the last column, then by Lemma 3.15,
such splitting implies

√p ∈ K+ (i.e., K+ = Q(√p)) under the assumption I0(�r ) = IK r . The cases with * do not occur under
the assumption I0(�r ) = IK r because p is not ramified in K+ in these cases, but on the other hand

√p ∈ K+ by Lemma 3.15

Therefore, if an odd prime p is ramified in K+, then we have K+ = Q(√p). If no
odd prime ramifies in K+, then the only prime that ramifies in K+ is 2 so we have
K+ = Q(

√
2). �

Lemma 3.17 Let K be a non-Galois PQ1 field. Then the following assertions are true.

(i) If a rational prime l is unramified in both K+/Q and Kr+/Q, but is ramified in K/Q

or K r/Q, then all primes above l in K+ and Kr+ are ramified in K/K+ and Kr/Kr+
and l is inert in K r+.

(ii) If K+ = Q(√p) with a prime number p ≡ 3 (mod 4), then 2 is inert in K r+.

Proof (i) Since (K,�) is a PQ1 type, it satisfies I0(�r) = IK r . So the only possible decom-
position types for a prime that is ramified in K and unramified in both K+ and Kr+ are (2)
and (3) in Table 1 (see the ∗ in the first column of Table 1). Hence the statement follows.
(ii) The prime 2 is ramified in K+ since p ≡ 3 (mod 4). By Table 1, we see that if 2 is

ramified or split inKr+, then we have
√
2 ∈ K+, a contradiction. This implies that 2 is inert

in Kr+. �

The following proposition will be crucial when we construct PQ1 fields. It is the non-
Galois analogue of Murabayashi [14, Proposition 4.5], but it required a completely new
proof. The idea of the proof is to count the primes that ramify in the two extensions
Kr/Kr+ and K/K+ using the restrictions that we collected in 3.15–3.17, and to use that
these numbers of primes are equal by Corollary 3.8.
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Proposition 3.18 Let K be a non-Galois PQ1 field. Then there exist prime numbers p
and q such that the following hold.

(i) We have K+ = Q(√p) and Kr+ = Q(√q), where p and q are prime numbers with
q �≡ 3 (mod 4).

(ii) The primes p and q are split in K r+ and K+ respectively.
(iii) All primes coprime to p and q that are ramified in Kr/Kr+ are inert in K+/Q

and Kr+/Q.

Proof Recall from Proposition 3.16 that we have K+ = Q(√p) for a prime number p.
If p �≡ 3 (mod 4), then p is the only prime that is ramified in K+. If p ≡ 3 (mod 4), then
p and 2 are two distinct primes that are ramified in K+, and hence by the final column of
Table 1, we get that 2 is of Case (14), hence inert in Kr+. This shows that there are four
types of prime numbers that ramify in N/Q:

(I) The prime p, which is ramified in K+ and possibly in Kr+.
(II) The primes that are unramified in K+, but ramified in Kr+, say q1, . . . , qs.
(III) The primes that are unramified in K+ and Kr+, but ramified in K , say r1, . . . , rm.
(IV) If p ≡ 3 (mod 4), then 2 �= p is ramified in K+ and inert in Kr+ and is of Case (14) in

Table 1.

Next, we compute the contribution of each ramification type to tK and tK r . Let fp and f rp
be the contributions of the primes over p. Set i2 = 1 if p ≡ 3 (mod 4), and i2 = 0 if
p �≡ 3 (mod 4).
Claim.We have tK r = f rp +m+ i2 and we have tK ≥ fp + s +m+ i2 with equality only if
all primes of type (III) are inert in K+.
Proof of the claim. The contributions of p (type (I)) are fp and f rp by definition.
(II) By Table 1 including Lemma 3.15, we see that for i = 1, . . . , s the prime qi splits

inK+ and exactly one of the primes above qi inK+ ramifies inK/K+ and the unique prime
above qi in Kr+ does not ramify in Kr/Kr+.
(III) By Lemma 3.17-(i), we see that for j = 1, . . . , m the prime rj is inert in Kr+ and all

primes over rj ramify in Kr/Kr+ and K/K+. It follows that rj contributes with exactly one
prime to tK r , and with at least one prime to tK and with exactly one if and only if rj is
inert in K+/Q.
(IV) If p ≡ 3 (mod 4), then by Case (14) of Table 1, we see that 2 contributes exactly 1

to tK and tK r .
So we get tK ≥ fp + s+m+ i2 with equality if and only if all primes of type (III) are inert

in K+ and tK r = f rp + m + i2, exactly as claimed.
Corollary 3.8 gives tK = tK r , which by the claim gives f rp − fp ≥ s with equality if and

only if all primes of type (III) are inert in K+.
We observe that s ≥ 1 holds. Indeed, if s = 0, then all primes that ramify in Kr+ also

ramify inK+. HencedKr+ dividesdK+ , which is equal to p if p ≡ 1 (mod 4) and 4p otherwise.
So Kr+ ∼= K+, a contradiction.
By Table 1, we see 1 ≥ f rp − fp with equality if and only if p splits in Kr+.
Combining the three previous paragraphs, we get f rp − fp = s = 1, all primes of type

(III) are inert in K+ and p splits in Kr+. As Kr+ has a unique ramified prime q = q1, it is
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Kr+ = Q(√q) with q �≡ 3 (mod 4). And as mentioned in the proof of the claim, the prime
q = q1 splits in K+. �

3.5 Explicit construction of the fields

Proposition 3.19 Let K be a non-Galois PQ1 field. Then there exist prime numbers p, q,
and s1 < · · · < su with u ∈ {tK r − 1, tK r − 2} such that all of the following hold.

(i) We have K+ = Q(√p) and Kr+ = Q(√q) with q �≡ 3 (mod 4) and the primes p and q
are split in K r+ and K+ respectively.

(ii) The primes si are inert in both K+ and Kr+.
(iii) There exists a prime p | pOKr+ , an odd integer j and a totally positive generator π of pj

such that K r ∼= Kr+(
√−πs1 · · · su).

(iv) For every prime p | pOKr+ , every odd integer j and every totally positive generator π of
pj , we have K r ∼= Q(

√−πs1 · · · su).

Proof Proposition 3.18 states that there exist p and q such that (i) holds. The same
proposition also states that all prime numbers different from p and q that ramify in K/Q

are inert in K+/Q and in Kr+/Q.
Let β be a totally positive element ofOKr+ such that Kr = Kr+(

√−β).
SinceOKr ⊃ OKr+ [

√−β] ⊃ OKr+ , the quotient of the discriminant ideals

�(OKr/OKr+ )/�(OKr+ [
√−β]/OKr+ ) = �(OKr/OKr+ )/(−4β)

is a square ideal inOKr+ (see Cohen [28, p. 79]). As β is unique up to squares, and we can
take l-minimal β ′ ∈ β(K×+ )2 for each prime l ofOKr+ , we get

ordl((β)) ≡

⎧
⎪⎪⎨

⎪⎪⎩

1 (mod 2) if l is ramified inKr/Kr+ and l � 2,

0 (mod 2) if l is not ramified inKr/Kr+,
0 or 1 (mod 2) if l is ramified inKr/Kr+ and l|2.

(3.6)

Let l1, . . . , ltKr ⊆ OKr+ be the primes that ramify inKr/Kr+, and let li ∈ Z>0 be the prime
number in li. Letni > 0 beminimal such that lnii is generated by a totally positiveλi ∈ OKr+ .
Choose such λi, and take λi ∈ Z>0 whenever possible. Since we have Kr+ = Q(√q) with
prime q �≡ 3 (mod 4), genus theory implies that ClKr+ = Cl+Kr+

has odd order, so ni is odd.
Let

α =
tKr∏

i=1
λ
ei
i , where ei ∈ {0, 1}, ei ≡ ordli (β) (mod 2).

The following two claims together prove (ii) and (iii).

Claim 1 We have α/β ∈ (Kr+×)2.

Claim 2 We have α = πs1 · · · su for some π , si and u as in (iii).

Proof of Claim 1 We first prove that (α/β) = (α)/(β) is a square ideal in Kr+. Let l be any
prime of Kr+. If l is unramified in Kr/Kr+, then by (3.6), we have ordl(β) ≡ 0 (mod 2). So
by the definition of α, we have ordl(α) = 0. If l is ramified in Kr/Kr+, then there exists i
such that l = li, so we get

ordli (α) ≡ ordli (β) · ordli (λi) ≡ ordli (β) (mod 2)
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as ni = ordli (λi) is odd. Therefore, the quotient (α/β) is a square of a fractional ideal a
of OKr+ . Thus a

2 is generated by the totally positive α/β . So the class of a is 2-torsion in
the group Cl+Kr+

, which has an odd order, so there is a totally positive element μ ∈ (Kr+)×

that generates a. So α/β = μ2 · v for some totally positive v ∈ O×
Kr+

. Moreover, since
ClKr+ = Cl+Kr+

, the norm of the fundamental unit ε is negative. Therefore, a unit inOKr+ is
totally positive if and only if it is a square in OKr+ . Hence v is a square in OKr+ so we get
α/β ∈ (Kr+×)2. �

Proof of Claim 2 For any given i, if li is inert in Kr+/Q, then ni = 1 and λi = li ∈ Z>0 is
prime. If li is not inert in Kr+/Q then li ∈ {p, q}, by Proposition 3.18. If li = q, then as li is
ramified in Kr/Kr+, by Lemma 3.15 we get √q ∈ K+, contradiction. So if li is not inert in
Kr+/Q, then li = p.
Let

{s1, . . . , su} = {li : i = 1, . . . , tK r such that li is inert in Kr+/Q

and ordli (β) ≡ 1 (mod 2)}.

Write pOKr+ = pp′ and let j ∈ Z>0 be minimal such that pj is principal and generated
by a totally positive generator π . Let π ′ be the quadratic conjugate of π . Then π ′ is a
totally positive generator of (p′)j and we have ππ ′ = pj . We find α = πaπ ′a′ ∏u

i=1 si for
some a, a′ ∈ {0, 1}. If a = a′, then α ∈ Z, which leads to a contradiction since Kr is
non-biquadratic. So we either have α = π

∏u
i=1 si or α = π ′ ∏u

i=1 si. Swapping p with p′

and π with π ′ if necessary, we find that we are in the former case.
To finish the proof of Claim 2, it remains to show u ∈ {tK r − 1, tK r − 2}.
If p �= 2, then by (3.6) we get that u is tK r minus 1 for π (or π ′), minus at most one for

every ramified prime of Kr+ lying over 2 �= p. Since such primes are inert in Kr+/Q, we get
that there is at most one such prime, so u ∈ {tK r − 1, tK r − 2}.
If p = 2, then by (3.6), as there are only two primes p and p′ over 2 in Kr+, we get

u ∈ {tK r − 1, tK r − 2}. This proves Claim 2.
Taking a different choice of j or a different generator π as in (iv) does not change the

field by the proof of Claim 1 above. Finally, note that Kr+(
√

α) = Q(
√

α), and as π
∏u

i=1 si
and π ′ ∏u

i=1 si are conjugate, their square roots generate generate isomorphic number
fields over Q. This proves (iv). �

3.6 A sharper bound for dKr/dKr+
Lemma 3.20 Let K be a non-Galois PQ1 field with normal closure N . Let the notation be
as in Proposition 3.19 and let t = tK r . If u = t − 2, then let st−1 = 2. Then we have

p4q4s41 · · · s4t−1 ≤ dN and

pqs21 · · · s2t−1 ≤ dKr/dKr+ .

Proof Let π , π ′ and p be as in the proof of Proposition 3.19, and write π −π ′ = √qf with
f ∈ Z. Then the discriminant of Z[

√−πs1 · · · su] ⊂ OKr is (s1 · · · su)624pq2f 4. As this is a
square times the discriminant dKr ofOKr , we find that dKr is p times a square. As dKr/d2Kr+
is the norm of the relative discriminant of Kr/Kr+, we find that it is divisible by the norm
of every prime of Kr+ that ramifies in Kr . So dKr/d2Kr+

/p is a square integer divisible by
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s1 · · · su and if u = t − 2, then (as in the proof of Proposition 3.19) we have 2 � s1 · · · su
and dKr/d2Kr+

/p is also divisible by 2. We get that dKr/d2Kr+
/p is divisible by (s1 · · · st−1)2,

hence dKr/dKr+ is divisible by pq(s1 · · · st−1)2, which proves the second assertion.
We also get that dKr is divisible by p(qs1 · · · st−1)2 and dK+ is divisible by p, hence dN

is divisible by p2(qs1 · · · st−1)4 and by p4. This proves the result except in the case p = 2,
u = t − 2. However, in that case dK+ = 8, hence dN is divisible by 84 = 24p4s4t−1, which
proves the result. �

Theorem 3.21 Let K be a non-Galois PQ1 field with normal closure N and reflex field Kr.
If d1/8N ≥ 222, then we have h∗

Kr ≤ 25 and dKr/dKr+ < 2.3 · 1010.

Proof By Lemma 3.20, we have

dKr/dKr+ ≥ pqs21 · · · s2tKr−1 ≥ ptKr ptKr+1�
2
tKr−1,

where pj is the jth prime number and �k = ∏k
j=1 pj .

Let

f (D) = 2
√
D√

eπ2(log(D) + 0.057)2
and h(t) = 2−t+1f (ptpt+1�

2
t−1).

Then we have hKr ≥ f (dKr/dKr+ ) by Proposition 3.9.
Recall that, by Lemma 3.10, the function f is monotonically increasing for D ≥ 52.

Therefore, if tK r ≥ 3, then we have f (dKr/dKr+ ) ≥ f (ptKr ptKr+1�2
tKr−1). So under the

assumption I0(�r) = IK r , by Proposition 3.1, we have

2tKr−1 ≥ f (dKr/dKr+ ) ≥ f (ptKr ptKr+1�
2
tKr−1),

and hence we get h(tK r ) ≤ 1.
The function h(t) is monotonically increasing for t ≥ 4 by arguments similar to those

we used in Lemma 3.10. Indeed, by Bertrand’s postulate [26], we have

ptpt+2 < 2ptpt+1 < ptpt+1�
2
t−1

for t ≥ 2. This yields

log(pt+1pt+2�
2
t ) + 0.057 = log(ptpt+2) + log(ptpt+1�

2
t−1) + 0.057

< 2(log(ptpt+1�
2
t−1) + 0.057)

for t ≥ 2. Therefore, we get

h(t + 1)
h(t)

=
√ptpt+2

2
(log(ptpt+1�2

t−1) + 0.057)2

(log(pt+1pt+2�2
t ) + 0.057)2

>

√ptpt+2

8
> 1

whenever t ≥ 4, which proves monotonicity.
We compute that h(t) > 1 if t = 7. So we get tK r ≤ 6 and h∗

Kr ≤ 25. We then compute
f (23 · 109) > 32, which by 25 ≥ h∗

Kr ≥ f (D) and monotonicity of f proves the bound
on D. �

Now that we have an upper bound for h∗
Kr , we can find an upper bound for the prime p

and improve the bound for dKr/dKr+ .
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Table2 Definition of Dv and Bv , used in Corollaries 3.22 and 3.23

v Dv Bv

0 3.5 · 106 5.5 · 106
1 2.2 · 107 3.3 · 107
2 1.32 · 108 1.875 · 108
3 7.5 · 108 1.05 · 109
4 4.2 · 109 5.75 · 109
5 2.3 · 1010 2.3 · 1010

Corollary 3.22 Let K be a non-Galois PQ1 field with normal closure N . Let v be such that
h∗
Kr = 2v. If d1/8N ≥ 222, then we have dKr/dKr+ ≤ Dv with Dv as defined in Table 2.

Proof By Proposition 3.9 we have f (dKr/dKr+ ) ≤ h∗
Kr for some explicit function f (x). The

function f (x) ismonotonically increasing forx ≥ 52 (Lemma3.10).Wecan therefore verify
the result by evaluating f in Dv , which we did using interval arithmetic in SageMath [29].

�

Corollary 3.23 Let K be a non-Galois PQ1 field with normal closure N . Let the nota-
tion be as in Proposition 3.19. If d1/8N ≥ 222, then we have u ∈ {0, 1, . . . , 5} and
pq < B0 with B0 as in Table 2. Moreover, for all positive integers i ≤ u, we have
s1 · · · si < max{√Bi/(pq), 2222/(pq)} with Bi as defined in Table 2.

Proof By Proposition 3.19, we have u ∈ {t − 1, t − 2}, where t = tK r .
Recall that by Proposition 3.1 and Theorem 3.21, we have 2t−1 = hKr ≤ 25, which gives

u ≤ 5.
As in Lemma 3.20, if u = t − 2, let st−1 = 2.
If dN < 2228, then Lemma 3.20 gives s1 · · · st−1 ≤ d1/4N /(pq) < 2222/(pq). If dN ≥ 2228,

then by Corollary 3.22, we get

s1 · · · st−1 ≤
√
dKr/dKr+/(pq) <

√
Dt−1/(pq)

with Dt−1 defined in Table 2.
In both cases, this proves

s1 · · · st−1 < max{√Dt−1/(pq), 2222/(pq)}, (3.7)

which implies pq < max{Dt−1/�2
t−1, 2222}, where �t−1 is the product of the first t − 1

prime numbers. We check that for all v ∈ {0, . . . , 5}, we have Dv ≤ �2
vB0, hence we get

pq < B0.
Moreover, in the case u = t − 2, inequality (3.7) gives s1 · · · su = s1 · · · st−1 <

max{√Dt−1/(pq)/2, 2222/(pq)}. So we conclude that if u < 5, then

s1 · · · su < max{√Du/(pq),
√
Du+1/(pq)/2, 2222/(pq)}

= max{√Du+1/(pq)/2, 2222/(pq)}

and if u = 5 then s1 · · · su < max{√Du/(pq), 2222/(pq)}.
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The number Bv of Table 2 is given by

Bv =
⎧
⎨

⎩

Dv+1/4 if v < 5

Dv if v = 5,

so we get s1 · · · su < max{√Bu/(pq), 2222/(pq)}.
Now given an integer i with 0 < i ≤ u, this gives

s1 · · · si ≤ max{√Bu/(pq), 2222/(pq)}/(si+1 · · · su)
< max{

√
3−2(u−i)Bu/(pq), 2222/(pq)}

≤ max{√Bi/(pq), 2222/(pq)}.

�

3.7 Enumerating non-Galois PQ1 fields

Combining Proposition 3.19 with the bound of Corollary 3.23, we now have a good way
of listing candidate non-Galois PQ1 fields. Postponing the discussion of how to recognise
which fields are PQ1 to Sect. 3.8 and Algorithm 3, we get the following algorithm.

Algorithm 1 Computing all non-Galois PQ1 fields
Input: Nothing.
Output: All non-Galois PQ1 fields.

1. Make a list L of all pairs (p, q) of primes with p · q < 5.5 · 106 such that q �≡ 3 (mod 4), p
is split in Q(√q) and q is split in Q(√p).

2. For each pair (p, q) ∈ L, iterate over all tuples s1 < s2 < · · · < su of primes such that

(i) 0 ≤ u ≤ 5,
(ii) s1, …, su are are inert in Q(√p) and Q(√q),
(iii) for all i ≤ u, we have s1 · · · si < max{√Bi/(pq), 2222/(pq)} with Bi as in Table 2.

For each such tuple, do the following:

a Create a field Kr from (p, q, s1, . . . , su) as follows.

(i) Write pOKr+ = pp′.
(ii) Let j be the order of p in the narrow class group of Q(√q), which is odd because

only the prime q is ramified in Q(√q). Let π be a totally positive generator of pj .
(iii) Let Kr = Q(

√−πs1 · · · su).
b Test whether the reflex field K of Kr has CM class number one, using Algorithm 3

below. If so, output K .

Proof of Algorithm 1 Let K be a non-Galois PQ1 field. Then Proposition 3.19 states that
the reflex field Kr is isomorphic to the field constructed in Step 2a for some p, q, s1, . . . , su
satisfying the splitting and congruence conditions of Step 1 and the conditions 2(ii).
Moreover, Corollary 3.23 states that p, q, s1, . . . , su satisfy the bounds of Steps 1, 2(i)
and 2(iii).
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Finally, the field “K ” in Step 2b is isomorphic to K as the isomorphism class of the
reflex field of Kr does not depend on the choice of a CM type by Lemma 2.1 (see also the
paragraph below the proof of Lemma 2.1). �

3.8 Checking whether a field is PQ1

Now that we can enumerate all candidate non-Galois PQ1 fields, we need to check which
of them actually have CM class number 1. Computing all class groups is too expensive, so
we need fast ways to eliminate the fields of CM class number > 1.
Recall that the primitive quartic CMfieldK hasCMclass number 1 if for every fractional

OKr -ideal b, there is an element α ∈ K× with N�r (b) = (α) and αα ∈ Q (2.1). Note that
if α exists, then in fact we have αα = NKr/Q(b).
Our first check is the following special case of Theorem D in Louboutin [21].

Lemma 3.24 Let (K,�) be a non-Galois or cyclic quartic PQ1 type. If a rational prime l
splits completely in K r/Q, then l ≥ 1

4
√
dK /dK+ .

Proof Let l be a rational prime that splits completely in Kr/Q. Let b be a prime
ideal in Kr above l. By the assumption of CM class number 1, there exists α ∈ K×

such that N�r (b) = (α) and αα = l. Here α �= α, since
√
l /∈ K . Then since

OK ⊃ OK+ [α] and �(OK+ [α]/OK+ ) = (α − α)2, we have dK /d2K+ = NK+/Q(dK/K+ ) =
NK+/Q(�(OK /OK+ )) ≤ NK+/Q((α − α)2). Moreover, since αα = l, we have φ(α − α)2 ≤
(2

√
l)2 for all embeddings φ : K+ ↪→ R, hence dK /d2K+ ≤ NK+/Q((α − α)2) ≤ 16l2. �

Lemma 3.24 allows us to discard many fields, but not enough, so we need a less crude
test as well.
For recognisingwhether the idealsN�r (b) are generated by an elementα ∈ K× such that

αα = NKr/Q(b) we can use class groups and unit groups. However, for small primes b, it
is faster to listWeil numbers, which are defined as follows. LetQ ∈ Z be a positive integer
(usually a prime power in the literature). AWeil Q–number α is an algebraic integer such
that all embeddings inC have absolute value

√
Q. In particular, we want to check whether

N�r (b) is generated by a Weil Q–number for Q = N (b).

Algorithm 2 Checking whether an ideal is generated by a Weil Q–number
Input: An ideal a ⊂ OK in a quartic CM field K with totally real subfield K0 = Q(

√
d) for a

square-free integer d; a positive integer Q.
Output: ‘True’ or ‘False’ according to whether a is generated by a Weil Q–number in K .

1. for all a ∈ [0, 2
√
Q] ∩ 1

2Z,

(a) let B = (2
√
Q − a)/

√
d ∈ R.

(b) for all b ∈ [−B, B] ∩ 1
2Z,

(i) let β = a + b
√
d ∈ K0 ⊂ K ,

(ii) if β2 − 4Q is square in K , then let α± = (−β ± √
β2 − 4Q)/2,

(iii) if a is generated by one of α±, then return ‘True’.

2. return ‘False’.



   15 Page 20 of 29 P. Kılıçer, M. Streng Res. Number Theory           (2023) 9:15 

Proof If a is generated by aWeilQ–number α, then let β = α+α andwrite β = a+b
√
d.

Changing α into −α if needed, we get a ≥ 0. We get α = (−β ± √
β2 − 4Q)/2 and we

get |β| ≤ 2
√
Q for all complex embeddings. As a consequence, the numbers a and b are

in the intervals in the algorithm.
Conversely, if the output is true, then α± is a Weil Q–number that generates a. �
Algorithm 2 takes time linear in Q, so we only want to do it for small Q. Once we

have done this for enough small-norm ideals b to convince ourselves that K has CM class
number one, we do a final verification using the class group, which is possible as we then
only have fields of small discriminant left.
For that final verification, we take generators b of the class group and check thatN�r (b)

is generated by α ∈ K× such that αα ∈ Q. As we have computed the class group and unit
group, we could use [30, Algorithm 2.8], which is available as a_to_mu(�r , b) in [31]. In
practice Q = NKr/Q(b) is small, so we use Algorithm 2 instead.

Algorithm 3 Eliminating non-PQ1 fields
Input: A primitive quartic CM field Kr .
Output: ‘True’ or ‘False’ according to whether the reflex field K of Kr is PQ1.

1. Choose a CM type�r of Kr , calculate its reflex field K and the discriminants of K and K+.
2. If Kr has totally split primes in Kr below the bound 1

4d
1/2
K /dK+ , then return ‘False’.

3. For each prime ideal q in OKr with Q := NKr/Q(q) < 12 log(|dKr |)2, use Algorithm 2 to
check whether N�r (q) is generated by a Weil Q–number. If it is not, then return ‘False’.

4. Compute representative prime ideals of a set of generators of the class group IK r /PKr .
For each such ideal q, use Algorithm 2 to check whether N�r (q) is generated by a Weil
Q–number for Q := N (q), and return ‘False’ if it is not.

5. Return ‘True’.

Proof of Algorithm 3 Let (K,�) be the reflex of (Kr,�r) with �r as in Step 1. Note that
the isomorphism class of K does not depend on the choice of �r (see Lemma 2.1), and
neither does the order of its CM class group (Lemma 2.3).
Steps 2 and 3 only eliminate fields with CM class number greater than 1 (in case of

Step 2 by Lemma 3.24 and in case of Step 3 by definition). In particular, these steps
(which are only meant to speed up the computation) have no effect on the validity of the
output. Step 4 tests exactly (using the definition) whether the reflex (K,�) has CM class
number one. �
Remark 3.25 Step 3 checks whether K is a PQ1 field or not under assumption of the
generalized Riemann hypothesis (GRH), see Bach [32]. There are no fields eliminated in
Step 4 as expected, as otherwise this would contradict the GRH.

To specify quartic CM fields, we use the following notation of the ECHIDNA database
[33]. Given a quartic CMfieldK , letD be the discriminant of the real quadratic subfieldK+
of K . Write K = K+(

√−α) where α is a totally positive element of OK+ and take α such
that A := TrK+/Q(α) > 0 is minimal and let B := NK+/Q(−α). We choose α with minimal
B if there is more than one B with the same A. We use the triple [D,A, B] to uniquely
represent the isomorphism class of the CM field K ∼= Q[X]/(X4 + AX2 + B).
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We implemented the algorithms in SageMath [29,31,34] and obtained the list of the
fields in Table 3. The implementation is available online at [35]. This computation is easily
parallelized and took 3.7 core-days using standard CPUs. In Step 4, we could choose to
use a_to_mu instead of Algorithm 2, which would not change the computation time
much (3.8 core-days instead of 3.7), but we do profit from having Algorithm 2 in Step 3,
as otherwise the computation takes more than 242 core-days. Step 3 is therefore essential
for keeping the computation manageable.
This proves the non-Galois case of our main result:

Theorem 3.26 There exist exactly 63 isomorphism classes of non-Galois quartic CMfields
with CM class number one. The fields are exactly those listed in Table 3.

4 Cyclic PQ1 fields
We now determine all cyclic PQ1 fields. Murabayashi and Umegaki [7,14] already deter-
mined those for which the curves with CM by themaximal order can be defined over Q,
but there are more cyclic PQ1 fields. We will show (Theorem 4.7) that Table 1b of [9] is
complete, which is necessary for proving that the list of all absolutely simple genus-two
CM curves over Q in [10] is complete (Theorem 5.6).
Theorem 4.7 gives only a few more fields than [7], and indeed unlike the non-Galois

case of Sect. 3, we do not need much beyond what is already in [7].
Suppose that K/Q is a cyclic quartic CM field with Gal(K/Q) = 〈y〉. In this notation

complex conjugation is y2. As the CM class number does not depend on the CM type
(Lemma 2.3), we choose � = {id, y}. This CM type is primitive and satisfies Kr = K and
�r = {id, y3}.
We start with the following result, of which Proposition 3.18 is a non-Galois analogue.

Proposition 4.1 (Murabayashi) A quartic cyclic CM field K is PQ1 if and only if all of the
following hold:

(i) there is exactly one totally ramified prime in K/Q;
(ii) the other ramified primes of K/Q are inert in K+/Q;
(iii) h∗

K = 2tK−1 where tK is the number of ramified primes in K/K+.

Proof This is Proposition 4.5 (i) and (iii) ofMurabayashi [14]. For the notation used there,
see Lemma 4.2 of [14] and the paragraph above it. �

By weakening the assumptions in [14, Theorem 4.12], we obtain the following result.

Proposition 4.2 Let K be a cyclic PQ1 field. Then there exist prime numbers p, s1, . . . , su
with u ∈ {tK − 1, tK − 2} such that all of the following hold.

(i) We have K+ = Q(√p) with p �≡ 3 (mod 4).
(ii) The prime si is inert in K+ for all i.
(iii) We have K ∼= Q(

√−εs1 · · · su√p) for every ε ∈ O×
K+ with ε

√p � 0.

Proof Let β ∈ OK+ be a totally positive element such that K = K+(
√−β). We will

construct a totally positive element α ∈ K×+ in terms of the ramified primes in K/K+ and
show that α and β differ by a factor in (K×+ )2.
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Table 3 Table of fields referenced in Theorem 3.26

D A B p q s1 · · · su hK+ h∗
K reflex D, A, B

5, 11, 29 5 29 1 1 2 29, 7 , 5

5, 13, 41 5 41 1 1 1 41, 11 , 20

5, 17, 61 5 61 1 1 1 61, 9 , 5

5, 21, 109 5 109 1 1 1 109, 17 , 45

5, 26, 149 5 149 1 1 1 149, 13 , 5

5, 33, 261 5 29 3 1 2 29, 21 , 45

5, 34, 269 5 269 1 1 1 269, 17 , 5

5, 41, 389 5 389 1 1 1 389, 37 , 245

5, 66, 909 5 101 3 1 2 101, 33 , 45

8, 10, 17 2 17 1 1 1 17, 5 , 2

8, 14, 41 2 41 1 1 2 41, 7 , 2

8, 18, 73 2 73 1 1 1 73, 9 , 2

8, 22, 89 2 89 1 1 1 89, 11 , 8

8, 26, 137 2 137 1 1 2 137, 13 , 8

8, 30, 153 2 17 3 1 4 17, 15 , 18

8, 34, 281 2 281 1 1 1 281, 17 , 2

8, 38, 233 2 233 1 1 1 233, 19 , 32

8, 50, 425 2 17 5 1 2 17, 25 , 50

8, 66, 1017 2 113 3 1 2 113, 33 , 18

12, 8, 13 3 13 2 1 2 13, 10 , 12

12, 10, 13 3 13 1 1 2 13, 5 , 3

12, 14, 37 3 37 1 1 2 37, 7 , 3

12, 26, 61 3 61 1 1 2 61, 13 , 27

12, 26, 157 3 157 1 1 2 157, 13 , 3

12, 50, 325 3 13 5 1 4 13, 25 , 75

13, 9, 17 13 17 1 1 1 17, 15 , 52

13, 18, 29 13 29 1 1 1 29, 9 , 13

13, 29, 181 13 181 1 1 1 181, 41 , 13

13, 41, 157 13 157 1 1 1 157, 25 , 117

17, 5, 2 17 2 1 1 1 8, 10 , 17

17, 15, 52 17 13 1 1 1 13, 9 , 17

17, 25, 50 17 2 5 1 2 8, 50 , 425

17, 46, 257 17 257 1 1 1 257, 23 , 68

17, 47, 548 17 137 1 1 1 137, 35 , 272

29, 7, 5 29 5 1 1 2 5, 11 , 29

29, 9, 13 29 13 1 1 1 13, 18 , 29

29, 21, 45 29 5 3 1 2 5, 33 , 261

29, 26, 53 29 53 1 1 1 53, 13 , 29

41, 11, 20 41 5 1 1 1 5, 13 , 41

44, 8, 5 11 5 2 1 2 5, 14 , 44

44, 14, 5 11 5 1 1 2 5, 7 , 11

44, 42, 45 11 5 3 1 4 5, 21 , 99

53, 13, 29 53 29 1 1 1 29, 26 , 53

61, 9, 5 61 5 1 1 1 5, 17 , 61

73, 9, 2 73 2 1 1 1 8, 18 , 73
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Table 3 continued

D A B p q s1 · · · su hK+ h∗
K reflex D, A, B

73, 47, 388 73 97 1 1 1 97, 94 , 657

76, 18, 5 19 5 1 1 2 5, 9 , 19

89, 11, 8 89 2 1 1 1 8, 22 , 89

97, 94, 657 97 73 1 1 1 73, 47 , 388

101, 33, 45 101 5 3 1 2 5, 66 , 909

109, 17, 45 109 5 1 1 1 5, 21 , 109

113, 33, 18 113 2 3 1 2 8, 66 , 1017

137, 35, 272 137 17 1 1 1 17, 47 , 548

149, 13, 5 149 5 1 1 1 5, 26 , 149

157, 25, 117 157 13 1 1 1 13, 41 , 157

172, 34, 117 43 13 1 1 2 13, 17 , 43

181, 41, 13 181 13 1 1 1 13, 29 , 181

233, 19, 32 233 2 1 1 1 8, 38 , 233

236, 32, 20 59 5 1 1 2 5, 16 , 59

257, 23, 68 257 17 1 3 1 17, 46 , 257

269, 17, 5 269 5 1 1 1 5, 34 , 269

281, 17, 2 281 2 1 1 1 8, 34 , 281

389, 37, 245 389 5 1 1 1 5, 41 , 389

The fields are K = Q[X]/(X4 + AX2 + B)with dK+ = D. Their reflex fields are Kr ∼= Q(
√−πs1 · · · su)where π is totally

positive of norm p inside the ring of integers of Kr+ = Q(√q). The class number of K+ is hK+ and the class number of K
is hK+h∗

K . The reflex field Kr is also given by theD, A and B in the final column

By Proposition 4.1, we have K+ = Q(√p), where p is a prime with p �≡ 3 (mod 4). There
are tK ramified primes in K/K+, and the ones that are distinct from (√p) are inert in
K+/Q, by Proposition 4.1. Let S be the set of prime numbers generating these inert prime
ideals and let s1, s2, · · · , su be the elements of {s ∈ S : s or ord(s)(β) is odd}.
We then have u ∈ {tK − 1, tK − 2}.
Since p �≡ 3 (mod 4), by the genus theory for quadratic fields, we have NK+/Q(ε) = −1

where ε is the fundamental unit ofOK+ . Take ε > 0 so that ε
√p � 0.

Take α = s1 · · · su if ord(√p)(β) is even, and take α = εs1 · · · su√p otherwise.
Then exactly as in the proof of Claim 1 in the proof of Proposition 3.19, we have

α/β ∈ (K×+ )2, hence K = K+(
√−α).

In the case α = s1 · · · su, we get a biquadratic field, contradiction. Therefore, we have
α = εs1 · · · su√p and K = K+(

√−α) = Q(
√−α). �

The next step is to bound the conductor and the relative class number.

Theorem 4.3 (Louboutin [36], Theorem 5) Let K be a cyclic quartic CM field of conduc-
tor fK and discriminant dK . Then we have

h∗
K ≥ 2

3eπ2

(

1 − 4πe1/2

d1/4K

)
fK

(log(fK ) + 0.05)2
. (4.1)

Most of what is stated in the following two results are also observed in [7].

Lemma 4.4 Let K be a cyclic PQ1 field. In the notation of Proposition 4.2, if u = tK − 2,
then let stK−1 = 2. Then we have

fK ≥ ps1 · · · stK−1 and dK ≥ 5f 2K .
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Proof By Propositions 11.9 and 11.10 in Chapter VII of [37], we have f 2K = dK /dK+ , hence
dK = f 2KdK+ ≥ 5f 2K . Moreover, the conductor fK is divisible by the ramified primes, hence
fK ≥ ps1 · · · stK−1. �
Lemma 4.5 For real numbers D ≥ 1 and non-negative integers t, let

�(D) = 2
3eπ2

(

1 − 4πe1/2

5D1/2

)
D

(log(D) + 0.05)2
and g(t) = 2−t+1�(�t ) (4.2)

where �t is the product of the first t prime numbers. Then �(D) increases monotonically
for D ≥ 1 and g(t) increases monotonically for t ≥ 0.

Proof We checked monotonicity of f and g in the same way as in Lemma 3.10. �
Proposition 4.6 For every cyclic PQ1 field K , we have h∗

K ≤ 25 and fK < 2 · 105.
Proof Lemma 4.4 gives dK ≥ 5f 2K . As the factor (1 − 4πe1/2d−1/4

K ) in (4.1) increases
with dK , Theorem 4.3 gives h∗

K ≥ �(fK ). By Lemma 4.4, we have fK ≥ ps1 · · · stK−1. Let �t
be the product of the first t primes. As f is monotonically increasing, we get h∗

K ≥ �(�tK ).
By Proposition 3.1, we have h∗

K = 2tK−1, so we obtain 1 ≥ g(tK ). As g(t) is monotonically
increasing with t ≥ 0 and we have g(7) > 1, we get tK ≤ 6. So we get h∗

K ≤ 25.
Moreover, we compute �(2 · 105) > 25, and therefore we get fK < 2 · 105.

Algorithm 4 Computing all cyclic PQ1 fields
Input: Nothing.
Output: All cyclic PQ1 fields.

Step 1. For each prime number p ≤ 2 · 105 with p �≡ 3 (mod 4), iterate over all tuples s1 < s2 <

· · · < su of primes such that

(i) 0 ≤ u ≤ 5,
(ii) s1, …, su are inert in Q(√p),
(iii) ps1s2 · · · su ≤ 2 · 105.

Step 2. For each such tuple, take a fundamental unit ε in Q(√p) such that ε
√p � 0, and

construct K = Q(
√−εs1 · · · su√p).

Step 3. Test whether the CM field K has CM class number one, using Algorithm 3 for Kr = K .
If so, output K .

Proof Propositions 4.2 and 4.6 show that every cyclic PQ1 field is listed. Algorithm 3
eliminates exactly the incorrect fields. �
We implemented the algorithm in SageMath [29,31,34] and obtained the list of the CM

fields in Table 4. The implementation is available online at [35]. This computation took
less than 2 core-hours.
This proves the cyclic case of our main result:

Theorem 4.7 There exist exactly 20 isomorphism classes of cyclic quartic CM fields with
CM class number one. The fields are exactly those listed in Table 4.
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Table 4 Table of fields referenced in Theorem 4.7

D A B fK p s1 · · · su hK+ h∗
K

5, 5, 5 5 5 1 1 1

5, 10, 20 23 · 5 5 2 1 2

5, 15, 45 22 · 3 · 5 5 3 1 4

5, 30, 180 23 · 3 · 5 5 2 · 3 1 4

5, 35, 245 22 · 5 · 7 5 2 · 7 1 4

5, 65, 845 5 · 13 5 13 1 2

5, 85, 1445 5 · 17 5 17 1 2

5, 105, 2205 3 · 5 · 7 5 3 · 7 1 4

8, 4, 2 24 2 1 1 1

8, 12, 18 24 · 3 2 3 1 2

8, 20, 50 24 · 5 2 5 1 2

13, 13, 13 13 13 1 1 1

13, 26, 52 23 · 13 13 2 1 2

13, 65, 325 5 · 13 13 5 1 2

17, 119, 3332 7 · 17 17 7 1 2

17, 255, 15300 3 · 5 · 17 17 3 · 5 1 4

29, 29, 29 29 29 1 1 1

37, 37, 333 37 37 1 1 1

53, 53, 53 53 53 1 1 1

61, 61, 549 61 61 1 1 1

The fields are K = Q[X]/(X4 + AX2 + B) ∼= Q(
√−εs1 · · · su√p), where ε is any totally positive unit in the maximal order of

the real quadratic field K+ = Q(√p) of discriminantD. The conductor of K is fK , the class number of K+ is hK+ and the class
number of K is hK+h∗

K

5 Consequences for curves of genus twowith CM
In this section we derive Theorems 5.6–5.8 from the main results.
In order to study a curveC over a field k of characteristic 0 (by whichwemean a smooth,

projective, geometrically irreducible curve), we will work with its Jacobian A = J (C),
which is an abelian variety variety of dimension equal to the genus of C ; for details we
refer to [38]. The Jacobian satisfies J (C)(k) ∼= Pic0(Ck ) and if k ⊂ C, then J (C)(C) ∼= C

g/�

for the period lattice � of C .
An abelian variety A over a field k of characteristic 0 has complex multiplication (CM)

if there exists an embedding θ : K → End(Ak ) ⊗ Q for a CM field K of dimension
2 · dim(A). In this case, we also say that A (or C) has CM by K or that it has CM by the
order θ−1(End(Ak )) ⊂ K .
Given A with CM by K via an embedding θ , we obtain a CM-type � of K with values

in k as follows. Let Tgt0(A) be the tangent space of A over k at 0. Let � be the set of
homomorphisms K → k occurring in the diagonalisation of the representation K →
Endk (Tgt0(Ak )) : α �→ D(θ (α)). Then� is a CM type of K , and we say that (A, θ ) is of type
(K,�).
Our goal in this section is to state the following result and show how it follows from

standard references.

Proposition 5.1 Let K be a quartic CM field and � a CM type of K . Let C be a curve of
genus 2 over K r such that J (C)C has CM by an order O in K of type �. If J (C)C is simple
or End(J (C)C) ∼= O, then K is a PQ1 field.
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A polarized abelian variety of type (K,�) is a triple P = (A, θ ,ϕ) formed by an abelian
variety (A, θ ) of type (K,�) and a polarization ϕ of A such that θ (K ) is stable under
the Rosati involution of End(Ak ) ⊗ Q determined by ϕ. For more details see Shimura–
Taniyama [19, Chap. 14].

Theorem 5.2 (Shimura–Taniyama) Let P = (A, θ ,ϕ) be a polarized abelian variety over
a field k and of type (K,�). Then the following are equivalent.
(i) The abelian variety A is absolutely simple, i.e., not isogenous over k to a product of
abelian varieties of lower dimension.
(ii) The endomorphism ring End(Ak ) is an integral domain of rank 2g.
(iii) The CM type (K,�) is primitive.

Proof This follows e.g. from [20, I.3.3 and I.3.5]. �
The field of moduli of a polarized abelian variety (A,ϕ) over a field k of characteristic

zero is the unique field k0 ⊂ k with the following property [19, I.4.2, Theorem 2]: for all
embeddings σ : k → k , we have

(A,ϕ) ∼= (σA, σϕ) ⇐⇒ σ |k0 = idk0 .

The first main theorem of complex multiplication tells us that k0 · Kr is a class field
over Kr as follows.

Theorem 5.3 (Shimura–Taniyama) Let P = (A, θ ,ϕ) be a polarized abelian variety of
primitive type (K,�) with CM by an order in K . Let k0 be the field of moduli of (A,ϕ). Then
k0 · Kr contains the unramified class field over K r corresponding to the ideal group I0(�r)
of (2.1).

Proof In the case of CM by the maximal orderOK , this is [19, Main Theorem 1 in §15.3],
which in fact gives equality of the fields. In general, this follows from [19,Main Theorem 3
in §17.3]. �
Corollary 5.4 Let (K,�) be a primitive CM type and let C be a curve over C with CM
of type (K,�) by an order in K . If C has a model over K r , then the quotient IKr/I0(�r) is
trivial.

Proof If C has a model over Kr then the field of moduli of the Jacobian J (C) is contained
in Kr . Hence by Theorem 5.3, we have I0(�r) = IK r . �
Remark 5.5 In the case of CM by the maximal order, the converse to Corollary 5.4 is true
as well and follows fromMilne [39,40]. See also Bouyer–Streng [9, Theorem 5.3].

Proof of Proposition 5.1 If J (C)C is simple or End(J (C)C) ∼= O, then the CM type is prim-
itive by Theorem 5.2. In particular, the result follows from Corollary 5.4. �
We now prove the following consequences of the main theorems.

Theorem 5.6 There exist exactly 21 curves C/Q of genus 2 up to Q-isomorphism such
that End(J (C)Q) is an order in a quartic number field. The fields and 19 of the curves are
those given in van Wamelen [8]. The other two curves are y2 = x6 − 4x5 + 10x3 − 6x − 1
and y2 = 4x5 + 40x4 − 40x3 + 20x2 + 20x + 3, which are given in Theorem 14 of Bisson–
Streng [10].
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Proof For such a curve C , let O = End(J (C)Q) and K = O ⊗ Q. Then K is a CM field
by [20, Theorem 1.1.3] and is PQ1 by Proposition 5.1. Moreover, Proposition 5.17 in
Shimura [41] shows that K/Q is Galois, so it is cyclic and hence Theorem 4.7 gives all
possibilities for K .
Bouyer–Streng [9] prove that the 19 curves in [8] are exactly the curves with O = OK

for these fields K and Bisson–Streng [10] prove that the two curves in the statement are
exactly the curves withO � OK that can be defined over Q. �

Theorem 5.7 There are exactly 231 curves of genus 2 over Q up to isomorphism, such
that End(J (C)Q) is the ring of integers of a quartic CM field K and C has field of moduli
contained in the reflex field. The corresponding CM fields K are those of Tables 3 and 4,
and the curves are those of [9, Tables 1a, 1b, 2b, and 2c].

Theorem 5.8 There are exactly 301 curves of genus 2 overQ up to isomorphism, such that
End(J (C)Q) is an order in a quartic CM field K and C has field of moduli contained in the
reflex field. The corresponding CM fields K are those of Tables 3 and 4.

Proof of Theorems 5.7 and 5.8 By Proposition 5.1, the CM field K is PQ1. Theorems 3.26
and 4.7 give exactly the fields.
The main result of Bouyer–Streng [9] is the complete list of curves with endomorphism

ring OK for those fields. There are 19 defined over Q in Table 1A, and the rest have a
quadratic field of moduliKr

0 . Of the latter, only one representative of the Gal(Kr
0/Q)-orbit

of thesemoduli is given in [9], hence the 12+58+36 = 106 entries inTables 1B, 2B, and 2C
of [9] represent 2 · 106 = 212 moduli points over Q. In total, this gives 19 + 212 = 231,
which proves Theorem 5.7.
Now that we know all PQ1 fields we use the methods of Bisson-Streng [10, Theorem 4]

to find all non-maximal orders of CM class number one and their principally polarized
lattices. We made the SageMath script for this calculation available online at [35]. It
yields 70 isomorphism classes of lattices, each corresponding to an isomorphism class
of curves (including the two listed in Theorem 5.6). Together with the 231 curves in
Theorem 5.7, this gives 301 curves, which proves Theorem 5.8. �

Remark 5.9 Of the 301 curves of Theorem 5.8, exactly 68 do not appear in Theorems 5.6
and 5.7. These curves have CM by non-maximal orders.
We computed numerical approximations of the values of the Igusa invariants of the

curves and rounded them to conjecturally correct values in Kr
0 . Models of the curves

can be computed from the Igusa invariants using the methods of [9,42,43]. The Igusa
invariants and some curve models are available at the same link as the calculation.
Proving correctness of these numerical values goes beyond the scope of this article, but

might be possible using [44], [10, last page of Sect. 6.1.5], [45]. It is not needed for the
proof of Theorem 5.8
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