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Tensor network states, and in particular projected entangled pair states (PEPS) have been a strong ansatz
for the variational study of complicated quantum many-body systems, thanks to their built-in entanglement
entropy area law. In this work, we use a special kind of PEPS—gauged Gaussian fermionic PEPS
(GGFPEPS)—to find the ground state of 2þ 1 dimensional pure Z2 lattice gauge theories for a wide range
of coupling constants. We do so by combining PEPS methods with Monte-Carlo computations, allowing
for efficient contraction of the PEPS and computation of correlation functions. Previously, such numerical
computations involved the calculation of the Pfaffian of a matrix scaling with the system size, forming a
severe bottleneck; in this work we show how to overcome this problem. This paves the way for applying the
method we propose and benchmark here to other gauge groups, higher dimensions, and models with
fermionic matter, in an efficient, sign-problem-free way.

DOI: 10.1103/PhysRevD.107.014505

I. INTRODUCTION

Tensor network states (TNS), and matrix product states
(MPS) in particular, have been very fruitful in dealing with
complicated quantum many body models in condensed
matter physics. MPS are ansatz states with a built-in area
law for the entanglement entropy [1–3] equipped with
algorithms which scale polynomially with the system size,
rather than exponentially. This opens the way for a very
efficient ground state search [4,5], as well as studying the
dynamics [6] and thermal states [7,8] of quantum many-
body systems. The idea of tensor networks can be extended
to higher spatial dimensions, when MPS are generalized to
projected entangled pair states (PEPS) [2,3,9,10]. However,
in spite of the great numerical success of MPS, PEPS in
higher dimensions are generally very difficult to handle (i.e.,
contract) numerically; while they have been successfully

applied to two dimensional models in some cases (see,
e.g., [11,12]), the computational time required for con-
tracting PEPS generally scales unfavorably when increasing
the spatial dimension to more than one [13].
Gauge theories are at the heart of our modern physics.

They play a central role in the standard model of particle
physics, giving a local description of the fundamental
interactions [14]. In condensed matter physics, they offer
effective and emergent descriptions of intriguing many-
body phenomena [15]. The local symmetries upon which
they are based allow for a simple and local formulation of
complicated interactions, and give rise to a highly con-
strained Hilbert space. Gauge theories exhibit some fasci-
nating features, such as running coupling, which can be
both useful and challenging: for example, in quantum
chromodynamics (QCD), the theory of the strong nuclear
force, the high energy limit is asymptotically free [16],
allowing one to study collider physics using perturbation
theory. The low-energy side, on the other hand, is strongly
interacting and highly nonperturbative, giving rise to
beautiful yet challenging physical phenomena such as
quark confinement [17,18] involving many open puzzles.
A very successful method to address nonperturbative

gauge theory physics has been within the framework of
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lattice gauge theories [17,19–21]. Based on Monte-Carlo
simulations of Wick-rotated path integrals in Euclidean
spacetime [22,23], many challenging computations of
static quantities in gauge theories have been carried out
(for example, much of our knowledge of the hadronic
spectrum these days is the result of lattice Monte-Carlo
computations [24]). On the other hand, these methods do
not allow us to directly study real-time evolution, and thus
are not suitable for dynamical analysis. Additionally, in
many important physical scenarios with a finite density of
fermionic matter, the sign problem [25] makes the use of
Monte-Carlo methods impossible.
In the last decade, some quantum information based

methods have been proposed to deal with these issues.
First, quantum simulation [26] offers one approach to
simulate this challenging area of physics using atomic,
molecular, optical and solid state devices; one can
design [27–33] and build [34–41] quantum simulators of
lattice gauge theories which are free of the above-men-
tioned issues, and this is a very promising and exciting
avenue of research. Tensor network states, on which this
work focuses, provide another quantum-information-based
way to deal with them [42,43].
In a single space dimension, Matrix product states,

combined with DMRG (density matrix renormalization
group) techniques [4,44] have been successfully applied to
lattice gauge theories, both in particle and condensed matter
physics (see reviews [29,30,42,45] and references therein).
A reliable but limited approach is to extend MPS-based
algorithms to two-dimensional systems defined on ladders
or cylinders. While this approach has been successfully
applied to study gapped phases of matter and the transitions
between them (e.g., [46–49] and others), the computational
cost of this approach grows exponentially with additional
dimensions, making the extrapolation to the thermody-
namic limit generally impossible. In higher dimensions,
tensor network techniques have been used for studying
lattice gauge theories. Lattice gauge theories have been
studied numerically using various methods in [43,50–55].
In parallel, some analytical work has been done out on

the properties of gauge invariant PEPS, and in particular on
gauging mechanisms [56,57] which allow one to mini-
mally couple gauge fields to matter-only PEPS in a
straight-forward manner even for arbitrary groups and
space dimensions. The latter method, when combined with
Gaussian fermionic PEPS [58], was used for introducing
gauged Gaussian fermionic PEPS (GGFPEPS) [59,60].
In such states, a free (Gaussian) fermionic matter state with
a global symmetry is gauged in a way analogous to
conventional Hamiltonian-level minimal coupling tech-
niques [61], resulting in a physically relevant state which
describes quantum matter and gauge fields interacting
in a gauge-invariant way. Moreover, it was shown that
this special class of PEPS allows one to contract the
states and compute correlation functions efficiently using

Monte-Carlo sampling [62]. For this method, the sampling
probability is shown to always depend on the norm of a
quantum state, and hence it is sign-problem-free.
Therefore one can use GGFPEPS as ansatz states for
variational Monte-Carlo [63,64] ground state search of
lattice gauge theory Hamiltonians, overcoming the
common sign problem experienced by lattice gauge
theories, as well as the difficulty of contracting PEPS in
more than a single space dimension. Previous works have
variations of tensor network states as variational Ansatz for
Monte Carlo, e.g., [65–67]. Here, we construct anstatz
states that are locally gauge invariant and adapted to the
gauge group in question.
In previous work [68], this method was used to find the

ground state of a pure Z3 lattice gauge theory. While
successful for most values of the coupling constant, one
important issue with the algorithm was the need for
computation of Pfaffians [69] ofmatrices whose dimensions
scales with the size of the physical system. This scaling
posed a serious bottleneck on usingGGFPEPS as variational
ansatz states [70]. In this work we present a simple way to
overcome this problem, and demonstrate its use for finding
the ground state of a Z2 pure gauge theory [71–75]. While
this computational problem on its own does not suffer from
the sign problem, the techniques demonstrated in this work
can be generalized in a straightforward way to cases which
do suffer from it (e.g., coupling the very same theory to
physical fermions with an odd number of flavors and
imposing the gauge constraint [48,76]).
This paper is structured as follows: In Secs. II and III, we

introduce ZN gauge theories with a special focus on Z2 and
constructing the GGFPEPS ansatz state. Subsequently, the
GGFPEPS are minimized with the algorithm described in
Sec. IV. Numerical results are presented in Sec. V and we
conclude in Sec. VI.

II. PHYSICAL SYSTEM

We focus on pure gauge ZN lattice gauge theories in the
2þ 1d Hamiltonian framework; i.e., the physical system is
a two dimensional spatial lattice, with gauge field degrees
of freedom occupying its links. Due to the absence of
dynamical matter, no physical degrees of freedom are
associated with the sites.
Each link l ¼ ðx; iÞ (labelled by the starting site x and a

direction i ∈ f1; 2g) hosts an N dimensional Hilbert space.
On each link l we introduce two operators, which satisfy
the following conditions

PN
l ¼ QN

l ¼ 1; P†
lPl ¼ Q†

lQl ¼ 1

PlQlP
†
l ¼ eiδQl; δ ¼ 2π

N
ð1Þ

Nth roots of unity, unitarity, and ZN algebra, respec-
tively [73]. If we label the eigenstates of P by fjpigN−1

p¼0,
for which
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Pjpi ¼ eipδjpi; ð2Þ

we can immediately deduce thatQ is a unitary and periodic
(jNi ¼ j0i) raising operator,

Qjpi ¼ jpþ 1i: ð3Þ

Similarly, one can show that the eigenstates ofQ, fjqigN−1
q¼0 ,

for which

Qjqi ¼ eiqδjpi; ð4Þ

are unitarily and periodically lowered by P,

Pjqi ¼ jq − 1i: ð5Þ

The dynamics is given by the Hamiltonian [73]

H ¼ λ

2

X
l

½2 − ðPl þ P†
lÞ�

þ 1

2λ

X
p

½2 − ðQ†
p1
Q†

p2
Qp3

Qp4
þ H:c:Þ� ð6Þ

where the second sum is over plaquettes p—unit squares of
the lattice—and p1, p2, p3, p4 refer to the four links around
p (see Fig. 1 for an illustration of the notation).
The Hamiltonian is gauge invariant; that it, it is invariant

under local unitary transformations of the form

VðxÞ ¼ Pðx; 1ÞPðx; 2ÞP†ðx − ê1; 1ÞP†ðx − ê2; 2Þ ð7Þ

(where êi is a lattice vector in the i ∈ f1; 2g direction; see
Fig. 2). Since ½H;VðxÞ� ¼ ½VðxÞ; VðyÞ� ¼ 0 for any lattice
sites x; y, the Hilbert space is decomposed into a set of
superselection sectors labeled by eigenvalues of all VðxÞ
operators. We shall focus here on the sector whose states
jψi satisfy

VðxÞjψi ¼ jψi; ∀ x: ð8Þ

The N → ∞ limit reproduces compact QED—the
Kogut-Susskind Hamiltonian [19] of a Uð1Þ lattice gauge
theory [17,21]. With this analogy in mind, we refer to the
first (link) term of (6) as the electric energy and to the
second (plaquette) term as the magnetic one.
In this work, we focus on the N ¼ 2 case—a pure Z2

lattice gauge theory [71,77]. There, we canmake the choices
Q ¼ Q† ¼ σx and P ¼ P† ¼ σz, and identify fjpig1p¼0

(fjqig1q¼0) as the eigenstates of σz (σx) with eigenvalues
ð−1Þp (ð−1Þq). The Hamiltonian (6) then simplifies to

H ¼ λ
X
l

½1 − Pl� þ
1

λ

X
p

½1 −Qp1
Qp2

Qp3
Qp4

�: ð9Þ

(again following the conventions of Fig. 1).
Traditionally, a link with jp ¼ 0i is considered as

one that does not carry any electric flux while a link with
jp ¼ 1i carries it. Z2 gauge invariance, in the sector
defined by Eq. (8), implies that we only discuss super-
positions of products of P eigenstates, involving only
closed flux loops.
To gain additional insight into the physics of the model,

let us consider the extreme coupling limits. First, the strong
coupling limit, where λ ≫ 1, for which it will be convenient
to redefine the Hamiltonian as H̃ ¼ λ−1H, and in which the
electric term dominates while the magnetic term is a small
perturbation. For λ → ∞, the ground state takes the form

jψðλ ¼ ∞Þi ¼ ⨂
l
jp ¼ 0il ≡ jψEi ð10Þ

—a product state of jp ¼ 0i on all the links. If we decrease
λ a little bit, such that the condition λ ≫ 1 is still satisfied,
using perturbation theory one obtains that the ground state
becomes

jψðλ≫ 1Þi

¼
�
1þ 1

8λ2
X
p

Qp1
Qp2

Qp3
Qp4

�
jψEiþOðλ−4Þ: ð11Þ

The first order correction is a superposition of all the P
eigenstates which contain a single plaquette’s flux loop; the

FIG. 1. Illustration of the naming conventions on the lattice.
Green dots illustrate the positions of the gauge fields. The small
blue arrows indicate the direction of the discrete divergence at
every vertex. The red square is an oriented plaquette (indicated by
red arrows) with four links p1, p2, p3 and p4.

FIG. 2. Illustration of the Gauss law operator. It is written in
terms of a discrete divergence on the lattice.
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second order correction will be a superposition of all the
possible two-plaquette excitations, and so on. Consider the
Wilson loop operator [17], which in the Z2 case takes
the form

WðCÞ ¼
Y
l∈C

Ql ð12Þ

where C is some close curve on the lattice, usually chosen to
be rectangular. For a rectangular Wilson loop with dimen-
sions R1 × R2, the leading order of the expectation value of
the Wilson loop in the strong coupling regime will be given
by the A ¼ R1R2th order of the perturbative series of
Eq. (11), and hence the Wilson loop will decay with an
area law,

hWðR1; R2; Þiλ≫1 ∝ e−2 ln λR1R2 ð13Þ

a manifestation of a confining phase [17,77].
On the other hand, if we take the other extreme limit of

λ ≪ 1, the magnetic energy dominates. In the extreme case
of λ ¼ 0 the ground state is the magnetic one, jψBi, also
known as one of the toric code ground states [78]. It takes
the form

jψðλ ¼ 0Þi ∝
Y
p

ð1þQp1
Qp2

Qp3
Qp4

ÞjψEi≡ jψBi: ð14Þ

An equal superposition of all the P states satisfies the gauge
invariance condition (8). Raising λ but staying in the λ ≪ 1
regime, we can again use perturbation theory to construct
the state, and a straightforward calculation shows that

hWðR1; R2; Þiλ≪1 ∝ e−2fðλÞðR1þR2Þ ð15Þ

a perimeter law decay, manifesting a deconfined phase
[17,77].
The area law and perimeter law extend beyond the

perturbative regimes, until one approaches the confine-
ment-deconfinement phase transition [72–75,77,79,80].

III. CONSTRUCTION OF AN ANSATZ STATE

We would like to build an ansatz state for a variational
search of the ground state of the Z2 Hamiltonian of Eq. (9),
for different values of λ. What is required from such an
ansatz state?
The state must be gauge invariant, and we would like to

use a construction which will allow us to couple, in future
work, with fermionic matter. We therefore use the con-
struction of gauged Gaussian fermionic PEPS [59,60].
Furthermore, as was shown in [62], one can perform all
the relevant calculations for such states rather efficiently
using Monte-Carlo.
We use this ansatz state, with the Z2 gauge group,

but without physical matter (dynamical fermions). The

auxiliary degrees of freedom which shall be used for
the construction of the state will nevertheless be fermionic,
to allow us to couple to fermions later on and enable the
efficient Monte-Carlo computation. Additionally, wewould
like our family of ansatz states to contain the extreme λ ≫ 1
and λ ≪ 1 cases discussed above; ideally, the ansatz will be
able to interpolate between them and approximate the
ground states in the intermediate regime.
We construct our states as follows: for each site x, we

introduce 4F auxiliary or virtual fermionic modes, asso-
ciated with the edges of links intersecting through it—F
modes in each direction. We denote their creation operators
by fr†αðxÞgFα¼1, fu†αðxÞgFα¼1, fl†αðxÞgFα¼1, fd†αðxÞgFα¼1, rep-
resenting the right, up, left and down directions, respec-
tively. We will unite the 4F virtual modes on a single vertex
x under a general notation of the form fa†αðxÞg4Fα¼1, and
define the Gaussian operator

AðxÞ ¼ exp ðTαβa
†
αðxÞa†βðxÞÞ ð16Þ

on each site (in general, Tαβ may be site dependent, but we
make it uniform to enforce translation invariance).
We define the virtual symmetry operator VðxÞ ¼ V†ðxÞ

by

VðxÞa†αðxÞV†ðxÞ ¼ −a†αðxÞ ð17Þ

and note that

VðxÞAðxÞV†ðxÞ ¼ AðxÞ: ð18Þ

We can decompose the symmetry operator to

VðxÞ ¼ VrðxÞVuðxÞVlðxÞVdðxÞ ð19Þ

such that

VrðxÞr†αðxÞV†
rðxÞ ¼ −r†αðxÞ ð20Þ

and similarly for u, l, d.
We further define the gauging operators UGðx; iÞ (for

i ∈ f1; 2g) on the links, which multiply the fermionic
creation (or annihilation) operators of virtual fermions
associated with them with the physical gauge field oper-
ators Q on the respective links:

UGðx; 1Þr†α ðxÞU†
Gðx; 1Þ ¼ Qðx; 1Þr†αðxÞ;

UGðx; 2Þu†αðxÞU†
Gðx; 2Þ ¼ Qðx; 2Þu†αðxÞ: ð21Þ

Note that
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Pðx; 1ÞUGðx; 1ÞP† ðx; 1Þ ¼ VrðxÞUGðx; 1ÞV†
rðxÞ;

Pðx; 2ÞUGðx; 2ÞP† ðx; 2Þ ¼ VuðxÞUGðx; 2ÞV†
uðxÞ: ð22Þ

We also define, on each link, the Gaussian operators

wðx; 1Þ ¼ exp ðW1
αβl

†
αðxþ ê1Þr†βðxÞÞ

wðx; 2Þ ¼ exp ðW2
αβd

†
αðxþ ê2Þu†βðxÞÞ ð23Þ

which couple the virtual fermions associated on both sides
of a link and satisfy

VrðxÞwðx;1ÞV†
rðxÞ¼Vlðxþ ê1Þwðx;1ÞV†

l ðxþ ê1Þ
VuðxÞwðx;2ÞV†

uðxÞ¼Vdðxþ ê2Þwðx;2ÞV†
dðxþ ê2Þ: ð24Þ

The coupling between neighboring sites is necessary
because the states would remain a product state otherwise.
Finally, the fermionic Fock vacuum jΩi is invariant

under all the virtual VðxÞ, and the gauge field state jψEi
defined in Eq. (10) is invariant under all the physical gauge
transformations VðxÞ. With all the above definitions, we
are ready to define our ansatz state, the fermionic gauged
Gaussian PEPS as

jψi ¼ hΩj
Y
x;i

w† ðx; iÞUG

Y
x

AðxÞjΩijψEi ð25Þ

where UG ¼Qx;i UGðx; iÞ. Let us examine this state care-
fully, to understand what it may describe.
First, on the right, we begin with the physical state jψEi,

which is the no-flux, strong coupling limit ground state, as
defined in Eq. (10). On top of it, we act with the gauge field
operator O≡ hΩjQx;i w

†ðx; iÞUG
Q

x AðxÞjΩi. Note that
this expression contains a part that acts on the gauge-fields
that is not traced out. While all virtual fermions are traced
out, the expression still acts as an operator on the gauge
fields. To add physical fermions to the game, one can add
their Fock vacuum on the right, and add them to the AðxÞ
operator appropriately [62]. Here we only focus on the pure
gauge case and shall now show how to tailor it to the
requirements mentioned above. Note that both jψEi and O
are gauge invariant [this can be shown using the symmetry
properties of Eqs. (18), (22), (24))] and therefore our ansatz
is gauge invariant, that is, it satisfies Eq. (8).
The operator

Q
x AðxÞ creates a virtual fermionic state

when acting on the vacuum jΩi. It is a product state of the
different sites x; on each x, depending on the parameters of
T, we may excite some, none, or all the virtual modes
associated with the four links around it. A leg with an odd
number of excitations will be referred to as one which
carries virtual flux, and one with an even number of
excitations will not. On top of that, we act with the gauging
operator UG, and then apply the resulting operator to the
initial physical state jψEi. The gauging operator multiplies

each creation operator on the outgoing links (right and up)
by the physicalQ operator on the same link, and thus (since
Q2 ¼ 1), links that carry virtual flux will now also carry a
physical one. However, the state is still not gauge invariant,
since when we take the product of all the sites we might
well end up with open flux strings which violate the gauge
symmetry; the projection onto

Q
x;i w

†ðx; iÞ prevents that
possibility, and ensures that the fluxes are properly
connected.
We would like to obtain an ansatz PEPS jψi with the

minimal F possible, which will include the extreme case
ground states, jψEi and jψBi, defined in Eq. (10) and (14)
respectively. We would also like the state to have rotational
invariance, in the lattice sense (invariance under π=2
rotations). In Appendix Awe show that this can be obtained
for F ¼ 2 (two virtual fermions on each link) with

T ¼

0
BBBBBBBBBBBBBBB@

0 −z1 −iy1 −iz1 ia ib ic id

z1 0 −iz1 y1 −d −a −b −c
iy1 iz1 0 z1 −ic −id −ia −ib
iz1 −y1 −z1 0 b c d a

−ia d ic −b 0 −z2 −iy2 −iz2
−ib a id −c z2 0 −iz2 y2
−ic b ia −d iy2 iz2 0 z2
−id c ib −a iz2 −y2 −z2 0

1
CCCCCCCCCCCCCCCA

:

ð26Þ

(where the ordering is r1; u1; l1; d1; r2; u2; l2; d2 and all the
parameters are, in general, complex) and

W1 ¼ σx; W2 ¼ η2σx ð27Þ

(where η4 ¼ −1, and this parametrization was derived for
the choice η ¼ eiπ=4—equivalent parametrizations for other
possible values exist too).
As we show in the appendix, setting all the parameters to

zero gives rise to jψEi; setting them all to zero besides
b4 ¼ − 1

16
produces jψBi.

A gauge invariant construction can be obtained as well
with one virtual fermion per link, F ¼ 1, and (as can be
seen in the appendix) it captures the physics for large and
small values of the coupling constant λwith good precision,
though not exactly. We refer to this construction as the
“minimal” ansatz. However, as can be seen numerically, it
fails in the intermediate coupling regime. Therefore, in the
main text we focus on the F ¼ 2 [cf. Eq. (26)] approach,
which we denote the “optimized” ansatz. For further details
and a direct comparison of the two approaches, we refer to
Appendix A.
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IV. THE ALGORITHM

Having introduced and justified the ansatz physically, we
would now like to recall why it is useful numerically
and discuss the computation algorithm. We tackle this
problem in two steps: first we show how to compute
expectation values for a given set of parameters by
combining GGFPEPS with Monte Carlo [62]. We then
demonstrate how to adapt the parameters using variational
Monte Carlo (VMC) methods.

A. Q eigenbasis formulation

Following [62], we begin by expressing our ansatz PEPS
jψi in the Q eigenbasis. We introduce the gauge field
configuration states, which are simply product states of Q
eigenstates on all the lattice’s links:

jQi ¼ ⨂
x;i

���qðx; iÞi: ð28Þ

As eigenstates of all the Q operators, they satisfy

Qðx; iÞjQi ¼ eiπqðx;iÞjQi: ð29Þ

Due to the orthonormality of the local jqi state on each link,
these states are also orthonormal:

hQiQ0 ¼ δQ;Q0 ¼
Y
x;i

δqðx;iÞ;q0ðx;iÞ: ð30Þ

In this basis, the gauging operators UGðx; iÞ from
Eq. (21) may be seen as controlled operations, transforming
the fermionic operators based on the gauge field’s Q
eigenvalue,

UGðx; iÞ ¼
X
q

jqix;i hqjx;i ⊗ Uqðx; iÞ ð31Þ

where

Uqðx; 1Þ ¼ exp

�
iπq

XF
α¼1

r†αðxÞrαðxÞ
�

Uqðx; 2Þ ¼ exp

�
iπq

XF
a¼1

u†αðxÞuαðxÞ
�
: ð32Þ

As a result (and up to an irrelevant normalization factor, the
PEPS is not normalized in any case), we can rewrite the
ansatz state as

jψi ¼
X
Q

ψðQÞjQi: ð33Þ

The wave function is given by

ψðQÞ ¼ hΩj
Y
x;i

w†ðx; iÞUQ

Y
x

AðxÞjΩi ð34Þ

where

UQ ¼
Y
x;i

Uqðx; iÞ: ð35Þ

Thewave function ψðQÞ is nothing but an overlap of two
fermionic Gaussian states,

jψRi ¼
Y
x

AðxÞjΩi

jψLðQÞi ¼ UQ

Y
x;i

wðx; iÞjΩi ð36Þ

(we have used the fact that UQ ¼ U†
Q).

Fermionic Gaussian states are fully classified by the
elements of their covariance matrices [69]; the covariance
matrix consists of correlators of products of two fermionic
operators (fermionic two-point, or Green’s, functions).
They are central in our algorithm, based on conventional
Gaussian fermionic PEPS techniques [58].
So far, we have expressed the fermionic modes using

creation and annihilation (Dirac) operators. Numerically
and analytically, however, following the Gaussian formal-
ism discussed in [69] and in the context of PEPS in [58], it
is more convenient to work with Majorana modes since
they yield real-valued covariance matrices. As usual, for a
given Dirac mode annihilated by c and created by c†, we
define two Majorana modes

γð1Þ ¼ cþ c†

γð2Þ ¼ iðc − c†Þ ð37Þ

that is, a system with p Dirac modes has 2p Majorana
modes, labeled from 1 to 2p. The Majorana modes
anticommutation relations are given by the Clifford algebra

fγi; γjg ¼ 2δij: ð38Þ

The covariance matrix of a state jΦi is given by

Γa;b ¼
i
2
h½γa; γb�i ð39Þ

¼ i
2

hΦj½γa; γb�jΦi
hΦjΦi : ð40Þ

In Appendix B we show how to compute the covariance
matrix of a state expressed in terms of exponentials of
creation operator bilinears acting on the Fock vacuum, as
the states jψRi and jψLðQÞi that we work with.
We denote the covariance matrix of jψRi by D, and that

of jψLðQÞi by ΓinðQÞ. Since both jψRi and jψLðQÞi are
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product states, it is easy to construct their covariance
matrices out of local ingredients: both covariance matrices
will be block diagonal. D will be a direct sum of identical
blocks, each being the covariance matrix of the state created
by AðxÞ on a single site; ΓinðQÞ is a direct sum of
covariance matrices of pairs of virtual fermions on the
links, which will not be identical due to the gauging.

B. The norm of the state

All our computations will be based on computing
expectation values of operators with respect to the ansatz
state jψi, in the form of Eq. (33). However, as this state is
not normalized, we would like to show how the norm is
computed. Note that

hψ jψi ¼
X
Q

jψðQÞj2 ¼ Tr½jψRi hψRjψLðQÞi hψLðQÞj�

ð41Þ

the squared norm of jψi is nothing but a sum over overlaps
between two Gaussian fermionic density matrices. This can
easily computed in terms of their covariance matrices [81]
giving rise to:

jψðQÞj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
1 − ΓinðQÞD

2

�s
: ð42Þ

C. Computation of the Wilson loop

The first expectation value we are interested in comput-
ing is that of a Wilson loop WðCÞ as defined in Eq. (12).
The key property here [62] is that the configuration states

jQi are eigenstates of the Q operators and thus also of the
Wilson loop operator:

WðCÞjQi ¼
Y
l∈C

ð−1ÞqðlÞjQi ð43Þ

where the qðlÞ values are dictated by the eigenvalues ofQl
operators with respect to the configuration of jQi.
Therefore,

hWðCÞi ¼
X
Q

FWðCÞðQÞpðQÞ; ð44Þ

where FWðCÞ ¼
Q

l∈C ð−1ÞqðlÞ and we define the function

pðQÞ ¼ jΨðQÞj2P
Q0 jΨðQ0Þj2 : ð45Þ

Note that for anyQ, 0 ≤ pðQÞ ≤ 1, and that
P

Q pðQÞ ¼ 1

and thus it is a probability density function over the gauge
field configuration space.

Using Metropolis sampling [82], we can compute the
expectation value using Markov chain Monte Carlo sam-
pling (MCMC) [62]. Instead of the full probability pðQÞ,
we need only the transition probability between two gauge
field configurations,

pðQ → Q0Þ ¼ jΨðQ0Þj2
jΨðQÞj2 : ð46Þ

The denominator of Eq. (45), which is hard to compute, is
avoided. In the Monte Carlo procedure, we use a single-site
update, i.e., we randomly select a single site and propose a
new gauge field for it. Since the changes in the covariance
matrices are only local, we can use the matrix-determinant
lemma and the Woodbury identity to update inverses and
determinants locally after each step.
In general, the exact contraction of a general PEPS is

exponentially hard [83]. Here, since we picked the subclass
of gauged Gaussian fermionic PEPS, we can perform the
contraction required for Wilson loop computation effi-
ciently, using covariance matrices and Eq. (42).

D. Computing P expectation values

The next operator whose expectation value we would
like to compute is P on a given link. It does not act
diagonally on the configuration states jQi, and thus this has
be done with caution [62].
First, note that for a given link l,

hψ jPljψi ¼
X
Q;Q0

ψðQ0ÞψðQÞhQ0jPljQi: ð47Þ

Pl changes q on the link l and does not affect any other
links; thus, the configuration Q0 is identical to Q every-
where but on l, where we have the opposite q eigenvalue. If
we denote Q̂ as the configuration of gauge fields on all the
links but l, such thatQ ¼ ðQ̂; qÞ andQ0 ¼ ðQ̂; q − 1Þ (the
subtraction operation is obviously modulo 2), we have

hPli ¼
hψ jPljψi
hψ jψi ¼

P
Q ψðQ̂; q − 1ÞψðQ̂; qÞP

Q0 jψðQ0Þj2

¼
X
Q

ψðQ̂; q − 1ÞψðQ̂; qÞ
jψðQÞj2 pðQÞ

≡X
Q

FPðQÞpðQÞ: ð48Þ

Therefore, if we have an efficient way to compute FPðQÞ,
we can use Monte-Carlo techniques to evaluate the expect-
ation value of P as well. In Appendix C we show how this
can be done.
In a previouswork [68], the electric energywas calculated

by explicitly transforming the expression to Grassmann
variables. The resulting equation contains a Pfaffian that
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depends on the system-size. In contrast to the determinants
and inverses that are used in the algorithm, the value of the
Pfaffian cannot be tracked across Monte Carlo updates.
Thus, the computation of a system-sized Pfaffian is neces-
sary with each measurement.
In this paper, we introduce a new way to compute the

electric energy that only depends on Pfaffians of constant
size if F > 1. For F ¼ 1, the computation does not depend
on Pfaffians at all (cf. Appendix C). Here, we use the
properties of the Gaussian mapping for covariance matrices
to obtain the numerical value of the electric energy. In the
case of the optimized ansatz (F ¼ 2), Pfaffians of constant
size enter the computation, but since they do not scale with
system size, they do not hamper the computation.

E. Looking for the ground state

We wish to find the ground state by minimizing the
expectation value of the Hamiltonian given in Eq. (9).
Thanks to the translational and rotational invariance of the
Hamiltonian and our ansatz, we can express the energy to
be minimized as

E ¼ nlλð1 − hPiÞ þ npð1 − hQ1Q2Q3Q4iÞ ð49Þ

where nl is the number of links in the system and np is the
number of plaquettes, and hPi, hQ1Q2Q3Q4i refer to the
expectation value on one particular link and plaquette
which we can choose arbitrarily.
The Monte Carlo procedure described above enables us

to compute these expectation values for a given set of
parameters α. In addition to the evaluation, we need a
minimization step that drives the parameters toward the
ground state.
By computing the gradient of the energy with respect to

the parameters dE
dα, we can use the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm [84] to minimize the
parameter values.

V. RESULTS

In Sec. III, we introduced a gauge invariant ansatz state
depending on complex parameters. Its expressive power
depends on the number of virtual fermions F on the links.
In the following section, we will numerically benchmark
the state and explicitly compare the minimal construction
(F ¼ 1) with the optimized construction (F ¼ 2).
Following analytic arguments (cf. Appendix A), we expect
the optimized ansatz to match better with exact results.
The key part of the numerical computation of the energy

is the evaluation of the sum in Eq. (33). In general, the
number of terms in the sum scales exponentially with
the lattice size. Thus, for large systems, we cannot expect to
evaluate the sum exactly and we resort to Monte Carlo
(MC) computations. For small systems, however, an exact
contraction (EC) of the states is feasible. The exact

evaluation on small systems decouples the error that we
introduce by sampling with Monte Carlo from problems
with the ansatz itself: even if we evaluate a bad ansatz state
perfectly with MC, it stays a bad ansatz state.
As a first step, we compare the result of an exact

contraction GGFPEPS with ED data on a 2 × 2 system
(cf. Fig. 3). The notation 2 × 2 corresponds to a single
plaquette that is closed with periodic boundary conditions,
leading to 4 plaquettes in total. Here, exact diagonalization
refers to solving the time-independent Schrödinger equa-
tion explicitly by diagonalizing the Hamiltonian. This is
possible for a Z2 gauge theory since the link Hilbert spaces
have finite dimension.
For high couplings, where the electric term dominates,

the variationally minimized data agrees well with the
ED data. This behavior is expected since the electric
ground state (no magnetic term) can be exactly represented
with the minimal approach. We expect that the minimal
approach has larger problems in the low-coupling region
(dominated by the magnetic energy). In contrast to earlier
works [62,68], however, we see a good agreement at lower
couplings as well. The main difference stems from allowing
the parameters in T to be complex. For a more detailed
analysis, we refer to Appendix A.
The lower panel of Fig. 3 shows the relative error

ϵrðhHiÞ ¼ ðhHiEC − hHiEDÞ=hHiED, where the subscripts
of the expectation values indicate the method of compu-
tation. The plot illustrates that the convergence of the
optimized ansatz is not only better in the transition region,
but across the entire coupling region.
Since we know from the analytic considerations above

that the ground state of the magnetic term cannot be exactly
represented by the minimal approach, we take a more
detailed look at the different terms of the Hamiltonian. The
minimization of the total energy of a system is easier than
obtaining the correct results for other observables. Figure 4

FIG. 3. Comparison of exact diagonalization (ED) data for a
2 × 2 system with exact contraction (EC) data obtained by
explicitly contracting the GGFPEPS. The upper panel shows a
comparison of the minimal and the optimized approach with ED
data. The lower panel displays the relative error between each of
the two approaches with the ED data.
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shows exact contraction data of the two approaches for
a system of size 2 × 2. To further study the problem of
the minimal approach, we visualize the total energy H, the
electric HE and the magnetic HB with different colors. The
curves of the total energy are the same as in the upper panel
of Fig. 3. The minimal approach matches decently for the
low coupling region and well for the high coupling region.
In the transition region around g ¼ 0.8, however, the

total energy is far from optimal and the decomposition into
electric energy and magnetic energy does not follow the
actual ground state (given by ED) at all. Note that the gray
points (electric energy) and the olive points (magnetic
energy) are allowed to lie under the exact solution (solid
line). The variational principle holds only for the total
energy and not for individual parts of the total energy.
The data for the optimized approach shows two distinct

advantages over the minimal approach. First, it fits much
closer to the exact solution, especially in the transition
regions. Second, the variational results follow the magnetic
energy and the electric energy much better. Thus, the
optimized approach is a more faithful description of the
actual ground state.
The exponential scaling of the number of configurations

renders the exact contraction scheme for larger systems
extremely computationally expensive. For these systems,
we use Monte Carlo sampling.
All variational Monte Carlo data shown in the plots is

obtained with 105 warm-up steps and 105 measurement
steps. Our ansatz is translationally invariant and the number
of parameters scales only with F and not with the system
size L2 where L is the linear extent of the lattice. Thus, we
can use the results of EC computations as starting points for
the Monte Carlo computations of larger system sizes. The
error bars on the variational Monte Carlo data are computed

with a rebinning analysis to take into account the finite
autocorrelation from the single-site update.
In the previous paragraphs, we established that the ansatz

is well-suited to describe the physics of Z2 lattice gauge
theories. In Fig. 5, we check the variational Monte Carlo
sampling procedure. We compare data for a 4 × 4 system
computed with Monte Carlo sampling for the GGFPEPS
and with an exact diagonalization code exploiting the
symmetries of the system [48], which relies on the ED
library QuSpin [85,86]. The data shows good agreement of
the Monte Carlo sampling procedure with ED data.
Finally, we can start extending the system to sizes that

are not accessible with exact contractions or exact diago-
nalization. In Fig. 6, we show the energy of the optimized
ansatz (F ¼ 2) for different sizes. For better comparison,
the energy is scaled to the number of vertices L2 on the
lattice. Additionally, we show data of standard quantum
Monte Carlo (QMC) on a 6 × 6 as a comparison [76]. The
good agreement between the L ¼ 4 and L ¼ 6 data can
indicate that finite size effects do not have a large effect on

FIG. 4. Comparison of different energy components between
exact contraction (EC) and exact diagonalization (ED) on a 2 × 2
lattice. The color of the lines and markers encodes the part of the
energy: total energy (purple), electric energy (gray), and magnetic
energy (olive). The shape of the markers indicates the computa-
tional method: ED (full line), GGFPEPS with the minimal
approach (pentagons), and GGFPEPS with the optimized ap-
proach (crosses).

FIG. 5. Comparison of exact diagonalization data for a
4 × 4 system with variational Monte Carlo data for the same
system size.

FIG. 6. Comparison of VMC data of the optimized ansatz with
data obtained via QMC. Data of different system sizes is scaled
with the number of vertices L2 where L is the linear extent of the
lattice.
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the energy of the system. The situation might be different
for other observables.

VI. SUMMARY AND CONCLUSIONS

In this paper, we constructed an efficient variational
ansatz for the pure Z2 lattice gauge Hamiltonian. The
ansatz in form of a GGFPEPS explicitly fulfills the gauge
invariance of the system. The expressibility of the ansatz
can be controlled by the number of virtual fermions on the
links. We show analytically that a single virtual fermion on
the links (F ¼ 1) is not sufficient to represent the weak-
coupling ground state of the theory.
Numerically, we check the analytical result by exactly

contracting the state and showing that the optimized
approach represents the energy more faithfully. Due to
the Gaussian character of the state, the contraction is
efficient and larger systems can be handled via
Monte Carlo sampling.
Additionally, we demonstrate a new method to compute

the electric energy for GGFPEPS. In previous work [68],
the computation demanded the computation of a system-
sized Pfaffian in every measurement. This computation is
substituted by a matrix multiplication and an inversion
which can be tracked through the local sampling procedure.
This can enable the exploration of larger systems and
removes one of the big runtime penalties of the algorithm.
One of the immediate next steps to add physical fermions

to the system. The formulation of the state is written in
terms of fermions to allow a seamless integration of
physical fermions in the ansatz.
Furthermore, the more efficient formulation algorithm

introduce here, may enable simulations in three space
dimensions, as well as of other gauge groups, including
compact ones such as Uð1Þ, SUð2Þ or SUð3Þ, and quite
possibly serve as a way to study nonperturbative gauge
theories, in particular 3þ 1d QCD with a finite chemical
potential, which suffers from the sign problem.
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APPENDIX A: PARAMETRIZATION

In the main text, the parametrization of the ansatz state is
presented in a rather brief manner. Here, we provide more
details and complete the required proofs.

1. Rotational invariance

First, we would like to ensure that the state is rotationally
invariant, in the lattice sense, that is, invariant under π=2
rotations. Wewill do so by briefly reviewing the procedures
of Refs. [59,60]. Let us first define how rotations are
carried out. Given a lattice site, x ¼ ðx1; x2Þ, we define its
rotation by

Λx ¼ ð−x2; x1Þ: ðA1Þ

We can then define the rotation of physical operators
simply as

Qðx; 1Þ → RpQðx; 1ÞRp† ¼ QðΛx; 2Þ
Qðx; 2Þ → RpQðx; 2ÞRp† ¼ QðΛx − ê1; 1Þ ðA2Þ

where Rp is the unitary operator implementing the π=2
rotation of physical operators and states, and similar
relations hold for the P operators. Clearly, the strong
coupling vacuum is rotation invariant,

RpjψEi ¼ jψEi; ðA3Þ

and therefore it is easy to see that the weak coupling
vacuum jψBi is invariant too, following its definition
in Eq. (14).
We also define the rotation of the virtual degrees of

freedom, implemented by the unitary Rv, by

Rva†αðxÞRv† ¼ Rαβa
†
βðΛxÞ ðA4Þ

where Rαβ is a matrix which relates to the rotation of the
legs: taking r to u, u to l etc. Clearly, it has to be unitary.
Thus, it has to be a permutation matrix (up to phases). If we
choose the ordering a†α ¼ ðr†1; u†1; l†1; d†1;…; r†F; u

†
F; l

†
F; d

†
FÞT

and assume that the rotation does not create any mode
mixing, we can simply write R as the direct sum

R ¼ ⨁
F

m¼1

R0: ðA5Þ

where

R0 ¼ η

0
BBB@

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

1
CCCA ðA6Þ

where jηj ¼ 1. If we wish to couple to physical fermions,
the virtual fermions should have similar transformation
rules [59]; since a complete rotation puts a minus sign on a
fermion, this phase must satisfy
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η4 ¼ −1: ðA7Þ

Note that the virtual vacuum is invariant under rotations,

RvjΩi ¼ jΩi; ðA8Þ

and thus we can guarantee, following Refs. [59,60], that our
PEPS jψi, as defined in Eq. (25) will be rotationally
invariant if

RpRvAðxÞRv†Rp† ¼ AðΛxÞ ðA9Þ

as well as

Rvwðx; 1ÞRv† ¼ wðΛx; 2Þ; and

Rvwðx; 2ÞRv† ¼ wðΛx − ê1; 1Þ: ðA10Þ

The rotation property of AðxÞ from Eq. (A9) is obtained
if and only if the matrix T satisfies the equation

RTTR ¼ T ðA11Þ

(just by acting with the rotation operators on the expo-
nential of AðxÞ explicitly). This further constrains the
parametrization.
The rotation rules of wðx; iÞ may be demanded in a

similar fashion. Using the definitions from Eq. (23), we get
that the proper transformation rules (A10) are obtained if
and only if

η2W1 ¼ W2

η2W2 ¼ −W1T ðA12Þ

giving rise the consistency equation

η4W1 ¼ −W1T: ðA13Þ

Since we do not wish η to depend on F, let us consider what
happens for F ¼ 1 where W1;2 are simply numbers and
their transposition is irrelevant; this forces us to satisfy
Eq. (A7) even in the absence of physical fermions.

We choose not to include any free parameters in W1;2;
a common trick in PEPS theory [3] allows one to absorb
all the free parameters into the on-site tensors (T in
our case).
With all that at hand, we can now proceed to construct

the most suitable ansatz state jψi while meeting the
required constraints.

2. Minimal ansatz

The most minimal construction we may try is F ¼ 1: a
single virtual fermion per leg. Then, Tαβ is a four dimen-

sional complex matrix, and a†α has four components, one on
each leg (r, u, l, d). Due to the fermionic anti-commutation
relations, we obtain that T is an antisymmetric matrix,
reducing the number of allowed complex parameters to six.
Solving the rotational invariance conditions of Eqs. (A11)
and (A12) reduces the number of free complex parameters
in T to two:

T ¼

0
BBB@

0 −z −iy −iz
z 0 −iz y

iy iz 0 z

iz −y −z 0

1
CCCA ðA14Þ

and gives rise to

wðx; 1Þ ¼ exp ðl†ðxþ ê1Þr†ðxÞÞ
wðx; 2Þ ¼ exp ðη2d†ðxþ ê2Þu†ðxÞÞ: ðA15Þ

It is easy to see that the strong coupling vacuum is
included here, simply by choosing y ¼ z ¼ 0, but which
other states can be created with this choice? For that, we
attempt to understand the meaning of the y, z parameters.
Recalling that the columns and rows of T are ordered as
fr; u; l; dg, we can see that the parameter y relates to the
creation of virtual fermions along a straight line (r and l, or
u and d) while z is associated with corners. To see this
clearly, we can rewrite our AðxÞ operator as

ðA16Þ

(we omitted the coordinate x which is shared by all
operators for simplicity, and the graphical notation should
be taken with caution, as it does not account for the
ordering of creation operators—one can see the first row as

defining proper ordering for the diagrams below). We can
open the brackets, and discover, due to the fermionic
statistics and the fact the fermionic modes cannot be
excited twice, that we have the following possibilities:
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ðA17Þ

The PEPS jψi is created by a product of such operators
on all sites, acting on the Fock vacuum and the strong
coupling ground state jψEi. The gauging operator adds Q
on all the links where r or u are excited, and thus makes the
“physical flux map” look like the virtual one. The remain-
ing action of w† operators and projecting back on the virtual
vacuum, completing the definition of the PEPS in Eq. (25),
guarantees gauge invariance and proper closing of the
physical flux loops. We can use this to consider the
structure of jψi as a series in the parameters y, z (without
assuming that any of them is small).
The zeroth order will be obtained by the 1 ingredient of

all A and w operators, and thus it will simply be

jψ ð0Þi ¼ jψEi: ðA18Þ

The next order will have to involve the shortest flux
loop—a plaquette—requiring a contribution of four
sites which is not 1, and 1 everywhere else. This will be
a combination of four corners, and thus will be accom-
panied by 16z4. The final phase will be determined by
the fermionic anticommutation rules when contracting with
the right terms from w†; a straightforward computation
shows that

jψ ð1Þi ¼ −16z4
X
p

Qp1
Qp2

Qp3
Qp4

jψEi: ðA19Þ

We define the second order as that with two plaquettes
excited. Here, there are several possibilities; first, is that of
plaquettes p, p0 with no link or site in common. Then it is
straightforward to show that the amplitude is the square of
that for a single plaquette: ð−16z4Þ2 ¼ 256z8. Another
option is that of two plaquettes which share a link; then, we
need four corners and two straight lines, and the amplitude
per such a single excitement is −64z4y2; finally, we
consider plaquettes with one site in common, which can
be created in two ways, giving rise to two contributions to
the amplitude: eight corners (contributing 256z8) or six
corners and two straight lines (−256iz6y2).
Continuing in this way is possible but tedious, so we stop

here in order to evaluate what this state is able to describe.
First, assume that y ¼ 0 and jzj ≪ 1. Then the PEPS may
be seen as a perturbative expansion, and we have

jψi ¼
�
1 − 16z4

X
p

Qp1
Qp2

Qp3
Qp4

�
jψEi þOðz8Þ:

ðA20Þ

If we pick z ¼ ð−128λ2Þ−1=4 ≪ 1, we get, in leading order,
the perturbative solution of the ground state for λ ≫ 1 as in
Eq. (11). The next order, however, cannot be obtained,
since we cannot excite two neighboring plaquettes with
y ¼ 0, so we will not extend the discussion on this
perturbative limit further.
Next, we consider the weak limit. We wish our ansatz to

cover both extreme limits, so what about jψBi? We can take
a look at its definition in Eq. (14) and start expanding all the
brackets. We can clearly see that the superposition includes
jψEi as we have in our PEPS jψi and that all the orders (in
particular the order of a single plaquette), no matter how
many plaquettes are excited and where they are, have the
same amplitude 1. Going back to what we have just
derived, this implies that we need z4 ¼ − 1

16
. Going up

to the second order, there are several kinds of terms; the
pairs of far plaquttes carry an amplitude of 256z8 ¼ 1 as
required; but those who share a link carry an amplitude of
−64z4y2 ¼ −4y2, thus we require y2 ¼ − 1

4
. However, we

will run into contradiction with the other kind of terms,
pairs of plaquettes with only a single site shared. Their
amplitude will be 256ðz8 − iz6y2Þ ¼ 1� 1 ≠ 1, and our
conclusion is that the minimal ansatz does not cover the
weak limit and thus does not satisfy our basic requirements
from an ansatz.

3. Optimized ansatz

Next, we try to build an ansatz that will include jψBi, the
weak limit ground state too, as defined in (14) with two
virtual fermions per leg (F ¼ 2). This time, we shall use a
rather more constructive, bottom-up approach, by first
considering a single plaquette.
Consider one plaquette and label the sites around it by a,

b, c, d, as in Fig. 7. On each leg of the links we introduce a
single virtual fermionic mode, eight altogether, and we
name them as in the figure. Note that the sites a, b, c, d are
entirely independent of the parameters a, b, c, d in Eq. (26).
Suppose this is our entire system, and we construct our

PEPS for it; the initial gauge field state will simply be
j0i ¼ jp ¼ 0i⊗4. The A operators will take the most
general forms
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Aa ¼ 1þ far
†
1ðaÞu†2ðaÞ

Ab ¼ 1þ fbu
†
1ðbÞl†2ðbÞ

Ac ¼ 1þ fcl
†
1ðcÞd†2ðcÞ

Ad ¼ 1þ fdd
†
1ðdÞr†2ðdÞ: ðA21Þ

Gauging will be done as usual. In order to connect the
modes properly, and following the previous construction,
we define the operators

wab ¼ exp ðl†2ðbÞr†1ðaÞÞ
wbc ¼ exp ðη2d†2ðcÞr†1ðbÞÞ
wdc ¼ exp ðl†1ðcÞr†2ðdÞÞ
wad ¼ exp ðη2d†1ðdÞu†2ðaÞÞ: ðA22Þ

Finally, the PEPS for a single plaquette will take the form

jψ□i ¼ hΩjw†
abw

†
bcw

†
dcw

†
adUGAaAbAcAdjΩij0i: ðA23Þ

It is easy to verify that the contraction of the virtual
fermions will give rise to

jψ□i ¼ ð1þ fafbfcfdQabQbcQdcQadÞj0i: ðA24Þ

Why did we bother to do all that? Because we wish to
generate an operator which is a product of such operators
on all the plaquettes,

O ¼
Y
p

ð1þ fp1
fp2

fp3
fp4

Qp1
Qp2

Qp3
Qp4

Þ; ðA25Þ

Clearly, when fp1
fp2

fp3
fp4

¼ 1 for all the pla-
quettes, OjψEi ¼ jψBi.
In order to build this O, we consider a PEPS jψi

with F ¼ 2—two virtual fermions per mode. On each site
x we set

AðxÞ ¼ AaðxÞAbðxÞAcðxÞAdðxÞ ðA26Þ

which allows a site to connect to all the four plaquettes
around it—to one plaquette it plays the role of a from the
above construction, and to the others, the role of b, c, d.
Finally, we introduce

wðx; 1Þ ¼ exp ðl2ðxþ ê1Þr1ðxÞÞ exp ðl1ðxþ ê1Þr2ðxÞÞ:
ðA27Þ

which accounts for the link being ab for the plaquette on
top of it, and dc for the one beneath it. Similarly,

wðx;2Þ¼ expðη2d2ðxþ ê2Þu1ðxÞÞexpðη2d1ðxþ ê2Þu2ðxÞÞ
ðA28Þ

Plugging these into the PEPS construction jψi gives us
jψBi if we choose fafbfcfd ¼ 1.
All we have to do is to show that this is embedded in some

general parametrization with F ¼ 2. Such a construction
will have an eight dimensional T matrix. Demanding the
rotation invariance condition (A11), we obtain the T matrix
introduced in Eq. (26). For the w operators we stick to the
choices of Eqs. (A27) and (A28). They satisfy the rotation
invariance conditions of Eq. (A12). Then, if we set all the
parameters of the T matrix (26) to zero, other than b, we can
get jψBi; inspecting Eq. (26) carefully and comparing it with
our jψBi construction implies that

fa ¼ 2ib fb ¼ −2b fc ¼ −2ib fd ¼ 2b: ðA29Þ
Taking the product, we obtain fafbfcfd ¼ −16b4 and
hence setting b4 ¼ − 1

16
and all the other parameters

of (26) to zero, gives us jψBi. Trivially, setting all the
parameters to zero gives rise to jψEi.
Therefore, we choose the F ¼ 2 PEPS with T given

in (26) and w from (A27) and (A28), or equivalently (27),
as our ansatz. It satisfies all the requirements we set for
ourselves: gauge invariant, rotation invariant, and including
the extreme cases jψEi and jψBi with a minimal number of
parameters.
A big difference between the ansatz used in this work and

previous work [59,68] is lifting the restriction to real
parameters in T. In Fig. 8, we illustrate the differences in
using real/complex-valued parameters and changing the
number of fermions on the links. The mention of layers
in the figure refers to the idea of enlarging the number of
parameters by adding additional GGFPEPS coupled to the
same gauge field. In the absence of physical fermions the
contraction of the GGFPEPS can be seen as awave-function
in the group element basis [cf. Eq. (33)]. If we choose
independent PEPS, we can compute all observables inde-
pendently with only a linear runtime penalty in the number
of layers. For more details on layers, we refer to Ref. [68].
In Fig. 8, panel (a) shows exact contraction data for the

minimal ansatz with real parameters. As in a previous
work [68], we see a 1=λ divergence for low couplings. This
is exactly the prefactor in front ofHB. Thus, the ansatz state

FIG. 7. Notation convention for the single plaquette
construction—the first step toward obtaining jψBiwith our ansatz.

FINDING THE GROUND STATE OF A LATTICE GAUGE … PHYS. REV. D 107, 014505 (2023)

014505-13



reaches a minimum energy for HB and fails to lower it
further. With an increase in the number of layers, the
problem can be mitigated, but a distinct deviation exactly at
the transition region remains. Panel (b) shows a similar plot
for the optimized approach. Even for the minimal number
of a single layer, we get good agreement with the expected
curve (solid line). Upon increasing the number of layers,
we see improvements in the transition region. In panels (c)
and (d) the minimal and optimized approach are shown for
complex parameters, respectively. We note that the diver-
gence at low couplings can be mitigated with just a single
layer also in the F ¼ 1 case [panel (c)] for complex
parameters. The transition region, however, remains hard
to access for the minimal approach. Only the choice of
complex parameters and the optimized ansatz of two virtual
fermions on each link (F ¼ 2) [panel (d)] leads to a good
match across the full range of couplings.

APPENDIX B: COMPUTATION OF THE
COVARIANCE MATRIX IN DIRAC MODES

We consider a fermionic Gaussian state of the form

jψi ¼ N exp

�
1

2
Mija

†
i a

†
j

�
jΩi ðB1Þ

where fai†g2Ri¼1 create fermionic modes from the Fock
vacuum jΩi and Mij ¼ −Mji is an antisymmetric matrix.
The antisymmetric matrix M can always be brought to a

canonical form M0, with a unitary U

M ¼ UTM0U: ðB2Þ
IfMij ∈ R, U is orthogonal, but the decomposition in (B2)
involves UT and not U† for both R and C.
In both cases (M ∈ R and M ∈ C),

M0 ¼

0
BBBBBBBB@

0 λ1

−λ1 0

. .
.

0 λR

−λR 0

1
CCCCCCCCA

ðB3Þ

with λk ∈ R and λk ≤ 0. We denote M0 in terms of a direct
sum

M0 ¼ ⨁
R

k¼1

M0ðkÞ ðB4Þ

where M0ðkÞ ¼ iλkσy.

FIG. 8. Comparison of different choices for the parameters and the number of virtual fermions on the link (F). The top(bottom) row
shows the data for real(complex)-valued parameters. The left(right) column displays data for minimal(optimized) ansatz. All panels
except for the top left one use the same scale for easier comparison.
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In this canonical basis, jψi can be written as a product of
BCS states jψki:

jψi ¼ ⨂
R

k¼1

jψki with ðB5Þ

jψki ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ2k

q ð1þ λkb
†
2k−1b

†
2kÞjΩki ðB6Þ

and bi† ¼ Uijaj†.
The covariance matrix of jψi in this canonical basis, Γ0,

can be written as a direct sum:

Γ0 ¼ ⨁
R

k¼1

Γ0ðkÞ ðB7Þ

where Γ0ðkÞ is the 4 × 4 covariance matrix of the BCS
state jψki.
The Dirac covariance matrix for jψki is given as

ΓD
αβ ¼

�
Qk Rk

R̄k Q̄k

�
ðB8Þ

where

QαβðkÞ ¼
i
2
hψkj½b̃αðkÞb̃βðkÞ�jψki

RαβðkÞ ¼
i
2
hψkj½b̃αðkÞb̃†βðkÞ�jψki

b̃1ðkÞ ¼ b2k−1

b̃2ðkÞ ¼ b2k: ðB9Þ

For jψki ¼ ðuðkÞ þ vðkÞb1†ðkÞb2†ðkÞÞ,

QðkÞ ¼ uðkÞvðkÞσy ¼ −ið1 −M2
0ðkÞÞ−1M0ðkÞ ðB10Þ

RðkÞ ¼ i
2
ð1 − 2v2ðkÞÞ1 ¼ i

2
ð1 −M2

0ðkÞÞ−1ð1þM2
0ðkÞÞ
ðB11Þ

with uðkÞ ¼ 1ffiffiffiffiffiffiffiffi
1þλ2k

p and vðkÞ ¼ λkffiffiffiffiffiffiffiffi
1þλ2k

p and 1 −M2
0ðkÞ ¼

ð1þ λ2kÞ1.
Using the structure of the direct sum for R and Q, we

obtain

R ¼ i
2
ð1 −M2

0Þ−1ð1þM2
0Þ ðB12Þ

Q ¼ −ið1 −M2
0Þ−1M0: ðB13Þ

In the original ordering of the operators b and b† we get

ΓD
0 ¼

�
Q R

R̄ Q̄

�
ðB14Þ

¼ i

 
−ð1−M2

0Þ−1M0
1
2
ð1−M2

0Þ−1ð1þM2
0Þ

−1
2
ð1− M̄2

0Þ−1ð1þ M̄2
0Þ ð1−M̄2

0Þ−1M̄0

!
:

ðB15Þ

Here, we ordered the operators such that fb1;…; bR;
b1†;…; bR†g. Although all λk ∈ R, we keep the notation
M̄0 for easier notation later.
We rotate back to the a basis that we started with and

define

V¼
�
Ū

U

�
; a⃗¼

0
BBBBBBBBBBBB@

a1

..

.

a2R
a†1

..

.

a†2R

1
CCCCCCCCCCCCA
; b⃗¼

0
BBBBBBBBBBBB@

b1

..

.

b2R
b†1

..

.

b†2R

1
CCCCCCCCCCCCA

ðB16Þ

such that

b⃗ ¼ Va⃗

a⃗ ¼ V†b⃗ ¼
�
UT

U†

�
b⃗†:

In the a basis, we obtain

ΓD
αβ ¼

i
2
hψ j½a⃗α; a⃗β�jψi ¼

i
2
hψ j½Vαα0 b⃗α0 ; Vββ0 �b⃗β0 jψi

¼ ðV†ΓD
0 V̄Þαβ ðB17Þ

which evaluates to

ΓD ¼ i

� −M−M 1
2
M−ð1þMM̄Þ

− 1
2
M−ð1þ M̄MÞ M−M̄

�
: ðB18Þ

with M− ¼ ð1 −MM̄Þ−1.
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The covariance matrix in terms of Majorana modes can
be computed by a linear transformation from Eq. (B18)
which follows directly from the definition of the Majorana
modes in Eq. (37).
The direct connection between the parametrization M

and the Majorana covariance matrix enables us to compute
the derivatives of the covariance matrices automatically by
symbolic differentiation. Since the matrices are not modi-
fied during a Monte Carlo evaluation, we can store the
numerical evaluation of the derivatives for a given set of
parameters.

APPENDIX C: CALCULATION OF hPi
Here we shall elaborate and give detail on the compu-

tation of FPðQÞ, that we need for the computation of hPi
and hence for the electric energy part of hHi. Following
Eq. (48), recall that

FPðQÞ ¼ ψðQ̂; q − 1ÞψðQ̂; qÞ
jψðQÞj2 : ðC1Þ

If we define

jϕðQÞi ¼ UQ

Y
x

AðxÞjΩi; ðC2Þ

Ωðx; iÞ as the projector onto the empty state of all the
virtual fermionic modes on the link ðx; iÞ, and

ωðx; iÞ ¼ wðx; iÞΩðx; iÞw†ðx; iÞ; ðC3Þ

we can express the numerator of FPðQÞ as

ψðQ̂; q − 1ÞψðQ̂; qÞ ¼ hϕðQÞj exp
�XF

α¼1

iπr†αrα

�

×
Y
x;i

ωðx; iÞjϕðQÞi ðC4Þ

(without loss of generality—due to the rotational
symmetry—we assume that we compute the electric
energy for a horizontal link). The numerator is the
unnormalized expectation value of the Gaussian operator
exp ðPF

α¼1 iπr
†
αrαÞ

Q
x;i ωðx; iÞ with respect to the

state jϕðQÞi.
For simplicity, let us first assume that F ¼ 1—

the minimal ansatz introduced above. If we denote by ω̃
the product of ωðx; iÞ on all the links but the one where the
expectation value is computed, we obtain for the numerator

ψðQ̂; q − 1ÞψðQ̂; qÞ

¼ 1

2
hϕðQÞjðrl − l†r† − 1þ ll† þ rr†Þω̃jϕðQÞi

∝
1

2
hϕðQÞjω̃ðrl − l†r† − 1þ ll† þ rr†Þω̃jϕðQÞi

¼ 1

2
hϕ̃jðrl − l†r† − 1þ ll† þ rr†Þjϕ̃i ðC5Þ

where r, l are the annihilation operators of the virtual
fermions on both sides of the link we study (belonging to
two neighboring sites). In the third line of (C5), we used the
fact that ω̃2 ∝ ω̃ (as a non-normalized density matrix of a
pure state), as well as that ω̃ commutes with the modes in
parentheses because it acts on different links. For conven-
ience, we define the state

jϕ̃i ¼ ω̃jϕðQÞi: ðC6Þ

The quantity we wish to compute is the expectation value of
an operator acting on the l, r modes of one particular link,
with respect to this state. Since jϕðQÞi is Gaussian, this can
be extracted from its covariance matrix.
All covariance matrices so far have been formulated in

terms of Majorana modes. Thus, we express the operator
whose expectation value we seek in (C5) in terms of
Majorana modes:

rl − l†r† − 1þ ll† þ rr†

¼ 1

2
ðrð1Þlð1Þ − rð2Þlð2Þ þ ilð1Þlð2Þ þ irð1Þrð2ÞÞ: ðC7Þ

In a previous work [68], we rewrote the operator in (C7)
in terms of Grassman variables and obtained a new form for
the gauged covariance matrix of the projectors Γin. The
resulting expression required the computation of a system-
sized Pfaffian which is computationally expensive since it
must be recomputed with every measurement. To our
knowledge, there is no algorithm to infer the new value
of a Pfaffian after a local change in a matrix [70]. In the
following, we present a different method that explicitly
uses the Gaussian character of the GGFPEPS.
Using standard fermionic Gaussian states [69], and in

particular fermionic Gaussian PEPS, techniques [58], we
can compute the covariance matrix of jϕðQÞi using the so-
called Gaussian map; such a Gaussian map takes as its
input the state ω̃, involving the modes on all the links but
the one we are interested in, and it is parametrized by the
covariance matrix D of the state jϕðQÞi. We sort the
fermionic modes into two groups: the ones which are
contracted—those on all the links but the one we look at,
and the noncontracted, or open ones, which are all the rest
(mathematically, this is equivalent to virtual and physical
modes respectively, in conventional fermionic PEPS con-
structions [58])—see Fig. 9 for graphical explanation.

PATRICK EMONTS et al. PHYS. REV. D 107, 014505 (2023)

014505-16



The output of the Gaussian map is the covariance matrix
of jϕ̃i, which belongs to the Hilbert space of the non-
contracted fermions [87]. It is given by [58,69]

Γv ¼ Doo þDocðD̃ − Γ̃inðQÞÞ−1DT
oc; ðC8Þ

where Doo, Doc and D̃ are the blocks of the covariance D
containing correlations of open modes with themselves,
open with contracted, and contracted modes with them-
selves, respectively, as depicted in Fig. 10. Γ̃inðQÞ is the
covariance matrix of ω̃.
Using the basis flð1Þ; lð2Þ; rð1Þ; rð2Þg for the modes, we

can write the matrix Γv as

Γv ¼
1

hϕ̃jϕ̃i

0
BBB@

0 ihlð1Þlð2Þi ihlð1Þrð1Þi ihlð1Þrð2Þi
0 ihlð2Þrð1Þi ihlð2Þrð2Þi

0 ihrð1Þrð2Þi
0

1
CCCA;

ðC9Þ

with h·i ¼ hϕ̃j · jϕ̃i. Since Γv is antisymmetric, we do not
fill out the lower half of the matrix.
We identify the expression (C7) in terms of elements of

the covariance matrix

hϕ̃j 1
2
ðrð1Þlð1Þ − rð2Þlð2Þ þ ilð1Þlð2Þ þ irð1Þrð2ÞÞjϕ̃i

¼ 1

2

�
−
1

i
Γv;1;3 þ

1

i
Γv;1;4 þ Γv;1;2 þ Γv;3;4

�
hϕ̃jϕ̃i

¼ 1

2
ðiΓv;1;3 − iΓv;1;4 þ Γv;1;2 þ Γv;3;4Þhϕ̃jϕ̃i: ðC10Þ

The full expression of hPi reads

hPi ¼ hψ jPjψi
hψ jψi

¼
X
q;Q̂

1

4

ðiΓv;1;3 − iΓv;1;4 þ Γv;1;2 þ Γv;3;4Þhϕ̃jϕ̃i
hψðQ̂; qÞjψðQ̂; qÞi pðQÞ:

ðC11Þ
Finally, we can directly remove the anti-Hermitian part

since P is a Hermitian operator in Z2 and it will add up to
zero in the end. Thus

hPi ¼ hψ jPjψi
hψ jψi

¼
X
q;Q̂

1

4

ðΓv;1;2 þ Γv;3;4Þhϕ̃jϕ̃i
hψðQ̂; qÞjψðQ̂; qÞi pðQÞ: ðC12Þ

Here, the norm hϕjϕi can be computed using (42) for the
modified matrices D̃ and Γ̃in.
In the case of the optimized approach with F ¼ 2, the

expression corresponding to (C7) is

eiΦr†
1
r1eiΦr†

2
r2
1

4
ð1þ l†1r

†
2Þð1þ l†2r

†
1Þ

× r1r
†
1r2r

†
2l1l

†
1l2l

†
2ð1þ r2l1Þð1þ r1l2Þ

¼ 1

4
ðrð1Þ1 lð1Þ2 − rð2Þ1 lð2Þ2 þ ilð1Þ2 lð2Þ2 þ irð1Þ1 rð2Þ1 Þ

×
1

4
ðrð1Þ2 lð1Þ1 − rð2Þ2 lð2Þ1 þ ilð1Þ1 lð2Þ1 þ irð1Þ2 rð2Þ2 Þ: ðC13Þ

The subscript indices denote the different values of F in the
system.
While we can write the expectation value in terms of a

multiplication Majorana modes, we cannot directly trans-
form the products into elements of the covariance matrix.
The products of four Majorana modes are identified with
Pfaffians in terms of submatrices of the covariance matrix
D using Eq. (17) from [69].
The equation [69] tr

trðρipca1ca2 � � � c2pÞ ¼ PfðΓvja1;…;a2pÞ; ðC14Þ

with 1 ≤ a1 < � � � < a2p ≤ 2n, enables the transformation
from products of Majorana modes to matrix elements of the
covariance matrix. Here, Γvja1;…;a2p is the 2p × 2p

FIG. 9. Rearrangement of the contraction pattern in terms of
PEPS contractions. The link at the top is selected for the electric
energy computation. Its legs are kept open to use the Gaussian
mapping.

FIG. 10. Left: covariance matrix in the standard case. Right:
adapted covariance matrix to trace out the environment of a single
link. The subscripts o and c refer to open and contracted modes,
respectively.
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submatrix with the indicated rows and columns.
More concretely, we need the contraction of 4 Majorana
modes

Trðρc1c2c3c4Þ ¼ −PfðΓvj1234Þ: ðC15Þ

In terms of Pfaffians, we can write Eq. (C13) as

1

16
½PfðΓvj1357Þ − PfðΓvj2358Þ − iPfðΓvj1235Þ − iPfðΓvj3578Þ − PfðΓvj1467Þ þ PfðΓvj2468Þ þ iPfðΓvj1246Þ
þ iPfðΓvj4678Þ þ iPfðΓvj1567Þ − iPfðΓvj2568Þ þ PfðΓvj1256Þ þ PfðΓvj5678Þ þ iPfðΓvj1347Þ − iPfðΓvj2348Þ
þ PfðΓvj1234Þ þ PfðΓvj3478Þ�: ðC16Þ

The final expression of hPi reads, after omitting all imaginary terms,

hPi ¼ hψ jPjψi
hψ jψi

¼ 1

16

X
q;Q̂

½PfðΓvj1357Þ − PfðΓvj2358Þ − PfðΓvj1467Þ þ PfðΓvj2468Þ þ PfðΓvj1256Þ þ PfðΓvj5678Þ

þ PfðΓvj1234Þ − PfðΓvj3478Þ�
hϕ̃jϕ̃i

hψðQ̂; qÞjψðQ̂; qÞipðQ̂; qÞ:

APPENDIX D: CALCULATION OF DERIVATIVES

The idea of a variational algorithm is to minimize the
energy by (iteratively) adapting the parameters of a state.
While gradient free optimizations are possible, the gradient
of the energy with respect to the parameters, speeds up the
minimization significantly. The total energy of the system
consists of two parts: H ¼ HE þHB. Since the electric
energy is non-diagonal in the group element basis
(cf. sec. IV D), we go through the relevant calculations
in detail. The easier case of the magnetic energy (diagonal
in the group element basis) follows directly.
We consider an observable O and its expectation value

hOi ¼
X
Q

FOðQÞpðQÞ: ðD1Þ

Our aim is to calculate the derivative with respect to a
parameter α of the matrix TðαÞ. The number of parameters
depends on the value of F. The derivative of the observable
can be written as

∂

∂α
hOi¼

�
∂

∂α
O

�
þ
�
O

∂

∂α jΨðQÞj2
jΨðQÞj2

�
− hOi

�
∂

∂α jΨðQÞj2
jΨðQÞj2

�
:

ðD2Þ

The expression can be derived by considering the loga-
rithmic derivative ∂

∂α lnhOi and transforming back at the end
of the calculation. If the observable does not explicitly
depend on the parameters, as is the case for Wilson loops,
the first term in (D2) vanishes.

In a first step, we focus on the calculation of the second
and third term which are always present since the norm
always depends on the parameters. Instead of directly
tracking the derivative of the parameters through the state
construction, we will use the chain rule. The matrix D does
not change during one Monte Carlo computation with a
given set of parameters and is the only one that contains the
parameters.
The derivative of the norm is

∂

∂α
jΨðQÞj2 ¼ d

dα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
1 − ΓinðQÞDðαÞ

2

�s

¼ −
1

2Nþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð1 − ΓinDÞ

p
× Tr

�
ΓinðQÞ ∂D

∂α
ð1 − ΓinðQÞDÞ−1

�
: ðD3Þ

The calculation is described in more detail in an Appendix
of Ref. [68].
According to the calculation in Appendix C, the electric

energy is obtained by changing the Gaussian map. The
expression for the electric energy contains the covariance
matrix and two norms hψ jψi and hϕ̃jϕ̃i that depend on the
parameters. The exact expression depends on the ansatz.
For the minimal ansatz (F ¼ 1), we compute the

observable of the electric energy with [cf. Eq. (C7)]

FP ¼
1
4
ðΓv;1;2 þ Γv;3;4Þhϕjϕi
hΨðQ; qÞjΨðQ; qÞi : ðD4Þ
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The derivative of the expression reads

∂FP

∂α
¼ 1

4

∂

∂α

ðΓv;1;2 þ Γv;3;4Þhϕjϕi
hψ jψi

¼ 1

4

∂

∂α ½Γv;1;2 þ Γv;3;4�hϕjϕi
hψ jψi þ FPðṽ − vÞ ðD5Þ

with v and ṽ given by

v ¼ −
1

2
Tr

�
Γin

∂D
∂α

D−1ðD−1 − ΓinÞ−1
�

ṽ ¼ −
1

2
Tr

�
Γ̃in

∂D̃
∂α

D̃−1ðD̃−1 − Γ̃inÞ−1
�

ðD6Þ

The tilde decorations used here are those introduced in
Appendix C.
When using the optimized ansatz (F ¼ 2), we have a

slightly different expression for the electric energy

FP ¼
1
16
fðΓvÞhϕjϕi

hΨðQ; qÞjΨðQ; qÞi ðD7Þ

where fðΓvÞ is the sum of Pfaffians in (C16) without the
prefactor of 1

16
.

The derivative of the expression is structurally similar to
one of the minimal approach

∂FP

∂α
¼ 1

16

∂

∂α

fðΓvÞhϕjϕi
hψ jψi

¼ 1

16

½ ∂
∂α fðΓvÞ�hϕjϕi

hψ jψi þ FPðṽ − vÞ ðD8Þ

with v and ṽ defined as above.
In comparison to the minimal ansatz, the expression for

the optimized ansatz contains Pfaffians of certain rows and

columns of the resulting covariance matrix in ∂

∂α fðMÞ.
These are the results of Wick contractions from four-body
correlators. Since fðMÞ is a sum of independent terms, we
only treat a single Pfaffian explicitly

∂

∂α
PfðΓvðαÞji1;i2;i3;i4Þ

¼ 1

2
PfðΓvji1;i2;i3;i4ÞTr

�
Γvj−1i1;i2;i3;i4

∂Γvji1;i2;i3;i4
∂α

�
: ðD9Þ

For both, F ¼ 1 and F ¼ 2, the derivative of the electric
energy contains the derivatives of the covariance matrix Γv.
The expression reads

∂

∂α
Γv ¼

∂

∂α
½DooðαÞ þDocðαÞðD̃ðαÞ − Γ̃inÞ−1DocðαÞT �

¼ ∂Doo

∂α
þ ∂Doc

∂α
ðD̃ − Γ̃inÞ−1DT

oc

−DocðD̃ − Γ̃inÞ−1
∂D̃
∂α

ðD̃ − Γ̃inÞ−1DT
oc

þDocðD̃ − Γ̃inÞ−1
∂Doc

∂α

T
; ðD10Þ

where we used ∂K−1

∂α ¼ −K−1 ∂K
∂α K

−1.
Similar to the idea of tracking ðD−1 − ΓinÞ−1, we can also

track ðD − ΓinÞ−1 and avoid the expensive matrix inver-
sions in each measurement computation.
The derivative of the matrices Doo, Doc,D and D are

derivatives of the covariance matrix of the Majorana modes
D. As described in Appendix B, we know a direct
construction of D in terms of T. Thus, we can calculate
the derivatives symbolically before the actual computation
and insert the appropriate parameters as needed.
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