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• We developed a model for assessing im-
pacts of water consumption on riverine
fish.

• Fish species richness losses are modeled
by a species-discharge relationship.

• The new model has a higher spatial and
fish species coverage than earlier ones.

• The model covers 3592 river basins and
11,450 riverine fish species.

• Water consumption potentially reduces
species richness over 65 % of the river ba-
sins.
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Reduced river discharge and flow regulation are significant threats to freshwater biodiversity. An accurate representa-
tion of potential damage of water consumption on freshwater biodiversity is required to quantify and compare the en-
vironmental impacts of global value chains. The effect of discharge reduction on fish species richness was previously
modeled in life cycle impact assessment, but models were limited by the restricted geographical scope of underlying
species-discharge relationships and the small number of species data. Here, we propose a model based on a novel re-
gionalized species-discharge relationship (SDR). Our SDR-basedmodel covers 88% of the global landmass (2320 river
basins worldwide excluding deserts and permanently frozen areas) and is based on a global dataset of 11,450 riverine
fish species, simulated river discharge, elevation, and climate zones. We performed 10-fold cross-validation to select
the best set of predictors and validated the obtained SDRs based on observed discharge data. Our model performed
better than previous SDRs employed in life cycle impact assessment (Kling-Gupta efficiency coefficient about 4
times larger). We provide both marginal and average models with their uncertainty ranges for assessing scenarios of
small and large-scale water consumption, respectively, and include regional and global species loss. We conducted
an illustrative case study to showcase the method's applicability and highlight the differences with the currently
used approach. Ourmodels are useful for supporting sustainable water consumption and riverine fish biodiversity con-
servation decisions. They enable a more specific, reliable, and complete impact assessment by differentiating impacts
gust 2022; Accepted 8 September 2022

er B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2022.158702&domain=pdf
http://dx.doi.org/10.1016/j.scitotenv.2022.158702
mailto:easpi@dtu.dk
http://dx.doi.org/10.1016/j.scitotenv.2022.158702
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


E. Pierrat et al. Science of the Total Environment 854 (2023) 158702
on regional riverine fish species richness and irreversible global losses, including up-to-date species data, and provid-
ing spatially explicit values with high geographical coverage.
1. Introduction

A wide range of animal species are at risk of extinction (Ceballos et al.,
2015). The Anthropocene is exacerbating impacts from various stressors on
all ecosystems worldwide and freshwater ecosystems are at particular risk
(Reid et al., 2019). Despite only covering about 0.01 % of the Earth's
surface, freshwater ecosystems provide habitat for approximately 9.5 %
of all globally recognized animal species (Balian et al., 2008). However,
global freshwater species population size has declined by 84 % from 1970
to 2016 (WWF, 2020) and >30 % freshwater fish species are threatened
with extinction (IUCN, 2022). In addition, global extinction rates of
freshwater fishes were the highest among all vertebrates in the twentieth
century (Burkhead, 2012). Reid et al. (2019) identified twelve key threats
to freshwater biodiversity. Among these, flow modifications and changes
in river discharge are recognized as persistent and well-known threats.

Water consumption from surface and groundwater has reduced river
discharge (Wada et al., 2013) and therefore affect freshwater-dependent
ecosystems (de Graaf et al., 2019). Water consumption is projected to
increase globally due to urbanization, population growth, as well as
increased needs for water in relation to industry and energy production
(Piesse, 2020). There are options to reduce associated impacts, for example,
with increased water use efficiency or water recycling. However, to make
more sustainable decisions that do not lead to problem shifting
(i.e., prioritizing choices that address a limited set of environmental issues
without considering potential consequences on other aspects), methods
that allow us to quantify impacts of water consumption on freshwater
biodiversity should be in place.

Life Cycle Assessment (LCA) is an approach that allows quantifying en-
vironmental impacts of products and services to identify trade-offs between
different impact categories (ISO, 2006). In the last decade, several Life
Cycle Impact Assessment (LCIA) methods modeling the impacts from
water consumption on in-stream species have been published (Damiani
et al., 2021; Dorber et al., 2019; Hanafiah et al., 2011; Tendall et al.,
2014). These LCIA models deliver characterization factors quantifying the
potential damage to freshwater ecosystem quality per volume of water
consumed. Among them, those quantifying the potential damage in terms
of loss of species are based on species-discharge relationships (SDRs) and
assume that there is a positive correlation between the number of fish
species and the river discharge at the river mouth.

River discharge is a key variable in explaining differences in fish species
richness (Hugueny et al., 2010; Iwasaki et al., 2012; McGarvey and Terra,
2016; Oberdorff et al., 1995). SDRs have been developed at different spatial
scales, both regional (e.g. Xu et al., 2016) and global (e.g. Iwasaki et al.,
2012; Oberdorff et al., 1995; Schipper and Barbarossa, 2022). Variations
of the SDRs have also been investigated, which explain the residual
variance of species richness using ecological hypotheses on habitat size
and heterogeneity, energy availability, and evolutionary history
(Oberdorff et al., 2011) or by clustering similar catchments (Dorber et al.,
2019; Tendall et al., 2014).

Among the existing SDR-based LCIA models, Hanafiah et al. (2011) de-
veloped characterization factors for potentially disappeared fractions of
species due to water consumption. They used one spatially generic SDR de-
veloped by Xenopoulos et al. (2005), including a limited number of basins
(214) between 42° north and south. Building on this approach, Tendall
et al. (2014) improved the effect modeling by regionalizing the SDR for
fish species at finer spatial resolution, using a different regression function
and accounting for species' threat status and rarity. This approach,
however, limits the geographic scope to Europe, with a special focus on
Switzerland. More recently, Dorber et al. (2019) developed SDRs and
2

characterization factors for Norway. All the above introduced models
have in common that they used discharge flow as the only predictor for
either global or regional SDRs, while other basin characteristics that may
have an influence on species richness patterns at world scale, such as
climate, climate history, and habitat heterogeneity (Oberdorff et al.,
2011; Schipper and Barbarossa, 2022), were neglected.

In this study, we present novel characterization factors for LCA
assessing water consumption impacts on freshwater ecosystem quality
globally by developing an effect model based on a regionalized species-
discharge relationship for riverine fish. We (i) developed globally-
applicable SDRs that take into account the confounding effect of predictors
other than discharge, (ii) derived regionalized characterization factors for
impacts of water consumption on freshwater biodiversity, and (iii) tested
their applicability on an illustrative case study. Our SDRs are calibrated
on basin-level species richness estimates based on 11,450 fish species geo-
graphic distribution (Barbarossa et al., 2021), high-resolution simulated
discharge flows (de Graaf et al., 2019), elevation, and climate zones, and
cover 3592 river basins (88 % of the global landmass).

2. Method

2.1. Characterization factor framework

Our characterization factor represents the downstream impact of water
consumption on freshwater ecosystem quality. The characterization factor
is expressed in terms of the Potentially Disappeared Fraction of species
(PDF), to ensure consistency across impact categories as recommended by
the Life Cycle Initiative (Verones et al., 2017), per unit of water consump-
tion rate (m3·yr−1, Eq. (1)). Therefore, multiplying the characterization fac-
tor with the water consumption associated with a product or a service
provides an estimate of the potential damage to the freshwater ecosystem.
The rationale behind our characterization factor is that water consumption
can reduce streamflow, which in turn reduces the habitat extent of freshwa-
ter species, affecting their survival (Oberdorff et al., 2011; Poff et al., 2010).
Thus, reduced flows might lead to the loss of species occurring within the
basin affected bywater consumption. Because the data availability is better
than for other freshwater organisms, we focus on riverine fish only.

CFreg ¼ FF � EF PDF � yr � m � 3� �
(1)

The fate and effect factors (FF and EF, respectively) represent howwater
consumption reduces river discharge (fate, Section 2.2) and subsequently
lead to species loss (effect, Section 2.3) in a river basin. Therefore, the
CFreg represents the impact of water consumption on regional freshwater
ecosystem quality in this specific basin.

By multiplying regional characterization factors (Eq. (1)) with an
weighting factor called Global Extinction Probability (GEP) (Verones
et al., 2022), we convert possibly reversible regional extinctions to poten-
tial irreversible global species extinctions. The Global Extinction Probabil-
ity (dimensionless 0–1) represents the probability of species to go extinct
globally if species disappear locally; thus, it is a proxy for the extinction
risk of a species. Thefirst step to obtaining the Global Extinction Probability
for the fish group is to calculate the sum of the habitat area occupied by
each species in a basin multiplied by the corresponding IUCN threat level
(Categorical approach ranging from Least Concern to Critically Endan-
gered). Second, this value is divided by the sum of the global occupied
habitat area of all fish species. Third, each basin-scale value is divided by
the sum of the threat levels for all present species. This procedure ensures
that the sum of all basin-scale Global Extinction Probabilities for fish



Fig. 1. Relationship between the potential loss of species, the species discharge
relationship, and the effect factors.
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species equals one. Therefore, if all fish species disappear in all regions, the
fish species group will be extinct globally. Basins that contain a relatively
high number of threatened species with a small range area will have
comparably higher values. We obtain the global characterization factor
CFglo representing the impact of water consumption on global biodiversity
with Eq. (2)

CFglo ¼ FF � EF � GEP PDF � yr � m � 3� �
(2)

2.2. Fate factor

The fate of freshwater consumption is conceptually defined as the
change of discharge at the river mouth due to upstreamwater consumption
(Damiani et al., 2021, 2019; Dorber et al., 2019; Hanafiah et al., 2011;
Tendall et al., 2014). We define the fate factor as shown in Eq. (3).

FF ¼ dQ
dWC

(3)

where dQ is the change of discharge at the river mouth corresponding to
the increase of water consumption dWC in the river basin. Therefore, the
fate factor is dimensionless. The fate factors were assumed to be equal to
1 in previous studies (Damiani et al., 2021; Hanafiah et al., 2011; Tendall
et al., 2014), assuming that 1 m3·yr−1 of consumption causes 1 m3·yr−1

loss of discharge. However, this working assumption excluded all hydrolog-
ical exchanges between rivers, aquifers, soil, and atmosphere, and the
hydrogeological characteristics of the basin (de Graaf et al., 2019; Pierrat
et al., in review) while future LCIA models for water use should include
such exchanges (Núnez et al., 2018). Therefore, we used the Depletion Fac-
tors proposed by Pierrat et al. (in review) to derive fate factors for freshwa-
ter consumption including surface water exchanges with the atmosphere,
groundwater, and soil. They are expressed in m3 water availability change
per m3 water consumed that occurred between1960 and 2000. Since the
LCIA convention defines positive scores as negative environmental impacts,
we define the fate factors as the opposite of Depletion Factors for discharge
(Eq. (4)).

FF ¼ � DF (4)

The Depletion Factors track the historical consequences of consumption
on river discharge, groundwater storage, soil moisture, and evapotranspira-
tion between 1960 and 2000 at the river basin scale, based on the outputs of
the state-of-the-art Global Surface water Groundwater Model (GSGM) (de
Graaf et al., 2019; Sutanudjaja et al., 2018). The GSGMmodels the vertical
and lateral groundwater flows,which is essential to comprehensively repre-
sent the interactions between surface and groundwater (DeGraaf and Stahl,
2022). In the case of river discharge, the depletion caused by consumption
is derived from the difference between the simulated yearly average
discharge at the river mouth, including all human interventions
(i.e., human-modified water cycle), and the simulated discharge excluding
all human interventions (i.e., natural baseline). Depletion factors are calcu-
lated for a 40-year period because the exchanges between surface water
and groundwater are long-term hydrogeological processes. Thus, discharge
Depletion Factors represent the cumulative change in river flow caused by
the cumulative consumption volume expressed in m3/m3 from 1960 to
2000 in a basin. Negative and positive values indicate a loss and a gain of
discharge caused by water consumption, respectively. We used discharge
Depletion Factors to estimate fate factors (Eq. (4)), assuming that additional
water consumption (dWC) has the same effect on the hydrological cycle as
past water consumption (1960–2000).

Depletion factors for 8664 river basins were available (Pierrat et al., in
review). We obtained positive fate factors in 7913 basins, corresponding
to 74 % of the global landmass (excluding Greenland and Antarctica),
where water consumption has historically reduced river discharge. In
these basins, river discharge reduction can potentially damage freshwater
biodiversity. The remaining 694 basins were flagged as “no discharge de-
pletion” in the Support Material SM2 and no characterization factors are
3

provided there because the SDR approach should not be used to assess
the impact of discharge increase on species richness (Xenopoulos and
Lodge, 2006).

2.3. Effect factors

2.3.1. Deriving effect factors from the species discharge relationship
We derive marginal effect factors (EFmarginal) and average effect factors

(EFaverage) for each river basin, as recommended in the Global Guidance for
Life Cycle Impact Assessment Indicators and Methods (UNEP/SETAC Life
Cycle Initiative, 2016). They originate from the specie discharge relation-
ship developed in this study (Fig. 1).

Marginal effect factors of water consumption are generally used for
characterization approaches referring to “sufficiently small inventories
that do not change the background situation” in the considered river basins
(Forin et al., 2020). It is the case for most product LCAs as opposed to,
e.g., large scale studies combining impact assessment and Multi-Regional
Input-Output Models, where average characterization factors would be
more appropriate (Forin et al., 2020). We stress that the definition of the
threshold betweenmarginal and non-marginal water consumption change,
causing “small” and “large” discharge changes via the fate factor, cannot be
made on a purely scientific basis and is always somewhat arbitrary. In this
work, we follow the recommendation by (Boulay et al., 2020), who pro-
posed a threshold of 5 % for the foreground water consumption change in
a specific spatial unit to differentiate between marginal and non-marginal
consumption patterns. This threshold was already applied within the
water footprint method AWARE (Boulay et al., 2020), which is the consen-
sus model recommended by the UNEP-SETAC Life Cycle Initiative for
evaluating water scarcity related impacts of water consumption. Thus, the
marginal and average effect factors are applicable for cases in which the
foreground water consumption is respectively <5 % and ≥5 % of the
river basin's total water consumption.

2.3.2. Marginal effect factors
Our marginal effect factor (EFmarginal expressed in PDF·yr·m−3) repre-

sents the loss of fish species richness due to a marginal change in discharge,
whereby the latter is linked to the water consumption via the previously in-
troduced fate factor. Thus, it was estimated using the slope of the response
curve at the working point Q (Fig. 1) (Huijbregts et al., 2011). This defini-
tion was derived in analogy to Dorber et al. (2019), who quantified
freshwater biodiversity impacts due to net water consumption of Norwe-
gian hydropower reservoirs (Eq. (5)).

EFmarginal ¼ 1
SR

� dSR
dQ

¼ 1
SDR Qð Þ �

dSDR Qð Þ
dQ

(5)

where SR refers to the riverine fish species richness, dSR to the loss of fish
species, and dQ to the marginal discharge reduction at the river mouth



E. Pierrat et al. Science of the Total Environment 854 (2023) 158702
(m3·yr−1). The marginal effect factor refers to the potentially disappeared
fraction of fish species per m3 water consumed over a time period in
years (PDF·yr·m−3). Previous SDR studies support the existence of a
positive empirical correlation between discharge and fish species richness
(McGarvey and Terra, 2016; Oberdorff et al., 1995; Schipper and
Barbarossa, 2022; Xenopoulos et al., 2005), thus, marginal effect factors
are always positive.

2.3.3. Average effect factors
The proposed average effect factor (EFaverage expressed in PDF·yr·m−3)

compares the species richness in the anthropized state (i.e. with water
consumption) with the one in the pristine state (without consumption)
(Huijbregts et al., 2011). It was estimated using the average slope of the
SDR between the current discharge flow Q and the pristine discharge Q0

(Fig. 1). The associated calculation is represented through Eq. (6).

EFaverage ¼ 1
Q � Q0

� SR � SR0

SR0
(6)

where Q0 (m3·yr−1) and SR0 are the annual discharge at the river mouth
and species richness if there were no water consumption in the basin
(natural simulation of the GSGM, see Section 2.2), Q (m3·yr−1) and SR
are their respective counterparts when human consumption is considered.
Similar to the marginal effect factor, the average effect factor represents
the species richness loss (SR-SR0 < 0) associated with discharge depletion
(Q-Q0 < 0), and is therefore always positive. Moreover, it is always inferior
to the marginal effect factor in the same basin (see Figs. 1 and S8–9). To
calculate SR0, the species richness in the pristine state, we assume that
the SDR is still valid for Q0, then: SR0 = SDR(Q0).

2.4. Species discharge relationship development

2.4.1. Spatial resolution
The native resolution of the characterization factors is defined at river

basin scale, consistently with the underlying assumption of SDR models
that basins are isolated ecological systems. Therefore, species richness in
a river basin is driven by the hydro-geographic characteristics of the basin
and evolutionary tendencies rather than species migration (Oberdorff
et al., 2011). A basin is defined as an area draining to a common outlet
(i.e., sea or internal sink). For consistency with the fate factors and the
global extinction probabilities, we used the basin delineation derived
from the GSGM. We also used the GSGM to derive the discharge corre-
sponding to the basin delineation.

2.4.2. Geographical scope
Basins with null annual average discharge (n = 738) and unknown

species richness were excluded (n = 4884). Moreover, small basins were
excluded due to higher uncertainty on species richness. Species richness
was derived from occurrence points assuming that the species is present
in the watershed classification at level 12 (Hydroshed 12) (Schipper and
Barbarossa, 2022). Species richness is uncertain in small river basins due
to sampling bias and because some species could be misplaced when the
basin is smaller than the base unit used for mapping the geographic ranges
of the species (Barbarossa et al., 2021). Thus, basins with <2550 km2 area
(80th percentile) were excluded (n = 16,254) to reduce species richness
uncertainty. As a result, we removed a total of 16,725 basins. The final
dataset included 3592 basins, covering 88 % of the global landmass (the
global landmass considered excludes Greenland and Antarctica). Details
about the dataset sources, calculations, and scope map are available in
the Supplementary Material 1, Table S1, Figs. S1–3.

2.4.3. Species and environmental data
Fish species richness in river basins is estimated based on 11,450 river-

ine fish species geographic distribution following the approach in
Barbarossa et al. (2021). Non-native species were included in the study so
that the SDR represents the current fish species richness' sensitivity to
4

discharge. Non-native species have little influence on the overall species
richness pattern as they represent <3 % of total species richness in 90 %
of the river basins. Since fish species richness patterns are known to be in-
fluenced by a number of natural variables (Schipper and Barbarossa,
2022), we included the following variables in our initial model: mean
annual discharge flow at the river mouth (Q in m3·s−1), elevation (E in m
above sea level), slope (S in degrees), basin area (A in m2), topographic

index (TI, expressed as ln A
tan S π

180ð Þ
� �

and dimensionless), mean annual

air temperature (T in K), mean annual precipitation (P in mm), air temper-
ature change since the last glacial maximum (GLM) (ΔT expressed as
Tpresent � TGLM

TGLM
in %), precipitation change since the last glacial maximum

(ΔP expressed as Ppresent � PGLM
PGLM

in %). Additionally, broad geographic catego-
ries deemed as good proxies for several of these continuous variables
were also considered. The advantage of using categories is that it may
simplify the resulting SDRmodel by factorizing several continuous parameters
in one single variable.We added the following categories representing habitat
suitability, phylogenetic history, and energy hypothesis: freshwater major
habitat types (Abell et al., 2008), biogeographic realms (Abell et al., 2008),
and Köpper-Geiger climate zones (Beck et al., 2018). Categories were attrib-
uted to river basins based on the largest overlapping area. Additional informa-
tion on the dataset is available in the Supplementary Material Table S1.

The continuous variables were averaged at the basin scale following the
GSGM basin delineation, as commonly done in SDR studies (Oberdorff
et al., 1995; Schipper and Barbarossa, 2022). We used time series of simu-
lated monthly discharge from the GSGM to derive time series of annual dis-
charge at the river mouth (Q). Then we calculated the annual average Q
over the period 1970 to 2000 as the arithmetic mean of the annual values.
The averaging smooths the inter-annual variability of discharge and the
chosen period is consistent with the climate data (P and T). We also used
the measured discharge from Global Streamflow Indices and Metadata ar-
chive (GSIM) to cross check if the use of simulated discharge affected the
SDR model outcome (Do et al., 2018).
2.4.4. SDR modeling
We assume that the total species richness is in equilibrium with the

long-term average environmental conditions in the river basin.(Oberdorff
et al., 2011) Multi-linear regression models (MLM) were fitted to the log-
transformed species richness. Among other potential predictors, we used
the log-transformed discharge and the log-transformed area as previous
SDR studies did (McGarvey and Terra, 2016; Oberdorff et al., 1995).
Traditional linearmodels were preferred over other types of regressions be-
cause they result in a closed-form equation where coefficients are directly
interpretable, which is necessary to derive characterization factors.
Table 1 shows the five model candidates based on previous SDR literature
(M1–M5). We investigated five models instead of one comprehensive
model (M5) so that we could compare different approaches to SDRs
found in literature. Because the river basin area can also influence the spe-
cies richness positively, we added the log-transformed area of the river
basin (logA) to the list of candidate variables for all models (Iwasaki
et al., 2012; Oberdorff et al., 1995; Schipper and Barbarossa, 2022).

Ten-fold cross-validation was used to select the best model among the
candidates (caret R package (Kuhn Max et al., 2021)). We used stratified
splits of the dataset based on the major habitat type distribution because
some of the habitats have few data points (Fig. S3). Such structured splits
avoids extrapolation when fitting the models. For each model in Table 1
and each fold, the selected variables were automatically chosen among the
candidate variables (dredge function from the R package MuMIn (Barton,
2022)), minimizing the Bayesian Information Criterion (BIC) (Table 1). We
used the BIC to control for complexity because it gives higher penalty to com-
plexmodels than theAkaike InformationCriterion andwe search for themost
parsimonious model. After fitting each model for the ten folds, we selected
the overall best model based on the lowest average BIC across the ten folds.
This model was therefore selected to derive effect factors in this study.



Table 1
Model candidates of species-discharge relationships and literature underpinning.

Model
name

Model justification Candidate variables Selected
variables

M1 Species richness is a function of discharge (Oberdorff et al. 1995, Xenopoulos et al., 2005) log Q logQ
M2 Species richness is a function of available energy, habitat heterogeneity and evolutionary history (Oberdorff

et al., 2011, Schipper and Barbarossa, 2022)
logQ, T, ΔP, ΔT, E, TI, S, log A E, logA, logQ,

ΔP, T
M3 Similar to M2 but habitat heterogeneity and evolutionary history are grouped by major habitat type/realm

(Dorber et al., 2019; Tendall et al., 2014)
logQ, Habitat, Realm, logA logQ, Habitat,

logA
M4 In addition to discharge, latitude and elevation are the two gradients driving biodiversity (McGarvey and Terra,

2016)
logQ, Climate, E, logA logQ, E,

Climate, logA
M5 A combination of the above logQ, T, ΔP, ΔT, E, TI, Slope, Climate,

Habitat, Realm, logA
logQ, Habitat,
ΔP, T

The form of themodel for all candidates was logSR∼ f(logQ, candidate variables). LogSR: natural log-transformed fish species richness, logQ: natural log-transformed annual
discharge at the river mouth, Habitat: the major habitat type in the basin, Climate: the Köppen Geiger 5 main climate zones, Realm: the geographical terrestrial realm.
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The variables Mean Annual Precipitation was excluded upfront before
fitting the models because it was deemed too correlated with log-
transformed discharge (logQ) (Spearman rank coefficient > 0.70). The
dredging function excluded the combinations of candidate variables
which were considered collinear. Correlation between candidate variables
was tested with the Spearman rank coefficient for continuous variables
(excludedwhen |rho|> 0.7, see Table S2), the chi-square test on occurrence
tables for categorical variables (excluded when p-value < 0.01), and the
Kruskal-Wallis test for categorical and continuous variables. As a result,
the exclusion rules removed the pair (T, ΔT) and one category could be in-
cluded (Habitat, Climate, or Realm). Categorical variables and continuous
variables pairs were all found significantly correlated, but no exclusion
rules were applied because the strength of the interaction is not quantified
and such rules would have excluded model M3 and M4 upfront. Moreover,
the logQ was the only variable systematically included in all models and all
first order interaction terms with logQ were included. In doing so, the
coupled influence between discharge and other variables can be detected.
A significant interaction between logQ and habitat type or climate zones
would suggest that the influence of discharge flow on species richness de-
pends on the geographical region.

In addition, we assessed to what extent the choice of simulated dis-
charge over actual discharge measurements and spatial resolution of the
basin boundaries affected our SDRs. To this end, we used an independent
dataset from (Schipper and Barbarossa, 2022) with compiled species rich-
ness and discharge measurements (Do et al., 2018). We applied the model
chosen in our study to the independent data and used the Kling Gupta Effi-
ciency coefficient for comparison. Finally, to assess the improvement in ac-
curacy of our approach, we compared our SDR model with the one
previously used in LCA (Hanafiah et al., 2011).

2.5. Native resolution definition, geographical coverage, and aggregation

To enhance applicability of our characterization factors, we derived
country-level characterization factors. These country values are useful
when the river basinwhere extraction occurs is unknown. FollowingUnited
Nations' Global Guidance on Environmental Life Cycle Impact Assessment
Indicators recommendations for aggregation of characterization factors
(Mutel et al., 2019), aggregated characterization factors at the country
scale (UN, 2022) are obtained as the water consumption-weighted average
of the basin scale characterization factors. The underlying assumption is
that extraction is more likely to occur in regions where there is already sig-
nificant water consumption. We adopted the annual average net water con-
sumption in the river basin from2005 to 2010 asweighting factor (Eq. (7)),
so that the country average includes the most recent water consumption
patterns. Indeed, water consumption has been accelerating since the year
2000 (Wada et al., 2016). However, the averaging period was constrained
by the data availability from the GSGM (no data after 2010).

CFj ¼
∑
k

Ak,j
Ak

WCk CFk

∑
k
WCk

(7)
5

where CFj (PDF·yr·m−3) is the country j characterization factor, Ak,j (m2) is
the area of the intersection of the basin k and the country j, Ak (m2) the area
of the basin k, WCk (m3·yr−1) is the total net water consumption in basin k,
CFk (PDF·yr·m−3) the characterization factor at the basin scale. However,
some basins may have missing characterization factor values. This is be-
cause of two reasons. First, some basins do not present discharge decrease
caused by consumption (“no discharge depletion” label in the Excel file
Support Material SM2). These basins have no characterization factors be-
cause SDRs should not be used to assess the impact of discharge increase
on species richness (Xenopoulos and Lodge, 2006). Second, other basins
were excluded from the scope of our study because they were considered
too small. To fill the missing values of these small basins, we defined a de-
fault characterization factors for each climate zone, according to the struc-
ture of our model (a different intercept is defined for the SDR depending on
the climate zone). The default basin-scale characterization factor is equal to
the combination of the median fate factor and the maximum effect factor in
the climate zone. The basins with default values are flagged in the Supple-
mentary Material (Excel file Support Material SM2). These small basins are
assumed to have a small discharge flow, hence a high effect factor, and an
average impact of water consumption on streamflow (median fate factor).
2.6. Application of the characterization factors to a case study

The aim of the illustrative case studywas to test applicability of the newly
developed characterization factors (CFreg and CFglo), interpret their out-
comes, and to compare the results to those of Hanafiah et al. (2011), which
is part of the LCIA impact method “Recipe 2016” commonly used by LCA
practitioners (Huijbregts et al., 2017). The latter is the precursor of themeth-
odology we present here, and directly quantifies the damage to freshwater
ecosystems from water consumption using fish species as proxies. It has
though a narrower spatial extent (±42° lat.), fewerfish species covered, a re-
gional fish damage assessment only (i.e., unknown contribution to global
biodiversity loss), and a simpler (fate and effect) modeling approach.

We applied the developed characterization factors to an illustrative case
study of rice cultivation in river basins producing 1 kg of rice within India,
China, and USA. Irrigated agriculture, in particular rice cultivation, is a
heavy water consumer, which can lead to water scarcity issues and impacts
on freshwater biodiversity.

- India. Water basins: Ganges and Godavari
- China. Water basins: Yellow River and Pearl River
- US. Water basins: Red River and Arkansas River

Only water consumption for irrigation was considered in the assess-
ment, which was 0.826 m3 per kg rice in India, 0.487 m3 per kg rice in
China, and 0.835 m3per kg rice in the US (Chapagain and Hoekstra,
2011). For each location, the impact was calculated by multiplying the
water consumption and the river basin-specific characterization factors.
Marginal characterization factors were used, since the water consumption
to produce 1 kg rice is small (i.e., <5 %) relative to the water consumption
by all activities in the basin (see Section 2.6).



E. Pierrat et al. Science of the Total Environment 854 (2023) 158702
3. Results and discussion

3.1. Selected species-discharge relationship model

Models M5 and M4 performed better than the other models, i.e., they re-
ported lower BIC (M5: 10113, M4: 10252) and higher Kling Gupta Efficiency
coefficient (M5 mean: 0.71, sd: 0.026; M4 mean: 0.69, sd: 0.022) after run-
ning the cross-validation procedure (Tables SM3–4). However, habitat type
coefficients in M5 were not all statistically significant (p > 0.1) and this vari-
able bears more uncertainty than the climate zone variable in M4 because a
river is less likely to host a single habitat type than climate zone, thus M4
was deemed the best model to develop effect factors (see equations in
Tables 1 and S4).

The regression coefficients reflected two large-scale biodiversity gradi-
ents, namely latitude and elevation. Climate zones in the selected model
are built on precipitation and temperature data, which are strongly related
to latitude. Moreover, empirical studies of terrestrial species distribution
show that species richness changes with past and present climate (Araújo
and Peterson, 2012), which suggests that climate zones are also relevant
for freshwater fish species distribution. The intercept values associated
with climate zones at lower latitudes (e.g., tropical, temperate), hence
warmer andwetter basins, showhigher species richness than basins at higher
latitudes (e.g., Polar, Cold) (Table 2). A notable exception is the arid climate
zone, which had the lowest average fish species richness despite relatively
low latitudes (e.g., in the Sahara Desert). Possible explanations are the
small extent of water bodies in these regions and the prevalence of intermit-
tent streams, whose biodiversity is sensitive to prolonged drying (Leigh and
Datry, 2017; Messager et al., 2021). As expected, the regression coefficients
comparison showed that elevation negatively influences species richness
while discharge and area influences were positive (Oberdorff et al., 2011;
Schipper and Barbarossa, 2022). The hypothesis explaining the elevation
gradient is that high-altitude river basins are more isolated and have lower
primary productivity, thus a lower species richness (Rahbek, 1995). Besides,
higher species richness is found in large basins and with high discharge
because both are proxies for freshwater habitat size (Hugueny et al., 2010).
Even though area and discharge are correlated (Spearman rank coefficient=
0.4), themechanisms bywhich each factor influences the species richness are
not equivalent. Discharge is also a proxy for the available energy in the river
basin, while basin size co-varies with speciation rates, extinction rates
and habitat heterogeneity (Hugueny et al., 2010; Oberdorff et al., 2011).
Dominance analysis of the coefficients show that climate zones is the most
important parameter to predict species richness (R2 average contribution:
14 %–36 %), then discharge (R2 average contribution: 9 %–25 %), followed
by area (R2 average contribution: 1 %–3 %) and finally elevation with (R2
average contribution: 1 %–4 %) (Table S9). M4 showed a better goodness
of fit thanM1, thusM4 reflects the influence of the discharge on species rich-
ness better by considering climate and elevation explicitly compared to tradi-
tional SDR models that include only discharge. Finally, the selected model
M4 does not contain interaction terms, which indicates that, on a log scale,
discharge has the same influence on species richness in each climate zone,
Table 2
Regression coefficients for the best model (M4, Log SR ∼ f(logQ, Climate, Eleva-
tion, logA)).

Covariate/predictor Coefficient

Tropical 2.75 (2.46; 3.05)
Temperate 2.11 (1.70; 2.53)
Cold 1.29 (0.88; 1.70)
Arid 0.94 (0.52; 1.37)
Polar 0.50 (0.06; 0.93)
Elevation −2.00 10−4 (−2.40 10−4; −1.60 10−4)
LogA 0.10 (0.06; 0.14)
Log Q 0.20 (0.18; 0.22)

The columns show the coefficients of the regression with predictors (not centered,
not scaled). P-values for all coefficients are <0.001. 95 % confidence intervals are
reported in parentheses after the estimate (CI2.5; CI97.5).
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in contrast with McGarvey and Terra (2016), where the interaction between
latitude and discharge was found significant.

When testing the selected model robustness on 315 basins between 42o

north and south, with observed discharge measurements (GSIM dataset)
instead of simulated values, the overall goodness of fit decreased as the
Kling Gupta Efficiency coefficient (0.56) dropped by 25 % (residual
variance +3 %, and correlation coefficient −30 %). In comparison, the
Kling Gupta Efficiency coefficient of the SDR model currently in use for
characterization factors (Hanafiah et al., 2011) had a lower performance
than our model (Kling Gupta Efficiency coefficient = 0.13, all goodness
of fit indicators are reported in Table S5 and plots in Fig. S10). Most im-
provement in goodness of fit using our model stems from the bias ratio,
which means that the selected model predicts better average species rich-
ness, probably because our study includes updated and more comprehen-
sive species data (11,450 species) (Barbarossa et al., 2021, 2020).

The regression coefficient of the logQ (0.20) was found to be two times
smaller in our model than the SDR developed in Xenopoulos et al. (2005)
that was previously used for calculating characterization factors in LCA
(Hanafiah et al., 2011). Nevertheless, our estimate is consistent with the
slope range estimated in different regions of Europe (0.06–0.45), but
26 % lower than the European average estimate (0.30) (Tendall et al.,
2014). Therefore, including additional variables (climate, elevation, area)
to describe the species richness beyond the sole discharge has reduced
the latter's overall influence in the SDR by removing the influence of con-
founding variables. This may also be due to the correlation between dis-
charge and climate zone, which may lead to underestimating the
discharge regression coefficient. Nevertheless, reduced logQ slope is consis-
tent with a study on an Island Species-Area Relationship (ISAR) which ex-
plored the correlations between slope and intercept in such models
(Matthews et al., 2019). Island Species-Area Relationship models predict
species richness as a power function of island area within a given archipel-
ago in a similar way that SDRmodels predict freshwater species richness as
a power function of river discharge. Drawing a parallel between SDR and
Island Species-Area Relationship, the influence of the island area (river dis-
charge in our case) on species richnesswas found to decreasewhen the area
and the scale of the archipelago (geographical coverage and number of ba-
sins in our case) and the intercept increase (additional variables). There-
fore, the lower slope of the new SDR may be explained by the higher
geographical coverage of our dataset and the inclusion of additional vari-
ables (elevation, climate zone) in the SDR compared to previous models
(Hanafiah et al., 2011; Tendall et al., 2014).

Linear model assumptions, i.e., linearity, independence of residuals, ho-
moscedasticity, normality of residuals, were checked visually on the resid-
ual plots (Fig. S4, observed vs simulated log species richness plot displayed
Fig. S5). Post hoc verification was deemed satisfactory except for the inde-
pendence of residuals hypothesis. The residuals are positive where species
richness is low; thus, the selected model overestimates the species richness
in these basins (e.g. arid climate zone). Conversely, residuals are slightly
more often negative where species richness is high (e.g. tropical climate
zone); thus, the selected model tends to underestimate the species richness
there. This indicates that the model predicts medium species richness best.
Moreover, spatial autocorrelation between residuals weighted by the in-
verse of the distance between basin centroids was found to be small
(Moran I = 0.0232) though statistically significant (p < 0.001)
(Table S6). Overall, the selected model was found to be robust enough
and thus used to subsequently calculate effect factors for use in LCA.

3.2. Effect factors results

Updated effect factor formulas were obtained by inserting the model

(Table 2) into Eqs. (5) and (6): EFmarginal ¼ a
Q (Eq. 8) and EFaverage ¼

Q
Q0

� �a

� 1

Q � Q0
(Eq. 9, S4), where a is the regression coefficient of logQ, Q is the

discharge, and Q0 the discharge if there were no consumption in the river



Fig. 2. Marginal (A) and average (B) effect factors at the basin scale in regional PDF·m−3·yr in the different climate zones (C).
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basin (more details in the Supplementary Material Section S3). Therefore,
the regionalization of the SDR, i.e., the inclusion of additional variables in
the model (see Eqs. S2 and S3), influenced the effect factors as much as it
modified the coefficient a. In that sense, the developed SDR is midway be-
tween a bioclimatic envelope model and a species-discharge relationship
(Araújo and Peterson, 2012). Interestingly, a was found constant across
river basins, thus correcting logQ slope for each climate zone did not in-
crease the model goodness of fit.

Marginal, regional effect factors (Fig. 2A) ranged from 3.93 10−14 to
0.10 PDF·yr·m−3, and the distribution of average and marginal EFs are re-
ported in Table S7. In four out of five emblematic rivers (Nile, Ganges,
Yangtze, Euphrates, Amazon, Niger), marginal effect factors were on aver-
age 45 % lower than Hanafiah's characterization factors (PDF·yr·m3·m−3)
divided by the river volume estimate (Table S8). The differences with
Hanafiah's transformed characterization factors come from the discharge
data and the basin delineation, which came from another global hydrolog-
ical model (WaterGap 2, 2005 version). The order of magnitude of the mar-
ginal effect factors in the cold climate zone (median value: 6.85 10−11) is
consistent with Dorber et al.'s (2019) values for Norway (8 10−7–7.10
10−12). While Dorber et al. (2019) included the effect of the last glaciation
on species richness by correcting the slope of the SDR, ourmodel simply de-
fines a smaller intercept in the Cold and Polar zones (Table 2) (Araújo and
Peterson, 2012). Moreover, the new regional, marginal effect factors were
overall higher in dry and polar climate zones due to lower discharge flow,
and lower in tropical basins due to higher discharge flows (Fig. 2A). The
bias in species richness estimates for low and high species richness may in-
flate EF in dry and polar climate zones, while underestimating the EF in
tropical zones. A similar trendwas observed for the regional, average effect
factors (Fig. 2B), but slightly less dispersed in the Arid climate zone. The
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regional, marginal effect factors are higher than the regional, average
ones in 99 % of the basins, and the values are equal in the remaining 1 %,
which was expected observing the slopes in Fig. 1. The ratio between aver-
age andmarginal effects is generally close to one except in 10% of the river
basins where it is higher than 9 %. It corresponds to regions where the dis-
charge has been heavily affected by water consumption. Further details
about the statistical analysis and marginal and average effect factors are
available in Table S7 and Fig. S6.

3.3. Spatial pattern of characterization factors

Four sets of characterization factors (marginal vs. average, regional bio-
diversity vs. global biodiversity) with their confidence intervals are re-
ported in the Supporting Material Excel file SM2. We report the effect and
characterization factors separately in SM2 to ensure the versatility of the ef-
fect factors, which are the core of our development. The aggregated charac-
terization factors at country scale and global values (excluding all default
values, see Section 2.4) are also available in this file.

Marginal characterization factors were calculated for both regional
(Fig. 3A, n= 2350 basins) and global damages (Fig. 3A, n= 2320 basins)
to freshwater fish biodiversity. The difference of geographical coverage be-
tween regional and global characterization factors comes from the combi-
nation of the fate and the effect factors and the Global Extinction
Probabilities validity conditions (Sections 2.1, 2.2).We calculated similarly
two sets of average characterization factors (characterization factor re-
gional, global) (Fig. S6). In line with the effect factors, average characteri-
zation factors tend to be comparable to the marginal ones. The average
impacts are smaller than marginal impacts in 100 % of the basins, in line
with the effect factor tendency. This implies that any additional, small



Fig. 3.Marginal characterization factors for impacts of water consumption on regional biodiversity (A) and global biodiversity (B).
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water consumption nowadays is more likely to cause slightly more impacts
than our average consumption in the past.

Higher characterization factors for regional species loss are especially
found in smaller river basins in arid regions, such as North Africa, the Mid-
dle East, Central Asia, and Australia. This relates to the discharge influence
on the effect factor (proportional to 1/Q), see Updated effect factor formu-
las were obtained by inserting the model (Table 2) into Eqs. (5) and (6):
EFmarginal ¼ a

Q (Eq. 8), causing small basins to have higher characterization
factors than large ones. In contrast, higher characterization factors for
global species loss are also found in larger basins, such as the Nile River
in North Africa and the Colorado River and Rio Grande in North America.

Coherently, the effect factors contribute more to the variation in the re-
sulting regional characterization factors than the fate factors. The effect
factors exhibit a higher relative interquartile range and a higher Spearman
rank correlation with the characterization factors (Tables S10 and S11).
However, the Global Extinction Probability contributes the most to the
variation in global characterization factors. These are, on average
Fig. 4. Freshwater biodiversity impacts from water consumption per kilogram of cultiva
assessing regional biodiversity impacts (CFreg), (B) Hanafiah et al. (2011), and (C) the n
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(disregarding basins with zero global loss), seven orders of magnitude
lower than for regional species loss. Such a large difference is expected,
given that not all species that get lost regionally will go extinct globally.
Both regional and global characterization factors are right-skewed, i.e.
they have more lower values, which is consistent with the effect factors
(Fig. 2A, B).

3.4. Case study application

The comparison reveals differences in the ranking of production sys-
tems across methods and differences in the span of results within each
method (Fig. 4, Table S12). The results of applying Hanafiah and CFreg dif-
fer particularly in India: with CFreg producing 1 kg rice in Godavari river
basin is markedly worse than producing it in the Ganges river basin,
while with Hanafiah the impacts are higher in the Ganges river basin and
the difference in impacts between the two basins are smaller (factor of 2
in Hanafiah vs factor of 11 in CFreg). Although both methods employ
ted rice in the three scenarios evaluated using: (A) the new characterization factors
ew characterization factors assessing global biodiversity impacts (CFglo).
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SDR-based effect models in their characterization factors, there are many
differences in the underlying models that explain the disagreement in the
results. Contrary to Hanafiah et al., CFreg is not weighted by the river vol-
ume, which renders an impact in a smaller river such as the Godavari
River (river volume estimate 0.35 km3) proportionally higher than in a
larger river such as the Ganges River (river volume estimate 2.65 km3).
Therefore, the impacts calculated with CFreg are consistently higher for
smaller rivers than withHanafiah in a given country (e.g., Godavari charac-
terization factors are higher than Ganges characterization factors). More-
over, in Hanafiah, the fate factor was assumed to be always equal to one,
while, in the new method, a consumption of 1 m3 of water leads in the
assessed locations to a depletion between 0.27 and 0.86 m3 water in down-
stream surface water (Godavari fate factor = 0.40, Ganges fate factor =
0.34).

At present, the new LCIA method is the only one assessing impacts on
freshwater biodiversity at regional and global scales (i.e., regional, and
global PDFs), using CFglo for the global assessment. Impacts on global bio-
diversity (Fig. 4C) are between two and three orders of magnitude smaller
than impacts on regional biodiversity (Fig. 4A) for all basins, which is con-
sistent with the regional and global characterization factors distribution
(Section 3.3). Applying the global version would switch the hotspot,
i.e., the basin with highest impact for a given method, from Godavari and
Yellow River to Red River/Arkansas River as most impactful scenarios.
This indicates thatfish regional losses in the Red River/Arkansas River con-
tribute more to global fish extinctions. Choosing CFglo or CFreg depends pri-
marily on the objectives of the LCA, i.e. to protect local or global
biodiversity, and if results should be aggregated or not. CFglo improves com-
parability of damages to biodiversity across basins by taking the species
distribution and threat level into account. Based on the new method, pro-
ducing rice in the Ganges River or in the Pearl River appears to be the
best compromise to minimize damages on regional and global biodiversity
altogether. This conclusion is partially consistent with Hanafiah's method,
where the lowest impact is in the Pearl River. However, rice should be pro-
duced in the Ganges River basin and Yellow River basin to minimize im-
pacts on regional and global biodiversity respectively.

Overall, the ranking of the production systems depends on the location
within a country, highlighting the importance of using river basin-specific
characterization factors. For instance, there are basins with high and low
impacts in China and India using CFreg and Hanafiah et al.'s method. Rice
irrigation water requirements vary between river basins too. However,
this has not been considered here because of lack of data. If considered,
the differences in the ranking between locations might have been larger.
The span of impact results was one order of magnitude in Hanafiah et al.'s
method and two orders of magnitude in the new method with CFreg and
CFglo. Given the large characterization factors range of the new method, it
shows a gain in the discriminatory power across locations as compared to
Hanafiah et al.'s method. However, the effects of water efficiency improve-
ment (i.e., reduction of irrigation water consumption per unit of product)
on the basins ranking would have been more pronounced with Hanafiah
et al.'s method, as, due to a shorter characterization factor span and equal
fate factors both the Life Cycle Inventory and the characterization factor
have a more balanced influence on the results. Both methods provide char-
acterization factors for the locations assessed in the case study. However,
the spatial detail of the new method is lower for the central US, where
the areas producing rice are lumped together into the Mississippi basin
that occupies over half of the surface of the country and where impacts of
a unit of water consumption are thus considered to be the same. This is
identified as a source of spatial uncertainty in impact results.

3.5. Limitations and future research

3.5.1. Uncertainty of characterization factors
Mutel et al. (2019) recommend distinguishing spatial variability from

model uncertainty when providing spatially differentiated characterization
factors. The parametric uncertainty at river basin scale depends on the
uncertainty of the fate factors, effect factors and Global Extinction
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Probabilities. The uncertainty of the fate factors and the Global Extinction
Probabilities are unknown, but a first estimate of confidence intervals of
the characterization factors can be derived from the effect factor's confi-
dence intervals thus reflecting SDR regression parameter uncertainty
(Table 2). The lower estimate of the characterization factor is the combina-
tion of the fate factor with the lower bound of the effect factor confidence
interval (CI5), and vice versa for the higher estimate of the characterization
factor. The ratio of high to low characterization factor estimates is a rather
small constant (1.14) and in line with the confidence intervals of the regres-
sion coefficients of the SDR (Table 2). Nevertheless, this range underplays
the actual uncertainty of the characterization factors because we could
not propagate all sources of uncertainty from themodel and the data inputs
due to a lack of information, e.g., uncertainties from the simulated dis-
charge, estimated species richness and other data inputs, fate factors,
Global Extinction Probability. Uncertainty ranges for country-scale charac-
terization factor are derived from the combination of the lower and upper
values of basin-scale characterization factor, respectively.

Moreover, we used simulated discharge from the GSGM to calculate the
effect factor rather thanmeasurements tomaximize the geographical cover-
age of ourmodel. Reliable measurement time series are not available for all
river basins even in consolidated databases and tend to be biased towards
large anthropized rivers (Krabbenhoft et al., 2022). Therefore, the use of
simulated discharge data was necessary to avoid sampling bias. As a result,
the effect factors are tied to the precision and accuracy of GSGM-simulated
discharge, which has been extensively discussed in other studies (De Graaf
et al., 2015, 2014; Sutanudjaja et al., 2014; Van Beek et al., 2011).

Finally, we used MLMwith log-transformed species richness to develop
our SDR as was done by (Dorber et al., 2019; Tendall et al., 2014;
Xenopoulos et al., 2005). Other link functions (cumulative Weibull) or
model types (e.g., Generalized Additive Models for Location, Scale and
Shape) would possibly yield different goodness of fit indicators and possi-
bly different regression coefficients. Nonetheless, the logarithm is relevant
to removing the influence of scale from the model (Glazier, 2021) and test-
ing the significance of the variables (Ives, 2015).

3.5.2. Limitations and research needs
In models where SDRs are used to estimate the presence of species in

rivers and the potential loss of biodiversity associated with reduced river
flow, discharge is interpreted as a proxy for habitat availability, analogous
to species-area relationships for terrestrial ecosystems (Hugueny et al.,
2010; Oberdorff et al., 2011). While this approach has the advantage of
being relatively simple to apply, several studies have highlighted some lim-
itations (Tedesco et al., 2013; Xenopoulos and Lodge, 2006).

The effect factor is not valid for representing the impact of increased dis-
charge on species richness (Xenopoulos and Lodge, 2006), thus, no character-
ization factors are provided in these regions, and the model is not applicable
for assessing the consequences of water release into the environment. Future
studies should investigate how discharge increase would affect fish species
richness and if the SDR can be adapted to reflect such effects, as recently
done for emission of essential substances (Roibás-Rozas et al., 2022).

Species richness is generally associated with river flow via statistical re-
gression, and the actual cause-effect relationship is more difficult to interpret
(Yoshikawa et al., 2014). Therefore, this paper explores other explanatory
variables of species richness in performing the regression analysis, selecting
a seemingly more robust model than those based solely on river discharge.
However, the causal relationship between decreased discharge at the river
outlet and decreased species richness remains more difficult to investigate
with the available data, and validation with empirical data would be neces-
sary (Turgeon et al., 2021).

Another source of uncertainty concerns the choice of an indicator of spe-
cies loss. Oberdorff et al. (2011) note that models based on SDRs return the
fraction of species “committed to extinction” and that an actual extinction
may occur over a period of time ranging from several tens to thousands of
years. This uncertainty stems from the assumption that species occurrence
is in equilibrium with hydrological conditions, which is often not the case
(Olden et al., 2010). It is therefore necessary to investigate actual extinction
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rates. It should be noted, therefore, that the indicator proposed in this arti-
cle refers to a potential loss of species richness. For LCA application, it is
common practice, as the currently recommended metric is precisely poten-
tially disappeared fraction of species (Verones et al., 2017).

We selected the annual discharge as the most relevant hydrological pa-
rameter, while additional variables, which are related to discharge flow re-
gime or area, may be associated with species extinction (McGarvey, 2014;
McGarvey and Terra, 2016; Vander Vorste et al., 2017). These include ad-
ditional descriptive variables of river flow in addition to magnitude
(e.g., timing, duration), and connectivity. Nevertheless, average annual
flow possesses good descriptive power to predict species richness and was
found to explain equal or more variance of fish species richness than low
flow, high flow, and flow seasonality for global scale modeling (Schipper
and Barbarossa, 2022). Future research could focus on modeling the effect
of flow variability and flow pulse timing alterations, which affect freshwa-
ter biodiversity through mechanisms that are not entirely covered by our
model (Freeman et al., 2022; Poff and Zimmerman, 2010). For example,
the river drying duration is a key determinant of freshwater macro-
invertebrate biodiversity in intermittent streams (Leigh and Datry, 2017).

An additional factor to consider regarding the dependence of species
richness on discharge is that the characteristics of assemblages are not con-
sidered nor are freshwater taxa other than riverine fish. In fact, specific
traits and habitat preferences result in species responding differently to
changes in hydrologic and hydraulic conditions. This factor can be taken
into account by models that consider changes in community composition,
including the establishment of non-native species, which might escape
models based on species richness (Damiani et al., 2019; Turgeon et al.,
2021). We limited our survey to riverine fish species because data are
more complete and with global geographical coverage, while other fresh-
water species data, e.g., invertebrates, are scarce. Moreover, non-native
species influencewas considered negligible, as non-native species represent
3 % of the dataset used to develop the SDR. We also did not include lentic
species, i.e., species living in standing water bodies due to lack of data.

Another important consideration relates to the dependency of SDRs on
the scale. While considering water availability at the basin level allows the
model to be applied to large-scale studies, such as those in life cycle assess-
ment, it is important to note that, within basins, there is a longitudinal zo-
nation and heterogeneity in habitat and species richness that determines
basin-wide species diversity (Dunn and Paukert, 2021; McGarvey and
Ward, 2008; Rolls et al., 2018). For instance, Schipper and Barbarossa
(2022) found that climate is a more important predictor of fish species rich-
ness between rather thanwithin basins, while the topographic index helped
explain within basin patterns of fish species richness. For this reason, future
research should consider the characteristics of species assemblages and re-
gional freshwater habitats (Damiani et al., 2021) to improve the underlying
models for damages to biodiversity in LCA.

4. Conclusions

We developed new LCA characterization factors for water consumption
damage on riverine fishes for 3592 river basins. The effect factors and their
confidence intervals were derived from a refined species-discharge rela-
tionship. This regionalized SDRwas built on an up-to-date riverine fish spe-
cies distribution dataset (n=11,450) and covers 88 % of global landmass.
The most parsimonious model included, besides discharge, climate zones
and elevation as predictors, in line with the general expectation that
macro-scale biodiversity patterns are well-described by latitudinal and ele-
vation gradients (McGarvey and Terra, 2016).

The regionalized characterization factors enable more refined impact
assessment by differentiating marginal and average impacts, and damages
to regional (river basin-scale) and global biodiversity (4 sets of characteri-
zation factors), while previous methods only considered marginal regional
impacts. Moreover, they feature higher discriminatory power, with a range
spanning eight orders of magnitude as opposed to the two orders of magni-
tude of previous characterization factors (Hanafiah et al., 2011), likely re-
sulting from a more accurate and comprehensive underlying SDR model.
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In view of the fast degradation of freshwater ecosystems and increasing de-
mand for freshwater resources, our characterization factors can support
decision-making towards more sustainable systems and products by ac-
counting for freshwater biodiversity impacts in Life Cycle Assessment.
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