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Abstract 

Objective: Prediction models for cardiovascular disease (CVD) mortality come from high-income countries, comprising laboratory 
measurements, not suitable for resource-limited countries. This study aims to develop and validate a non-laboratory model to predict 
CVD mortality in a middle-income setting. 

Study design and setting: We used data of population aged 40-80 years from three cohort studies: Tehran Lipid and Glucose 
Study (n = 5160), Isfahan Cohort Study (n = 4350), and Golestan Cohort Study (n = 45,500). Using Cox proportional hazard models, we 
developed prediction models for men and women, separately. Cross-validation and bootstrapping procedures were applied. The models’ 
discrimination and calibration were assessed by concordance statistic (C-index) and calibration plot, respectively. We calculated the 
models’ sensitivity, specificity and net benefit fraction in a threshold probability of 5%. 

Results: The 10-year CVD mortality risks were 5.1% (95%CI: 4.8-5.5) in men and 3.1% (95%CI: 2.9%-3.3%) in women. The 
optimism-corrected performance of the model was c = 0.774 in men and c = 0.798 in women. The models showed good calibration in 
both sexes, with a predicted-to-observed ratio of 1.07 in men and 1.09 in women. The sensitivity was 0.76 in men and 0.66 in women. 
The net benefit fraction was higher in men compared to women (0.46 vs. 0.35). 

Conclusion: A low-cost model can discriminate well between low- and high-risk individuals, and can be used for screening in 
low-middle income countries. © 2021 Elsevier Inc. All rights reserved. 
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What is new? 

Key findings: 
• Using large individual-level data (n = 55010) of 

three population-based cohort studies in a develop- 
ing country, non-laboratory models were developed 

to predict CVD mortality in men and women, sep- 
arately. 
• The model showed appropriate discrimination 

(c = 0.774 in men and c = 0.798 in women) and 

calibration (a predicted-to-observed ratio of 1.07 in 

men and 1.09 in women). 
• Beyond the traditional indices of model perfor- 

mance, we assessed the clinical usefulness of the 
model, using the net benefit fraction as a sensitiv- 
ity penalized by the false-positive rate which was 
higher in men compared to women (0.46 vs. 0.35). 

What this adds to what is known 

• More than 75% of cardiovascular disease (CVD) 
deaths occur in low/middle-income countries, how- 
ever, all prediction models for CVD risk assessment 
come from high-income countries. Most models 
for CVD mortality comprise laboratory measure- 
ments that are not suitable for screening purposes 
in resource-limited countries. This study combined 

simple non-laboratory indicators to predict CVD 

mortality in a middle-incom country. 
• Several numbers of non-laboratory CVD prediction 

model are available that target both fatal and non- 
fatal cardiovascular events, while national data on 

death rates are more reliable than data for non-fatal 
disease incidence, especially in low- middle-income 
countries; So, using non-laboratory risk prediction 

models to estimate the 10-year risk of CVD mor- 
tality would be more appropriate for countries with 

limited resources. 
• Using the simple and accessible variables, predic- 

tion models were developed to estimate the 10-year 
risk of CVD mortality in men and women aged 

≥40 years, separately. The models showed good 

discrimination and calibration and also appropriate 
clinical usefulness.. 

What is the implication, what should change now 

• We developed a non-laboratory-based prediction 

model to estimate the probability of CVD mor- 
tality occurrence considering simple variables that 
are achievable by either physical examination or in- 
terview. This tool would be beneficial in resource 
allocation for preventive strategies and help the 
policy-makers for developing low-cost screening 

programs and appropriate interventions, especially 

in resource-limited countries. 
 

1. Introduction 

Cardiovascular disease (CVD) is one of the leading
causes of death, as almost one-third of all deaths world-
wide are attributed to them. More than 75% of CVD
deaths occur in low-income and middle-income countries
(LMICs) [1] . As a middle-income country, Iran suffers
from a high incidence of CVD and CVD mortality [2] .
Therefore, timely identifying the high-risk people for ap-
propriate interventions is necessary and will lead to the
most significant benefit. Consideration of a combination of
multiple risk factors is more cost-effective than having in-
terventions on single risk factors. Clinical CVD prevention
guidelines suggest various CVD risk prediction models for
screening high-risk individuals [3–5] . 

Most prediction models include laboratory measure-
ments in their functions to enhance model performance.
Using such lab-based prediction models is costly and
resource-intensive, so non-laboratory risk prediction mod-
els have been introduced as low cost, easy to implement,
and feasible strategies to prevent CVD in low and middle-
income countries with resource-constrain settings [ 3 , 6 ].
Despite the benefits of non-laboratory prediction models,
the number of such risk assessment models to predict
CVD is limited [7] . Non-laboratory Framingham risk score
[8] and the model developed using data from the Third Na-
tional Health and Nutrition Examination Survey (NHANES
III) [9] , Globorisk [10] , and WHO cardiovascular disease
risk charts [11] are some examples. 

Although fatal and non-fatal cardiovascular events are
important for clinical and public health interventions, na-
tional data on death rates are more reliable than data for
disease incidence, especially in developing countries in
which non-laboratory-based risk scores are more benefi-
cial [10] . Considering our access to three large population-
based cohort studies from Western Asia, the purpose of
this study is to develop a prediction model based on non-
laboratory indicators to predict CVD mortality and evaluate
its generalizability using internal-external cross-validation.

2. Methods 

2.1. Study population 

Individual-level data from three Iranian population-
based cohort studies were selected from the Iran Cohort
Consortium ( www.irancohorts.ir). Data from multiple co-
horts enhance the statistical power and allow for quan-
tification of the between-cohort variation on coefficients.
These studies are Tehran Lipid and Glucose Study (TLGS)
as the first population-based cohort study, Isfahan Cohort
Study (ICS), as the first cohort study designed explicitly
for CVD, and Golestan Cohort Study (GCS) as the largest
cohort study in Iran. The studies’ profiles have been pub-
lished elsewhere [12–14] . All these cohorts started between

http://www.irancohorts.ir
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Fig. 1. Flow chart of the study population ∗Excluded because of age younger than 40 or older than 80 

∗∗Excluded because of a positive history 
of cardiovascular diseases at baseline or unknown history 
Ɨ Excluded because of having BMI > 60 or BMI < 16 or SBP > 270 mmHg or SBP < 60 mmHg 
ƗƗ Excluded because of no follow-up information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1999- 2004, and are still ongoing. The baseline character-
istics of the included cohorts and the pooling process have
been published before [2] . Supplementary Table 1 sum-
marized the main characteristics of the included cohort
studies. From the baseline population (n = 75104), among
individuals aged 40 to 80 years (n = 60902), those who
were free of CVD at baseline (n = 56708) were eligible for
the current study. Excluding 459 participants with biolog-
ically implausible risk factor levels (BMI > 60 or BMI < 16
or SBP > 270 mmHg or SBP < 60 mmHg), and 1239 sub-
jects who had no information for follow-up resulted in
55010 participants (23820 men); Fig. 1 shows the study
flow chart. 

Considering the high incidence rates of CVD mortality
in cohorts under study (296-418 in 100000 person-year)
[2] , the sample size was reasonable for model develop-
ment. 

The institutional review board of Tehran University of
Medical Sciences, Tehran, Iran approved this study. In-
formed consent was obtained from the individuals in all
cohorts. 
2.2. Exposures 

To find the best office-based predictors for CVD mor-
tality, we considered all available variables potentially as-
sumed as CVD risk factors and can be obtained from his-
tory or clinical examinations. 

Candidate variables were selected through literature re-
view, expert opinion, availability in the cohorts, and sim-
plicity for measurement. The variables were sex, age, edu-
cation status, systolic blood pressure (SBP), diastolic blood
pressure (DBP), self-reported diabetes, smoking, anthropo-
metric measures including waist circumference (WC), and
body mass index (BMI). 

Some variables including age, educational status, his-
tory of diabetes and taking glucose-lowering medications,
history of CVD, and cigarette smoking had been ac-
quired by interviews at the initiation of the study. In-
terviews were done by trained experts, using checklists
and questionnaires. Other required variables including an-
thropometric indices, systolic and diastolic blood pressure
were obtained through clinical examinations using standard
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protocols. The details of measurements have been reported
in study protocols [12–14] . 

We defined self-reported diabetes as a past physician di-
agnosis and/or taking glucose-lowering medication. Smok-
ing was considered as being a current smoker. BMI was
calculated as the weight in kg divided by the square of the
height in meters. Education was defined as 0: illiterate, 1:
primary (1-5 years of schooling), 2: secondary (6-8 years),
3: high (9-12 years), and 4: university levels as an ordinal
variable. 

2.3. Outcome 

As per cohorts’ protocols, the events are being followed
up by phone interviews. In the case of any new diseases
leading to hospital admission or death, detailed information
is gathered. The multi-professional specialists’ committees
in each cohort review the documents and confirm the diag-
nosis. Cardiovascular mortality was defined as death from
ischemic heart disease (ICD10 codes I20-I25), sudden car-
diac death (I46.1), or death from stroke (ICD10 codes I60-
I69). We considered the time to event for each individual
as the interval between the time of study entry and CVD
death, the date of the latest follow-up, and/or date of death
caused by other reasons, whichever had happened earlier. 

2.4. Statistical analysis 

A summary of the candidate predictors is reported as
mean (S.D.) or frequency (percentage) at baseline. Sup-
plementary Table 2 shows the range of missing values in
each predictor throughout the cohort studies. Considering
the low percentage of missing values ( < 2%), single impu-
tation using the “impute” command in Stata was applied
to handle missing values of the predictors based on all
candidate variables for model development. 

Using Cox proportional hazard models, stratified on co-
horts, we developed two prediction models for men and
women separately. To have an easy interpretation of regres-
sion model estimates, we centered the continuous variables
[11] , with age at 60 years, BMI at 25 kg/m2, WC at 90
cm, education at the secondary level (ordinal level 2), and
SBP at 120 mm Hg. In this way, based on the model, the
baseline survival means the mean of survival in those with
age 60 years (midpoint of 40 to 80) without any proposed
risk factors (e.g. smoking and diabetes) and at the optimal
level of proposed variables (e.g. BMI, WC, and SBP). We
considered the ordinal variable of education as continuous
covariate since the association was linear. 

We used the “mfp” command in STATA to combine
backward elimination with the selection of multivariable
fractional polynomial (MFP) functions [15] . To be conser-
vative, the level of significance was set at 0.1 for inclu-
sion/exclusion of variables and 0.01 for non-linearity. More
details about the MFP are available in the supplementary. 

The final model was developed on total study samples,
with stratification by cohort studies. 
The assumption of proportionality was checked by ex-
amining the global test of the Schoenfeld residuals [16] .
Since cardiovascular disease hazard ratios often decrease
with age [10] , we tested the interactions between age and
all variables and selected the best model according to the
Akaike information criterion (AIC). To account for the ef-
fect of other mortalities as competing risks, all steps were
repeated using the Fine and Gray approach as well [17] . 

The discriminatory power of the model was assessed
by a concordance statistic (C-index). We calculated the
optimism-corrected performance by bootstrap resampling
validation, i.e. the selected model was evaluated both in the
bootstrap sample and in the original sample; the mean of
200 differences between bootstrap samples and the original
sample indicated the optimism. This optimism was sub-
tracted from the performance of the original model [18] . 

The sensitivity and specificity of the model were calcu-
lated for a probability threshold of 5%. The Kaplan-Meier
estimator was used to estimate the true positive/negative
and false positive/negative results [19] . The 95% CI was
calculated using 1000 bootstrap resampling and estimated
bootstrap standard errors. We assessed calibration in a cal-
ibration plot, i.e. how closely the observed risks corre-
sponded to the predicted risks. 

Since internal-external cross-validation assesses the gen-
eralizability of prediction models in large datasets, we ap-
plied this approach in the cohorts included. Firstly, the
model was developed in TLGS and ICS, as the train set,
and validated in GCS, as the test set, using the coefficients
derived from the train set and the baseline survival from
the test set; again this approach was used to develop the
model in GCS and test the performance on the two cohorts
that were left out; [ 1 , 20 ]. So in the process of validation,
different cohorts with different settings (Supplementary Ta-
ble 1) were involved and the process of variable selection
(backward stepwise method) was also applied. Of note, the
eligibility criteria and the definition of outcome were the
same throughout the cohorts and all the follow-up times
were truncated at 10 years for calculating baseline sur-
vivals. 

The models’ potential usefulness in clinical practice was
assessed in terms of net benefit [21] . The net benefit of a
prediction model at a risk threshold is defined as (TPs-
w ×FPs) /N where TP is a true positive result, FP as false
positive, N is the number of the study population, and w
is the harm-to-benefit ratio of the recommended treatment
which equals to the odds of the risk threshold for that
treatment [22] . We used the standardized net benefit (Net
benefit fraction) which is the net benefit divided by the in-
cidence of the outcome (CVD mortality in this study). In
other words, the standardized net benefit is the true pos-
itive rate penalized by the false positive rate and means
the net fraction of incidence that could be predicted and
potentially prevented. ([ 23 , 24 ]. Net benefit can be plotted
against a range of threshold probabilities and is called a
“decision curve”. The decision curve shows the net benefit
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Table 1. Information of candidate predictors at baseline by cohort and sex. 

TLGS ICS GCS 

Men N = 2338 N = 2132 N = 19350 

Continuous variables as mean (S.D.) 

Age, year 54.4 (10.3) 53.9 (10.7) 52.1 (9.2) 

Body Mass Index, kg/m 

2 26.3 (3.9) 25.6 (3.9) 25.1 (4.6) 

Waist circumference, cm 91.8 (10.8) 93.3 (11.4) 94.1 (13.1) 

Systolic blood pressure, mm Hg 125.0 (20.3) 122.8 (20.4) 126.4 (23.3) 

Diastolic blood pressure, mmHg 79.4 (11.7) 78.8 (11.0) 76.6 (13.9) 

Categorical variables as n (%) 

Education, levels from 0-4 

Ɨ

Illiterate 184 (7.9) 672 (31.5) 9507 (49.1) 

Primary 755 (32.3) 740 (34.7) 5088 (26.3) 

Secondary 366 (15.7) 218 (10.2) 1600 (8.3) 

High 672 (28.7) 291 (13.7) 2307 (11.9) 

University 361 (15.4) 211 (9.9) 848 (4.4) 

Current Smoking 669 (28.6) 621 (29.1) 4714 (24.4) 

Self-reported diabetes ‡ 273 (11.7) 222 (10.4) 890 (4.6) 

Women N = 2822 N = 2218 N = 26150 

Continuous variables as mean (S.D.) 

Age, year 52.6 (9.1) 53.1 (10.1) 50.9 (8.3) 

Body Mass Index, kg/m 

2 29.2 (4.7) 28.0 (4.6) 27.8 (5.6) 

Waist circumference, cm 93.4 (11.6) 97.4 (12.5) 96.1 (13.8) 

Systolic blood pressure, mm Hg 126.8 (21.3) 124.7 (21.9) 129.0 (25.2) 

Diastolic blood pressure, mm Hg 80.7 (11.1) 79.7 (12.2) 78.0 (14.1) 

Categorical variables as n (%) 

Education, levels from 0-4 

Ɨ

Illiterate 612 (21.7) 1131 (51.0) 22434 (85.8) 

Primary 1200 (42.5) 726 (32.7) 2631 (10.1) 

Secondary 394 (14.0) 127 (5.7) 409 (1.6) 

High 490 (17.4) 184 (8.3) 556 (2.1) 

University 126 (4.5) 50 (2.3) 120 (0.5) 

Current Smoking 110 (3.9) 47 (2.1) 263 (1.0) 

Self-reported diabetes ‡ 397 (14.1) 317 (14.3) 1996 (7.6) 

∗TLGS: Tehran Lipid and Glucose Study, ICS: Isfahan Cohort Study, GCS1: Golestan Cohort Study- Phase1 

Ɨ Education was considered ordinal from illiterate (0) to primary school (1), secondary school (2), high school (3), and university (4) levels 
‡ Self-reported diabetes was defined as a diagnosis by a physician or using glucose-lowering medications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

resulting from the decision making based on the predicted
risk, versus decision making without the model (treating
none or treating all of the population). We considered risk
thresholds for treatment between 0 and 15% as the plau-
sible range for treatment [ 25 , 26 ]. 

All statistical analyses were conducted using Stata14
for Windows (Stata Corporation, College Station, Texas,
USA). Two-sided P < 0.05 was considered statistically sig-
nificant. 

3. Results 

A total of 55010 individuals were included from three
cohorts. The mean ages were 53.6, 53.7, and 51.9 years in
the study participants of TLGS, ICS, and GCS, respectively
( Table 1 ). Overall, the participants were similar across the
cohorts regarding the baseline characteristics, except for
the literacy levels with pronounced differences of illiteracy
ranging from 8% in TLGS to 49% in GCS. The median
[Interquartile range] of follow-up was 13.9 (10.1- 14.5)
years in TLGS, 11.3 (10.9–12.3) in ICS, and 9.1 (8.0–
10.0) in GCS. 

During a 506889 person-year of follow-up, 2080 (1152
in men) CVD deaths occurred (215:TLGS, 169: ICS,
1696: GCS). The 10-year CVD mortality risks were 0.051
(95%CI: 0.048-0.055) in men and 0.031 (95%CI: 0.029-
0.033) in women. 

Table 2 displays the coefficients of the CVD mortal-
ity predictors in men and women. None of the fractional
polynomial were significantly better than the linear model.
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Table 2. The Coefficients of CVD mortality risk factors in non-laboratory based model in Iranian cohorts, by sex. 

Men Coefficients ∗ 95% CI ∗∗ P -value 

Age, year 0.0822817 0.0745 0.0900 < 0.001 

SBP 

Ɨ, mm Hg 0.0156509 0.0134 0.0179 < 0.001 

Smoking, yes 0.4882593 0.3543 0.6222 < 0.001 

Self- reported diabetes, yes 0.7608734 0.5885 0.9332 < 0.001 

Waist Circumference, cm 0.006959 0.0022 0.0117 0.004 

Education, levels 0-4 -0.1397928 -0.2017 -0.0779 < 0.001 

Age ∗ SBP 

‡ -0.0005718 -0.0008 -0.0003 < 0.001 

Women Coefficients 95% CI ∗∗ P-value 

Age, year 0.0885723 0.0791 0.0980 < 0.001 

SBP 

Ɨ, mm Hg 0.015261 0.0129 0.0176 < 0.001 

Smoking, yes 0.8493105 0.4494 1.2493 < 0.001 

Self- reported diabetes, yes 0.9077703 0.7475 1.0680 < 0.001 

Waist Circumference, cm .0215193 0.0112 0.0318 < 0.001 

Education, levels 0-4 -0.3216873 -0.4934 -0.1500 < 0.001 

Body Mass Index, kg/m ̂

 2 -0.0722743 -0.0985 -0.0461 < 0.001 

Age ∗ SBP 

‡ -.0003205 -0.0006 -0.0001 0.011 

∗ None of the fractional polynomial were significantly better than the linear model. 
∗∗ CI, Confidence interval, 
Ɨ SBP, Systolic blood pressure, 
‡ Age ∗SBP, Shows the interaction between age and systolic blood pressure. Baseline survival estimates at 10-years for men and women are 

0.9631963 and 0.9852014, respectively. It means the mean of survival in those with age 60 years without any proposed risk factors (smoking 
and diabetes) and at the normal level of proposed variables (BMI, WC and SBP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diastolic blood pressure had no significant association with
CVD mortality in both sexes, and BMI showed a signifi-
cant negative association only in women. Age significantly
modified the association between SBP and CVD mortal-
ity in both sexes, and with increasing age, this association
decreased. In both sexes, education showed a negative as-
sociation. 

Table 3 shows an example that explains the process for
estimating the CVD mortality risk and helps programmers
to easily translate these models into the application. 

Considering the competing risk, the results didn’t
change significantly, so we used the simple model for bet-
ter understanding and more simplicity (Supplementary Ta-
ble 3). 

The validation results for the stability of the variable
selection showed that the method is applicable with a mean
value of discrimination 0.775 (95%CI: 0.750-0.779) in men
and 0.778 (95%CI: 0.763-0.813) in women. 

Fig. 2 depicts the calibration and discrimination of the
models. The model showed a good calibration with a
predicted-to-observed ratio of 1.07 in men and 1.09 in
women. The apparent performance of the model was 0.776
(95%CI: 0.762-0.790) in men and 0.799 (95%CI: 0.784-
0.813) in women; the optimism-corrected performances
were nearly the same (0.775 in men and 0.798 in women).
Using this model and considering the risk threshold of 5%,
8355 (35.1%) of men and 6261 (20.1%) of women were
categorized as the high-risk population for CVD mortality.

Fig. 3 presents the results of cross-validations. Firstly,
the model was developed using the data of TLGS and ICS
(244 CVD deaths in men and 140 CVD deaths in women
during 50167 and 58093 years of follow-up, respectively)
and validated in GCS (908 CVD mortality in men and 788
CVD mortality in women during 167073 and 231556 years
of follow-up, respectively). Secondly, the model was devel-
oped in GCS and validated in TLGS and ICS. Good agree-
ments between observed outcomes and predictions were
shown in both approaches of cross-validations. When the
model was developed using TLGS and ICS data and val-
idated in GCS, the observed-to-predicted ratio was 0.999
and 0.997 in men and women, respectively. The corre-
sponding values were 1.005 and 1.007, when the model
was developed using GCS data and cross-validated in
TLGS and ICS. 

Table 4 shows the sensitivity, specificity, and net bene-
fit fraction at the risk threshold of 5%. The model showed
more sensitivity (0.76 vs. 0.66) and more net benefit frac-
tion (0.46 vs. 0.35) in men than women. 

Fig. 4 shows the decision curves for each sex. Com-
pared to strategies that either all or no patients took in-
tervention, using the risk prediction model showed higher
net benefit. The interventions could be useful when the
absolute risk threshold was between 2%-15%. 

4. Discussion 

We developed and validated a non-laboratory risk pre-
diction model for fatal CVD in a middle-income coun-
try. We showed that a simple office-based model has a
good discrimination power and calibration in both genders
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Table 3. Step-by-step process to estimate the 10-Year risk for CVD mortality using no-laboratory based model. 

Men 
Example: 65 years of age with systolic BP 140 mm Hg, waist circumference 104 cm, high school education (12 years of schooling), smoker 
and without history of diabetes. 

Coefficient Individual Example Value entering in the 
model ∗

Coefficient × Value 

Age (y) 0.0822817 65 65-60 = 5 0.411409 

SBP Ɨ, mm Hg 0.0156509 140 140-120 = 20 0.313018 

Smoking, yes 0.4882593 1 1 0.488259 

Self- reported diabetes, 
yes 

0.7608734 0 0 0 

Waist Circumference, 
cm 

0.006959 104 104-90 = 14 0.097426 

Education, levels 0-4 -0.1397928 3 3-2 = 1 0.139793 

Age ∗ SBP -0.0005718 - 100 -0.05718 

Individual sum - - - 1.392725 

Baseline Survival - - - 0.9577925 

Estimated 10-Y Risk for 
CVD mortality 

- - - 0.1594 

† 

Women 
Example: 64 years of age with systolic BP 144 mm Hg, no history of diabetes, waist circumference 71 cm, BMI:20, primary school education 
(5 years of schooling), and non-smoker 

Age (y) 0.0885723 64 64-60 = 4 0.354289 

SBP Ɨ, mm Hg 0.015261 144 144-120 = 24 0.366264 

Smoking, yes 0.8493105 0 0 0 

Self- reported diabetes, 
yes 

0.9077703 0 0 0 

Waist Circumference, 
cm 

.0215193 71 71-90 = -19 -0.40887 

Body Mass Index, 
kg/m ̂

 2 
-0.0722743 20 20-25 = -5 1.608437 

Education, levels 0-4 -0.3216873 1 1-2 = -1 0.321687 

Age ∗ SBP -.0003205 - 96 -0.03077 

Individual sum - - 2.9378 

Baseline Survival - - - 0.9796435 

Estimated 10-Y Risk for 
CVD mortality 

- 0.0525 

† 

∗ To easy interpretation of regression model estimates, and simplify recalibration of the model in the new populations, continuous variables 
were centred (age centred at 60 years, Waist circumference at 90 cm, BMI at 25 kg/m ², education at 2 and systolic blood pressure at 120 mm 

Hg). 
† Estimated 10-Y risk is calculated using this formula: Risk = 1-S0t exp ( ΣBiXi) 

Table 4. The performance of the non-laboratory based model at the threshold of 5% to predict cardiovascular mortality in Iranian cohorts. 

Men Women 

Sensitivity (95% CI ∗) 0.757 (0.726-0.787) 0.655 (0.622-0.687) 

Specificity (95% CI ∗) 0.688 (0.682-0.694) 0.814 (0.809-0.818) 

Net Benefit Fraction Ɨ (95% CI ∗) 0.455 (0.394-0.516) 0.350 (0.297-0.402) 

∗ CI: Confidence interval, 
Ɨ Net Benefit Fraction shows a sensitivity penalized for false-positive decisions. 

 

 

 

 

 

 

 

for identifying those at high risk of fatal CVD. We also
demonstrated its usefulness in a wide range of risk thresh-
olds. Notably, the performance of the model did not change
considerably in cross-validation. 
 

Our risk prediction model has a good discrimination
power of 0.775 in men and 0.798 in women, compara-
ble with a previous risk prediction model for predicting
CVD events developed [7] . Our model had higher dis-
crimination power than the Framingham no-lab CVD risk
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Fig. 2. Calibration and discrimination of non-laboratory CVD mortality prediction model in all cohorts, men and women. 

Fig. 3. Performance of the cross-validated non-laboratory models in men and women. The upper graphs indicate the model’s performance, devel- 
oped in the GCS, and validated in TLGS and ICS. In lower graphs, the model was developed in TLGS and ICS, and validated in GCS. 

 

 

 

 

 

 

 

 

 

 

prediction model, which had a C-statistics of 0.749 in
men and 0.785 in women in its original population [8] .
However, the Swedish consultation-based risk prediction
method and Gaziano non-lab-based algorithm had slightly
higher discrimination powers [ 6 , 27 ]. Similar results be-
tween the optimized-corrected and original discrimination
power indicated that overfitting is unlikely to be the leading
explanation for our model’s high performance. The vari-
ation in the endpoints of each prediction model may ex-
plain the differences in their discrimination power. While
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Fig. 4. Decision curve for the predicted probabilities of the non-laboratory based model in different thresholds. “Treat none” indicates no prediction 
and no treatment and, thus, no benefit; “treat all” means treating all subjects regardless of any prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

countries. 
the endpoint was fatal CVD in this study, a variety of
endpoints were used in the other risk prediction models
[7] . For example, in the non-laboratory Framingham risk
prediction model, the outcome was a coronary, cerebrovas-
cular, or peripheral arterial disease as well as heart failure
[8] . In contrast, the non-laboratory WHO/ISH risk predic-
tion model has acute myocardial infarction and stroke (fa-
tal and nonfatal) as its main outcomes [11] . Since non-lab
variables have different prediction power for each endpoint,
the models’ performance can vary for each set of the end-
point. 

Our findings are in line with previous studies show-
ing the non-inferiority of office-based CVD risk predic-
tion models compared to the lab-based CVD risk predic-
tion models [ 6 , 9 , 28 ]. An office-based model was devel-
oped using the data of more than 6000 participants aged
between 25–74 years in the NHEFS study. The predic-
tive discrimination of the model was comparable with that
of the lab-based model. The analysis using cardiovascu-
lar death as the endpoint yielded a C-statistics of 0.820
for the laboratory model and 0.821 for the non-laboratory
model in men. The same results for women were detected
as C-statistics of 0.858 for lab-based and 0.860 for the
no-lab-based model. The results indicated that using no-
lab-based models can make the risk assessment simpler
in resource-limited countries in which laboratory testing is
inconvenient [6] . 

The office-based Framingham risk prediction model has
been previously developed to predict the risk of all CVD
events, including fatal and non-fatal [8] . The algorithm
showed good calibration and discrimination (C statistic,
0.763 in men, and 0.793 in women). The predictors of
this model were previously used to predict CVD mortality
in Golestan Cohort Study. They showed no significant ef-
fects of BMI in the prediction of CVD mortality in men.
The Area Under the Curve (AUC) was 0.772 (95% CI:
0.753-0.791) in women, and 0.763 (95% CI: 0.747-0.779)
in men. The model showed good calibration in women
while such an overestimation in men [29] . 

This study has important implications. The risk assess-
ment chart of PARS is the first CVD risk assessment tool
developed in Iran using the data from ICS [30] ; how-
ever, for the first time, we used individual data of three
large population-based cohort studies to develop a no-lab
based prediction model. Having data from multiple cohorts
with heterogeneity is a strength of our research that en-
hanced our statistical power and let us validate the re-
sults appropriately. Such variability should be appreciated
when we want to make predictions, and the prediction
model would be more discriminatory and clinically useful
when the validation is done with a more heterogeneous
population [18] . 

We presented a no-lab CVD risk prediction model de-
veloped in a low- and middle-income country tailored to
be used in the resource-constrained settings. Importantly
this risk prediction model only needs easy-to-collect office-
based measurements, which considerably improves the fea-
sibility of the screening for high-risk individuals and low-
ers the related costs. The current national CVD prevention
programs in Iran use the WHO/ISH cardiovascular risk
prediction charts for the Eastern Mediterranean region, de-
manding glucose and lipid measurements in all screened
populations [31] . Such a screening strategy exposes a con-
siderable burden on the resources of the healthcare system
in Iran. By replacing the lab-based prediction models with
no-lab ones, a substantial amount of resources can be saved
without a significant reduction in the screening strategy’s
performance. Recently, the WHO risk charts have been up-
dated, and no-lab risk charts were added. This updating has
been carried out at the regional level and not the county-
level because there was no-data for CVD events in many
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The choice of the fatal CVD as the endpoint for the
current study enhances other researchers’ ability for fu-
ture research to externally validate the model in other
populations, especially in low- and middle-income coun-
tries where there is no accurate system for recording the
CVD events. Moreover, this risk prediction model accounts
for the socioeconomic patterns in low- and middle-income
countries by accounting for education status in the model.
Education status can be easily measured in routine clinical
practice. It can be used as a proxy variable for one’s econ-
omy, access to healthcare services, and knowledge/attitudes
toward health matters [ 32 , 33 ]. There are no no-lab risk
prediction models and few lab-based CVD risk predic-
tion models that accounted for socioeconomic factors in
their equations, which developed in the high-income coun-
tries [34] . 

The current model showed a sensitivity of 0.76 and a
net benefit fraction of 0.46 in men at the risk threshold of
5%. It means that using the model, as a prognostic test,
results in the correct prediction of 76% of the events; how-
ever, the correct prediction and appropriate prevention in
46% of the events (CVD mortalities). Of note, this result is
under the assumption of 100% effective preventive strate-
gies [35] . The corresponding net benefit fraction in women
was 0.35 that is lower than men; i.e around a net one-third
of CVD mortalities could be predicted and prevented using
the model appropriately. 

The findings from this study should be interpreted con-
sidering its limitations. Some data on no-lab measure-
ments, such as the family history of CVD, drug his-
tory (including statin therapy), physical activity, and nu-
trition, were not available or were not measured similarly
in cohorts and therefore were not used for model devel-
opment. However, history variables are self-reported and
would not be so valid in practice. Physical activity and
nutrition are not simple measurements and are too time-
consuming to be measured in the clinic. Although the de-
veloped model was cross-validated, it should be validated
for other nationalities before implementation. It is sup-
posed that the effect of risk factors are not changed during
the time dramatically, however, the risk prediction model
will need to be recalibrated with the updated mortality
rates. 

5. Conclusion 

We developed and validated an office-based risk pre-
diction model for fatal CVD in a middle-income country.
We showed that a simple office-based model has a good
discrimination power, calibration, and utility in both gen-
ders for identifying those at high risk of fatal CVD. The
model could be validated in other settings, especially in de-
veloping countries with limited access to laboratory mea-
surements. If scaled, such a model for screening high-risk
individuals for CVD can potentially save a considerable
amount of lives and resources. 
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