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CHAPTER 10
Remarkable Lattices &

Cryptography

This chapter is based on the joint work ‘On the Lattice Iso-
morphism Problem, Quadratic Forms, Remarkable Lattices,
and Cryptography’, with Léo Ducas, published at Eurocrypt
2022. The last section summarizes the follow-up joint work
‘HAWK: Module LIP makes Lattice Signatures Fast, Compact
and Simple’, with Léo Ducas, Eamonn W. Postlethwaite and
Ludo Pulles.

10.1 Introduction

The central idea in lattice-based cryptography is the concept of a bad
basis acting as a public key, and a good basis of the same lattice
acting as a secret key. With a good basis one can efficiently decode
or Gaussian sample at low width, while with a bad basis this is hard.
This discrepancy in hardness allows to create a backdoor that can be
used for encryption schemes, signature schemes and more.
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10. Remarkable Lattices & Cryptography

The creation of such a basis key-pair is precisely where the hard-
ness assumptions such as NTRU [HPS98] and the Learning with Error
(LWE) problem [Reg09] come in. They allow us to securely generate
a somewhat random lattice along with a (partial) good basis. These
assumptions are very versatile and allow to instantiate many different
kinds of cryptographic schemes. However, from a decoding perspec-
tive, these good bases can only decode up to a radius Ω(

√
n) from the

optimal Minkowski bound, as they essentially reduce to the case of the
trivial lattice Zn. Due to this non-optimal decoding distance we can
break these schemes by solving SVP in some dimension β ≤ n/2+o(n),
which forces the dimension to be at least 2 times larger than a direct
SVP attack would imply.

In contrast, there do exist many remarkable lattices for which we
can efficiently decode at much lower approximation factors. For exam-
ple, Ducas and Pierrot [DP19] showed that the Chor-Rivest cryptosys-
tem [CR88] was implicitly relying on a family of lattices for which it
is possible to efficiently decode errors up to a radius within a factor of
O(log n) from optimal. Recently, lattice families reaching a factor of
O(
√
log n) were found [MP21; BP22]. We cannot use such remarkable

lattice directly, everyone, including an adversary, can decode in them.
To use such remarkable lattices in cryptographic protocols we need
a way to hide their remarkable structure, without destroying their
decoding capabilities.

At repeated occasions [CR88; Len91; OTU00; SCM01; LLXY20],
and over more than 30 years, exactly this has been tried, for exam-
ple by porting the original public-key encryption scheme of McEliece
[McE78] from codes to lattices: instead of giving a public bad basis of
the lattice L ⊂ Rn itself, one gives a bad basis of the permuted lattice
π(L) := {(yπ−1(i))i ∈ Rn : y ∈ L} for some secret random permutation
π. One can efficiently decode in π(L) via L (only) when π is known.
Unfortunately this code-style way of hiding the lattice is also suscep-
tible for code-style attacks, leading to subexponential attacks [CR88;
Lap21; Odl90]; either by Information Set Decoding techniques or by
guessing or brute-forcing some coordinates. Due to these attacks, this
approach has not been very popular lately.

These attacks are enabled by the fact that these schemes do barely
more than re-randomize the lattice by applying a permutation of the
coordinates. Such permutations are isometries, i.e., lattice isomor-
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10.1. Introduction

phisms, but those are not the only ones. Since the isometry group
On(R) acting on lattices is much larger than the one acting on codes,
applying a random isometry from this larger group should convinc-
ingly thwart those code-style attacks: the canonical coordinate system
becomes irrelevant.

All these remarks point toward the Lattice Isomorphism Prob-
lem (LIP) as a potential theoretical platform for finally getting this
natural approach properly formalized, and hopefully, truly "lattice-
based" in the cryptanalytic sense: the best known attack should be
based on generic lattice reduction algorithms such as LLL [LLL82]
and BKZ [Sch87]. As seen in Section 9.5 the current state of the art
on LIP supports this hypothesis: all known algorithms [PP85; PS97;
HR14; DHVW20] rely on finding short vectors. This is the case even
for algorithms specialized to the trivial lattice Zn [Szy03]. Experimen-
tal studies [BM21] do show that the basis randomization step requires
care, in order to not introduce any weak instances.

While instantiating LIP with Zn may already give rise to secure
cryptosystems, the end goal of this work is to enable lattice-based
cryptosystems that could be be even more secure than those based on
LWE and SIS in similar dimensions, by instantiating the constructed
schemes with remarkably decodable lattices.

10.1.1 Contributions

We introduce a formal and convenient framework for LIP-based cryp-
tography, from which we build three cryptographic schemes: an iden-
tification scheme based on search-LIP (sLIP), a (passively secure) Key
Encapsulation Mechanism (KEM) based on distinguish-LIP (∆LIP),
and a signature scheme also based on ∆LIP. In more detail:

• In Chapter 9 we discussed LIP, recalled the quadratic form for-
malism, and rephrased the LIP problem in terms of quadratic
forms to conveniently avoid real numbers. Here, with the use of
Gaussian Sampling [GPV08; Pei10], we define an average-case
distribution for LIP and establish a worst-case to average-case
reduction within an isomorphism class (Section 10.2). This ad-
dresses the concerns raised by Blanks and Miller [BM21] and
formalizes their heuristic countermeasure.
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10. Remarkable Lattices & Cryptography

• The above cryptographic foundations are directly inspired by
the Zero-Knowledge proof of lattice non-isomorphism of Haviv
and Regev [HR14]. We further extend on their techniques by
proposing a Zero-Knowledge proof of knowledge (ZKPoK) of a
lattice isomorphism (Section 10.3). This directly implies the
existence of an identification scheme based on sLIP.

• We propose a KEM scheme (Section 10.4) and a hash-then-sign
signature scheme (Section 10.5), both based on ∆LIP. Per-
haps surprisingly, and unlike the original scheme of McEliece
for codes, we circumvent the additional assumption that decod-
ing a certain class of random lattices is hard. This is done via a
lossyness argument [PW11] for the KEM, and a dual argument
for the signature scheme.

• We review the state of the art for solving LIP (Section 10.6).
In particular we note that all known algorithms require lattice
reduction, and we quantify the required approximation factor.

• We discuss natural instantiations for each scheme given any re-
markable lattice in Section 10.7. This section handles the con-
struction of the auxiliary lattice appearing in ∆LIP for the lossy-
ness arguments to get through.

10.1.2 Potential advantages

The KEM. To instantiate the KEM, consider a lattice L (w.l.o.g., of
volume 1) such that:

• the minimal distance is within a factor f from Minkowski’s
bound: λ1(L) ≥ Ω(

√
n/f),

• there exists an efficient algorithm that can decode errors in L
up to radius ρ < λ1(L)/2 within a factor f ′ from Minkowski’s
bound: ρ ≥ Ω(

√
n/f ′).1

• the dual minimal distance is within a factor f ∗ from Minkowski’s
bound: λ1(L∗) ≥ Ω(

√
n/f ∗).

1Note that uniqueness of decoding implies f ′ ≥ 2f .
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10.1. Introduction

Then, the instantiated KEM appears to resist concrete lattice reduc-
tion attacks down to an approximation factor O(max(f, f ∗, f ′)). For a
security reduction to ∆LIP we have to create a pair of lattices, which
increases the approximation factor to O(max(f, f ∗) · f ∗ · f ′). More
specifically, it’s security is based on ∆LIP for two lattices whose pri-
mal and dual first minima are all within a factor O(max(f, f ∗) ·f ∗ ·f ′)
from Minkowski’s bound.

The trivial lattice Zn gives all three factors f, f ′, f ∗ of the order
Θ(
√
n). The Barnes-Wall lattice improves all three factors down to

Θ( 4
√
n) [MN08].

The endgame would be to instantiate with lattices for which all
three factors f, f ′, f ∗ would be very small. In particular, one would
naturally turn to recent work on decoding the Chor-Rivest lattices
[CR88; DP19; LLXY20; Lap21] and the Barnes-Sloane lattices [MP21]
giving f = polylog(n) and f ′ = polylog(n), but unfortunately their
dual gaps are not that good: f ∗ ≥ Θ(

√
n). Indeed, both Chor-Rivest

and Barnes-Sloane are integer lattices L ⊂ Zn with single exponen-
tial volume det(L) = cn: their duals L∗ have a Minkowski bound of
Θ(
√
n/ det(L)1/n) = Θ(

√
n), but contain all of Zn ⊂ L∗, including

vectors of norm 1.
Note, nevertheless that there is no geometric impossibility to the

existence of the desired remarkably decodable lattice: random lattices
have f = O(1) and f ∗ = O(1); so unique decoding is in principle
possible down to f ′ = f/2 = O(1). Unfortunately the the best known
decoding algorithm for such lattices takes exponential time.

The signature scheme. The same principle also applies to our signa-
ture scheme, but this time with respect to Gaussian sampling rather
than decoding: lattices with tight sampling (and large dual minimal
distance) would lead to a scheme resisting attacks down to very small
approximation factors. Unfortunately, even ignoring the constraint on
the dual lattice, we do not know of any lattice much better than Zn

for efficient Gaussian sampling. However, instantiated with Zn our
scheme still has an interesting feature: not having to deal with any
Gram-Schmidt or Cholesky matrices over the real numbers. This may
be a worthy practical advantage over currently proposed hash-then-
sign signature schemes [GPV08].
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10. Remarkable Lattices & Cryptography

Primal Dual Decoding

Decodable Lattice f f ∗ f ′

Random Lattice Θ(1) Θ(1) 2Θ(n)

Zn Θ(
√
n) Θ(

√
n) Θ(

√
n)

NTRU [HPS98] Ω(α) Ω(α) Ω(n/α)

LWE [Ajt99; AP11; MP12] Ω(1) Ω(α) Ω(n/α)

Prime Lattice [CR88; DP19] Θ(log n) Ω(
√
n) Θ(log n)

Barnes-Sloane [MP21] Θ(
√
log n) Ω(

√
n) Θ(

√
log n)

Reed-Solomon [BP22] Θ(
√
log n) Ω(

√
n) Θ(

√
log n)

Barnes-Wall [MN08] Θ( 4
√
n) Θ( 4

√
n) Θ( 4

√
n)

Table 10.1: Some decodable lattices and their primal gap f =
gh(L)/λ1(L), dual gap f ∗ = gh(L∗)/λ1(L∗) and efficient decoding
gap f ′ = gh(L)/ρ. We have 1 ≤ α ≤ n.

The identification scheme. Because sLIP seems super-exponentially
hard in the dimension for well chosen lattices (i.e., that have a large
kissing number), it might be secure to instantiate our ZKPoK with a
rather small lattice dimension, maybe down to about a hundred (see
the challenge in Table 10.2). This is more a theoretical curiosity than a
practical advantage —the protocol still needs soundness amplification,
where each round requires exchanging Õ(n2) bits.

10.1.3 Open questions

A KEM with polylog-approximation factor security. Is there any fam-
ily of lattices that can be efficiently decoded within a polylog fac-
tor from Minkowski’s bound such as [CR88; DP19; LLXY20; Lap21;
MP21], but whose dual would also have an equally large minimal dis-
tance?

Tight Gaussian Sampling for signatures. Is there any family of lattices
L (of volume 1) in which one can efficiently sample a discrete Gaus-

288
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sian with small parameter σ < o(
√
n), if not σ = polylog(n) (with

exponential smoothing σ > η2−n(L))? And if so, do they and their
dual have a large minimal distance? Note that quantumly, this ques-
tion is related to the previous one via the reduction of Regev [Reg09]:
decoding in the primal for a large radius gives Gaussian sampling in
the dual for a small width. But a classical algorithm would be much
preferable.

Concrete instantiation with simple lattices. Instantiated with Zn, our
signature scheme has the advantage of not requiring any Gram-
Schmidt or Cholesky decomposition, contrary to existing hash-then-
sign signature schemes, and may therefore be of practical interest.
It could also be reasonable to instantiate our KEM with the lat-
tice of Barnes and Wall, by using the decoder of Micciancio and
Nicolesi [MN08].

Module-LIP. Lastly, it also seems natural to explore structured vari-
ants of LIP, where both the lattice and the isometry should be struc-
tured. We note that for every ideal lattice in complex-multiplication
number fields, a classical polynomial time algorithm for LIP is known
[GS02; LS14]. Could the module variant be secure? Can our con-
structions gain a linear factor on key sizes from such a variant? And
are there remarkably decodable lattices that are also modules over
certain number fields? For example the repeated-difference lattices
(Craig’s lattices [CS13]) are ideal lattices in cyclotomic number fields
with large minimal distances, but a polynomial decoding algorithm
for them remains to be discovered.

Remark 171. The last two open questions were partially answered
positively in a follow-up work [DPPW22]. In this work we build a
competitive signature scheme, named Hawk, based on the simple lat-
tice Zn, instantiated as a rank 2 module. In Section 10.8 we give a
short summary of this work, and show that it improves upon Falcon
in several ways.
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10. Remarkable Lattices & Cryptography

10.2 LIP and self-reducibility

In this section we lay the foundation for using the Lattice Isomorphism
Problem in cryptography. We present an average-case distribution
for any quadratic form equivalence class, show how to sample from
it, and conclude with a worst-case to average-case reduction. Note
that the worst-case to average-case reduction is realized within an
equivalence class [Q] = {U⊤QU : U ∈ GLn(Z)}. But first we start
with some adaptation of discrete Gaussian sampling to the quadratic
form setting.

10.2.1 Discrete Gaussians and sampling

Discrete Gaussian sampling has been fundamental to the development
of lattice based cryptography, by allowing to return short or nearby lat-
tice vectors without leaking information about the secret key [GPV08].
We rephrase the relevant definitions and propositions in the quadratic
form language.

Distribution. For any quadratic form Q ∈ S>0
n we define the Gaussian

function on Rn with parameter s > 0 and center c ∈ Rn by

∀x ∈ Rn, ρQ,s,c(x) := exp(−π ∥x− c∥2Q /s2).

The discrete Gaussian distribution is obtained by restricting the con-
tinuous Gaussian distribution to a discrete lattice. In the quadratic
form setting the discrete lattice will always be Zn, but with the geom-
etry induced by the quadratic form. For any quadratic form Q ∈ S>0

n

we define the discrete Gaussian distribution DQ,s,c with center c ∈ Rn

and parameter s > 0 by

Pr
X∼DQ,s,c

[X = x] :=
ρQ,s,c(x)

ρQ,s,c(Zn)
if x ∈ Zn, and 0 otherwise.

If the center c is not denoted we have c = 0. An important property
of the discrete gaussian distribution is the smoothing parameter, i.e.,
how much gaussian noise s > 0 is needed to ‘smooth out’ the discrete
structure.
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10.2. LIP and self-reducibility

Definition 172 (Smoothing Parameter). For a quadratic form Q ∈
S>0
n and ϵ > 0 we define the smoothing parameter ηϵ(Q) as the minimal
s > 0 such that ρQ−1,1/s(Zn) ≤ 1 + ϵ.

The smoothing parameter is a central quantity for gaussians over
lattice, for example it permits to control the variations of ρQ,s,c(Zn) is
over all centers c.

Lemma 173 ([MR07]). For any quadratic form Q ∈ S>0
n , ϵ > 0,

center c ∈ Rn and parameter s > ηϵ(Q) we have:

(1− ϵ) sn√
det(Q)

≤ ρQ,s,c(Zn) ≤ (1 + ϵ)
sn√

det(Q)
.

Note that the smoothing parameter ηϵ(Q) is an invariant property
of the similarity class [Q], and so we might also denote ηϵ([Q]) for a
similarity class. While computing or even approximating the exact
smoothing parameter is hard, we can obtain sufficient bounds via the
dual form.

Lemma 174 (Smoothing bound [MR07]). For any ϵ > 0 and any
quadratic form Q ∈ S>0

n we have η2−n(Q) ≤ √n/λ1(Q−1), and

ηϵ(Q) ≤ ∥B̃Q∥ ·
√

ln(2n(1 + 1/ϵ))/π.

Above the smoothing parameter the discrete gaussian distribution
is in some sense ‘well behaved’ and we have the following tailbound
that one would expect from a Gaussian distribution.

Lemma 175 (Tailbound [MR07, Lemma 4.4] ). For any quadratic
form Q ∈ S>0

n , ϵ ∈ (0, 1), center c ∈ Rn and parameter s ≥ ηϵ(Q), we
have

Pr
x∼DQ,s,c

[∥x− c∥Q > s
√
n] ≤ 1 + ϵ

1− ϵ · 2
−n.

A constant factor above the smoothing parameter we can further-
more lower bound the min-entropy of the distribution.

Lemma 176 (Min-entropy [PR06]). For any quadratic form Q ∈
S>0
n , positive ϵ > 0, center c ∈ Rn, parameter s ≥ 2ηϵ(Q), and for

every x ∈ Zn, we have

Pr
X∼DQ,s,c

[X = x] ≤ 1 + ϵ

1− ϵ · 2
−n.
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10. Remarkable Lattices & Cryptography

Gaussian Sampling. While the discrete Gaussian distribution already
is an important theoretical tool, for many practical purposes we want
to actually sample (close to) the distribution in an efficient manner. In
their breakthrough work Gentry et al. [GPV08] showed that Klein’s
[Kle00] randomized Babai’s nearest plane algorithm does exactly that.
Given a lattice basis one can sample statistically close to the discrete
Gaussian distribution with parameters depending on the shortness of
the (Gram-Schmidt) basis; a better reduced basis allows for a lower
Gaussian width s. To simplify later proofs we use an exact sampling
algorithm by Brakerski et al. [Bra+13].

Lemma 177 (Discrete Sampling [Bra+13, Lemma 2.3]). There is a
polynomial-time algorithm DiscreteSample(Q, s, c) that given a
quadratic form Q ∈ S>0

n , center c ∈ Rn, and a parameter s ≥
∥B̃Q∥ ·

√
ln(2n+ 4)/π, returns a sample distributed as DQ,s,c.

10.2.2 An average-case distribution

First, we define our average-case distribution within an equivalence
class [Q], which can be seen as an extension of the techniques used
by Haviv and Regev [HR14] to show that LIP lies in SZK. While in
their work they use a discrete Gaussian sampler [GPV08] to sample a
generating set of the lattice, we extend this by a linear algebra step
that returns a canonically distributed lattice basis — or, in our case,
a quadratic form.

In hindsight, this algorithm appears very similar to the heuristic
approach of [BM21], but the use of Gaussian sampling formally guar-
antees that the output distribution solely depends on the lattice and
not on the specific input basis — or, in our case, depends only on the
class of the input quadratic form.

We start with the linear algebra step, that, given a quadratic form
and a set of short vectors of full rank, returns a well-reduced equivalent
form.

Lemma 178 (Adapted from [MG02, Lemma 7.1]). There is a poly-
nomial time algorithm (R,U) ← Extract(Q,Y) that on input a
quadratic form Q, and vectors Y = (y1, . . . ,ym) ∈ Zn×m such that
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10.2. LIP and self-reducibility

rk(L(Y)) = n, outputs a transformation U ∈ GLn(Z) and a quadratic
form R = U⊤QU equivalent to Q such that

∥∥∥B̃R

∥∥∥ ≤ maxi ∥yi∥Q.

Proof. First let U ∈ GLn(Z) be the unique transformation such that
T = U−1Y is the canonical upper-diagonal Hermite Normal Form of
Y. Let R = U⊤QU and note that R is equivalent to Q. Denote the
column vectors of U by u1, . . . ,un. Let p1, . . . , pn be the pivot columns
of T. Because T is upper triangular and in Hermite Normal Form we
have ypi =

∑i
j=1Tj,piuj, where Ti,pi ≥ 1. In particular we have

that span(ypi , . . . ,ypk) = span(u1, . . . ,uk). Let ỹpi and ũi be the i-th
Gram-Schmidt vector of (yp1 , . . . ,ypn) and U respectively w.r.t. Q.
Note that ỹpi = Ti,pi · ũi, and thus ∥ũi∥Q = ∥ỹpi∥Q /Ti,pi ≤ ∥ỹpi∥Q ≤
∥ypi∥Q. We conclude by

∥∥∥B̃R

∥∥∥ = maxi ∥ũi∥Q ≤ maxi ∥yi∥Q .

For our final distribution to be well-defined we need that the ex-
tracted quadratic form only depends on the geometry of the input
vectors, and not on the particular representative Q.

Lemma 179. Let Y = (y1, . . . ,ym) ∈ Zn×m have full rank n. If
(R,U)← Extract(Q,Y), and for some unimodular V ∈ GLn(Z) we
have (R′,U′) ← Extract(V⊤QV,V−1Y), then R′ = R, and U′ =
V−1 ·U.

Proof. From the canonicity of the Hermite Normal Form we immedi-
ately obtain that (U′)−1V−1Y = T = U−1Y, and thus U′ = V−1 ·U.
It follows that R′ = (V−1 ·U)⊤V⊤QV(V−1 ·U) = U⊤QU = R.

Now we can define our average-case distribution for a Gaussian
parameter s > 0.

Definition 180. Given a quadratic form Q ∈ S>0
n , we define the

Gaussian form distribution Ds([Q]) over [Q] with parameter s > 0
algorithmically as follows:

1. Let C := 1− (1+ e−π)−1 > 0, and m :=
⌈
2n
C

⌉
. Sample m vectors

(y1, . . . ,ym) =: Y from DQ,s. Repeat until their span has full
rank n.

2. (R,U)← Extract(Q,Y).

3. Return R.
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10. Remarkable Lattices & Cryptography

Proof. We have to show that the distribution is well-defined over the
equivalence class [Q], i.e., for any input representative Q′ ∈ [Q] the
output distribution should be identical. Let Q′ = V⊤QV ∈ [Q]. Note
that step 1 only depends on the geometry of the vectors w.r.t. Q′.
Therefore if step 1 on input Q finishes with Y, then on input Q′

it finishes step 1 with Y′ = V−1Y with the same probability. By
Lemma 179 step 2 extracts the same quadratic form R in both cases.
So the distribution is independent of the input representative Q′ ∈ [Q],
and thus it is well-defined over [Q].

Given the algorithmic definition of Ds([Q]), an efficient sampling
algorithm follows with only a few adaptations. Firstly, we need to effi-
ciently sample from DQ,s which puts some constraints on the parame-
ter s depending on the reducedness of the representative Q. Secondly,
we need to show that step 1 does not have to be repeated very often.
For this we require the additional constraint s ≥ λn(Q).

Algorithm 16: Sampling from Ds([Q]).
Data: A quadratic form Q ∈ S>0

n (Zn), and a parameter
s ≥ max{λn(Q), ∥B̃Q∥ ·

√
ln(2n+ 4)/π}.

Result: Sample R = U⊤QU from Ds([Q]), with a
transformation U ∈ GLn(Z).

1 C ← 1− (1 + e−π)−1, m←
⌈
2n
C

⌉
;

2 do
3 Sample y1, . . . ,ym ← DQ,s ; // Using Lemma 177
4 Y ← (y1, . . . ,ym);
5 while rk(Y) < n;
6 (R,U)← Extract(Q,Y);

Lemma 181. For any quadratic form Q ∈ S>0
n (Z), and parameter

s ≥ max{λn(Q), ∥B̃Q∥ ·
√
ln(2n+ 4)/π},

Algorithm 16 runs in expected polynomial time and returns (R,U) ∈
[Q]×GLn(Z), where R is a sample from Ds([Q]), and U, conditioned
on R, is uniform over Isom(Q,R). In particular R = U⊤QU.
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10.2. LIP and self-reducibility

Proof. By Lemmas 177 and 178 every step in Algorithm 16 runs in
polynomial time. What remains is to show that the number of itera-
tions is polynomially bounded in expectation. Let the random variable
T be the number of iterations before a set of full rank vectors is found,
we have to bound E[T ].

If rk(y1, . . . ,yi) < n, then because s ≥ λn(Q) we have by [HR14,
Lemma 5.1] that every newly sampled vector yi+1 ← DQ,s is not in
the span of y1, . . . ,yi with constant probability at least C := 1 −
(1 + e−π)−1 > 0. Let m :=

⌈
2n
C

⌉
. The failure probability pfail of not

finding n linearly independent vectors is upper bounded by a binomial
experiment with success probability C, where we reach at most n− 1
wins in m trials. By Hoeffding’s inequality we have the tail bound
pfail ≤ exp(−2m · (C − n−1

m
)2) ≤ exp(−mC) ≤ exp(−2n) ≤ e−2. The

expected number of iterations E[T ] is then bounded by the mean of a
geometric distribution with success probability 1− pfail, i.e.,

E[T ] ≤ 1/(1− pfail) ≤ 1/(1− e−2) < 2.

Suppose that the algorithm runs and finishes with a full rank ma-
trix Y, and returns (R,U)← Extract(Q,Y). For any automorphism
V ∈ Aut(Q), i.e., such that V⊤QV = Q, it would have been just as
likely that the final full rank matrix equalled VY, because the samples
from DQ,s and the stopping condition only depend on the geometry of
the vectors w.r.t. Q. Then, by Lemma 179, we have:

Extract(Q,VY) = Extract((V−1)⊤QV−1,VY) = (R,VU),

and thus the algorithm would have returned VU with the same prob-
ability as U, which makes the returned transformation uniform over
the set of isomorphisms {VU : V ∈ Aut(Q)} from Q to R.

For (exponentially) large parameters s we can always efficiently
sample from the average-case distribution by first LLL reducing the
representative.

Lemma 182. Given any quadratic form Q ∈ S>0
n (Z) we can sample

from Ds([Q]) (together with a transformation) in polynomial time for
s ≥ 2Θ(n) · λn([Q]).

Proof. Run the LLL algorithm on Q to obtain a representative Q′ ∈
[Q] for which ∥B̃Q′∥ ≤ 2Θ(n) ·λn([Q]). Then apply Lemma 181 on Q′.
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10. Remarkable Lattices & Cryptography

For a sample Q′′, combining the unimodular transformations obtained
from LLL and the sampling gives us a unimodular U ∈ GLn(Z) such
that Q′′ = U⊤QU.

Lemma 183. For any quadratic form Q ∈ S>0
n , parameter ϵ ∈ (0, 1),

and s ≥ max{λn(Q), ηϵ(Q)}, we have

Pr
Q′∼Ds([Q])

[∥B̃Q′∥ > s
√
n] ≤ 1 + ϵ

1− ϵ · 100n · 2
−n.

Proof. Given full rank vectors Y = (y1, . . . ,ym) ∈ Zn×m the extractor
returns a quadratic form Q′ such that ∥B̃Q′∥ ≤ maxi ∥yi∥Q and thus
we can just focus on the norms ∥yi∥Q of the sampled vectors. Let
the random variable T ≥ 1 be the number of iterations before a set
of full rank vectors is found. From the proof of Lemma 181 we have
E[T ] ≤ 2. After t iterations we have sampled t ·m vectors x1, . . . ,xt·m,
and by Lemma 175 we have ∥xi∥ > s

√
n with probability at most

(1 + ϵ)/(1− ϵ) · 2−n for each of them. By a union bound we conclude

Pr

[
max

1≤i≤T ·m
∥yi∥Q > s

√
n

]
=

∞∑
t=1

Pr[T = t] · Pr[ max
1≤i≤t·m

∥yi∥Q > s
√
n]

≤
∞∑
t=1

Pr[T = t] · t︸ ︷︷ ︸
E[T ]

·m · 1 + ϵ

1− ϵ · 2
−n

≤ 2 ·
⌈
2n
C

⌉
· 1 + ϵ

1− ϵ · 2
−n ≤ 100n · 1 + ϵ

1− ϵ · 2
−n.

10.2.3 Average case LIP

The above definition of a distribution over a class which is efficiently
sampleable from any representative of that class leads us to a natural
average-case version of both versions of LIP. It is parametrized by a
width parameter s > 0.

Definition 184 (Average-case search LIP: ac-sLIPQ
s ). For s > 0

and a quadratic form Q ∈ S>0
n , the problem ac-sLIPQ

s is, given a
quadratic form sampled as Q′ ← Ds([Q]), to compute a unimodular
U ∈ GLn(Z) such that Q′ = U⊤QU.
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Definition 185 (Average-case distinguishing LIP: ac-∆LIPQ0,Q1
s ).

For two quadratic forms Q0,Q1 ∈ S>0
n and parameter s > 0 the

problem ac-∆LIPQ0,Q1
s is, given a quadratic form sampled as Q′ ←

Ds([Qb]) where b ∈ {0, 1} is a uniform random bit, to recover b.

Trivially the average-case variants can be reduced to their respec-
tive worst-case variants. In the following section we show that the
reverse is also true.

10.2.4 A worst-case to average-case reduction

In general, lattice problems become easier when given a short ba-
sis and harder when given a long basis. Similarly, one would expect
that ac-sLIPQ

s and ac-∆LIPQ0,Q1
s become harder when the parameter

s > 0 increases. In fact, when s is large enough, the average-case
problem becomes at least as hard as any worst-case instance, making
the average-case and worst-case problems equivalent.

Lemma 186 (ac-sLIPQ
s ≥ wc-sLIPQ for large s). Given an oracle

that solves ac-sLIPQ
s for some s ≥ 2Θ(n) · λn(Q) in time T0 with prob-

ability ϵ > 0, we can solve wc-sLIPQ with probability at least ϵ in time
T = T0 + poly(n, log s).

Proof. Given any (worst-case) instance Q′ ∈ [Q], apply Lemma 182
to sample Q′′ ← Ds([Q]) for some s ≥ 2O(n) · λn([Q]), together with
a U′′ such that Q′′ = U′′⊤Q′U′′. Note that Ds([Q]) = Ds([Q

′]);
we can therefore apply our ac-sLIPQ

s -oracle once to Q′′ and obtain
U ∈ GLn(Z) such that Q′′ = U⊤QU. Now for U′ := UU′′−1 ∈ GLn(Z)
we have:

U′⊤QU′ = (U′′−1)⊤U⊤QUU′′−1 = (U′′−1)⊤Q′′U′′−1 = Q′.

So given an ac-sLIPQ
s -oracle we can solve wc-sLIPQ.

To allow for more efficient schemes we would like to decrease the
parameter s > 0 in the worst-case to average-case reduction. We can
do so at the cost of a stronger lattice reduction algorithm than LLL.
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Lemma 187. Given an oracle that solves ac-sLIPQ
s for some s ≥

λn(Q) in time T0 with probability ϵ > 0, we can solve wc-sLIPQ with
probability at least 1

2
in time

T =
1

ϵ
(T0 + poly(n, log s)) + C

(
n,

s

λn(Q) ·
√
ln(2n+ 4)/π

)
,

where C(n, f) is the cost of solving the Shortest Independent Vector
Problem in dimension n (SIVP, [Reg09]) within an approximation fac-
tor of f .

Proof. Since the f -approx-SIVP oracle returns n linearly independent
vectors of norm at most f · λn(Q), we can construct an equivalent
form Q′ ∈ [Q] with ∥B̃Q′∥ ≤ f · λn(Q), using Lemma 178. We do
this once at cost C(n, f). For f := s/(λn(Q) ·

√
ln(2n+ 4)/π) we

obtain that s ≥ ∥B̃Q′∥ ·
√

ln(2n+ 4)/π. Therefore using Q′ we can
sample efficiently from Ds([Q]). The rest of the proof is similar to
that of Lemma 186. Additionally the reduction succeeds with some
probability ϵ > 0, so we need to repeat it 1

ϵ
times to obtain a success

probability of at least 1
2
. Note that each additional sample can be

computed in polynomial time from the same representative Q′.

Remark 188. Note that the overhead is entirely additive, in par-
ticular it does not suffer from the 1

ϵ
amplification. So, despite the

reduction not being polynomial time, one can still afford extraordi-
nary large overheads. Concretely, for example, a hardness of 2100 for
f -SIVP would barely affect the hardness reduction, if the hardness
of ac-sLIP is 2128. This situation is quite different from the usual
inefficient reductions found in the literature, where the overhead is
multiplicative.

In Lemma 187, the SIVP oracle can be instantiated by a vari-
ant of the BKZ algorithm [Sch87]. With a sub-linear blocksize of
β := n/ log(n) we could decrease s to a quasi-polynomial factor
exp(log2(n)) · λn(Q), with only a subexponential additive cost to
the reduction. For security based on exponential hardness (e.g.,
T0/ϵ = exp(Ω(n))) this would still be meaningful, while the lower pa-
rameters imply a more efficient scheme with only a poly-logarithmic
bitlength for the integer entries of the manipulated matrices.
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Going down to polynomial factors s = poly(n) · λn(Q) (and hence
single logarithmic integer bitlength) would require a linear blocksize
β := Θ(n), and an exponential cost 2cn. For small constants c > 0 such
that cn is smaller than the security parameter the reduction would
still be meaningful. However, for provable algorithms this constant c
is generally too large to be useful. As we want to keep our reduction
non-heuristic in this initial work, we will leave this regime for further
research.

Using a similar strategy, one can also establish a worst-case to
average-case reduction for ∆LIP. Note that, because it is a distin-
guishing problem, the advantage amplification requires O(1/α2) calls
to the average-case oracle.

Lemma 189 (ac-∆LIPQ0,Q1
s ≥ wc-∆LIPQ0,Q1 for large s). Given an

oracle that solves ac-∆LIPQ0,Q1
s for some

s ≥ 2Θ(n) ·max{λn(Q0), λn(Q1)}

in time T0 with advantage α > 0, we can solve wc-∆LIPQ0,Q1 with
advantage α in time T = T0 + poly(n, log s).

Lemma 190. Given an oracle that solves ac-∆LIPQ0,Q1
s in time T0

for some s ≥ max{λn(Q0), λn(Q1)} with advantage α > 0, we can
solve wc-∆LIPQ0,Q1 with advantage at least 1

4
in time

T =
1

α2
(T0 + poly(n, log s))

+ C

(
n,

s

max{λn(Q0), λn(Q1)} ·
√
ln(2n+ 4)/π

)
,

where C(n, f) is the cost of solving the Shortest Independent Vector
Problem in dimension n (SIVP, [Reg09]) within an approximation fac-
tor of f .

10.3 Zero Knowledge Proof of Knowledge
Recall from Section 2.7.2 that a ZKPoK protocol allows one to prove
knowledge of a solution to some problem without revealing the so-
lution. In our case, given public quadratic forms Q0,Q1 ∈ S>0

n (Z)
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we want to show knowledge of a LIP solution U ∈ GLn(Z) such that
Q1 = U⊤Q0U, without revealing any information about U. The pro-
tocol is defined in Figure 10.1.

On a high level, the protocol of Haviv and Regev [HR14], as well
as ours, is very similar to protocols for other types of isomorphisms,
in particular protocols for graph isomorphism [GMW91] and for code
isomorphism [BMPS20].

A notable difference, however, is that both these type of proto-
cols [GMW91; BMPS20] rely on the action of a finite group (per-
mutations), allowing to show zero-knowledgness by uniformity of the
distribution over an orbit. Since in our case, the group acting GLn(Z)
is not finite, not even compact, it cannot admit such uniform dis-
tribution. It is perhaps surprising to see that uniformity is in fact
not required; our earlier defined average-case distribution can be used
instead.

10.3.1 The Σ-protocol

Besides efficiency we have to check the standard properties of a sigma
protocol as defined in Section 2.7.2: completeness, special soundness
and honest-verifier zero-knowledge.

Efficiency and completeness. To show the efficiency of the prover we
have to check that Algorithm 16 runs in polynomial time. Indeed, by
Lemma 181, this is the case because

s ≥ max
{
λn([Q0]), ∥B̃Q0∥ ·

√
ln(2n+ 4)/π

}
.

To show the efficiency of the verifier we have to show that the check
W ∈ GLn(Z) can be done efficiently. This is the case, since W ∈
GLn(Z) if and only if W is integral and det(W) = ±1, both of which
are easy to check in polynomial time.

To prove completeness of the protocol Σ, we have to show that the
verifier accepts, whenever the prover executes the protocol honestly.
If the prover is honest then we have W := U−c ·V ∈ GLn(Z) because
U and V are both unimodular by definition. Additionally we have

Q′ = V⊤Q0V = (V⊤(U−c)⊤)︸ ︷︷ ︸
W⊤

((Uc)⊤Q0U
c)︸ ︷︷ ︸

Qc

(U−cV)︸ ︷︷ ︸
W

= W⊤QcW,
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10.3. Zero Knowledge Proof of Knowledge

Zero Knowledge Proof of Knowledge Σ

Consider two equivalent public quadratic forms Q0,Q1 ∈ S>0
n (Z) and

a secret unimodular U ∈ GLn(Z) such that Q1 = U⊤Q0U. Given
the public parameter

s ≥ max
{
λn([Q0]),max

{
∥B̃Q0∥, ∥B̃Q1∥

}
·
√
ln(2n+ 4)/π

}
,

we define the following protocol Σ that gives a zero-knowledge proof
of knowledge of an isomorphism between Q0 and Q1:

Prover Verifier

Sample Q′ ← Ds([Q0])
by Alg. 16, together with V
s.t. Q′ = V⊤Q0V

Q′
−−−−−−→

Sample c← U({0, 1})
c←−−−−−−

Compute W = U−c ·V
W−−−−−−→

Check if W ∈ GLn(Z),
and Q′ = W⊤QcW.

Figure 10.1: A zero knowledge proof of knowledge sigma protocol for
knowledge of a solution to search LIP.

and thus the verifier accepts.

Special Soundness. For special soundness, we have to show that two
accepting conversations with the same initial message, but a different
challenge, allow to compute an isomorphism from Q0 to Q1. Suppose
we have two such accepting conversations (Q′, 0,W0) and (Q′, 1,W1)
of Σ where the first message Q′ is identical. The acceptance implies
that W0,W1 ∈ GLn(Z) and W⊤

0 Q0W0 = Q′ = W⊤
1 Q1W1. Therefore
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U′ := W0W
−1
1 ∈ GLn(Z) gives an isomorphism from Q0 to Q1, as

U′⊤Q0U
′ = (W−1

1 )⊤(W⊤
0 Q0W0)W

−1
1

= (W−1
1 )⊤(W⊤

1 Q1W1)W
−1
1 = Q1.

We conclude that Σ has the special soundness property.

Honest-verifier zero-knowledge. To show that a honest verifier cannot
learn anything from the interaction, we must show that there exists an
efficient simulator that can produce accepting conversations following
the same distribution, but without knowledge of a secret isomorphism
between Q0 and Q1. We create such a simulator that given the public
input Q0,Q1, outputs an accepting conversation with the same prob-
ability distribution as it would have been between a honest prover
and verifier. Note that the first message Q′ is always distributed as
Ds([Q0]), the challenge c as U({0, 1}), and V is uniform over the set of
isomorphisms from Q0 to Q′, by Lemma 181. Because U is an isomor-
phism from Q0 to Q1 we have, given the challenge c, that W = U−c ·V
is uniform over the set of isomorphisms from Qc to Q′.

To simulate this we first sample the uniformly random challenge
c ← U({0, 1}). If c = 0 we can proceed the same as in Σ itself,
e.g., sample Q′ ← Ds([Q0]) using Algorithm 16, together with a V
such that Q′ = V⊤Q0V, and set W := V. The final conversation
(Q′, 0,W) is accepting and follows by construction the same distribu-
tion as during an honest execution conditioned on challenge c = 0.

If c = 1 we use the fact that [Q0] = [Q1], and that we can use
Algorithm 16 with representative Q1 as input instead of Q0. So again
we obtain Q′ ← Ds([Q1]) = Ds([Q0]) following the same distribu-
tion, but now together with a unimodular W ∈ GLn(Z) such that
Q′ = W⊤Q1W. The conversation (Q′, 1,W) is accepting by con-
struction, and Q′ follows the same distribution Ds([Q0]). Additionally
by Lemma 181 the transformation W is indeed uniform over the set
of isomorphisms from Q1 to Q′.

We conclude that Σ has the honest-verifier zero-knowledge prop-
erty.
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10.3.2 Identification scheme

The Zero Knowledge Proof of Knowledge in the previous section is
worst-case in the sense that, given any two equivalent forms Q0,Q1 ∈
S>0
n (Z) and a secret isomorphism U ∈ GLn(Z) from Q0 to Q1, we

can show knowledge of such an isomorphism. However, to turn this
Σ-protocol into an identification scheme (see [Dam02]), we need to
define a distribution of U ∈ GLn(Z) (or alternatively of Q1 w.r.t Q0).
Finding an isomorphism between Q0 and Q1 is at most as hard as solv-
ing either ac-sLIPQ0

s or ac-sLIPQ1
s for parameter s as in Σ. Therefore, a

natural choice is to have Q1 distributed according toDs′([Q0]) for some
parameter s′ ≥ max{λn([Q0]), ∥B̃Q0∥ ·

√
ln(2n+ 4)/π}, which we can

efficiently sample from using Algorithm 16. The security of our iden-
tification scheme is then solely based on the hardness of ac-sLIPQ0

s′ .

10.4 Key Encapsulation Mechanism

In this section we construct a Key Encapsulation Mechanism (KEM)
with a security proof based on the hardness of ∆LIP. See Figure 10.2
for the scheme. In short, we will need a quadratic form S along with
an efficient decoder up to some radius ρ < λ1(S)/2. The public key
will consist of a long equivalent form P := U⊤SU ← Ds([S]), while
the unimodular transformation U will be the secret key. Knowledge of
the transformation U allows to decode w.r.t. P via S; without any loss
in decoding performance. The generated key will be a random error
e of norm ∥e∥P ≤ ρ, and it can be encapsulated as the syndrome
e := e mod Zn ∈ [0, 1)n. The receiver with knowledge of the secret
transformation U can recover e by decoding via S. The correctness
follows from the fact that the decoding is unique due to ρ < λ1(S)/2.

For the security we assume that it is (computationally) hard to
differentiate between P ← Ds([S]) and some random sample R ←
Ds([Q]) from a special class [Q], corresponding to a lattice admitting
a dense sublattice. This assumption allows us to replace P by R in the
security proof, which completely breaks the uniqueness of the decod-
ing. That is, the syndrome e has many (say exp(Ω(λ))) nearby points
w.r.t. R, and retrieving the exact original point becomes statistically
hard.
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Key Encapsulation Scheme

Let ρ < λ1(S)/2 and let S ∈ S>0
n (Z) be a quadratic form with

an efficient decoder Decode with decoding radius ρ. Let E :
1
q
Zn×{0, 1}z → {0, 1}ℓ be a (ℓ, negl(n))-extractor for some ℓ = Θ(n).

Given the public parameters

s ≥ max{λn(S), ∥B̃S∥ ·
√
ln(2n+ 4)/π}, and

q :=

⌈
s · n
ρ
·
√

ln(2n+ 4)/π

⌉
,

we define the KEM K := (Gen,Encaps,Decaps) as follows:

• (pk, sk)← Gen(1n): on input 1n do:

1. Sample P← Ds([S]) using Alg. 16, together with U such
that P = U⊤SU.

2. Output (pk, sk) = (P,U).

• (c, k)← Encaps(pk): on input a public key P = pk do:

1. Sample e← 1
q
DP,qρ/

√
n ∈ 1

q
Zn using Lemma 177.

2. Compute c← e mod Zn s.t. c ∈ Tn
q = {0, 1

q
, . . . , q−1

q
}n.

3. Sample a random extractor seed Z ← {0, 1}z.
4. Compute k ← E(e, Z).
5. Output (c, k) where c := (c, Z).

• k ← Decaps(sk, c): on input c = (c, Z) and a secret key
U := sk do:

1. Compute y← Decode(S,Uc) s.t. ∥y −Uc∥S ≤ ρ,
output ⊥ on failure.

2. Compute k ← E(c−U−1y, Z).
3. Output k.

Figure 10.2: A key encapsulation scheme based on LIP.
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Efficiency and correctness. We consider the efficiency and correct-
ness of the KEM K := (Gen,Encaps,Decaps) instantiated with
quadratic form S ∈ S>0

n (Z) and public parameter

s ≥ max{λn(S), ∥B̃S∥ ·
√

ln(2n+ 4)/π}.

By the above constraint on s, Algorithm 16 will run in polynomial-time
by Lemma 181. Furthermore by Lemma 183 we have with overwhelm-
ing probability that

qρ/
√
n ≥ s

√
n ·
√

ln(2n+ 4)/π ≥ ∥B̃P∥ ·
√
ln(2n+ 4)/π,

and thus we can efficiently sample from DP,qρ/
√
n by Lemma 177.

In order to prove correctness, note that in the key encapsulation
algorithm the sampled error e has norm at most ∥e∥P ≤ ρ except with
negligible probability by Lemma 175. We denote the encapsulated key
by k := E(e, Z), where Z denotes the randomness extractor’s seed.
Because ρ < λ1(S)/2 the vector x := c− e ∈ Zn is the unique closest
vector to c with respect to P, which makes Ux the unique closest
vector to Uc with respect to S = (U−1)⊤PU−1. In the decapsulation
the decoder computes the unique vector y at distance at most ρ from
Uc, which implies that y = Ux. So indeed the output k′ := E(c −
U−1y, Z) = E(c − x, Z) = E(e, Z) = k equals the encapsulated key
with overwhelming probability.

CPA security. To show that our KEM is CPA-secure we fall back
to a lossy trapdoor argument as in [PW11]. Under the hardness of
decisional LIP we can replace our unique ρ-decodable quadratic form
by one that is far from uniquely decodable. For the latter it is enough
to have a dense sublattice.

Lemma 191. Let Q ∈ S>0
n (Z) be a quadratic form with a rank r

sublattice D · Zr ⊂ Zn. For positive ϵ > 0, center c ∈ Rn, parameter
ρ ≥ √n · 2ηϵ([D⊤QD]), and for every x ∈ Zn we have

Pr
X∼DQ,ρ/

√
n,c

[X = x] ≤ 1 + ϵ

1− ϵ · 2
−r.

Proof. Let y := x − c ∈ Rn, and decompose y =: yD + yD⊥ where
yD ∈ span(DZr), and yD⊥ is orthogonal to yD w.r.t Q. Then, writing
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s := ρ/
√
n, we have

Pr
X∼DQ,s,c

[X = x] =
ρQ,s,c(x)

ρQ,s,c(Zn)
=

ρQ,s(y)

ρQ,s(y + Zn)
≤ ρQ,s(y)

ρQ,s(y +DZr)

=
ρQ,s(yD⊥) · ρQ,s(yD)

ρQ,s(yD⊥) · ρQ,s(yD +DZr)
=

ρQ,s(yD)

ρQ,s(yD +DZr)
.

Since we can write yD = Dz for some z ∈ Rr, the above equals
PrX∼D

D⊤QD,s,z
[X = 0], which, by Lemma 176, is bounded by 1+ϵ

1−ϵ
· 2−r

because s ≥ 2ηϵ([D
⊤QD]).

Theorem 192. We consider the KEM K :=
(Gen,Encaps,Decaps) instantiated with quadratic form
S ∈ S>0

n (Z), decoding radius ρ, and public key parameter s > 0.
Let Q ∈ S>0

n (Z) be a quadratic form with a dense rank r = Θ(n)
sublattice DZr ⊂ Zn, in particular such that η 1

2
(D⊤QD) ≤ ρ/(2

√
n).

Then K is CPA-secure if ac-∆LIPS,Q
s is hard.

Proof. Let A be a probabilistic polynomial-time adversary. We
present two games Game1 and Game2, where Game1 is the regular
CPA-security game with the original scheme, and Game2 is almost
identical but with the only change that the public key is drawn from
Ds([Q]) instead of Ds([S]). By the hardness of ac-∆LIPS,Q

s the two
games are computationally indistinguishable, and due to the dense
sublattice we can conclude that winning Game2 with a non-negligible
advantage is statistically impossible.

Let the key-size ℓ = Θ(n) be such that ℓ ≤ r−log2(3). The original
KEM CPA game Game1 is as follows [KL20]:

• Gen(1n) is run to obtain a public key pk = P. Then
Encaps(pk) is run to generate (c, k) with k ∈ {0, 1}ℓ.

• A uniform bit b ∈ {0, 1} is chosen. If b = 0, set k̂ := k, if b = 1,
choose a uniform k̂ ∈ {0, 1}ℓ.

• Given (pk, c = (c, Z), k̂) the adversary A wins the experiment if
b is guessed correctly.
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The only difference between Game1 and Game2 is that in Game2 we
sample the public key P from Ds([Q]) instead of Ds([S]). Note that
Game1 and Game2 both only use public information and thus by the
hardness of ac-∆LIPS,Q

s the two are computationally indistinguishable
by A.

Now we take a look at Game2. Consider the output (c = (c, Z), k)
← Encaps(pk) where pk := Q′ ∈ [Q]. For any fixed c we have
by construction that k := E(e, Z), where e ← 1

q
DQ′,qρ/

√
n under the

condition that e = c mod Zn. Equivalently we could say that e ←
c−DQ′,ρ/

√
n,c, then, by Lemma 191, we know that e has a min-entropy

of at least r− log2(3) ≥ l, and thus k := E(e, Z) ∈ {0, 1}ℓ is negligibly
close to uniform and independent of c. So, in Game2 we have that
k̂ is negligibly close to uniform, independent of c and the choice of
b ∈ {0, 1}, making it impossible for A to guess b with non-negligible
advantage.

10.5 Signature scheme

Similar to the Key Encapsulation Mechanism we propose in Fig-
ure 10.3 a hash-then-sign signature scheme based on ∆LIP. The main
requirement is a quadratic form S along with an efficient discrete Gaus-
sian sampling algorithm of smallish width ρ/

√
n ≥ η2−Θ(n)(S).

Again the public key will consist of some lesser reduced form
P := U⊤SU← Ds([S]) equivalent to S, where the unimodular trans-
formation U will form the secret key. To sign a message we use a full
domain hash to obtain a uniform coset t + Zn, The signature then
consists of a nearby vector σ ← DP,ρ/

√
n,t w.r.t. the form P. The

nearby vector is obtained via S by using the secret transformation U.
The security assumption is similar, but in some way dual to that

of the KEM. Again assume that it is computationally hard to differ-
entiate between P and some special class of forms [Q]; however in this
case Q must admit a sparse projection (equivalently, their dual should
contain a dense lattice). The sparsity implies that a uniformly random
target t does not have a nearby vector with overwhelming probability,
making the signage vacuously hard.
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Signature Scheme

Let S ∈ S>0
n (Z) be a quadratic form together with a sampling algo-

rithm DiscreteSample that allows to sample statistically close to
DP,ρ/

√
n(t + Zn) for some parameter ρ/

√
n ≥ η2−Θ(n)([S]) and any

target t ∈ Tn
q . Let H : M → Tn

q be a full domain hash function
(modeled as a random oracle). Given the public parameters

s ≥ max{λn(S), ∥B̃S∥ ·
√

ln(2n+ 4)/π}, and

q :=

⌈
s · n
ρ
·
√

ln(2n+ 4)/π

⌉
,

we define the signature scheme S := (Gen,Sign,Verify) as follows:

• (pk, sk)← Gen(1n): on input 1n do:

1. Sample P ← Ds([S]) using Alg. 16, together with U s.t.
P = U⊤SU.

2. Output (pk, sk) = (P,U) ∈ S>0
n (Z)× GLn(Z).

• σ ← Sign(sk,m): on input a message m and a secret key
U := sk do:

1. Compute t← H(m).
2. Sample σ′ ← DS,ρ/

√
n,Ut using DiscreteSample.

3. Compute σ ← U−1σ′.
4. Output σ ∈ Zn.

• b := Verify(pk,m,σ): on input a public key P = pk, a mes-
sage m and a signature σ do:

1. Compute t← H(m).
2. If σ ∈ Zn, and ∥t− σ∥P ≤ ρ, output b = 1.
3. Otherwise, output b = 0.

Figure 10.3: A signature scheme based on LIP.
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Correctness. To prove correctness, we mainly have to check that the
returned signature σ ∈ Zn is indeed close to t := H(m) w.r.t P.
Because P = U⊤SU we have:

∥σ − t∥P = ∥U(σ − t)∥S = ∥σ′ −Ut∥S ,

and by Lemma 175 we have with overwhelming probability that

∥σ − t∥P = ∥σ′ −Ut∥S ≤ ρ/
√
n · √n = ρ,

concluding the correctness.

Security. For the security proof we first consider a class of quadratic
forms for which the signage is vacuously hard, e.g., for a random target
t ∈ Rn/Zn there exists no nearby vector.

Lemma 193. Let Q ∈ S>0
n (Z) be a quadratic form with a dense rank

k sublattice DZk ⊂ Zn, in particular such that ρ/
√
k ≤ 1/(

√
8πe ·

det(D⊤QD)1/2k). Then for the dual form Q−1 we have

Pr
t∼U([0,1]n)

[|(t+ Bn
Q−1,ρ) ∩ Zn| ≥ 1] ≤ 2−k.

Proof. Let V := span(D) ⊂ Rn such that the orthogonal projection
w.r.t. Q−1 of Zn onto V defines a projected lattice CZk := πQ−1,V (Zn)
of rank k, with det(C⊤Q−1C) ≥ 1/ det(D⊤QD). Because a projection
is non-increasing in length we have

Pr
t∼U(Rn/Zn)

[|(t+ Bn
Q−1,ρ) ∩ Zn| ≥ 1]

≤ Pr
t∼U(Rk/Zk)

[|(t+ Bk
C⊤Q−1C,ρ) ∩ Zn| ≥ 1] = (∗).

Then using Markov’s inequality we can bound the above by

(∗) ≤ Et∼U(Rk/Zk)[|(t+ Bk
C⊤Q−1C,ρ) ∩ Zn|] =

VolC⊤Q−1C(Bk
C⊤Q−1C,ρ

)

VolC⊤Q−1C(Rk/Zk)

≤ (2πe/k)k/2 · ρk√
det(C⊤Q−1C)

≤ 2−k.
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Theorem 194. We consider the signature scheme S := (Gen,Sign,
Verify) instantiated with quadratic form S ∈ S>0

n (Z), sampling pa-
rameter ρ, and public key parameter s > 0. Let Q ∈ S>0

n (Z) be a
quadratic form with a dense rank k = Θ(n) sublattice DZk ⊂ Zn, in
particular such that 2ρ/

√
k ≤ (

√
8πe · det(D⊤QD⊤)1/k)−1. Then S is

EUF-CMA secure if ac-∆LIPS,Q−1

s is hard.

Proof. Let A be a probabilistic polynomial-time adversary. We
present three games Game1,Game2,Game3 where Game1 is the
regular EUF-CMA game with the original scheme, Game2 reprograms
the random oracle to generate valid signatures without knowledge of
the secret key, and Game3 samples the public key from [Q−1] instead
of [S]. By a standard smoothness argument the adversary’s view of
Game1 and Game2 is statistically indistinguishable, and Game2 and
Game3 are indistinguishable by the hardness of ac-∆LIPS,Q−1

s . Then
we conclude by Lemma 193 that the problem of forging a signature in
Game3 is statistically hard.

The original EUF-CMA game Game1 is as follows [KL20]:

• Gen(1n) is run to obtain keys (pk = P, sk = U).

• Adversary A is given pk = P and access to an oracle Sign(sk, ·).
The adversary then outputs (m,σ) where m was not queried
before to the oracle.

• A succeeds if and only if Verify(pk,m,σ) = 1.

To show that our signature scheme S is EUF-CMA secure we have
to show that Game1 succeeds only with negligible probability. We
assume that the adversary queries the oracle on l = poly(n) distinct2

message m1, . . . ,ml. In Game1 the secret key is used to obtain a valid
signature (mi,σi) where σi ← DP,ρ/

√
n,H(mi). In Game2 instead we

first sample a random error ei ← 1
q
·DP,qρ/

√
n. By Lemma 183 we have

qρ/
√
n ≥ ∥B̃P∥ ·

√
ln(2n+ 4)/π with overwhelming probability, and

thus by Lemma 177 we can do the sampling without using the secret
key. Then we reprogram the random oracle such that H(mi) := ti =
e mod Zn ∈ Tq, and return the signature pair (mi,σi := ti−ei). Note
that the probability that ti equals any target t ∈ Tn

q is proportional
2this can be enforced by salting messages or by derandomization.
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to ρP,ρ/
√
n,t(Zn). So ti is close to uniform by Lemma 173 because

ρ/
√
n ≥ η2−Θ(n)([S]) = η2−Θ(n)([P]), and thus the random oracle is

still simulated correctly. Additionally the conditional probability of
σi conditioned on ti is exactly the same as in Game1, so we can
conclude that Game1 and Game2 are statistically indistinguishable
from the adversary’s point of view.

The only difference between Game2 and Game3 is that in Game3
we sample the public key P from Ds([Q

−1]) instead of Ds([S]). Note
that Game2 and Game3 both only use public information and thus
by the hardness of ac-∆LIPS,Q−1

s the two are computationally indis-
tinguishable.

To conclude note that for any message m we obtain a random
target t := H(m) ∈ Tn

q . Let e′ be uniform over the Babai nearest
plane region defined by P, then ∥e′∥P ≤

√
n
2
∥B̃P∥, and t′ := t + 1

q
e′

is uniform over Rn/Zn. By Lemma 193 the uniformly random target
t′ lies at distance at least 2ρ from Zn w.r.t. P with overwhelming
probability. So for t we have with overwhelming probability that:

distP(t,Zn) ≥ distP(t′,Zn)−
∥∥∥∥1qe′

∥∥∥∥
P

≥ 2ρ−
√
n · ∥B̃P∥
2q

≥ 2ρ− ρ/(2
√

ln(2n+ 4)/π) > ρ.

Therefore it is statistically impossible for the adversary to return a
valid signature for m, and thus to win Game3.

10.6 Cryptanalysis

Equivalent quadratic forms Q,Q′ := UtQU (for some U ∈ GLn(Z))
share many common properties, and these invariants can be used to
decide that two quadratic forms cannot be equivalent, or can guide
the search for an isomorphism.

10.6.1 Invariants

Recall from Section 9.3 that we named the invariants that are easy
to compute arithmetic invariants, and those that are hard to compute
geometric invariants. The arithmetic invariants for an integral form
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Q ∈ S>0
n (Z), such as the determinant, gcd, parity and the genus,

provide an efficiently computable fingerprint ari(Q). The fingerprint
is essentially only useful to answer the ∆LIP problem in the negative.
When instantiating ∆LIP for cryptosystems, we should therefore make
sure that these fingerprints match.

The geometric invariants, such as |Min(Q)| or more generally (part
of) the Theta-series, appears to involve finding or even enumerating
short vectors; in particular they are plausibly hard to compute.

10.6.2 Algorithms for distinguish-LIP and
hardness conjecture

In Section 10.7, we will use ∆LIP with quadratic forms that have dif-
ferent minimal distances λ1(Q0) < λ1(Q1). However we will be careful
to ensure that their arithmetic invariant match ari(Q0) = ari(Q1) to
not make the problem trivial.

Approximate-SVP oracle. An f -approx-SVP oracle applied to a form
Q finds a short vector of length at most f · λ1(Q). So ∆LIP is no
harder than f -approx-SVP for f = λ1(Q1)/λ1(Q0) > 1 in any of
those lattices.

Unusual-SVP via lattice reduction. However even when the gap be-
tween λ1(Q0) and λ1(Q1) is small, the minimal vectors may individ-
ually still be unusually short, which make them significantly easier
to find than in a random lattice. This is usually formalized via the
f -unique-SVP problem, but many instances of interest do not have
such a gap between λ1 and λ2. In fact the lattice Zn, the the lat-
tices of Barnes-Wall and Barnes-Sloane, all have λ1 = λ2 = · · · = λn.
But practical and heuristic studies have showed that uniqueness is not
that relevant to lattice attacks [AD21]. We therefore introduce yet an-
other lattice problem, called unusual-SVP to discuss such instances.
A formal complexity reduction between unusual-SVP and unique-SVP
matching or approaching the heuristic state of the art appears to be
a valuable research objective, but is beyond the scope of the present
article.

We define f -unusual-SVP: find a minimal vector under the promise
that λ1(Q) ≤ gh(Q)/f , where the Gaussian Heuristic gh(Q) is a
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heuristic estimate for λ1(Q) given by:

gh(Q) := det(Q)1/2n · 1√
π
· Γ(1 + n/2)1/n ≈ det(Q)1/2n ·

√
n

2πe
.

State of the art lattice reduction techniques find these unusually short
vector more easily than longer vectors with length around gh(Q),
where (heuristically) the hardness is directly driven by the ratio
f = gh(Q)/λ1(Q) [AD21]. E.g., for f = O(nα) with α ≥ 0, we can
heuristically solve f -unusual-SVP by running BKZ-β with blocksize
β = n

2α+1
+ o(n). Given a form Q′ ∈ [Q0] ∪ [Q1], we parametrize the

lattice reduction algorithm to find a unusual short vector with length
min{λ1(Q0), λ1(Q1)}, then depending on success we learn that either
Q′ ∈ [Q0] or Q′ ∈ [Q1].

Conclusion. To conclude, let us also note that any of the above attack
can also be run over the dual. To state a hardness conjecture capturing
these attacks we define the primal-dual gap to the Gaussian Heuristic
as:

gap(Q) = max

{
gh(Q)

λ1(Q)
,
gh(Q−1)

λ1(Q−1)

}
.

Note that this quantity might be slightly lower than 1 (but no lower
than 1/2 by Minkowski’s bound): there might exist excellent lat-
tice packings beating the Gaussian Heuristic. We will be assum-
ing3 gap(Qi) ≥ 1, which implies that λ1(Qi)/λ1(Q1−i) ≤ gap(Qi)
for i = 0, 1, therefore also capturing the approximate-SVP approach.

In all the attacks above, one first searches for vectors no larger than
f · λ1(Qi) w.r.t. Qi for f = gap(Qi), hence the following conjecture.

Conjecture 195 (Hardness of ∆LIP (Strong)). For any two classes
of quadratic forms [Q0], [Q1] of dimension n, with ari([Q0]) =
ari([Q1]), and 1 ≤ gap([Qi]) ≤ f , the best attack against
wc-∆LIPQ0,Q1 requires solving f -approx-SVP in the worst-case from
either [Q0] or [Q1].

3That is, we do not make a hardness conjecture for such exceptionally dense
lattice packings. Such a regime has never been considered in practical cryptanalysis
and would deserve specific attention.
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This conjecture is meant to offer a comparison point with existing
lattice-based cryptography in terms of the approximating factor. Be-
yond contradicting this assumption, we also invite cryptanalysis effort
toward concrete comparison of f -approx-SVP on those instances to
SIS and LWE with the same approximation factor f .

If one only wishes to argue exponential security in n of the schemes
proposed in this paper, a sufficient conjecture is the following.

Conjecture 196 (Hardness of ∆LIP (Mild)). For any two classes
of quadratic forms [Q0], [Q1] of dimension n, with ari([Q0]) =
ari([Q1]), and gap([Qi]) ≤ poly(n), wc-∆LIPQ0,Q1 is 2Θ(n)-hard.

Note that the conjectures above are very strong and ‘best-case’
over the choice of the isomorphism classes. That is, even though
we may only want to use ∆LIP for specific choices of isomorphism
classes, we gladly invite cryptanalysis effort on ∆LIP for any choice
of isomorphism classes.

We would also like to motivate any reductions from more standard
lattice assumptions to LIP, though given current knowledge on LIP,
this may be hard to attain. A more reasonable goal might be to
generalize the search-to-decision reduction of Szydlo [Szy03], which
is currently limited to solving sLIP for the trivial lattice Zn given a
decisional LIP oracle for a few special lattices.

10.6.3 Algorithms for search-LIP and challenges

While the mentioned arithmetic and geometric invariants allow to
semi-decide LIP, the search version requires more effort. Recall
from Section 9.5 that it typically proceeds by enumerating sets of
short vectors for both quadratic forms, and then to backtrack search
for isometries between these sets. The hardest instances appear to
be those with many minimal vectors, and in particular those with
λ1(Q) = . . . = λn(Q).

Given the current state of the art, it seems difficult to give a precise
conjecture for the hardness of search-LIP, as it may depend on the
minimal distance, the kissing number, and the size and structure of the
automorphism group. Given that all known approaches require finding
at least one short vector, we can conjecture exponential hardness for
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Source Dim. Kissing Number
Λ24 [NS11; CS13] 24 196560 ≈ 217.6

MW44 [NS11] 44 2708112 ≈ 221.4

P48n [NS11] 48 52416000 ≈ 225.6

Ne64 [NS11] 64 138458880 ≈ 227.0

Γ72 [NS11] 72 6218175600 ≈ 232.5

MW128 [NS11] 128 218044170240 ≈ 237.7

BWn [CS13, Sec 6.5] n = 2m 2m
2/2+O(m)

Vn [Vlă19] n ≥ 20.0338n−o(n)

Table 10.2: Some challenge lattices for search-LIP

lattices with polynomial gap([Q]), bearing in mind that some instances
may be much harder, with a complexity up to nO(n).

Conjecture 197 (Hardness of sLIP). For any class [Q] of quadratic
forms of dimension n such that gap([Q]) ≤ poly(n), wc-sLIPQ is
2Θ(n)-hard.

To motivate further study of the hardness of LIP, we provide a list
of challenge lattices for LIP in Table 10.2, selected from known lattices
with large kissing numbers. More remarkable lattices may be found
in the online catalogue of Nebe and Sloane, in particular the section
on the kissing number [NS11].

For these large kissing number challenges it might be more enlight-
ening to separate the search for short vectors and the isomorphism
reconstruction. We therefore invite the cryptanalist to even assume
that sampling uniformly a random shortest vector comes at unit cost.
The search for all shortest vectors in these specific lattices may also
be harder in practice than for random lattices. Indeed, for these chal-
lenges, the kissing number is significantly larger than the ≈ (4/3)n/2

many short vectors provided by heuristic sieving algorithms [NV08].
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10.7 Instantiating from remarkable
lattices

To instantiate our KEM and signature scheme, we do not only need a
lattice with efficient decoding or sampling; we also need a second lat-
tice with a specific property to instantiate the ∆LIP problem and ar-
gue security. This section deals with how the ∆LIP pair is constructed
from a single remarkable lattice, while keeping the gaps small. Note
that this is just one generic way of doing this; for specific lattices there
might exist better instantiations.

10.7.1 Key Encapsulation Mechanism

To instantiate our KEM we need two quadratic forms: a form S along
with an efficient decoder that can decode up to some distance ρ <
λ1(S)/2, and a form Q with a dense rank k = Θ(n) sublattice D ·Zk ⊂
Zn such that η 1

2
(DtQD) ≤ ρ/(2

√
n). For simplicity of notation we

move to the lattice point of view.
We assume to have an n-dimensional lattice L for which gap(L) ≤

f = f(n) is bounded, and for which we can decode up to ρ =
Θ(1/f)·gh(L) < λ1(L)/2. I.e., a lattice for which the primal, dual and
decoding gap are bounded by f . We consider a general construction
leading to a 2n-dimensional primary lattice LS and secondary lattice
LQ with primal-dual gaps bounded by O(f 3) and such that LQ has a
dense enough sublattice to instantiate our KEM.

By Lemma 174 and due to the bounded gap of L, we have

η 1
2
(L) ≤ η2−n(L) ≤

√
n

λ1(L∗)
≤
√
n · f

gh(L∗)
= Θ(f · det(L)1/n).

Now let g = Θ(f 2) be a positive integer and consider the lattices:

LS := g · L ⊕ (g + 1) · L, and LQ := L ⊕ g(g + 1)L.

By construction the first lattice LS is geometrically similar to (two
orthogonal copies of) the original lattice. In particular we can still
decode LS up to radius ρ′ := g · ρ = Θ(g/f) · gh(L). Furthermore, the
second lattice LQ contains by construction a dense sublattice L ⊂ LQ,
where the parameter g allows to tune the precise (relative) density.
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Invariants match. Both lattices have determinant gn(g + 1)n det(L)2.
Due to the coprimality of g and g + 1 we still have gcd(LS) =
gcd(LQ) = gcd(L), and similarly for the parity. It remains to check
rational equivalence and p-adic equivalence for all primes p. Let R
denote a quadratic form representing L. Up to integral equivalence,
we have:

S :=

(
g2R 0
0 (g + 1)2R

)
Q :=

(
R 0
0 g2(g + 1)2R

)
.

Let In be the n× n identity matrix and consider the transformations:

U1 :=

(
g−1In 0
0 gIn

)
U2 :=

(
0 (g + 1)In

(g + 1)−1In 0

)
.

Then Q = Ut
1SU1 over Q: this implies [S]Q = [Q]Q. For any prime

p we have that gcd(g, p) = 1 or gcd(g + 1, p) = 1. So g or (g + 1) is
invertible over the p-adic integers Zp, and thus U1 ∈ GLd(Zp) exists
and Q = Ut

1SU1 over Zp or U2 ∈ GLd(Zp) exists and Q = Ut
2SU2 over

Zp. In any case, we have established [S]Zp = [Q]Zp , which concludes
the comparison of arithmetic invariants: ari(S) = ari(Q).

Dense sublattice. We now check the requirements for Theorem 192,
namely that η 1

2
(L) ≤ ρ′/(2

√
2n), where ρ′ = Θ(g/f) · gh(L) is the

decoding radius of LS. Given that η 1
2
(L) ≤ Θ(f · gh(L)/√n), it is

sufficient if

Θ(f · gh(L)/√n) ≤ ρ′/(2
√
2n) = Θ(g/f) · gh(L)/√n,

and thus we can conclude that some g = Θ(f 2) indeed suffices.
Following the conclusions from the cryptanalysis in Section 10.6.2

and more specifically Conjecture 195, we take a look at the primal-
dual gap for LS and LQ. We have that gap(LS) = Θ(gap(L)) ≤ O(f),
and gap(LQ) = Θ(g · gap(L)) ≤ O(f 3).

More specifically, following the same computation above but for
a primal gap of f , dual gap of f ∗, and a decoding gap of f ′ ≥ 2f
we would have g = Θ(f ∗ · f ′) and obtain a final primal-dual gap of
O(max(f, f ∗) · f ∗ · f ′).
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10.7.2 Signature scheme

Our signature scheme can be instantiated with any lattice for which
we can sample efficiently at small Gaussian widths, following a similar
∆LIP pair as above.

Namely, we assume to have a lattice L with gap(L) ≤ f and such
that we can sample a discrete Gaussian over L efficiently with param-
eter ρ/

√
n = Θ(η2−Θ(n)(L)) close to the smoothing bound. Similarly to

the KEM we set LS := g · L⊕ (g+1) · L, and LQ−1 = L⊕ g(g+1) · L
for some integer g ≥ 1. In particular, as in the KEM, we do have
ari(S) = ari(Q−1) with Q−1 instead of Q.

Then for the dual we have LQ = L∗ ⊕ 1
g(g+1)

L∗, with 1
g(g+1)

L∗

as a dense sublattice. The constraint of Theorem 194 boils down to
the inequality Θ(g · f · det(L)1/n) ≤ Θ(g2 det(L)1/n), and thus some
g = Θ(f) suffices. The final primal-dual gap of LS and LQ−1 is then
bounded by O(f 2).

The simplest lattice for which we have very efficient samplers is of
course the integer lattice Zn, leading to a gap of O(n) via the above
construction. Instantiating our scheme with this lattice would lead
to an interesting signature scheme where there is no need to compute
any Cholesky decomposition, even for signing, and that could be fully
implemented with efficient integer arithmetic.

We refer to our last open question (Section 10.1.3) regarding lat-
tices with a tighter Gaussian sampler, in order to obtain a signature
scheme with a better underlying approximation factor.

10.7.3 Getting down to O(f)

The general constructions presented turn a well-decodable or well-
sampleable lattice L with gaps f into a primary and secondary lat-
tice with gap O(f 3) and O(f 2) to instantiate our KEM and signature
scheme respectively. We suggest here that these losses from O(f) to
O(f 3) and O(f 2) respectively might be an artifact of the security proof
and our generic instantiation construction.

Suppose we can generate a random lattice LQ such that ari(LQ) =
ari(L); without the arithmetic constraint we would have with over-
whelming probability that gap(LQ) = O(1) (but even O(f) would
suffice). Let’s assume that the constraint does not affect this gap.
Then similar to the scheme of McEliece, by adding the extra security
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assumption that it is hard to decode in LQ (or hard to sample for
the signature scheme), we could remove the lossyness argument from
the security proof and directly instantiate our schemes with the pair
(L,LQ), leading to a gap of O(f).

10.7.4 Remarkable lattices

In Table 10.1 we show a list of some remarkable lattices that have effi-
cient decoding algorithms together with their primal, dual and decod-
ing gap. These are interesting candidates for instantiating our KEM,
especially those that reach poly-logarithmic decoding gaps. Unfortu-
nately, for all candidates at least one gap exceeds the poly-logarithmic
regime, and thus we do not yet obtain a KEM that is secure up to
poly-logarithmic approximation factors. Note, however, that the best
decoders in the list are very recent, and that there is no (obvious)
geometric obstacle for the existence of an efficiently decodable lattice
reaching poly-logarithmic primal, dual and decoding gaps.

For the signature scheme we have yet to find a lattice for which one
can do discrete Gaussian sampling significantly better than the generic
randomized Babai approach. Potentially the list decoding [GP12] al-
gorithm for the Barnes-Wall lattice can be turned into a sampler.
From a practical perspective, the lattice Zn is extremely interesting,
as it allows to sample very efficiently (and in parallel), with similar or
even better parameters than those based on LWE and NTRU trapdoor
lattices.

10.8 HAWK: fast, compact and simple
The end goal of LIP based cryptography is to build lattice-based
schemes that significantly improve upon the state-of-the-art based on
LWE, SIS and NTRU assumptions. Until then, we show here that
LIP is already competitive with the state-of-the-art using a lattice as
simple as Zd.

We shortly present and summarize the signature scheme Hawk
[DPPW22], as a practical instantiation of the signature scheme from
Section 10.5. Hawk is a hash-then-sign signature scheme similar to
the to be standardized scheme Falcon. Hawk significantly improves
over Falcon in its simplicity, and lack of floating point operations
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[Pre+20] This work Gain
Falcon Hawk

(
Falcon
Hawk

)
512 512

AVX2 KeyGen 7.95ms 4.25ms ×1.87
Reference KeyGen 19.32ms 13.14ms ×1.47

AVX2 Sign 193 µs 50 µs × 3.9
Reference Sign 2449 µs 168 µs ×14.6

AVX2 Verify 50 µs 19 µs ×2.63
Reference Verify 53 µs 178 µs ×0.30
Secret key (bytes) 1281 1153 ×1.11
Public key (bytes) 897 1006± 6 ×0.89
Signature (bytes) 652± 3 542± 4 ×1.21

Table 10.3: Performance of Falcon and Hawk for n = 512, 1024
on an Intel® CoreTM i5-4590 @3.30GHz processor with TurboBoost
disabled. The Sign timings correspond to batch usage.

in signing and verification. This is all due to the simplicity of the
underlying lattice Zd compared to the more complicated NTRU lattice
of Falcon.

Discrete sampling in (cosets of) Zd is almost trivial and can be done
coordinate wise. The Gaussian parameter s, and thus the signatures,
can also be a relative factor 1.17 smaller than that of Falcon due to
the orthogonality of Zd. To make the sampling even more practically
efficient and easy to implement in constant time we restrict the target
to the cosets {0, 1

2
}d + Zd, such that we can use two precomputed

tables for the discrete Gaussian: one for Z and one for 1
2
+ Z. Note

that any short coset representative t also gives a short vector 2t ∈ Zd.
With the appropriate parameters the concrete cryptanalysis shows
that these vectors can be leaked safely.

To limit the size of the keys and signatures, and the arithmetical
operations, we instantiate Zd as a rank 2 module lattice. The number
ring R = Z[X]/(Xn + 1) for n = d/2 is naturally orthogonal under
the trace norm and can thus be identified with Zn. Then we simply
take R2 = R ⊕ R as a rank 2 R-module which can be identified with
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Zd. A basis B ∈ R2×2 of R2 consists of only 4 ring elements. Instead
of quadratic forms we have to work with hermitian forms Q = B∗B,
where B∗ denotes the adjoint transpose of B. The inner product and
norm w.r.t. Q can be defined in an analogues way from the original
trace inner product.

What remains is to discuss a sampler for the hermitian forms Q
corresponding to R2 serving as a public key. Given that I2 is a basis of
R2 the basis transformations and the bases themself coincide. I.e., we
only have to consider how to sample bases B ∈ SL2(R). Surprisingly
the natural way to do this is similar to the key generation of Falcon.
First we sample a vector (f, g)⊤ ∈ R2 each element according to a
discrete Gaussian, which we then have to complete with another vector
(F,G)⊤ ∈ R2 to a full basis B with determinant f ·G− g ·F = 1. The
Falcon key generation does exactly the same, except that there the
final basis must have determinant q, and Falcon’s efficient algorithms
for this can simply be adapted to suit the needs of Hawk. They key
generation is thus as follows: sample (f, g) ∈ R2, extend to a basis
B of R2, and return (sk = B,pk = B∗B). A similar worst-case to
average-case reduction as in Section 10.2 can be shown for the resulting
distribution.

The key and signature sizes can be further reduced. For example
the public key Q is hermitian: the symmetry, the self-adjointness of
the diagonal elements, and the relation det(Q) = 1, allow to throw
away (and later reconstruct) a lot of information. Similarly we can
throw away the first half of the signature, and reconstruct the other
half simply by size-reduction with the hermitian form. The resulting
scheme is very competitive with Falcon, see Table 10.3. The key and
signature sizes for NIST security level 1 are about the same, while
Hawk is about 1.5× to 4× faster with KeyGen,Sign and Verify
than Falcon. But Hawk really shines on low-end hardware without
floating-point support. Due to the simplicity and floating-point free
sampling over Zn the reference Sign implementation is more than
14× faster than Falcon. Solving a big disadvantage of the Falcon
scheme.
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