
Lattice cryptography: from cryptanalysis to New
Foundations
Woerden, W.P.J. van

Citation
Woerden, W. P. J. van. (2023, February 23). Lattice cryptography: from
cryptanalysis to New Foundations. Retrieved from
https://hdl.handle.net/1887/3564770

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3564770

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3564770

Part IV

The Lattice Isomorphism
Problem, Remarkable Lattices

and Cryptography

251

CHAPTER 9
The Lattice Isomorphism

Problem

This chapter gives an introduction to the Lattice Isomorphism
Problem. It contains results from the joint work ‘A canonical
form for positive definite matrices’, with Mathieu Dutour
Sikirić, Anna Haensch, John Voight, published at ANTS 2020.
In addition it shows direct applications of this work to ongoing
joint work on Perfect form and C-type enumeration, with
Mathieu Dutour Sikirić.

9.1 Introduction
When are two lattices the same? Two distinct bases B,B′ ∈ GLn(R)
can generate exactly the same lattice L(B) = L(B′), and they do if
and only if B′ = B · U for some unimodular matrix U ∈ GLn(Z).
What about a lattice L and a rotation L′ of the same lattice? These
lattices are not (necessarily) the same as sets, but they do carry the
same geometric information. We call such lattices isomorphic. More
precisely we say that a lattice L and a lattice L′ are isomorphic if

253

9. The Lattice Isomorphism Problem

there is an orthonormal transformation O ∈ On(R), i.e., an isometry,
such that L′ = O · L = {Ov : v ∈ L}.

The study of isomorphisms between lattices is as old as the use of
lattices, for example by Gauss, Lagrange, Minkowski and Voronoi from
the 18th century to the beginning of the 20th century. Isomorphisms
naturally arise in the search for interesting lattices1, as a lattice is only
really ‘new’ if it is not already isomorphic to a known one. Further-
more, isomorphisms between a lattice and itself, enable a study of the
symmetries of a lattice.

Computing an isometry O ∈ On(R) between two isomorphic lat-
tices, known as the Lattice Isomorphism Problem (LIP), or even de-
ciding if two lattices are isomorphic, is seemingly a hard problem. Al-
most all algorithms require as a first step the enumeration of (many)
short lattice vectors, which in itself is a hard problem. This includes
the best proven algorithm, that runs in time nO(n) [HR14], as well
as the best practical algorithms [PP85; PS97]. Moreover among the
interesting lattices there are many with a high kissing number, and
LIP seems even harder for those. For practical computations we are
thus restricted to somewhat low dimensions, and this chapter must
be considered in this context. For higher dimensions the hardness of
LIP directly motivates its use in cryptography, and in Chapter 10 we
show how to leverage LIP to construct a new type of lattice-based
cryptography.

In this chapter we give an overview of the literature on LIP. First
we show that this problem is more natural to state in the quadratic
form setting. Next, we discuss the presence of natural invariants, that
can be used to answer LIP in the negative, or guide the search for an
isomorphism. We show how so-called characteristic sets play a funda-
mental role in solving LIP, and even in constructing a canonical repre-
sentative inside an isomorphism class. We end with some interesting
applications of this canonical representative, such as computationally
solving the lattice packing problem by perfect form enumeration.

1Examples are lattices that are good packings, coverings or have a high kissing
number, perfect lattices or those arising from number theory.

254

9.2. LIP & quadratic forms

B,B ·U B′ = O ·B ·U

0 b1

b2

0

b′
1

b′
2

O ∈ On(R)

Figure 9.1: Illustration of two isomorphic lattices.

9.2 LIP & quadratic forms
Abstractly, the set of full rank, n-dimensional lattices can be thought
of as the homogeneous space2 GLn(R)/GLn(Z): two bases B,B′ ∈
GLn(R) generate the same lattice if and only if there exists a unimod-
ular matrix U ∈ GLn(Z) such that B′ = BU. Two lattices L,L′ are
isomorphic if and only if there exists an orthonormal transformation
O ∈ On(R) such that L′ = O·L. The set of lattices up to isomorphism
can thus be thought of as the double quotient

On(R)\GLn(R)/GLn(Z).

Reconstructing equivalence in this double quotient is known as the
Lattice Isomorphism Problem (LIP).

Definition 143 (LIP, lattice version). Given bases B,B′ ⊂ Rn of
two isomorphic lattices, compute an orthonormal transformation O ∈
On(R), and an unimodular transformation U ∈ GLn(Z) such that B′ =
OBU.

2This quotient should read as the quotient of a set by the action of group,
and not a group quotient. Indeed GLn(Z) is not a normal subgroup of GLn(R) for
n > 1.

255

9. The Lattice Isomorphism Problem

If either O ∈ On(R) or U ∈ GLn(Z) is known, recovering the other
reduces to a matrix inversion. The presence of both the unknown
orthonormal and the unknown unimodular transformation is what
makes LIP seemingly a hard problem. In other words, reconstruct-
ing (or even testing) equivalence in either quotient GLn(R)/GLn(Z) or
On(R)\GLn(R) is easy, doing so in the double quotient appears to be
hard.

The real-valued coordinates of the basis and orthonormal transfor-
mation can be inconvenient and inefficient to work with. We can alle-
viate some of these concerns by moving to the (equivalent) quadratic
form setting, where instead of a basis B we focus on the Gram matrix
Q = B⊤B = (⟨bi,bj⟩)i,j.

Quadratic forms and arithmetical equivalence

The idea of the Quadratic Form point of view on LIP is to consider
the quotient in the opposite order than in the lattice point of view:
first on the left by On(R) and then only on the right by GLn(Z).

Definition 144 (Quadratic Form). A quadratic form of rank n is a
positive definite real3 symmetric matrix Q ∈ S>0

n (R).

Quadratic forms can be thought of as bases modulo rotation; they
realize the quotient On(R)\GLn(R). More precisely, consider the sur-
jective Gram map γ : GLn(R) → S>0

n (R) sending a lattice basis B to
the quadratic form Q = B⊤B. The preimages of γ(B) are precisely
the OB for O ∈ On(R).

Lemma 145. The Gram map γ : GLn(R)→ S>0
n (R) induces a bijec-

tion

On(R)\GLn(R)←→ S>0
n (R),

On(R) ·B 7−→ B⊤B.

Proof. Because (OB)⊤(OB) = B⊤O⊤OB = B⊤B the map is well
defined. The matrix B⊤B is symmetric and positive definite as for any

3In constrast to the standard definition, our quadratic form is always real and
positive definite. Furthermore we define the quadratic form as a symmetric matrix,
and not by the associated degree two polynomial f(x,y) = x⊤Qy.

256

9.2. LIP & quadratic forms

nonzero x ∈ Rn\{0} the vector Bx is nonzero, and thus x⊤(B⊤B)x =
∥Bx∥2 > 0. The map is injective because if for any A,B ∈ GLn(R)
we have A⊤A = B⊤B, then (BA−1)⊤(BA−1) = In and thus BA−1 ∈
On(R). The map is surjective because for every quadratic form Q ∈
S>0
n (R) the Cholesky decomposition gives a unique upper-triangular

lattice basis BQ with positive diagonal such that Q = B⊤
QBQ.

For a lattice basis B the Gram matrix Q = B⊤B naturally gives a
quadratic form. We can now translate the notions we have for lattices
to those of quadratic forms. In the quadratic form setting lattice
vectors Bx ∈ Rn are represented by their integral basis coefficients x ∈
Zn. The inner product with respect to a quadratic form is naturally
given by ⟨x,y⟩Q := x⊤Qy, and the norm by ∥x∥2Q := x⊤Qx. Note
that this perfectly coincides with the geometry between the original
lattice vectors. We denote the Q-ball of radius r by BQ(r) := {x ∈
Rn : ∥x∥Q ≤ r}. Translating the lattice definition, one gets the first
minimum4 λ1(Q) defined by

λ1(Q) := min
x∈Zn\{0}

∥x∥Q ,

and more generally the i-th succesive minimum λi(Q) defined as the
smallest r > 0 such that Zn ∩ BQ(r) spans a space of dimension at
least i.

In this realization S>0
n (R) of the quotient On(R)\GLn(R), the

(right) action of U ∈ GLn(Z) is given by Q 7→ U⊤QU. We may now
rephrase lattice isomorphisms in terms of quadratic forms, moving the
real-valued orthonormal transform O ∈ On(R) out of the picture.

Definition 146 (Arithmetical Equivalence). Two quadratic forms
Q,Q′ ∈ S>0

n (R) are called equivalent, denoted Q ∼= Q′, if there exists
a unimodular U ∈ GLn(Z) such that Q′ = U⊤QU.

For two equivalent forms Q,Q′ we denote the set of all such uni-
modular transformations by Isom(Q,Q′) := {U ∈ GLn(Z) : Q′ =
U⊤QU}.
Lemma 147. Two lattice bases B,B′ are isomorphic if and only if
their Gram matrices are equivalent.

4In the setting of quadratic forms the first minimum often refers to the squared
norm, i.e., the value λ1(Q)2. We chose to stay in line with the lattice definition.

257

9. The Lattice Isomorphism Problem

Proof. Let B,B′ ∈ GLn(R) be isomorphic bases, i.e., there exists an
O ∈ On(R), and U ∈ GLn(Z) such that B′ = OBU, then for Q′ =
B′⊤B′ and Q := B⊤B we have:

Q′ := (B′)⊤B′ = U⊤B⊤O⊤OBU = U⊤B⊤BU = U⊤QU,

and thus Q′ and Q are equivalent.
For the other direction, assume that Q′ = U⊤QU for some

U ∈ GLn(Z). This implies that (B′)⊤B′ = (BU)⊤(BU), and thus
by Lemma 145 there exists some O ∈ On(R) such that B′ = OBU
and thus B and B′ are isomorphic.

We denote the equivalence class, or orbit, of a quadratic form Q
by [Q] := {U⊤QU : U ∈ GLn(Z)}. Many remarkable lattices attain
a rational-valued Gram matrix Q, removing the need for real-valued
or approximate arithmetic. We will often restrict ourself to the set of
integer-valued (positive-definite) quadratic forms denoted by S>0

n (Z).

Remark 148 (Isometry). Generally the term isometry is used for a
distance preserving bijective map between normed vector spaces, and
linear isometry for norm preserving bijective linear maps. In this the-
sis we simply refer to isometry for any bijective inner product preserv-
ing map between (subsets of) inner product spaces. In particular for
two equivalent forms Q,Q′ ∈ S>0

n (R), any unimodular U ∈ GLn(Z)
such that Q′ = U⊤QU corresponds to an isometry x 7→ U−1x be-
tween Zn ⊂ Rn w.r.t. (the inner product given by) Q and Zn ⊂ Rn

w.r.t. Q′.

The Lattice Isomorphism Problem, quadratic form
formulation

The Lattice Isomorphism Problem can now be restated. We start
by properly defining the worst-case problems, in both a search and
distinguishing variant.

Definition 149 (Worst-case search LIP: wc-sLIPQ). For a
quadratic form Q ∈ S>0

n the problem wc-sLIPQ is, given any
quadratic form Q′ ∈ [Q], to compute a unimodular U ∈ GLn(Z) such
that Q′ = U⊤QU.

258

9.2. LIP & quadratic forms

Note that the problem is equivalent to the original LIP problem
as we can still extract an orthonormal transformation by computing
O = B′(BU)−1. We also consider a distinguishing variant of LIP,
denoted wc-∆LIP. It is not to be confused with the decisional version
of LIP (which we will refer to as dLIP).5

Definition 150 (Worst-case distinguishing LIP: wc-∆LIPQ0,Q1).
For two quadratic forms Q0,Q1 ∈ S>0

n the problem wc-∆LIPQ0,Q1 is,
given any quadratic form Q′ ∈ [Qb], where b ∈ {0, 1} is a uniform
random bit, to recover b6.

The distinguishing problem wc-∆LIPQ0,Q1 is worst-case w.r.t. the
choice of Q′, but also the fact that the challenge b ∈ {0, 1} is sam-
pled uniformly is worst-case: any additional bias would only make the
problem easier for an attacker.

Automorphisms

Isomorphisms between a lattice and itself are called automorphisms.
They represent the internal symmetry of the lattice. In the quadratic
form setting, these are exactly the unimodular transformations that
act invariantly, i.e., thet form the stabilizer group of Q under the
action of GLn(Z). This group is called the automorphism group of Q.

Definition 151 (Automorphisms). For a quadratic form Q ∈
S>0
n (R), the automorphism group Aut(Q) of Q is defined by

Aut(Q) := {V ∈ GLn(Z) : V⊤QV = Q}.

The automorphism group is finite, as will become clear in Section
9.5. For any Q′ = U⊤QU ∈ [Q] we have the natural stabilizer con-
jugacy Aut(Q′) = U−1Aut(Q)U. Additionally, we obtain a bijection
between the right cosets Aut(Q) \ GLn(Z) and the orbit [Q], and thus

5In dLIPQ0 one is given an arbitrary Q′ and must decide whether Q′ belongs
to [Q0]. The distinguishing version is potentially easier in that Q′ is promised to
belong to either [Q0] or [Q1] for some known fixed [Q1].

6The distinguishing problem should be interpreted as a game: a challenger
samples b ∈ {0, 1} uniformly and responds with any Q′ ∈ [Qb], the prover should
respond with a bit b′ and wins if b = b′. The prover solves the problem if it can
win with non-negligible advantage (over the trivial win probability of 0.5).

259

9. The Lattice Isomorphism Problem

for any isomorphism U ∈ Isom(Q,Q′), the full set of isomorphisms is
given by Isom(Q,Q′) = Aut(Q) ·U.

9.3 Invariants

Equivalent quadratic forms Q,Q′ := U⊤QU (for some U ∈ GLn(Z))
share many common properties, and these invariants can be used to
decide that two quadratic forms cannot be equivalent, or can guide the
search for an isomorphism. We start with some arithmetic invariants
that are efficiently computable, and then discuss some geometric in-
variants which are only efficiently computable in low dimensions. We
restrict ourself to integral quadratic forms Q,Q′ ∈ S>0

n (Z), as those
are common in practice and allow for the most invariants.

9.3.1 Arithmetic invariants

Firstly we have det(U) = ±1, and thus for two equivalent quadratic
forms we have

det(Q′) = det(U⊤) det(Q) det(U) = det(Q).

Secondly because U and U−1 are both integral, the quantity
gcd(Q) := gcd{Qij : 1 ≤ i, j ≤ n} also gives an invariant.

A third and less obvious invariant is the parity of the quadratic
form. The notion is standard for unimodular lattices: it is called
even if all norms are even, and odd otherwise. More generally, writing
∥x∥2Q =

∑
i Qiix

2
i+2

∑
i<j xjQijxi one gets that gcd{∥x∥2Q : x ∈ Zn} ∈

{1, 2} · gcd(Q). We call this factor par(Q) ∈ {1, 2} the parity of Q. It
is also efficiently computable by noting that par(Q) = gcd({Qii : 1 ≤
i ≤ n} ∪ {2 gcd(Q)})/ gcd(Q).

These invariants are all a bit ad hoc, and possibly incomplete. All
these invariants (and more) are captured by the following.

Weaker equivalence (genus)

The study of integral equivalence of quadratic forms is classically ap-
proached via weaker notions, namely, equivalence over larger rings
[CS13, Ch. 15, Sec. 4] R ⊃ Z. In particular we consider R =

260

9.3. Invariants

R,Q,Qp,Zp, where Qp denotes the rational and Zp the integer p-adic
numbers for a prime p. For any ring R we denote the equivalence
class of a quadratic form Q by [Q]R := {U⊤QU : U ∈ GLn(R)}.
These equivalences are coarser than integral equivalence, [Q] = [Q′]⇒
[Q]R = [Q′]R. The R-equivalence class is thus an invariant under in-
tegral equivalence, which, in contrast to R = Z, might be efficiently
computable.

Over the reals one can always diagonalize a quadratic form D :=
U⊤QU with U ∈ GLn(R) such that Dii ∈ {−1, 0, 1}. Let nj = #{i :
Dii = j} for j{−1, 0, 1} denote the number of occurrences of j on
the diagonal. Then (n1, n0, n−1), also called the signature, uniquely
represents the R-equivalence class. A positive definite quadratic form
of rank n always has a signature of (n, 0, 0), and thus all quadratic
forms of fixed rank that we consider fall in the same class.

We now turn our focus to the p-adic integral equivalence for all
primes p. For (positive definite) quadratic forms this equivalence over
all primes p is nicely summarized as the genus.

Definition 152 (Genus). The genus genus(Q) of a (positive defi-
nite) quadratic form Q ∈ S>0

n (Z) is defined as the collection of p-adic
integral equivalence classes ([Q]Zp)p for all primes p.

Two quadratic forms Q,Q′ ∈ S>0
n (Z) have the same genus if and

only if they are p-adic integral equivalent for all primes p. In general,
the genus is defined to also cover R-equivalence, but for positive def-
inite forms that would be redundant. The genus turns out to cover
all arithmetic invariants mentioned so far, while, as we see later, still
being efficient to compute.

Theorem 153 (Hasse-Minkowski). If two (positive definite)
quadratic forms are p-adic equivalent for all primes p, then they are
equivalent over the rationals, and their invariants det, gcd, and par
match.

Proof. Note that Zp ⊂ Qp, and that all positive definite quadratic
forms of the same rank are R-equivalent. So the first statement follows
from the Hasse-Minkowski theorem. The second part of the proof
follows from Remark 155.

261

9. The Lattice Isomorphism Problem

We shortly discuss how p-adic integral equivalence can be classi-
fied efficiently by a complete system of invariants by Conway [CS13,
Ch.15]. Let p ≥ 2 be any prime. By appropriate (near) diagonalizing
any form Q can be decomposed over the p-adic integers as a block
diagonal matrix

Q = Q1 ⊕ pQp ⊕ p2Qp2 ⊕ · · · ⊕ qQq ⊕ · · · , (9.1)

in which each Qq is a p-adic integral form whose determinant is co-
prime to p. For an odd prime p ̸= 2 the (finite) set of values of q
occurring in eq. (9.1), together with the dimensions nq := dim(Qq)
and signs

ϵq :=

(
det(Qq)

p

)
,

form a complete set of invariants for the p-adic integral equivalence of
Q.

Theorem 154 ([CS13, Ch. 15, Theorem 9]). For any odd prime p ̸=
2, two quadratic forms Q,Q′ are equivalent over the p-adic integers if
and only if they have the same invariants nq, ϵq for each power q of p.

For any odd prime p ∤ det(Q) we have nq = n, and ϵq is fully
determined by the determinant det(Q). As such primes can be ig-
nored, we only have to consider the finite number of odd primes
p | det(Q). For such odd primes p there are at most n powers
q1, . . . , qk ≤ det(Q) of p with a non-trivial block dimension nqi > 0,
and thus {(q, nqi , ϵqi)}i=1,...,k determines canonically the p-adic integral
equivalence. So the genus (except for p = 2) can be described in a
finite and canonical way.

For p = 2 there are some additional complexities. For example
for Qq with q a power of 2, the existence (or not) of an odd entry
on the diagonal gives an additional invariant, which is related to the
earlier defined parity of a quadratic form. If there is an odd entry on
the diagonal, the trace tq mod 8 of Qq, better known as the oddity, is
needed to completely specify the 2-adic equivalence. These oddities
are not an invariant, but together with the other invariants they can
efficiently be turned into a canonical description (see [CS13, Ch. 15,
Sec. 7].

Maybe unsurprisingly, the genus covers all the previously defined
invariants.

262

9.3. Invariants

Remark 155 (Genus invariants). The genus of a quadratic form
Q ∈ S>0

n (Z) completely determines the det, gcd and par of Q.

Proof. For any p and the p-adic decomposition eq. (9.1) the maximal
power of p dividing the determinant det(Q) is given by

∏
q=pi q

nq . The
maximal power of p dividing gcd(Q) is given by the minimal q = pi

such that nq ≥ 1. The parity is fully determined by the decomposition
at p = 2. Namely, let q = 2i be the minimal power of 2 such that
nq ≥ 1, then par(Q) = 1 if and only if there is an odd value on the
diagonal of a matrix representing Qq.

The hull

In the literature for linear code equivalence, a relevant notion is that of
the efficiently computable hull C ∩ C⊥ of a code C ⊂ Fn

q . Properties
such as the rank of the hull are invariant under equivalence, and a
small rank even allows to efficiently find the isometry [Sen00].

For a lattice L and its dual L∗ we could define the hull as L ∩ L∗.
For integral lattices (i.e., if the associated quadratic form is integral)
the hull does not present us with new information, since we always
have L ⊂ L∗ and thus L∩L∗ = L. We could generalize the definition
to consider L∩ (k · L∗) for rational k ∈ Q ̸=0. However, even for such a
generalized construction the genus of the resulting lattice is completely
determined by the genus of the original lattice L [DG22]. To conclude,
the (generalized) hull does not appear to give us any new arithmetic
invariant.

One possibility is that the generalized hull could have certain ge-
ometric properties that could be exploited (more so than the original
lattice or its dual). This is a question that deserves further investiga-
tion, but is beyond the scope of this work.

9.3.2 Geometric invariants

The defining property of a unimodular transformation U ∈ GLn(Z) is
that it gives a bijection Zn → Zn by x 7→ Ux (or x 7→ U−1x). With
respect to the quadratic forms Q,Q′ := U⊤QU this even gives an
isometry (from Q′ to Q) as

⟨x,y⟩Q′ = x⊤Q′y = x⊤U⊤QUy = ⟨Ux,Uy⟩Q for x,y ∈ Rn.

263

9. The Lattice Isomorphism Problem

This isometry results in several natural geometric invariants related
to the norms and inner products of integral vectors. We have already
seen some, namely the first minimum λ1(Q) and the i-th successive
minimum λi(Q). More geometric invariants can be defined, such as
the kissing number κ(Q) = |Min(Q)| where

Min(Q) := {x ∈ Zn : ∥x∥Q = λ1(Q)},

and more generally the (formal) Theta-series ΘQ(q) =
∑

ℓ≥0Nℓq
ℓ as-

sociated to Q, where Nℓ = |
{
x ∈ Zn : ∥x∥2Q = ℓ

}
|. Going back to

the inner products one could also consider the (multi-)set of all pair-
wise inner products {⟨x,y⟩ : x,y ∈ S}, where e.g., S = Min(Q) or
S =

{
x ∈ Zn : ∥x∥2Q = ℓ

}
. One could also consider pairwise inner

products between two of such sets that are distinct.
Two equivalent forms also share symmetries Aut(Q′) ∼= Aut(Q),

which for example implies that |Aut(Q′)| = |Aut(Q)|.
The computation of all these geometric invariants appears to in-

volve finding or even enumerating short vectors, or computing auto-
morphisms; in particular they seem hard to compute in general.

9.4 Characteristic sets
To solve the Lattice Isomorphism Problem we need to recover a right
unimodular transformation U ∈ GLn(Z) such that Q′ = U⊤QU.
Since the group GLn(Z) of such transformations is infinite, it is a
priori not clear how even a brute-force approach would work. Instead,
we follow the framework introduced by Plesken and Souvignier [PS97]
based on so-called characteristic sets.

Definition 156 (Characteristic Set). A characteristic vector set
function V is a map that assigns to every n ≥ 1 and quadratic form
Q ∈ S>0

n (R), a finite subset of vectors V(Q) ⊂ Zn such that

(i) V(Q) generates Zn (as a Z-module); and

(ii) for all U ∈ GLn(Z), we have U−1V(Q) = V(U⊤QU).

The transformation property (ii) can be interpreted as a canonicity
property under equivalence of quadratic forms, or stated differently,

264

9.4. Characteristic sets

that the map V is equivariant (for each n ≥ 1). For example the
minimal vectors function Q 7→ Min(Q) satisfies this property; minimal
vectors are mapped to minimal vectors by any isometry. Characteristic
sets allow us to limit the search space to a finite one; as, by property
(ii), each solution of LIP between two quadratic forms Q,Q′ induces
an isometry between their characteristic sets V(Q),V(Q′). Property
(i) is necessary to obtain the correspondence in the other direction.

Lemma 157 (Isometries). Let V be a characteristic function, and let
Q,Q′ ∈ S>0

n (R) be quadratic forms. There is a bijection

Isom(Q,Q′)↔ Isom(V(Q),V(Q′)),

U 7→ (ψU : x 7→ U−1x),

where Isom(V(Q),V(Q′)) is the set of isometries between V(Q)
w.r.t. Q, and V(Q′) w.r.t. Q′. If Q = Q′, then Isom(Q,Q′) = Aut(Q)
and Isom(V(Q),V(Q′)) are groups under function composition and the
bijection is an isomorphism.

Proof. Let U ∈ Isom(Q,Q′) be such that Q′ = U⊤QU. Then by
definition of the characteristic set we have V(Q′) = U−1V(Q), and
thus ψU induces a bijection from V(Q) to V(Q′). Furthermore for
any x,y ∈ V(Q) we have ⟨ψU(x), ψU(y)⟩Q′ = ⟨U−1x,U−1y⟩U⊤QU =
⟨x,y⟩Q, and thus ψU is actually an isometry.

For the injectivity let U,V ∈ Isom(Q,Q′) be such that ψU = ψV.
This implies that U−1x = V−1x for all x ∈ V(Q), and because V(Q)
is of full rank we have U−1 = V−1, and thus U = V.

For the surjectivity let ψ : V(Q) → V(Q′) be an isometry. Both
characteristic sets generate Zn as a Z-module, and thus in particu-
lar we can find n R-linear independent vectors x1, . . . ,xn ∈ V(Q).
Because ψ is an isometry, the vectors ψ(x1), . . . , ψ(xn) must also
be linearly independent, and thus we obtain a unique linear map
U ∈ GLn(R) such that ψ(xi) = ψU(xi) for all i = 1, . . . , n. Be-
cause ψ is an isometry we have for any y ∈ V(Q) the n independent
linear equations ⟨ψ(y), ψU(xi)⟩Q′ = ⟨y,xi⟩Q for i = 1, . . . , n, with the
unique solution ψ(y) = ψU(y). So ψ = ψU is in fact a linear isometry
represented by U, and because both characteristic sets generate Zn as
a Z-module, we have U ∈ GLn(Z) by definition. From the isometry
we obtain that e⊤i U

⊤QUej = e⊤i Q
′ej for all pairs of standard unit

265

9. The Lattice Isomorphism Problem

vectors ei, ej with i, j = 1, . . . , n, which in particular gives us that
Q′ = U⊤QU. So U ∈ Isom(Q,Q′), and it has image ψ = ψU.

If Q = Q′, then both sides are groups under composition. For
U,V ∈ Isom(Q,Q) = Aut(Q) their composition as automorphisms
V ◦U is represented by UV ∈ Aut(Q). Then for x ∈ V(Q) we have

ψV◦U(x) = ψUV(x) = (UV)−1x = V−1U−1x = (ψV ◦ ψU)(x),

and thus we have an isomorphism.

We will now discuss some examples of characteristic vector set
functions.

9.4.1 A set based on short vectors

As mentioned before the map Q 7→ Min(Q) satisfies the desired trans-
formation property of a characteristic vector set function. However,
two problems remain for using Min(A) as a characteristic vector set:

PB1. If n ≥ 2, then span(Min(A)) may not have rank n.

PB2. If n ≥ 5, then span(Min(A)) may have rank n, but may not
generate Zn as a Z-module.

Thus we have to consider larger sets of short lattice vectors. For λ > 0,
let

Min(Q, λ) :=
{
x ∈ Zn \ {0} : ∥x∥Q ≤ λ

}
, (9.2)

be the set of all nonzero integer vectors up to length λ w.r.t. Q. In
particular we have Min(Q) = Min(Q, λ1(Q)).

Now we need to pick λ > 0 large enough such that Min(Q, λ) gener-
ates Zn. The implementations AUTO/ISOM by Plesken and Souvignier
[PS97], pick λ2 equal to maxdiag(Q) := maxQii, to compute auto-
morphisms. The set Min(Q,

√
maxdiag(Q)) contains the standard

unit vectors, and thus generates Zn. One could first use lattice reduc-
tion techniques to limit the size of maxdiag(Q), to prevent large sets.
Such a set is enough to compute automorphisms, but can be problem-
atic for equivalence, e.g., two forms Q,Q′ can be equivalent but satisfy
maxdiag(Q) ̸= maxdiag(Q′). For a particular LIP instance this can
be solved by picking the bound λ2 = max{maxdiag(Q),maxdiag(Q′)}.
However, such a choice is still not canonical (something we will care

266

9.4. Characteristic sets

about in Section 9.6), and would in particular break the transforma-
tion property. Additionally this may lead to much larger sets than
necessary.

To prevent these problems we can use a more reliable vector set,
namely by picking the smallest bound λ, such that Min(Q, λ) still
spans Zn.

Vms(Q) := Min(Q, λmin), where
λmin := min{λ > 0 : spanZ(Min(Q, λ)) = Zn}. (9.3)

Lemma 158. The map Q 7→ Vms(Q) is a characteristic vector set
function.

This characteristic set function often works great in practice7, but
in general we do not have any bound on the size of |Vms(Q)|, as the
following example shows.

Example 159. The quadratic form Qλ =

(
1 0
0 λ2

)
for λ ≥ 1 gives

Vms(Qλ) = {±e2} ∪ {±e1,±2e1, . . . ,±⌊λ⌋e1}.
One way to solve the particular example above is by also remov-

ing all non-primitive vectors from the set, but this is not enough to
solve the general problem of obtaining vector sets of unbounded size
(under a fixed dimension). To overcome this problem, we introduce
a characteristic vector set, although somewhat impractical, that does
come with bounds on the number of vectors, only depending on the
dimension n.

9.4.2 A set based on Voronoi-relevant vectors

A well-known geometric shape associated to lattices, extensively dis-
cussed in Chapter 5, is the Voronoi cell. The Voronoi cell is the set
of all points closer to 0 with respect to Q than to any other integer
point. For a form Q, the (closed) Voronoi cell is the intersection of
half-spaces

Vor(Q) :=
⋂

x∈Zn\{0}
HQ,x, (9.4)

7Practical for computational algebra purposes in low dimensions of say n ≤ 30.
Not for cryptographic lattices of large dimension.

267

9. The Lattice Isomorphism Problem

with HQ,x := {y ∈ Rn : ∥y∥Q ≤ ∥y − x∥Q}. However, almost all vec-
tors in this intersection are superfluous, and we only consider the finite
set of Voronoi-relevant vectors Vvor(Q), i.e., the (unique) minimal set
of vectors such that

Vor(Q) =
⋂

x∈Vvor(Q)

HQ,x. (9.5)

Each Voronoi-relevant vector corresponds to exactly one facet of the
Voronoi cell. Using, an algorithm by Micciancio and Voulgaris [MV13],
we can compute the set of Voronoi-relevant vectors in time 22n+o(n).

Lemma 160. The following statements hold

(i) The map Q 7→ Vvor(Q) is a characteristic vector set function;

(ii) We have #Vvor(Q) ≤ 2 · (2n − 1).

Proof. Property (ii) of a characteristic vector set for Vvor follows from
the geometric definition, fully independent of the basis. For property
(i), note that for any nonzero x ∈ Zn, we have x ̸∈ Vor(Q), and thus
by definition there is a Voronoi-relevant vector v ∈ Vvor(Q) such that
x − v lies strictly closer to 0 with respect to Q. Repeating this (a
finite number of time by a packing argument) we eventually end up
at 0 and thus x is the sum of Voronoi-relevant vectors. The second
statement was already proven by Minkowski in 1897 [Min97]. The
idea is that each Voronoi-relevant vector v has precisely two closests
vectors in 2L, namely 0 and 2v. This implies that each ±v (up to
sign) represents a distinct and nonzero coset modulo 2L, so there can
be at most 2 · (|L/(2L)| − 1) Voronoi-relevant vectors.

Although this characteristic vector set has great theoretical
bounds, we refrain from using it in practice: most lattices actually at-
tain the worst-case 2 · (2n− 1) Voronoi bound [Vor08; Vor09], whereas
constructions based on short vectors often beat the theoretical worst-
case bounds and give much smaller vector sets in practice.

9.5 Solving LIP
We discuss several algorithms to solve the Lattice Isomorphism Prob-
lem. We start with some practical approaches based on the earlier

268

9.5. Solving LIP

introduced characteristic vector sets, and then discuss some theoreti-
cal results.

9.5.1 Characteristic set approach

Recall from Lemma 157 that solving LIP between two quadratic forms
Q,Q′ is equivalent to finding an isometry between the finite sets V(Q)
and V(Q′), for any characteristic set function Q 7→ V(Q).

A generic approach, that we formalize in [DHVW20], of finding
such isometries is to construct two complete weighted graphs for Q
and Q′ respectively, where the nodes are the elements from the charac-
teristic vector set, and each edge (x,y) gets weight ⟨x,y⟩Q or ⟨x,y⟩Q′

respectively.

Definition 161. Let V be a characteristic vector set function, and
let Q ∈ S>0

n (R) be a quadratic form. We define the complete weighted
graph GQ,V = (V,w) as the graph with nodes V := V(Q) and weight
function

w(x,y) := ⟨x,y⟩Q for all x,y ∈ V(Q).

Using these graphs turns the problem of quadratic form equivalence
into one of graph isomorphism. Recall that two complete weighted
graphs G = (V,w) and G′ = (V ′, w′) are isomorphic G ∼= G′ if there
exists a bijection ψ : V → V ′, which keeps the edge weights intact,
i.e., w′(ψ(x), ψ(y)) = w(x, y) for each edge (x, y) ∈ V 2. We denote
the set of all such bijections by Isom(G,G′).

Lemma 162. Let V be a characteristic vector set function, and let
Q,Q′ ∈ S>0

n (R) be two quadratic forms, then Q and Q′ are equivalent
if and only if GQ,V and GQ′,V are isomorphic. In particular there exists
a bijection

Isom(Q,Q′)↔ Isom(GQ,V , GQ′,V).

If Q = Q′, then Isom(Q,Q′) = Aut(Q) and Isom(GQ,V , GQ′,V) are
groups under function composition and the bijection is an isomor-
phism.

Proof. By Lemma 157 we only have to show that there exists a bijec-
tion between Isom(V(Q),V(Q′) and Isom(GQ,V , GQ′,V). Because all
pairwise inner products (and norms) are encoded in the graph, these

269

9. The Lattice Isomorphism Problem

two sets are the same by definition, so the bijection (and isomorphism)
is trivial.

So to solve LIP, we can use heavily optimized graph isomorphism
algorithms on the resulting graphs, such as Nauty, Traces [MP14]
and Bliss [JK07]. These are backtrack algorithms, that try to ef-
ficiently enumerate all possible node mappings that keep the edge
weights invariant. They make heavy use of graph invariants to limit
the search tree, such as the degree of nodes, or the degree of all neigh-
bours. These algorithms do not directly work on weighted graphs,
but in the Nauty manual [McK07] there are generic transformations
from weighted graphs to (somewhat larger) unweighted graphs that
keep the isomorphisms intact. Depending on the size of the charac-
teristic set V(Q), this approach can be very practical, and a public
implementation by Dutour Sikirić can be found at [Dut22]. On the
asymptotic side, the graph isomorphism algorithm by Babai [Bab16],
gives an algorithm that runs in time quasi-polynomial in the charac-
teristic vector set size |V(Q)|. However, this time may be as large as
exp(nO(1)) given that |V(Q)| itself may be as large as exp(Θ(n)), for
example, when using Voronoi-relevant vectors.

The approach of Plesken and Pohst [PP85], later improved by
Plesken and Souvignier [PS97], can be seen as a specialized variant
of the above approach, where more (geometric) invariants are consid-
ered to improve the search, and possibly without explicitly construct-
ing the full graph. Implementations by Souvignier for automorphisms
and equivalence testing are available under the names AUTO and ISOM
respectively8.

9.5.2 A provable algorithm

The best asymptotic algorithm is one by Haviv and Regev [HR14]
that runs in time and space nO(n), and returns all solutions to a LIP
instance. As the lattice Zn has 2n · n! = nO(n) automorphisms, this
result is in some sense optimal. A major open question is, whether
there exists a single exponential time algorithm to find only a single
solution to LIP.

8The AUTO and ISOM programs are available through MAGMA. The implemen-
tation has also been ported to PARI/GP (and thus SageMath).

270

9.5. Solving LIP

The algorithm by Haviv and Regev requires short primal as well as
short dual vectors. Let Q,Q′ ∈ S>0

n (R) be two equivalent quadratic
forms. They first consider the case that Min(Q) (and Min(Q′)) are
full rank, i.e., span(Min(Q)) = Rn. Fundamental to their algorithm
is the so-called isolation lemma.

Lemma 163 (Isolation Lemma [HR14], informal). there exists a rel-
atively short dual vector v ∈ Zn (in the sense of ∥v∥Q−1), that uniquely
defines n linearly independent vectors x1, . . . ,xn ∈ Min(Q). These
vectors are defined as follows:
for every 1 ≤ j ≤ n, the minimum standard inner product9 ⟨v,x⟩ with
vectors x ∈ Min(Q) \ span(x1, . . . ,xj−1) is uniquely achieved by xj.

After such an isolating vector v ∈ Zn is found for Min(Q) by
enumerating short dual vectors, we do the same for Min(Q′). Once
the correct image of v in Min(Q′) is found by a similar enumer-
ation (which happens because short dual vectors are mapped to
short dual vectors), we obtain another unique chain of n indepen-
dent vectors y1, . . . ,yn ∈ Min(Q′), and the unimodular transforma-
tion U ∈ GLn(Z) can be recovered from the mapping yi 7→ xi. To
provably find such an isolating short dual vector we need to enumer-
ate all dual vectors up to some norm nO(1) · λ1(Q−1), of which there
can be at most nO(n). Running such an enumeration can also be done
in time nO(n), and space exp(O(n)) (to store Min(Q1),Min(Q2)).

For the general case Regev and Haviv note that one can first solve
LIP for the sublattices in the span of Min(Q) and Min(Q′) respec-
tively, and (recursively) for the lattices projected away from that span.
The resulting transformations can then be combined if compatible.

While the algorithm is useful as an asymptotic result, the (proven)
constant in the exponent of nO(n) is quite large, which makes the algo-
rithm seemingly impractical. We do not know of any implementation
of this algorithm, and therefore if the practical complexity might be
better.

9The standard inner product ⟨v,xi⟩ has the same value as the inner product
between the primal lattice vector Bxj and the dual lattice vector (B⊤)−1v for any
full rank basis B.

271

9. The Lattice Isomorphism Problem

9.5.3 The case of Zn, an approach by Szydlo

In 2003 Szydlo [Szy03] showed a search LIP to decision LIP reduction
for the special case of the integer lattice Zn. Note that for Zn the stan-
dard basis gives the quadratic form In, so the search problem becomes:
given U⊤U for some unimodular matrix U ∈ GLn(Z), recover U (up
to Aut(In); i.e., all signed permutations). He shows how to solve this
search problem by querying a decisional LIP oracle on lattices that
are very similar to Zn.

Additionally, Szydlo gives a heuristic algorithm to instantiate such
a decision oracle for these specific cases, that requires to sample vectors
of length O(

√
n). With the current reduction techniques, however, it is

easier to find the unusually short vectors of length 1, in any rotation
of Zn, than to enumerate vectors of length O(

√
n). So even if this

heuristic algorithm works, it is worse than solving the search problem
directly.

An interesting open question is, whether there exists a more general
search to decision reduction for LIP.

9.6 A canonical function

Using the algorithm in Section 9.5, we can compute the automorphism
group, and check for equivalence between two quadratic forms of low
dimension. However, in practice LIP often appears in the following
setting: we have many quadratic forms Q1, . . . ,QN ∈ S>0

n , and we
wish to identify them up to equivalence. For example, this occurs
during the enumeration (up to equivalence) of quadratic forms of low
rank with special properties, such as unimodular forms, perfect forms
and more. Since a naive application of an equivalence algorithm re-
quires O(N2) equivalence tests (in the worse case), this can quickly
become a bottleneck. The number of tests can be somewhat lowered
if many of the invariants presented in Section 9.3 differ, which may or
may not be the case.

The solution we present in this section solves the above problem
by introducing a canonical form CanGLn(Z)(Q) ∈ S>0

n for Q ∈ S>0
n .

This canonical form should satisfy the following two requirements.

272

9.6. A canonical function

Definition 164. We say CanGLn(Z) : S>0
n → S>0

n is a canonical form
function if it satisfies the following two requirements:

1. For every Q ∈ S>0
n , CanGLn(Z)(Q) is equivalent to Q; and

2. for every Q ∈ S>0
n and U ∈ GLn(Z),

CanGLn(Z)(U
⊤QU) = CanGLn(Z)(Q).

We call the output CanGLn(Z)(Q) of Q the canonical form of Q
(assuming that the function is fixed). A canonical form can be seen as
a canonical representative of the equivalence class [Q], and thus two
quadratic forms are equivalent if and only if their canonical forms are
identical. Combining a canonical form with a hash table, the identifi-
cation of equivalence classes in a list of N quadratic forms then takes
only N canonical form computations (and N hash table lookups), and
thus has the potential to be much faster. In Section 9.7 we present
an application with N ≥ 109 quadratic forms that became feasible
largely due to the introduction of a canonical form function.

Recall from Lemma 162 that we used a characteristic vector set
function V to turn the question of quadratic form equivalence Q ∼= Q′

into one of graph isomorphism GQ,V ∼= GQ′,V . For graphs there is
already a long line of research into canonical functions CanSymm

(e.g.,
[BKL80; McK81; BL83; FSS83; JK07; MP14; Bab19]). The main idea
is to apply a canonical function to the graph GQ,V , and then lift the
result back.

For simplicity we limit ourself to the set G of weighted graphs with
(ordered) nodes [m] = {1, . . . ,m} for some m ≥ 1, such that automor-
phisms and isomorphisms can be represented by permutations. For a
graph G = ([m], w) ∈ G with m ≥ 1 nodes and weight function w,
and a permutation π ∈ Symm we denote by π(G) = ([m], w′) ∈ G the
graph with weight function w′ given by w′(i, j) := w(π−1(i), π−1(j))
for all i, j = 1, . . . ,m. Two graphs G,G′ ∈ G with m ≥ 1 nodes
are called isomorphic G ∼= G′ if there exists a π ∈ Symm such that
π(G) = G′.

Definition 165. For m ≥ 1 we say that CanSymm
: G → G is a

canonical graph ordering if it satisfies the following requirement:

1. For every G ∈ G, CanSymm
(G) is isomorphic to G; and

273

9. The Lattice Isomorphism Problem

2. for every G ∈ G with m ≥ 1 nodes and π ∈ Symm,
CanSymm

(π(G)) = CanSymm
(G).

In fact, the graph isomorphism implementations mentioned in Sec-
tion 9.5, solve the graph isomorphism problem by computing a canon-
ical graph ordering on both graphs. On the theoretical side there also
has been some effort by Babai [Bab19] to turn the quasi-polynomial
(in m) graph isomorphism algorithm [Bab16] into a canonical graph
ordering algorithm.

Remark 166. Given any vector set function V and canonical graph
ordering CanSymm

, the map Q 7→ CanSymm
(GQ,V) already defines a

canonical function, in the sense that the output on two forms is iden-
tical if and only if the forms are equivalent. However this graph can be
quite large, and the canonical quadratic form allows a more compact
representation.

We now construct a canonical form function by lifting the canonical
graph ordering back to the quadratic form setting. For this we first
need another type of canonization algorithm: the Hermite Normal
Form.

Definition 167 (Hermite Normal Form (HNF)). The Hermite Nor-
mal Form of an integer matrix M ∈ Zn×m of row rank r ≤ n is the
unique matrix H ∈ Zn×m for which there exists a U ∈ GLn(Z), such
that M = UH, and moreover

1. The first r rows of H are nonzero and the remaining rows are
zero; and

2. for 1 ≤ i ≤ r, if hi,ji is the first nonzero entry in row i, then
j1 < . . . < jr; and

3. for 1 ≤ i ≤ r, we have hi,ji > 0; and

4. for 1 ≤ k < i ≤ r, we have 0 ≤ hk,ji < hi,ji.

The HNF of a matrix is computable in polynomial time [KB79;
MW01]. The HNF can be seen as a canonical function of the left
action of GLn(Z) given by multiplication on integer matrices Zn×m.

274

9.6. A canonical function

In particular it turns any (transpose) basis of a lattice into a (trans-
pose) canonical basis. Note however that it is only canonical up to
the action of GLn(Z), and not with respect to the action of On(R).
Therefore it cannot directly be used to solve LIP. Furthermore, given
that V(U⊤QU) = U−1V(Q), one might be temped to apply HNF di-
rectly to the characteristic set to make the action of GLn(Z) canonical,
however, the output of the HNF does depend on the order of the char-
acteristic vectors, i.e., it is not simultaneously canonical with respect
to the permutation action of Symm. Obtaining a canonical ordering
is precisely where we use the canonical graph function.

Algorithm 15: A canonical form function CanGLn(Z).
Given : A characteristic set function V , and a canonical

graph function CanSymm
.

Input : A quadratic form Q ∈ S>0
n .

Output: A canonical representative Q′ ∈ [Q].
1 Compute the characteristic vector set V(Q), m← |V(Q)|
2 Construct the weighted graph GQ,V
3 Run CanSymm

on GQ,V to obtain a canonical ordering
v1, . . . ,vm of V(Q)

4 M← (v1, . . . ,vm) ∈ Zn×m

5 Compute UV(Q) ∈ GLn(Z) such that M = UV(Q)H is the
unique HNF decomposition of M

6 return CanGLn(Z)(Q) = U⊤
V(Q)QUV(Q)

Proposition 168. Algorithm 15 is a canonical form function.

Proof. We first show that the algorithm is well defined, i.e., that it
does not depend on the initial ordering of the characteristic vector
set V(Q). Note that the output ordering of CanSymm

is unique up to
Aut(GQ,V), and thus by Lemma 162 the ordering of the characteris-
tic vectors is unique up to Aut(Q). For any such different ordering
Sv1, . . . ,Svm for S ∈ Aut(Q) would lead to the matrix SUV(Q), and
thus UV(Q) is well-defined as a coset representative in Aut(Q)\GLn(Z).
As Q is by definition invariant under Aut(Q) the output form is thus
well-defined.

275

9. The Lattice Isomorphism Problem

We now verify the two properties in Definition 164. The first prop-
erty is clear by definition. For the second property note that for any
V ∈ GLn(Z), we have

UV(V⊤QV) ≡ UV−1V(Q) ≡ V−1UV(Q) ∈ Aut(V⊤QV) \ GLn(Z),

and thus CanGLn(Z)(V
⊤QV) = CanGLn(Z)(Q) as desired. Here the first

equivalence stems from the transformation property of the character-
istic set, and the second equivalence stems from the uniqueness of the
HNF.

9.7 Applications to perfect form
enumeration

The technique to construct a canonical form from graphs is quite ver-
satile and has many applications. For example, a similar function can
be constructed for symplectic groups [DHVW20], or for the equiva-
lence of C-type domains [DMW22]. Beyond testing for equivalence, a
canonical function also gives a deterministic naming scheme for lat-
tices (for a fixed function). In this section, we dive in a bit deeper
on applying the canonical form function for perfect form enumeration,
and we discuss a further improvement that gives a 30-fold speed-up in
practice.

9.7.1 Background on perfect lattices and forms

The search for perfect forms is motivated by the Lattice Packing Prob-
lem (LPP): how to pack n-dimensional balls in Rn in a lattice pattern,
such that their density, the proportion of Rn they fill, is maximized?
So far LPP has only been solved up to dimension 8 and in dimension
24 (by the remarkable Leech lattice). It is known that every optimal
lattice packing is attained by a perfect lattice, and up to similarity
there are only a finite number of them in each dimension. Therefore,
to solve LPP, one can simply enumerate all perfect lattices.

From a quadratic form perspective the goal of LPP is to find a
form Q ∈ S>0

n that maximizes λ1(Q)2/ det(Q)1/n. This is a search
problem over the cone of (positive definite) quadratic forms S>0

n . As
the objective function is invariant under scaling we can restrict the

276

9.7. Applications to perfect form enumeration

space to those forms with λ1(Q)2 ≥ 1, which defines the Ryshkov
polyhedra

P := {Q ∈ S>0
n : λ1(Q)2 ≥ 1}.

The inequality λ1(Q)2 ≥ 1 is equivalent to the infinite set of (lin-
ear) inequalities x⊤Qx ≥ 1 for all nonzero x ∈ Zn, which implies
that the Ryshkov polyhedra is an intersection of infinitely many half-
spaces. Over the Ryshkov polyhedra we now only have to minimize the
determinant. Minkowski showed that the function Q 7→ det(Q)1/n is
concave on S>0

n , which implies that the optima lie at the vertices of the
Ryshkov polyhedra, and we call the quadratic forms that correspond
to these vertices perfect. Up to equivalence (and scaling) there are only
a finite number of distinct perfect forms. In fact, we have an upper
bound of exp(O(n2)) on the number of equivalence classes [Woe20].
Voronoi’s Algorithm [Vor08] explores the Ryshkov polyhedra up to
equivalence, and thereby enumerates all perfect forms in a fixed di-
mension. It has been successfully used to find all perfect forms in
dimensions up to 8, with respectively 1, 1, 1, 2, 3, 7, 33, 10916 equiva-
lence classes in each dimension.

While in dimension 8 the main bottleneck was due to high degen-
eracy in the Ryshkov polyhedra, we have an additional problem in di-
mension 9: the large number of perfect forms. With possibly billions of
non-equivalent perfect forms we require a very efficient canonical func-
tion to quickly check if an encountered perfect form is already known
or not. Previous enumeration attempts in dimension 9, stranded at
only 500.000 [SSV07] or 25 million [Woe18] forms respectively, with
equivalence computations as the main bottleneck.

9.7.2 An improved canonical function

Ignoring the few highly degenerate vertices (perfect forms), the main
cost of enumerating all 9-dimensional perfect forms is the computa-
tion of canonical forms. Any speed-up in this computation directly
translates to a significantly reduced running time to finish the enu-
meration. We discuss one trick to achieve this. For perfect forms the
most costly step in Algorithm 15 is that of computing the canonical
graph function, e.g., using Nauty, Traces [MP14] or Bliss [JK07].
The runtime of these algorithms depends on many factors, but when
restricting to our application the runtime mostly seems to depend on

277

9. The Lattice Isomorphism Problem

the number of vertices |V(Q)|, and the number of distinct weights,
i.e., |{⟨x,y⟩Q : x,y ∈ V(Q)}|.

In order to improve the algorithm we thus have to try to limit
the size of this graph. The minimal vectors of a perfect form often
(except for a few cases) already span Zn, and thus we have V(Q) :=
Vms(Q) = Min(Q). Reducing this set any further seems hard (and
is actually impossible if the automorphism group acts transitively).
Note, however, that we have the sign symmetry x ∈ Vms(Q)⇔ −x ∈
Vms(Q). What happens if we ignore the signs?

Similarly to GQ,V we can construct the absolute graph Gabs
Q,V , where

each node corresponds to some ±x ∈ V(Q), and the weight function
is (well-)defined as w(±x,±y) := |⟨x,y⟩Q|.

Lemma 169. For any perfect form Q ∈ S>0
n , and the characteristic

set function Vms, we have an injective homomorphism

Aut(GQ,Vms)/⟨±In⟩ ↪−→ Aut(Gabs
Q,Vms

),

π 7→ πabs,

where −In sends x 7→ −x for all x ∈ Vms.

Proof. Let π ∈ Aut(GQ,Vms). The inner product constraints enforce
that if π maps x 7→ y, then −x 7→ −y for x,y ∈ Vms. So π induces
a permutation πabs on Gabs

Q,Vms
by mapping pairs to pairs ±x 7→ ±y.

Because π is invariant with respect to the inner products, πabs is clearly
invariant with respect to the absolute invariants, and thus πabs ∈
Aut(Gabs

Q,Vms
).

For the injectivity we have to show that the kernel is ⟨±In⟩. First
suppose (as we will later prove) that the graph GQ,Vms is connected
if we remove all edges of weight 0 . Let π ∈ Aut(GQ,Vms) be such
that πabs is trivial. Every x ∈ Vms is mapped to either x or −x.
However any pair x,y is connected by some path with nonzero (signed)
inner products in GQ,Vms , and thus any choice for x 7→ x or x 7→ −x
determines the signs for all other elements. So there are only two
choices for π, and clearly the identity map In and the negation map
−In satisfy this.

What remains is to shoe that the graph GQ,Vms is connected. We
have Min(Q) ⊂ Vms, and by definition of perfect, the set {xx⊤ : x ∈
Min(Q)} has full rank 1

2
n(n+ 1) inside the space of n× n symmetric

278

9.7. Applications to perfect form enumeration

matrices. Assume for contradiction that the graph GQ,Vms is discon-
nected if we remove the edges of weight 0. This implies that we can
decompose Vms = V1 ⊔ V2 into two disjunct non-empty sets such that
⟨x,y⟩Q = 0 for all pairs (x,y) ∈ V1 × V2. Let 1 ≤ ri := rk(Vi) be the
rank of the subspace spanned by Vi inside Rn, and note that the pair-
wise orthogonality gives r1 + r2 ≤ n. By the (strict) convexity of the
map c 7→ c(c+1) for c > 0 we then obtain the following contradiction

1

2
n(n+ 1) ≤

2∑
i=1

rk{xx⊤ : x ∈ Vi} ≤
2∑

i=1

1

2
ri(ri + 1) <

1

2
n(n+ 1),

and thus the graphs are connected.

If the above injective morphism is in fact an isomorphism, and we
have an efficient way to lift πabs back to π (up to sign), then we could
simply use Gabs

Q,V instead of GQ,V , with half as many nodes and almost
half as many distinct weights. In fact an algorithm for the inverse map
immediately follows from the proof of Lemma 9.7.2: fix a single sign
choice, and determine the other signs uniquely via a spanning tree of
the graph.

In general however, removing the signs could also introduce more
automorphisms, so we have to check if this is the case or not. The
strategy is as follows, first we compute the canonical function using
Gabs

Q,V . As a cheap by-product of the canonical graph algorithm we
also obtain generators for Aut(Gabs

Q,V), and we check if each of these
(unsigned) generators πabs correctly lifts to a (signed) automorphism π
of GQ,V . If this is the case then we are done, if not then we recompute
the full canonical function using GQ,V . Our hope is that the latter
almost never happens, and thus we can rely on a much smaller, and
thus more efficient, canonical graph computation.

9.7.3 Results

We implemented a canonical function, highly optimized for the perfect
form use-case. As a characteristic function we used Vms(Q), which in
the case of perfect forms is often just Min(Q) and thus quite small.
For the canonical graph function we implemented both BLISS [JK07]
and Traces [MP14].

279

9. The Lattice Isomorphism Problem

Graph Variant

Canonical Library Signed Absolute speed-up

BLISS [JK07] 3558± 613 µs 398± 129 µs 8.94×
Traces [MP14] 601± 84 µs 223± 36 µs 2.70×

Table 9.1: The average number of microseconds and the standard
deviation per full canonical form computation on the 524.288 9-
dimensional perfect forms found by [SSV07]. The absolute graph tim-
ings include the check and fallback to the signed case if needed.

The timings for this highly optimized implementation, and the
additional speed-up of the absolute graph improvement, are shown in
Table 9.1. The low dimension allowed to implement most steps of the
algorithm with primitive types (no extended precision), which gave a
large speed-up over the original generic implementation. In addition,
depending on the canonical graph library we obtain a speed-up of 2.7
to 8.94 using the absolute graph approach, even including the fallback
to the original case if needed. The generic implementation from the
original paper (using Traces) took an average of 5941µper canonical
form on the same dataset and same hardware [DHVW20; Dut22]; in
total we obtain a 27-fold speed-up over this implementation.

Exploring all perfect forms in dimension 9 requires roughly 2 · 1011
canonical form computations. Based on the experiments, the extra
improvement thus reduced the running time spend on this part of the
algorithm from roughly 330.000 core-hours to less than 12.500 core-
hours, making (that part of the) computation feasible on a high-end
server or a small cluster.

Finishing the full enumeration is an ongoing joint project with
Mathieu Dutour Sikirić. The canonical form function allowed us to
find (probably) all perfect forms, with only a few exceptionally hard
cases yet to treat.

Lemma 170. There are at least 2,237,251,033 non-similar perfect
forms in dimension 9.

Conjecturally the above inequality is tight and we have found all
perfect forms in dimension 9, of which the densest corresponds to the

280

9.7. Applications to perfect form enumeration

laminated lattice Λ9. To be certain about this we still have to enu-
merate all neighbours of a few perfect forms (with many neighbours).

The same idea, using the absolute graph canonical function, has
been used to make the enumeration of all 55,083,358 C-type domains
in dimension 6 feasible [DMW22].

281

