
Lattice cryptography: from cryptanalysis to New
Foundations
Woerden, W.P.J. van

Citation
Woerden, W. P. J. van. (2023, February 23). Lattice cryptography: from
cryptanalysis to New Foundations. Retrieved from
https://hdl.handle.net/1887/3564770

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3564770

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3564770

CHAPTER 8
Basis Reduction for Binary

Codes

This chapter is an abbreviated version of the joint work ‘An
Algorithmic Reduction Theory for Binary Codes: LLL and
more’, with Thomas Debris-Alazard and Léo Ducas, published
in IEEE Transactions on Information Theory.

8.1 Introduction
Codes and lattices share many mathematical similarities. A (linear)
code C ⊂ Fn

q is defined as a subspace of a vector space over a finite
field, typically endowed with the Hamming metric, while a lattice
L ⊂ Rn is a discrete subgroup of a Euclidean vector space. They
both found similar applications in information theory and computer
sciences. For example, both can be used to perform error correction;
on digital channels for codes, and on analogue channels for lattices.

Both objects also found applications in cryptography. Cryptosys-
tems can be built relying either on the hardness of finding a close
codeword or a close lattice point from a given target. And just as

217

8. Basis Reduction for Binary Codes

for lattices, cryptography based on codes appears to be resistant to
quantum computing.

The set of techniques for attacking those problems also have simi-
larities, and some algorithms have been transferred in each direction:
for example the Blum-Kalai-Wasserman [BKW03] algorithm has been
adapted from codes to lattices [Alb+15], while the introduction of
locally-sensitive hashing in code cryptanalysis [MO15] shortly followed
its introduction in lattice cryptanalysis [Laa15].

It is therefore very natural to question whether all techniques used
for codes have also been considered for lattices, and reciprocally. Be-
yond scientific curiosity, this approach can hint us at how complete
each state of the art is, and therefore, how much trust we should put
into cryptography based on codes and cryptography based on lattices.

Comparing both states of the art, it appears that there is a major
lattice algorithmic technique that has no clear counterpart for codes,
namely, basis reduction. Recall from Chapter 6 that lattice reduction
attempts to find a basis with good geometric properties; in particular
its vectors should be rather short and orthogonal to each others.

More specifically, the basis defines, via Gram-Schmidt Orthogo-
nalization, a fundamental domain (or tiling) of the space, and a cor-
responding decoding algorithm. Decoding with this algorithm is the
most favourable when these tiles are close to being square, i.e. when
the Gram-Schmidt lengths are balanced. Basis reduction algorithms
such as LLL aim at making the Gram-Schmidt lengths more balanced.

Certainly, the problem of finding short codewords has also been
intensively studied in cryptanalysis with the Information Set Decod-
ing (ISD) literature [Pra62; LB88; Ste88; Dum91; MMT11; BJMM12;
MO15; BM18], but notions of basis reduction for lattices are more sub-
tle than containing short vectors; as discussed above, a more relevant
objective is to balance the Gram-Schmidt norms. There seem to be
no analogue notions of Gram-Schmidt norms and basis reduction for
codes, or at least they are not explicit nor associated with reduction
algorithms. We are also unaware of any study of how such reduced
bases would help with decoding tasks.

This observation leads to two questions. Is there an algorithmic
reduction theory for codes, analogue to the one of lattices? And if so,
can it be useful for decoding tasks?

218

8.1. Introduction

8.1.1 Contributions

In this chapter we answer both questions positively, and set the foun-
dation of an algorithmic reduction theory for codes. More specifically,
we propose as main contributions:

1. the notion of an epipodal matrix B+ of the basis B of a binary
code C ⊂ Fn

2 (depicted in Figure 8.1), playing a role analogue to
the Gram-Schmidt Orthogonalisation B̃ of a lattice basis,

2. a fundamental domain (or tiling) of C over Fn
2 associated to this

epipodal matrix, as an analogue to the rectangle parallelepipedic
tiling for lattices,

3. a polynomial time decoding algorithm (SizeRed) effectively re-
ducing points to this fundamental region, analogue to the Near-
est Plane algorithm popularised by Babai [Bab86],

4. a relation between the geometric quality of the fundamental do-
main and the success probability for decoding a random error to
the balance of the lengths of the epipodal vectors,

5. an adaptation of the seminal LLL reduction algorithm [LLL82]
from lattices to codes, providing in polynomial time a basis with
some epipodal length balance guarantees. Interestingly, this LLL
algorithm for codes appears to be an algorithmic realisation of
the classic bound of Griesmer [Gri60], in the same way that LLL
for lattices realizes Hermite’s bound.

These contributions establish an initial dictionary between reduction
for codes and for lattices, summarised in Table 8.1.

Open Artefacts: Source code (c++ kernel, with a python inter-
face)1.

8.1.2 Organisation

We introduce some preliminaries on binary linear codes in Section
8.2. In Section 8.3 we introduce the notion of orthopodality for bi-
nary vectors, and use this to define (orthopodal) projections and a

1Available at https://github.com/lducas/CodeRed/.

219

https://github.com/lducas/CodeRed/

8. Basis Reduction for Binary Codes

Table 8.1: A Lattice-Code Dictionary.

Lattice L ⊂ Rn Code C ⊂ Fn
2

Ambient Space Rn Fn
2

Metric Euclidean Hamming
∥x∥2 =∑x2i |x| = #{i | xi ̸= 0}

Support (element) R · x {i | xi ̸= 0}
Support (lattice/code) SpanR (L) {i | ∃c ∈ C s.t. ci ̸= 0}

Sparsity det(L) 2n−k

Effect. Sparsity det(L) 2#S(C)−k

x ⊥ y Orthogonality Orthopodality
⟨x,y⟩ = 0 S(x) ∩ S(y) = ∅

Projection πx Ortho. Project. onto x Punct. pattern x

y 7→ ⟨x,y⟩⟨x,x⟩ · x y 7→ y ∧ x

Auxiliary matrix Gram-Schmidt Orth. Epipodal matrix

b̃i = bi −
∑
j<i

⟨bi,b̃j⟩
⟨b̃j ,b̃j⟩

· b̃j b+i = bi ∧ (b+1 ∨ · · · ∨ b+i−1)

Basis profile ℓ ℓi = ∥b̃i∥ ℓi = |b+i |

Fundamental domain Parallelepiped P(B̃) Prod. of Hamming balls1

F(B)
{
x
∣∣∣∀i |⟨x, b̃i⟩| ≤ ℓ2i

2

} {
x
∣∣∣∀i |x ∧ b+i | ≤

ℓi
2

}
Error correct. radius mini ℓ

2
i /2 mini⌊(ℓi − 1)/2⌋

Average deco. dist.
√

1
12

∑
i ℓ

2
i ≈ n

2
− 1√

π

∑
i

√
⌈ℓi/2⌉

Worst deco. dist.
√

1
2

∑
i ℓ

2
i

∑
i⌊ℓi/2⌋

Favourable decoding balanced ℓi’s balanced and odd ℓi’s

Basis inequality
∏ ∥bi∥ ≥ det(L) ∑ |bi| ≥ #S(C)

Invariant
∏ ∥b̃i∥ = det(L) ∑ |b+i | = #S(C)

LLL balance ℓi ≤
√

4/3 · ℓi+1 1 ≤ ℓi ≤ 2 · ℓi+1

LLL first length ℓ1 ≤ (4
3
)
n−1
2 det(L)

1
n ℓ1 − ⌈log2 ℓ1⌉

2
≤ n−k

2
+ 1

Corresponding bound Hermite’s Griesmer’s [Gri60]
1This is not exactly correct when some epipodal length |b+i | are even. See

tie-breaking in Section 8.4.

220

8.2. Binary linear codes

code analogue to the Gram-Schmidt basis. In Section 8.4 we give a
translation of Babai’s Nearest Plane algorithm to binary linear codes,
and explain how its performance depends on the basis profile. In Sec-
tion 8.5 we give a translation of the LLL algorithm to binary linear
codes, and show how it results in a reasonably balanced basis profile.
In the last Section 8.6 we discuss some future research directions.

8.2 Binary linear codes

We give a short introduction on the Hamming metric, binary linear
codes, and how they relate to lattices.

Binary vector space

While lattices live in the continuous Euclidean vector space Rn, codes
live in the discrete non-euclidean vector space Fn

q for some prime q. In
this work we will only consider the binary case q = 2, as it allows us to
explain our general ideas, without too many technical difficulties. We
identify F2 with the binary set {0, 1}, and thus interpret elements of
Fn
2 as binary vectors. We will use the standard boolean notations x,

x⊕y, x∧y, x∨y, for respectively the bitwise NOT, the bitwise XOR
(vector addition over Fn

2), the bitwise AND, and the bitwise OR.2 In
contrast to most code-based literature the vectors x ∈ Fn

2 should be
interpreted as column vectors, following the overall notation in this
thesis.

Hamming metric

The most common metric in the code-based literature is the Hamming
metric. The support S(x) of a vector x ∈ Fn

2 is the set of indices of
its nonzero coordinates, and its Hamming weight |x| ∈ J0, nK is the
cardinality of its support:

S(x) := {i ∈ J1, nK | xi ̸= 0} , |x| := #S(x).

2In the code-based cryptography literature, for instance [COT16], the bitwise
AND is often interpreted algebraically as a star-product or Schur-product, denoted
⊙ or ⋆. We found the boolean notations more adapted to our geometric purposes,
especially given that the bitwise OR also plays an important role.

221

8. Basis Reduction for Binary Codes

The Hamming distance between two vectors x,y ∈ Fn
2 is likewise given

by |x ⊕ y| ∈ J0, nK. We will denote by Sn
w the Hamming sphere and

by Bn
w the Hamming ball of radius w over Fn

2 , namely:

Sn
w := {x ∈ Fn

2 : |x| = w} , Bn
w := {x ∈ Fn

2 : |x| ≤ w} .

Binary linear codes

A binary linear code C of length n and dimension k — for short, an
[n, k]-code — is a subspace of Fn

2 of dimension k. The ratio R = k/n is
called the rate of the code. Every linear code can be described either
by a set of linearly independent generators (basis representation) or
by a system of modular equations (parity-check representation). We
will mostly consider the first representation for our purpose.

To build an [n, k]-code we may take any set of vectors b1, . . . ,bk ∈
Fn
2 which are linearly independent and define:

C(b1, . . . ,bk) :=

{
k∑

i=1

zibi : zi ∈ F2

}
(Basis representation)

We say that b1, . . . ,bk is a basis for the code C = C(b1, . . . ,bk).
Alternatively we will call the matrix B = [b1, . . . ,bk] ∈ Fn×k

2 a basis
or a generating matrix of the code C = C(B).

Properties

An element c ∈ C of a code C is called a codeword. The support of the
code is defined as the union of the supports of all its codewords, which
also implies the definition of an effective length |C| ≤ n of a [n, k]-code
C:

S(C) :=
⋃
c∈C

S(c), |C| := #S(C).

Indeed, the code length n defined by the ambient space is rather ex-
trinsic information, in particular extending a code C by padding a 0
to all codewords does not affect the geometry of the code, but it does
affect the apparent length n. To avoid unnecessary technicalities we
assume in the rest of this chapter that each code has full support, i.e.,
|C| = n.

222

8.2. Binary linear codes

Note that in contrast to lattices, the span of a code basis is au-
tomatically discrete due to its ambient space Fn

2 , while for lattice we
need to restrict to the Z-span to obtain the discreteness inside Rn.
Similar to lattices, the discreteness allows us to define a first mini-
mum, or minimal distance dmin(C) of a code, as the shortest Hamming
weight of nonzero codewords, namely:

dmin(C) := min {|c| : c ∈ C and c ̸= 0} .

Hard problems

The problem of finding such a minimum length codeword, the analogue
of the Shortest Vector Problem, is known as the Minimum Codeword
Problem.

Definition 116 (Minimum Codeword Problem (MCP)). Given a
basis B of a binary [n, k]-code C, compute a nonzero codeword x ∈ C
of minimum weight, i.e., such that |x| = dmin(C).

Similarly the Closest Vector Problem has a direct analogue in
codes, usually named the Nearest Codeword Problem.

Definition 117 (Nearest Codeword Problem (NCP)). Given a ba-
sis B of a binary [n, k]-code C, and a target t ∈ Fn

2 , compute a codeword
x ∈ C of minimum distance to t, i.e., such that |t⊕ x| is minimal.

Alternatively this is called decoding the code C.

Systematic form

An usual way in code-based cryptography to decode random codes is
to use bases in systematic form. A basis B of an [n, k]-code is said
to be in systematic form or in reduced row echelon form if up to a
permutation of its rows B = (Ik;B

′) where Ik denotes the identity
of size k × k and B′ ∈ F(n−k)×k

2 . Such bases can be produced from
any basis by doing a Gaussian elimination over the columns. Choosing
the set of pivots iteratively (possibly at random among available ones),
this can be done in time O(nk2).

223

8. Basis Reduction for Binary Codes

8.3 Orthopodality and the epipodal
matrix

Let us start by recalling the standard definition of Gram-Schmidt Or-
thogonalisation (GSO) over Euclidean vector spaces. Given a basis
[b1, . . . ,bn] of the Euclidean space (Rn, ∥ · ∥) its Gram-Schmidt or-
thogonalisation (b̃1; . . . ; b̃n) is defined inductively by:

b̃i := πi(bi) where πi : x 7→ x−
∑
j<i

⟨x,b̃j⟩
⟨b̃j ,b̃j⟩

· b̃j.

The map πi denotes the orthogonal projection onto the orthogonal of
the space generated by vectors b1, . . . ,bi−1 in Rn. While the GSO of
the basis of a lattice is not itself a basis of that lattice, it is a central
object in the reduction theory of lattices, and in lattice reduction al-
gorithms. This section is dedicated to the construction of an analogue
object for bases of binary linear codes.

8.3.1 An orthogonality notion for binary vectors

In the case of Euclidean vector spaces Rn, orthogonality can be defined
via the standard inner-product, namely x ⊥ y : ⟨x,y⟩ = 0 and so
orthogonal projections onto the line spanned by x as πx(y) := ⟨x,y⟩

⟨x,x⟩x.
Orthogonality also provides Pythagorian additivity:

∥x⊕ y∥2 = ∥x∥2 + ∥y∥2.

The space Fn
2 is also endowed with an inner-product, but it does not

lead to a geometrically meaningful notion of orthogonality. For in-
stance for x,y ∈ Fn

2 , ⟨x,y⟩ = 0 (mod 2) does not seem to imply
anything similar to Pythagorian additivity. However we note that, by
definition of the Hamming weight we do have:

|x⊕ y| = |x|+ |y| ⇐⇒ S(x) ∩ S(y) = ∅.

In fact, we even have the identity:

|x⊕ y| = |x|+ |y| − 2|x ∧ y|

224

8.3. Orthopodality and the epipodal matrix

for x,y ∈ Fn
2 , which should be read as an analogue of the Euclidean

identity:
∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2⟨x,y⟩.

This suggests to define x,y ∈ Fn
2 to be orthopodal if their supports are

disjoint, that is, defining the orthogonality relation as:

x ⊥ y⇐⇒ x ∧ y = 0.

We can then associate convenient notions of projections onto (the
support of) x and orthopodally to (the support of) x as follows:

πx : y 7→ y ∧ x, π⊥
x : y 7→ y ∧ x = πx(y)

Such transformations are certainly not new to codes, and known in
the literature as puncturing [MS77, Ch.1 §9]. However, we are here
especially interested in their geometric virtues. They do satisfy similar
properties as their Euclidean analogues: πx is linear, idempotent, it
fixes x, it does not increase length (Hamming weight), and together
with π⊥

x yields an orthogonal decomposition. More formally:

Lemma 118. For any x,y, z ∈ Fn
2 it holds that:

πx(y ⊕ z) = πx(y)⊕ πx(z), π2
x(y) = πx(y),

π⊥
x (x) = 0, πx(x) = x,

π⊥
x (y) ⊥ x, |πx(y)| ≤ |y|,

πx(y) ⊥ π⊥
x (y), πx(y)⊕ π⊥

x (y) = y.

The proof is immediate by boolean algebra. Furthermore, and un-
like their Euclidean analogues: they always commute and their com-
positions can be compactly represented.

Lemma 119. For any x,y ∈ Fn
2 it holds that:

πx ◦ πy = πy ◦ πx = πx∧y,

π⊥
x ◦ π⊥

y = π⊥
y ◦ π⊥

x = π⊥
x∨y.

The proof is also immediate by boolean algebra. We therefore
extend the notation π⊥

S to sets S ⊆ Fn
2 to denote the projection or-

thopodally to the support of S, namely π⊥
x where x =

∨
s∈S s. This

compact representation will allow for various algorithmic speed-ups.

225

8. Basis Reduction for Binary Codes

8.3.2 Epipodal matrix

We are now fully equipped to define an analogue of the Gram-Schmidt
Orthogonalisation process over real matrices to the case of binary ma-
trices. An important remark is that this analogue notion given below
does not preserve the F2-span of partial bases, which may appear as
breaking the analogy with the GSO over the reals which precisely
preserves R-span of those partial bases. This is in fact not the right
analogy for our purpose, noting that the GSO does not preserve the
Z-spans of those partial bases. The proper lattice to code translation
(Table 8.1) associates Z-spans (i.e. lattices) to F2-spans (i.e. codes),
and R-spans to supports.

Definition 120 (Epipodal matrix). Let B = [b1, . . . ,bk] ∈ Fn×k
2 be

a binary matrix. The i-th projection associated to this matrix is defined
as πi := π⊥

{b1,...,bi−1} where π1 denotes the identity. Equivalently,

πi : Fn
2 −→ Fn

2

c 7−→ c ∧ (b1 ∨ · · · ∨ bi−1).

The i-th epipodal vector is then defined as:

b+i := πi(bi),

and the matrix B+ := [b+1 , . . . ,b
+
k] ∈ Fn×k

2 is called the epipodal matrix
of B.

Note that the definition does not need to be restricted to full rank
matrices. The i-th epipodal vector should be interpreted as the sup-
port increment from the code C(b1, . . . ,bi−1) to C(b1, . . . ,bi). The
epipodal matrix enjoys the following properties, analogue to the GSO.

Lemma 121 (Properties of Epipodal Matrices). For any binary
matrix B = [b1, . . . ,bk] ∈ Fn×k

2 , its epipodal matrix B+ = [b+1 , . . . ,b
+
k]

satisfies:

1. The epipodal vectors are pairwise orthopodal:

∀i ̸= j, b+i ⊥ b+j . (8.1)

226

8.3. Orthopodality and the epipodal matrix

b1,b2,b3 (transposed) b+1 ,b
+
2 ,b

+
3 (transposed)

Figure 8.1: The (transposed) basis B of a [8, 3]-code, and its associated
epipodal matrix B+.

2. For all i ≤ k, (b1, . . . ,bi) and [b+1 , . . . ,b
+
i] have the same sup-

ports, that is:⋃
j≤i

S(b+j) =
⋃
j≤i

S(bj), or equivalently,
∨
j≤i

b+j =
∨
j≤i

bj. (8.2)

Proof. For any i, we have by definition that b+i = πi(bi) = bj ∧
(b1 ∨ · · · ∨ bi−1), so it holds that S(b+i) ⊂ S(bi), and that S(b+i) ∩
S(bj) = ∅ for any j < i. Therefore S(b+j) ∩ S(b+i) = ∅, that is b+i ⊥
b+j . For the second item, rewrite b+j = bj ∧

∧
i<j bi and conclude by

induction.

Furthermore, one may note that epipodal vectors satisfy a similar
induction to the one of the GSO over the reals:

GSO: b̃i = bi −
∑
j<i

⟨bi,b̃j⟩
⟨b̃j ,b̃j⟩

· b̃j.

Epipodal Matrix: b+i = bi ⊕
∑
j<i

bi ∧ b+j ,

However following this induction leads to perform O(k2) vector oper-
ations. In the case of the epipodal matrix, the computation can be
sped-up to O(k) vector operations using cumulative support vectors
si:

s0 = 0, si = si−1 ∨ bi, b+i = bi ∧ si−1.

The epipodal matrix of the basis of a code also enjoys an analogue
invariant to the GSO for lattices. The GSO (b̃1, . . . , b̃k) of a lattice
L is not generally a basis of L but it verifies the following invariant∏k

i=1 ∥b̃i∥ = det(L).

227

8. Basis Reduction for Binary Codes

Corollary 122 (Length Invariant). For any basis [b1, . . . ,bk] of an
[n, k]-code C:

k∑
i=1

|b+i | = |C|.

Proof. Using equation (8.2) we have
⋃

j≤n S(b
+
j) =

⋃
j≤n S(bj) = S(C),

and according to (8.1) this union is disjoint.

8.4 Size-reduction and its fundamental
domain

While the GSO of a lattice basis is not itself a basis of that lattice, it is
a central notion to define what a “good” basis is. For example, because
of the invariant

∏ ∥b̃i∥ = det(L), and because b̃1 = b1, making the
first vector of a basis short means that other Gram-Schmidt lengths
must grow.

The notion of quality of a basis should more specifically be linked
to what we can do algorithmically with it. In the cases of lattices, the
GSO of a basis allows to tile the space. More formally, if B is the basis
of a full rank lattice L ⊂ Rn, one can define a fundamental domain of
the translation action of L over Rn (i.e. a set of representatives of the
quotient Rn/L) by the following rectangle parallelepiped:

P(B̃) :=
{∑

xib̃i

∣∣∣ − 1
2
≤ xi <

1
2

}
=

[
−1

2
,
1

2

)k

· B̃

Furthermore, there is a polynomial time algorithm that effectively
reduces points x ∈ Rn modulo L to this parallelepiped, namely size-
reduction [LLL82], also known as the Nearest Plane Algorithm [Bab86].
This parallelepiped has inner radius rin = min ∥b̃i∥/2 and outer square
radius r2out = 1

4

∑ ∥b̃i∥2. This means that size-reduction can, in the
worst case, find a close lattice vector at distance rout, and correctly
decode all errors of length up to rin. One can also establish that
the average squared distance of the decoding of a random coset is
1
12

∑ ∥b̃i∥2.
This Section is dedicated to an equivalent size-reduction algorithm

for binary codes, and to the study of its associated fundamental do-
main.

228

8.4. Size-reduction and its fundamental domain

8.4.1 Size-reduction: definition and algorithm

Let us start by defining size-reduction and its associated fundamental
domain. A first technical detail is that in the case of codes, it is not
given that the epipodal vectors are nonzero, a minor difference with
the Gram-Schmidt Orthogonalisation for bases in a real vector space.
We restrict our attention to proper bases.

Definition 123 (Proper bases). A basis B is proper if all epipodal
vectors b+i are nonzero.

Note for example that bases in systematic form are proper bases:
proper bases do exist for all codes, and can be produced from any
basis in polynomial time.

A more annoying hiccup is that we may need to handle ties to
prevent the size-reduction tiles from overlapping; in the case of lattices
these might as well be ignored as the difference between [−1

2
, 1
2
]n and

[−1
2
, 1
2
)n has zero measure. This issue arises when an epipodal vector

p has even weight, if we are reducing some y ∈ Fn
2 such that |y∧p| =

|p|/2 = |(y⊕p)∧p|. We (arbitrarily) use the first epipodal coordinate
to break such ties:

TBp(y) =

0 if |p| is odd,
0 if yj = 0 where j = min(S(p)),

1/2 otherwise.

Definition 124 (size-reduction). Let B = [b1, . . . ,bk] be a basis of
an [n, k]-code. The Size-Reduced region relative to B is defined as:

F(B+) :=

{
y ∈ Fn

2 : ∀i ∈ J1, kK, |y ∧ b+i |+ TBb+i
(y) ≤ |b

+
i |
2

}
.

Vectors in this region are said to be size-reduced with respect to the
basis B.

Furthermore, as for lattices, we have an efficient size-reduction
algorithm that reduces any target to this region.

Proposition 125. Algorithm 12 is correct and runs in polynomial
time.

229

8. Basis Reduction for Binary Codes

Algorithm 12: SizeRed(B,y) Size-reduce y with respect to
B

Input : A basis B = [b1, . . . ,bk] ∈ Fk×n
2 and a target y ∈ Fn

2

Output: e ∈ F(B+) such that e⊕ y ∈ C(B)
1 e← y
2 for i = k down to 1 do
3 if |e ∧ b+i |+ TBb+i

(e) > |b+i |/2 then
4 e← e⊕ bi

5 end
6 end
7 return e

Proof. First note that e ⊕ y ∈ C(B) is a loop invariant, as we only
add basis vectors bi to e. Therefore all we need to show is that
e ∈ F(B+). Note that the loop at step i enforces |e∧b+i |+TBb+i

(e) ≤
|b+i |/2. Furthermore, this constraint is maintained by subsequent loop
iterations of index j < i since bj ∧ b+i = 0.

Proposition 126 (Fundamental Domain). Let B := [b1, . . . ,bk] be
a proper basis of an [n, k]-code C. Then F(B+) is a fundamental do-
main for C, that is:

1. F(B+) is C-packing:

∀c ∈ C \ {0}, (c+ F(B+)) ∩ F(B+) = ∅,

2. F(B+) is C-covering:

C(B) + F(B+) = Fn
2 .

Proof. Let us start by proving that F(B+) is C(B)-packing. Let c =∑
i xibi ∈ C(B) and y1,y2 ∈ F(B+) such that c = y1 ⊕ y2. By

definition of the orthopodalization c =
∑

i xib
+
i ⊕
∑

j<i xibi∧b+j which
gives:

∀ℓ ∈ J1, kK, c ∧ b+ℓ = xℓb
+
ℓ ⊕

∑
i>ℓ

xibi ∧ b+ℓ .

230

8.4. Size-reduction and its fundamental domain

Suppose by contradiction that c ̸= 0. Let j be the largest index such
that xj ̸= 0. Then c∧b+j = b+j . As c = y1⊕y2 where y1,y2 ∈ F(B+),

|c ∧ b+j | ≤ |y1 ∧ b+j |+ |y2 ∧ b+j | < |b+j |,

which is a contradiction. Therefore c = 0 which shows that F(B+) is
C(B)-packing. The C(B)-covering property follows from the fact that
Algorithm 12 is correct as proven in Proposition 125.

8.4.2 Decoding performance of size-reduction

Given any fundamental domain F of an [n, k]-code C(B) and a cor-
responding reduction algorithm one can consider the decoding perfor-
mance. Such a reduction algorithm would reduce a target y ∈ Fn

2 to
the (unique) error e ∈ (y + C) ∩ F , and thereby finding a close code-
word c = y ⊕ e to y. A uniformly random target in Fn

2 is uniformly
distributed over the fundamental domain after reduction and thus the
quality of decoding fully dependents on the geometric properties of
the fundamental domain. For example, the expected Hamming dis-
tance is equal to the expected weight E[|U(F)|]. And, more precisely,
decoding a random target, to a codeword at Hamming distance w,
succeeds with probability:

prand
≤w (F) = #(F ∩ Bn

w)

#F =
#(F ∩ Bn

w)

2n−k
.

The minimal distance d := dmin(C) of a random code C is expected to
be very close to the Gilbert-Varshamov bound [OS09, §3.2, Definition
1], and a uniformly random target lies almost always at distance ≈ d
(see [MO15, §2] for a justification). Therefore in this setting random
decoding is mostly interesting for w ≥ d, as otherwise no solution is
expected to exist.

Another regime we can consider is unique decoding, where we have
the guarantee that our target has a unique codeword at distance at
most w. For general codes this is the case for half distance decoding
up to weight w < d/2. If the error is uniform over Bn

w, we obtain a
success probability of

puniq
≤w (F) = #F ∩ Bn

w

#Bn
w

.

231

8. Basis Reduction for Binary Codes

For random codes a target at distance at most w < d (instead of d/2)
is almost always uniquely decodable and as a result the success prob-
ability is also close to the above quantity. For cryptanalytic purposes
it is assumed to be identical [OS09, page 3.3].

Let us now consider three such fundamental domains, an optimal
one, the one corresponding to an algorithm by Prange [Pra62], and
finally the size-reduction domain F(B+).

Maximum likelihood decoding

An optimal decoder, also know as a maximum likelihood decoder,
always decodes to a nearest codeword. Implicitly this corresponds to
a fundamental domain F where each coset representative has minimal
weight. This implies that the random decoding probability prand

≤w (F)
hits the probability that a uniformly random target lies at distance
at most w to the code, and a perfect unique decoding probability
of puniq

≤w (F) = 1. For lattices the analogue fundamental domain is
unique up to the boundary and is known as the Voronoi Domain of a
lattice. Unfortunately, reducing a target to this fundamental domain
is in general hard for both lattices and codes, and takes exponential
time [Pra62; MV13; DLW19].

Prange’s fundamental domains

Given a basis B in systematic form, a more common decoding algo-
rithm, namely the Prange algorithm [Pra62], is to assume an error of 0
on the k pivot positions of the systematic form. This induces a funda-
mental domain, but of geometric shape Fn−k

2 ×{0}k instead of F(B+).
This leads respectively to an expected error weight of (n− k)/2, and
random and unique decoding probabilities of:

prand
≤w (Fn−k

2 × {0}k) = #Bn−k
w

2n−k
, and puniq

≤w (Fn−k
2 × {0}k) = #Bn−k

w

#Bn
w

.

Size-reduction

In the case of lattices, size-reduction gives a fundamental domain that
can be written as a direct sum of segments P(B̃) =

∏
i[−1/2, 1/2) · b̃i

where the b̃i’s are the GSO of the lattice basis. The expected squared

232

8.4. Size-reduction and its fundamental domain

decoding error 1
12

∑∥b̃i∥2 is simply the sum of the expected squared
error on each segment, and only depends on the Gram-Schmidt profile
∥b̃1∥, . . . , ∥b̃k∥.

We proceed similarly for the Size-Reduced region F(B+). The role
of the segment is taken over by the fundamental ball Ep of length p > 0
as:

Ep :=
{
y ∈ Fp

2 : |y|+ TB(1,...,1)(y) ≤ p/2
}
.

It should be thought of as the canonical fundamental domain of the
[p, 1]-code C = F2 ·(1, 1, . . . , , 1) inside Fp

2 (the repetition code of length
p). To each proper epipodal vector b+i we assign an epipodal ball E |b+i |,
and this allows to rewrite the fundamental domain F(B+) as a direct
product of balls via the isometry:

F(B+)
∼−→

k∏
i=1

E |b+i | : y 7→
(
y|S(b+1), . . . ,y|S(b+k)

)
.

The latter object only depends on the epipodal lengths |b+1 |, . . . , |b+k |
which we call the profile (ℓi := |b+i |)i of the basis B.

We can now proceed to analyse the Hamming weight of uniformly
random targets in the domain by looking at their weight in each local
fundamental ball E |b+i |. LetWp := |U(Ep)| for p > 0 be the distribution
of the Hamming weight of uniformly drawn targets in the fundamental
ball Ep. This weight distribution has the following probabilities for
integer weight w ≥ 0:

Pr [Wp = w] =

0 if w > p/2 or w < 0,
(p
p/2)
2p

if w = p/2,
(p
w)

2p−1 otherwise,

and its expectation is given by:

E [Wp] =
p

2
−
⌈p
2

⌉
·
(
p⌊
p
2

⌋) · 2−p =
p

2
−
√

p

2π
+Θ(1/

√
p) (8.3)

which is bounded by p−1
2

. This bound is strict for p ≥ 3, which will give
us a gain over the Prange decoder [Pra62]. Analogues to the lattice
case the expected Hamming weight of a uniformly random target in
Ep is given by the sum of the local expectations

∑k
i=1 E [Wℓi].

233

8. Basis Reduction for Binary Codes

To be more precise, for a basis B with profile ℓ = (ℓ1, . . . , ℓk),
the weight distribution W (B) := |U(F(B+))| of the size-reduction
algorithm, simply denoted by W (ℓ), is given by a convolution of the
local weight distributions Wℓ1 , . . . ,Wℓk :

Pr[W (B) = w] =
∑

∑
i wi=w

(
k∏

i=1

Pr[Wℓi = wi]

)
.

The whole distribution can efficiently (in time polynomial in n) be
computed by iterated convolutions, as its support J0, nK is discrete
and small (see weights.py).

8.4.3 Comparing profiles for size-reduction
decoding

We have shown that the geometric shape of the fundamental domain
F(B+) depends fully on the profile ℓ1, . . . , ℓk. For any profile we have
E[W (ℓ)] =

∑k
i=1 E [Wℓi] ≤

∑k
i=1

ℓi−1
2

= (n − k)/2, with a strict in-
equality if |ℓi| ≥ 3 for any i ∈ J1, kK, and thus we improve on the
fundamental domain induced by Prange. But what is actually a good
profile?

Let us first focus on the expected error weight. By eq. (8.3) the
expectation roughly equals

E[W (ℓ)] ≈
k∑

i=1

ℓi
2
−
√

ℓi
2π

= n/2− 1√
2π

k∑
i=1

√
ℓi,

or more precisely we have the following statement, which follows from
the inequalities 4k√

π(k+1)
≤
(
2k
k

)
≤ 4k√

πk
.

Lemma 127. Given a proper basis B of an [n, k]-code with profile
ℓ = (ℓ1, . . . , ℓk) we have:

1√
π

k∑
i=1

√√√√ ⌈
ℓi
2

⌉2⌈
ℓi
2

⌉
+ 1

≤ n

2
− E [W (B)] ≤ 1√

π

k∑
i=1

√⌈
ℓi
2

⌉
.

Since x 7→ √
x is concave, Lemma 127 (ignoring the rounding)

suggest that the expected error is minimised when the ℓi are the most

234

https://github.com/lducas/CodeRed/blob/master/weights.py

8.4. Size-reduction and its fundamental domain

balanced. Again a similar phenomenon is well known in the case of
lattices: on random inputs, size-reduction produces vectors with an
expected squared length of 1

12

∑ ∥b̃i∥2; under the invariant
∏ ∥b̃i∥ =

det(L) the expectation is minimised for a basis with a balanced profile
∥b̃1∥ = ∥b̃2∥ = · · · = ∥b̃k∥.

However, the quantity E [W (B)] discussed above does not nec-
essarily reflect the quality of the basis for all relevant algorithmic
tasks. For example, if one wishes to decode errors of weight at most
w with a 100% success probability, it is necessary and sufficient that
w < mini ℓi/2.

We therefore propose the following partial ordering on profiles that
is meant to account that a profile is better than another for the men-
tioned natural decoding tasks; as a counterpart, this is only a partial
ordering and two profiles may simply be incomparable.

Definition 128 (Comparing Profiles). We define a partial ordering
(Ln,k,⪯) on the set of proper profiles Ln,k of [n, k]-codes by:

ℓ ⪯ ℓ′ ⇐⇒ Pr[W (ℓ) ≤ w] ≥ Pr[W (ℓ′) ≤ w] for all w ∈ J0, nK.

This also defines an equivalence relation ≍ on Ln,k. We call a
profile ℓ better than ℓ′ if ℓ ⪯ ℓ′. We call ℓ strictly better than ℓ′ and
write ℓ ≺ ℓ′ if ℓ ⪯ ℓ′ and ℓ ̸≍ ℓ′. We call ℓ, ℓ′ incomparable and write
ℓ ≺/≻ ℓ′ if ℓ ̸⪯ ℓ′ and ℓ ̸⪰ ℓ′.

Let us first justify the relevance of this partial ordering for random
decoding and unique decoding for an [n, k]-code C(B) with profile ℓ.

Random decoding

The probability to successfully decode a random target up to an error
of weight at most w can directly be expressed as Pr[W (ℓ) ≤ w]. For
a better profile we see that this probability will also be higher. The
expected distance is equal to E [W (ℓ)]. By noting that E [W (ℓ)] =
n −∑n

w=0 Pr[W (ℓ) ≤ w] we see that a better profile also implies a
lower expected distance.

235

8. Basis Reduction for Binary Codes

Unique decoding

For unique decoding up to weight w < dmin(C(B))/2 we can also
rewrite the success probability in terms of the weight distribution as:

#F(B+) ∩ Bn
w

#Bn
w

=
2n−k · Pr[W (ℓ) ≤ w]∑w

i=0

(
n
i

) .

Again we see that a better profile gives a higher success probability.

The more balanced, the better

Now that we have argued that the ordering of Definition 128 is rele-
vant, let us show that, indeed, balanced profiles are preferable. As we
will see, this rule of thumb is in fact imperfect, and only apply strictly
to profiles that share the same parities (℘i := ℓi mod 2)i.

Lemma 129 (Profile Relations). The partial ordering ⪯ has the fol-
lowing properties:

(1) If ℓ is a permutation of ℓ′ then ℓ ≍ ℓ′.

(2) if ℓ1 ⪯ ℓ′1 and ℓ2 ⪯ ℓ′2, then (ℓ1|ℓ2) ⪯ (ℓ′1|ℓ′2).

(3) If 3 ≤ x ≤ y + 1, then (x, y) ≺ (x− 2, y + 2).

Proof. (1) follows from the fact that the geometric properties of the
size-reduced region fully depend on the values of the profile (and not
their ordering). For (2) note that ℓi ⪯ ℓ′i implies the existence of a
one-to-one map fi from the size-reduction domain F(ℓi) to F(ℓ′i) that
is non-decreasing in weight for i = 1, 2. The product map f1 × f2 is
then a one-to-one map from F(ℓ1|ℓ2) to F(ℓ′1|ℓ′2) that is non-decreasing
in weight, which implies that (ℓ1|ℓ2) ⪯ (ℓ′1|ℓ′2). For the technical proof
of (3) see the full version of this work3.

3Available at https://eprint.iacr.org/2020/869.

236

https://eprint.iacr.org/2020/869

8.4. Size-reduction and its fundamental domain

An odd game of parity

Although for fixed parity a balanced profile is always better than an
unbalanced one there are some exceptions to this rule when dropping
the parity constraint. For example, looking at Lemma 127 one can
notice that, at least for average decoding distances, odd values in
a profile are preferable to even values. One can show that a slight
unbalance with odd coefficients is preferable for all purpose to a perfect
even balance:

(x− 1, x+ 1) ⪯ (x, x) for all even x ≥ 2.

This is an artefact of the need to tie-break certain size-reductions with
respect to epipodal vectors of even length.

8.4.4 Basis size-reduction

To complete the analogy with the lattice literature, let us now adapt
the notion of size-reduction for a basis. We call a basis size-reduced
if each basis vector is size-reduced with respect to all previous basis
vectors.

Definition 130. We call a proper basis B = [b1, . . . ,bk] size-reduced
if bi ∈ F([b1, . . . ,bi−1]

+) for all 1 < i ≤ k.

Size-reduction for a basis allows to control the basis vector lengths
with the epipodal lengths as follows.

Proposition 131. Let B = [b1, . . . ,bk] be a size-reduced basis with
epipodal lengths ℓi = |b+i |. Then, for all i ≤ n it holds that |bi| ≤
ℓi +

∑
j<i⌊ℓj/2⌋ for all i ≤ k.

Perhaps surprisingly, this global notion of size-reduction will not
be required in the LLL algorithm for codes discussed in the next Sec-
tion 8.5.2, which is a first deviation from the original LLL algorithm
for lattices [LLL82]. However it can still be useful to adapt more
powerful reduction algorithms such as deepLLL [SE94; FSW14].

Proposition 132. Algorithm 13 is correct and runs in polynomial
time.

237

8. Basis Reduction for Binary Codes

Algorithm 13: SizeRedBasis(B,y) Size-reduce the basis B

Input : A proper basis B = [b1, . . . ,bk] ∈ Fk×n
2 of a code C

Output: A size-reduced basis of C(B) with the same epipodal
matrix as B.

1 for i = 2 to k do
2 bi ← SizeRed([b1, . . . ,bi−1],bi)
3 end
4 return [b1, . . . ,bk]

Proof. The polynomial claim immediately follows from Proposition
125. Secondly note that vectors bi’s form a basis of the code C given
as input, and this is a loop invariant. Indeed, in any step i of the
algorithm only codewords from the sub-code C(b1, . . . ,bi−1) are added
to bi. Furthermore, this does not affect b+i := πi(bi). The loop at
step i enforces that bi ∈ F([b1, . . . ,bi−1]

+) and this constraint is
maintained as b1, . . . ,bi are unchanged by all later steps.

8.5 LLL for binary codes

In the previous section, we have seen that the geometric quality of
the fundamental domain F(B+) solely depends upon the epipodal
lengths ℓi := |b+i |: the more balanced, the better, both for finding
close codewords of random words, and for decoding random errors.
This situation is in perfect analogy with the situation in lattices. We
therefore turn to the celebrated LLL [LLL82] algorithm for lattice
reduction, which aims precisely at balancing the profile (ℓi)i.

The LLL algorithm can be interpreted as an algorithmic version
of the so-called Hermite’s bound on the minimal length of an n-
dimensional vector [GHKN06]. Again, the analogy between codes
an lattices stands: the LLL reduction for codes turns out to be an
algorithmic version of Griesmer’s bound [Gri60].

Certainly, Griesmer’s bound [Gri60] is far from tight in all regimes
for the parameters of the code, as it is already the case with Hermite’s
bound for lattices which is exponentially weaker than Minkowski’s
bound. Griesmer’s bound and Hermite’s bound virtues reside in the
algorithm underlying their proofs.

238

8.5. LLL for binary codes

8.5.1 Griesmer’s bound and LLL reduction

In this section, we revisit the classical Griesmer’s bound and its proof
from the perspective of reduction theory, that is we will re-interpret
its proof in terms of the epipodal matrix and in particular its profile.
The proof we propose is admittedly a bit less direct than the original;
our purpose is to dissect this classic proof, and extract an analogue to
LLL reduction for codes.

Theorem 133 (Griesmer Bound [Gri60]). For any [n, k]-code of
minimal distance d := dmin(C), it holds that:

n ≥
k−1∑
i=0

⌈
d

2i

⌉
.

In particular, if k − 1 ≥ log2(d), it holds that d− ⌈log2(d)⌉
2
≤ n−k

2
+ 1.

The latter inequality follows from the first by setting r = ⌈log2(d)⌉
as follows:

n ≥ d
r−1∑
i=0

1

2i
+

k−1∑
i=r

1

= 2d(1− 1

2r
) + (k − r)

≥ 2d− 2 + k − r.

Definition 134 (Griesmer-reduced basis). A basis B = [b1, . . . ,bk]

of an [n, k]-code is said to be Griesmer-reduced if b+i is a shortest
nonzero codeword of the projected subcode πi(C(bi, . . . ,bk)) for all i ∈
J1, kK.

This definition is a direct analogue of the so-called Hermite-
Korkine-Zolotarev (HKZ) reduction for lattice bases. Note that the
existence of such a basis is rather trivial by construction: choose b1

as a shortest nonzero vector and so forth. The only minor difficulty
is showing that the projected codes πi(C(bi, . . . ,bk)) are non-trivial,
which can be done by resorting to Singleton’s bound. In particular,
Griesmer-reduced bases are proper bases.

239

8. Basis Reduction for Binary Codes

Lemma 135 ([HP10, Corollary 2.7.2]). Let C be an [n, k]-code and c

be a codeword of weight dmin(C). Then C ′ := π⊥
c (C) = C ∧ c satisfies:

1. |C ′| = n− dmin(C) and its dimension is k − 1,

2. dmin(C ′) ≥ ⌈dmin(C)/2⌉.
Therefore with the first point of this lemma we can prove by in-

duction on k that there exists for any [n, k]-code C a Griesmer-reduced
basis. Let [b1, . . . ,bk] be such a basis and let ℓi := |b+i |. From defi-
nition of Griesmer-reduced bases and the previous lemma we deduce
that ℓi+1 ≥ ⌈ℓi/2⌉. In other words, the profile (ℓi)i is somewhat con-
trolled: it does not decrease too fast. To prove Griesmer’s bound it
remains to chain those inequalities and to sum them up to obtain:

n ≥ |C| =
k∑

i=1

ℓi ≥
k−1∑
i=0

⌈
ℓ1
2i

⌉
=

k−1∑
i=0

⌈
dmin(C)

2i

⌉
(8.4)

The proof of Lemma 135 proceeds by a local minimality argument,
namely it looks at the first two vectors b1,b2. It shows that the
support of b1 is at most 2/3 of the support of C(b1,b2):

|b1| ≤ 2
3
·
∣∣C(b1,b2)

∣∣.
The proof is rather elementary as the code C(b1,b2) has only 3 nonzero
codewords to consider: b1,b2 and b1⊕b2. What we should note here is
that the notion of Griesmer-reduction is stronger than what is actually
used by the proof: indeed, we only need the much weaker property
that b1 is a shortest codeword of the 2-dimensional subcode C(b1,b2),
and so forth inductively. This relaxation gives us an analogue of the
LLL reduction for linear codes.

Definition 136 (LLL reduced basis). A basis B = [b1, . . . ,bk] of an
[n, k]-code is said to be LLL-reduced if it is a proper basis, and if b+i
is a shortest nonzero codeword of the projected subcode πi(C(bi,bi+1))
for all i ∈ J1, k − 1K.

Note that a Griesmer-reduced basis is an LLL reduced basis, and
the same holds for lattices: an HKZ reduced lattice basis is also LLL
reduced. Indeed, if b+i is a shortest codeword of πi(C(bi, . . . ,bn)) it is
also a shortest vector of the subcode πi(C(bi,bi+1)).

240

8.5. LLL for binary codes

Having identified this weaker yet sufficient notion of reduction, we
can finalize the proof of Griesmer’s bound, in a reduction-theoretic
fashion.

Lemma 137. Let [b1, . . . ,bk] be an LLL-reduced basis, and let ℓi =
|b+i | for i ≤ k. Then we have,

∀i ∈ J1, kK, ℓi+1 ≥
⌈
ℓi
2

⌉
.

Proof. We start by noting that LLL reduced bases are proper bases
by definition, hence every projected subcode Ci := πi(C(bi,bi+1)) =
C(b+i , πi(bi+1)) has dimension 2 and support size ℓi + ℓi+1.

Let us denote by x = b+i , y = πi(bi+1) and z = y ⊕ x the three
nonzero codewords of Ci, and remark that |x| = ℓi, |z| = |x| + |y| −
2|x∧y| and |x∧y| = |y|−ℓi+1. This gives |x|+ |y|+ |z| = 2(ℓi+ℓi+1),
4 and because x is the shortest codeword among x,y, z, we conclude
with:

ℓi = |x| ≤ 1
3

(
|x|+ |y|+ |z|

)
≤ 2

3
(ℓi + ℓi+1).

We can now reformulate Griesmer bound, while making the under-
lying reduction notion explicit.

Theorem 138 (Griesmer bound, revisited). Let [b1, . . . ,bk] be a ba-
sis of a (linear, binary) [n, k]-code C that is LLL-reduced. Then,

n ≥
k−1∑
i=0

⌈
ℓ1
2i

⌉
, (8.5)

where ℓ1 := |b1| ≥ dmin(C). In particular, if k − 1 ≥ log2(dmin(C)), it
holds that ℓ1− ⌈log2(ℓ1)⌉

2
≤ n−k

2
+1. Moreover, every binary linear code

admits an LLL-reduced basis.

Proof. The inequalities follow from (8.4), while the existence of an
LLL reduced basis follows from the fact that Griesmer-reduced bases
are LLL reduced.

4Alternatively, one could have invoked the more general fact that the average
weights 2−k

∑ |c| over a linear code of dimension k is half of its support size |C|/2.

241

8. Basis Reduction for Binary Codes

Tightness

A first remark is that the local bound ℓi+1 ≥
⌈
ℓi
2

⌉
is tight; it is reached

by the [3, 2]-code C = {(000), (101), (110), (011)}, and more generally
by [n, 2]-codes for any n ≥ 3 following a similar pattern. Griesmer’s
bound is also reached globally and thus we know inputs that give
the worst case of our LLL algorithm (which computes efficiently LLL
reduced bases of a code), i.e. the largest ℓ1. For instance there are
the simplex codes5 [MS77, Ch.1, §9] and the Reed-Muller codes of
order one [Ree53; Mul54] which are respectively [2m−1,m]-codes and
[2m,m+ 1]-codes.

Generalisations

The discussion above shows that one can think of Griesmer’s bound as
an inequality relating codes of dimension k to codes of dimension 2, in
the same way that Hermite related lattices of rank n to lattices of rank
2 via Hermite’s inequality on the eponymous constants γn ≤ γn−1

2 .
This type of reasoning can be generalised to relate other quanti-

ties. In the literature on lattices, those are known as Mordell’s in-
equalities [GHKN06; GN08a]. These bounds also have underlying al-
gorithms, namely block-reduction algorithm such as BKZ [Sch87] and
Slide [GHKN06]. Translating those bounds and their associated al-
gorithms from lattices to codes appears as a very interesting research
direction.

Beyond algorithms based on finding shortest vectors of projected
sublattices, we also note that some algorithms consider the dense sub-
lattice problem [DM13; LN14]. According to [Bog01], the analogy
should be made with the notion of higher weight [Wei91; TV95].

Comparison with other code-based bounds

Before presenting our LLL algorithm let us quickly compare in Table
8.2 Griesmer’s bound (and thus the bound reached by the LLL algo-
rithm) to classic bounds from coding theory: Singleton’s and Ham-
ming’s. One can consult [HP10] for their proofs.

An important remark is that until now, only the Singleton bound
was algorithmic while Griesmer’s bound was seen as an extension of

5The simplex code is defined as the dual of the Hamming code.

242

8.5. LLL for binary codes

Bound Concrete Asymptotic Poly. Algo.

Singleton’s d ≤ n− k + 1 δ ≤ 1−R YES

Hamming’s 2k
∑⌊ d−1

2 ⌋
i=0

(
n
i

)
≤ 2n R ≤ 1− h

(
δ
2

)
NO

Griesmer’s d− log2 d

2
≤ n− k

2
+ 1 δ ≤ 1−R

2
Now, YES

Table 8.2: Bounds on d = dmin(C). Asymptotic form is given for a
fixed rate R = k/n ∈ [0, 1], δ := d/n and n → ∞. In Hamming’s
constant, h(x) := −x log2(x)− (1−x) log2(1−x) denotes the so-called
binary entropy of x.

it but not algorithmic. For an [n, k]-code, Singleton’s bound states
that dmin(C) ≤ n − k + 1. The underlying algorithm of this bound
simply consists in putting the basis in systematic form, namely to
reduce in row echelon form the basis, to get a short codeword. It
may be argued that for random codes this bound is far from tight.
Indeed, the systematic form in fact produces codewords of average
length n−k

2
+ 1 (this is exactly what Prange algorithm [Pra62] does).

While this seems better than Griesmer’s bound, the LLL algorithm
gives a codeword of length at most n−k

2
+ log2 n but in the worst-case.

This concludes the translation of all the notions at hands from
lattices to codes. We summarize them as a dictionary in Table 8.1.

8.5.2 An LLL reduction algorithm for codes

In the above subsection, we have defined LLL reduced bases and have
shown that they exist by constructing a basis with an even stronger
reduction property. However, such a construction requires to solve the
shortest codeword problem, a problem known to be NP-hard [Var97],
and the best known algorithm have exponential running time in n or
in k, at least for constant rates R = k/n.

In other words, we have shown existence of LLL reduced bases (lo-
cal minimality) by a global minimality argument, which would trans-
late into an algorithm with exponential running time. Instead, we can
show their existence by a descent argument, and this proof translates
to a polynomial time algorithm, the LLL algorithm for binary codes.

243

8. Basis Reduction for Binary Codes

The strategy to produce LLL reduced bases is very simple, and
essentially the same as in the case of lattices [LLL82]: if πi(bi) is not
a shortest nonzero codeword of πi(C(bi,bi+1)) for some i, then apply
a change of basis on bi,bi+1 so that it is. Such a transformation may
break the same property for nearby indices i − 1 and i + 1, however,
we will show that, overall, the algorithm still makes progress.

There are two technical complications of the original LLL [LLL82]
that can be removed in the case of codes. The first is that we do
not need a global size-reduction on the basis; this step of LLL does
not affect the Gram-Schmidt vectors themselves, but is needed for
numerical stability issues, which do not arise over the finite field F2.
Secondly, we do not need to introduce a small approximation term
ε > 0 to prove that the algorithm terminates in polynomial time,
thanks to the discreteness of epipodal lengths.

Algorithm 14: LLL(B) LLL reduce the basis B

Input : A proper basis B = [b1, . . . ,bk] ∈ Fk×n
2 of a code C

Output: An LLL reduced basis for C
1 while ∃i ∈ J0, k − 1K s.t.

min
(∣∣πi(bi+1)

∣∣, ∣∣b+i ⊕ πi(bi+1)
∣∣) < ∣∣b+i ∣∣ do

2 if
∣∣πi(bi+1

)
∧ b+i

∣∣+ TBb+i

(
πi
(
bi+1

))
>
∣∣b+i ∣∣/2 then

3 bi+1 ← bi+1 ⊕ bi // Local size-reduction
4 end
5 bi ↔ bi+1 // Swap
6 end
7 return B

Theorem 139. Algorithm 14 is correct and its running time is poly-
nomial; more precisely on input an [n, k]-code it performs at most kn
vector operations over Fn

2 .

It will be a consequence of the two following lemmata. Let us start
with correctness.

Lemma 140 (Correctness). If the LLL algorithm terminates then it
outputs an LLL-reduced basis for the code spanned by the basis given
as input.

244

8.5. LLL for binary codes

Proof. Note that vectors bi’s form a basis of the code C given as input
and this is a loop invariant. The exit condition ensures that the basis
is indeed LLL reduced, at least if it is proper. So it suffices to show
that properness is also a loop invariant.

Assume that the basis is proper (ℓj ≥ 1 for all j) as we enter the
loop at index i. The local size-reduction step does not affect epipodal
lengths. The swap only affects ℓi and ℓi+1, and leaves ℓi + ℓi+1 un-
changed. The epipodal length ℓi decreases, but remains nonzero since
b+i is a shortest-codeword of a 2-dimensional code by construction.
The epipodal length ℓi+1 can only increase.

The key-ingredient to prove that LLL terminates lies in the con-
struction of a potential: a quantity that only decreases during the
algorithm, and is lower bounded.

Definition 141 (Potential). Let B = [b1, . . . ,bk] be a basis of an
[n, k]-code. The potential of B, denoted DB, is defined as:

DB :=
k∑

i=1

(k − i+ 1)ℓi =
k∑

i=1

(
i∑

j=1

ℓj

)
=

k∑
i=1

DB,i,

where DB,i := |C(b1, . . . ,bi)| and ℓi := |b+i |.
Each time LLL makes a swap, the potential decreases at least

by one as shown in the proof of the following lemma. Furthermore,
this quantity is always positive. Therefore the number of iterations is
upper-bounded by the initial value of DB.

Lemma 142 (Termination). The number of iterations in Algorithm
14 on input B = [b1, . . . ,bk] is upper bounded by,

min

{
kn,

k(k + 1)

2
max

i
|b+i |

}
.

Proof. The potential DB only changes during the swap step. Let us
show that it decreases by at least one at each swap step. Suppose
there is a swap at the index i. Let bi and bi+1 be the values of the
basis vectors after the if loop and just before the swap step. Here, the
if loop ensures:

|b+i ∧ πi(bi+1)| ≤
|b+i |
2
. (8.6)

245

8. Basis Reduction for Binary Codes

Now, whether or not the if loop was executed we have that:

min
(∣∣πi(bi+1)

∣∣, ∣∣b+i ⊕ πi(bi+1)
∣∣) < ∣∣b+i ∣∣. (8.7)

Therefore, combining Equations (8.6) and (8.7) with
∣∣b+i ⊕πi(bi+1)

∣∣ =
|b+i |+ |πi(bi+1)| − 2|b+i ∧ πi(bi+1)| leads to:

|πi(bi+1)| < |b+i |. (8.8)

Now during the while execution only DB,i is modified. Let C ′i be the
new partial code C(b1, . . . ,bi) after the swap, and D′

B,i be the new
values of DB,i. We have,

D′
B,i −DB,i = |C ′i| − |Ci|

=
i−1∑
j=1

|b+j |+ |πi(bi+1)| −
i−1∑
j=1

|b+j | − |b+i |

= |πi(bi+1)| − |b+i | < 0

where for the inequality we used Equation (8.8). Potentials DB,i are
integers. Therefore at each iteration DB decreases by at least one. Let
D(0)

B be the initial value of the potential DB. We conclude with:

D(0)
B =

k∑
i=1

(k − i+ 1)|b+i | ≤ min

{
kn,

k(k + 1)

2
max

i
|b+i |

}
,

where for the first bound we use that
∑

i |b+i | = |C| ≤ n.

8.6 Perspectives
This work brings codes and lattices closer to each other by enriching
the existing dictionary (Table 8.1); we hope that it can enable more
transfer of techniques between those two research areas, and list some
research directions.

Generalisations

In principle, the definitions, theorems and algorithms of this article
should be generalizable to codes over Fq endowed with the Hamming

246

8.6. Perspectives

metric, with the minor inconvenience that one may no longer conflate
words over Fq with their binary support vector. Some algorithms may
see their complexity grow by a factor Θ(q), meaning that the algo-
rithms remain polynomial-time only for q = nO(1). It is natural to
hope that such a generalised LLL would still match Griesmer [Gri60]
bound for q > 2. However, we expect that the analysis of the fun-
damental domain of Section 8.4 would become significantly harder to
carry out.

Another natural generalisation to aim for would be codes con-
structed with a different metric, in particular codes endowed with
the rank metric [Gab85; Gab95]. In this case codes are subspaces
of Fqm endowed with the rank metric; the weight of a codeword
x ∈ Fn

qm is the rank of its matrix representation over Fq (which is
a matrix of size m × n). While the support of a codeword with the
Hamming metric is the set of its nonzero coordinates, the support of
x = (x1, · · · , xn) ∈ Fn

qm is the Fq-subspace of Fqm that the xi’s gen-
erate, namely {∑i λixi : λi ∈ Fq}. We believe that this work can be
generalised in this case, in particular the notion of epipodal matri-
ces. However there are some difficulties to overcome. In particular,
projecting one support orthopodally to another one is not canonical.

Cryptanalysis

In the full version of this work we introduce a hybrid
(LeeBrickellBabai) of the Lee-Brickell information set decoding algo-
rithm [LB88], and the size-reduction algorithm (after LLL). We show
heuristically that for common decoding parameters this leads to a
small polynomial (in n) speed-up over Lee-Brickell. This contribu-
tion is meant to show that this algorithmic reduction theory for codes
is compatible with existing techniques, and can, in principle bring
improvements. By itself, this hybrid LeeBrickellBabai algorithm with
LLL preprocessing is only tenuously faster than the original algorithm.
Time-memory trade-offs such as [Ste88; Dum91; MMT11; BJMM12;
MO15; BM18] admittedly provide much more substantial speed-ups
in theory, and currently hold the records in practice [ALL19].

However, the lattice literature has much stronger reduction algo-
rithms to offer than LLL [Sch87; GHKN06; GN08a; LN14; DM13]; this
work opens their adaptation to codes as a new research area, together

247

8. Basis Reduction for Binary Codes

with the study of their cryptanalytic implications. Furthermore, it
is not implausible that reduction techniques may be compatible with
memory intensive techniques [Ste88; Dum91; MO15]; this is the case
in the lattice cryptanalysis literature [Duc18].

Further algorithmic translations

Still based around the same fundamental domain, a central algorithm
for lattices is the Branch-and-Bound enumeration algorithm of Fin-
kle and Pohst [FP85], which has been the object of numerous vari-
ations for heuristic speed-ups [GNR10]. While the hybrid algorithm
LeeBrickellBabai may be read as an analogue of the random sampling
algorithm of Schnorr [Sch03; AN17], a more general study of enumer-
ation techniques for codes would be interesting.

Both for codes and lattices, there are other natural fundamental
domains than the size-reduction studied in this paper. For lattices we
have the (non-rectangle) parallelepiped P(B) provided with the so-
called “simple rounding" algorithm x 7→ x−⌊x ·B−1⌉ ·B [Bab86]. For
codes we have a domain of the form Fn−k

2 ×{0}k for each information
set I ⊂ J1, nK of size k given by Prange’s algorithm [Pra62]. It is
tempting to think they could be in correspondence in a unified theory
for codes and lattices.

Another fundamental domain of interest is the Voronoi domain,
which is naturally defined for both codes and lattices. In the case
of lattices there are algorithms associated with it known as iterative
slicers. Rather than operating with a basis, the provable versions of
this algorithm operates with the (exponentially large) set of Voronoi-
relevant vectors [MV13], while heuristic variants can work with a
(smaller, but still exponential) set of short vectors (see chapter 5).
We are not aware of similar approaches in the code literature.

Cryptographic design

Some of the developed notions could have application in cryptographic
constructions as well, in particular for trapdoor sampling [GPV08;
DST19]. Indeed, the Gaussian sampling algorithm of [GPV08] is
merely a careful randomisation of the size-reduction algorithm, and
the variant of Peikert [Pei10] is a randomisation of the “simple round-
ing” algorithm discussed above. It requires knowing a basis with a

248

8.6. Perspectives

good profile as a trapdoor. While the construction of a sampleable
trapdoor function has finally been realised [DST19], the method and
underlying problem used are rather ad-hoc. We note in particular that
the underlying generalized (U,U + V)-codes admit bases with a pe-
culiar profile, which may explain their fitness for trapdoor sampling.
The algorithmic reduction theory proposed in this work appears as
the natural point of view to approach and improve trapdoor sampling
for codes.

Bounds

Beyond cryptography, this reduction theory may be of interest to es-
tablish new bounds for codes. In particular we emphasize the notion
of higher weight [Wei91; TV95] as an analogue of the notion of the
density of sub-lattices [Bog01]; the latter are subject to the so-called
Rankin-bound, generalizing Hermite’s bound on the minimal distance
of a lattice.

Duality

Also on a theoretical level, one intriguing question is how this reduc-
tion theory interacts with the notion of duality for codes. In particu-
lar, for lattices, the dual of an LLL reduced basis of the primal lattice
is (essentially) an LLL reduced basis of the dual lattice. One could
wonder whether this also holds for codes; however, while there is a
notion of a dual code, their doesn’t seem to be a 1-to-1 correspon-
dence between primal and dual bases. The notion of orthopodality
does allow to introduce (non-unique) dual bases for codes, with simi-
lar geometric properties as the (reversed) dual basis. For lattices this
leads to a correpondence ∥b̃i∥ = ∥d̃i∥−1; for codes the similar con-
cept seems to be the correspondence between the [|b+i |, 1] repetition
code generated by b+i , and the [|b+i |, |b+i | − 1] even code generated
by some d+j1 , . . . ,d

+
j|b+

i
|−1

. The construction allows for some choices,

such as which basis to use for the even code. Under some light con-
ditions this gives for ℓi ≥ 2 a primal-dual profile correspondence of
(ℓi) ↔ (2, 1, . . . , 1) with ℓi − 2 ones. We leave a further investigation
of the concept of a dual basis, and self-duality of the presented LLL
algorithm to future work.

249

8. Basis Reduction for Binary Codes

Another remark is that it may also be natural to consider Branch-
and-Bound enumeration algorithms working with a reduced basis of
the dual code rather than a basis of the primal code, at least if self-
duality can not be established. This may be advantageous in certain
regimes.

250

