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CHAPTER 7
Overstretched NTRU

This chapter is based on the joint work ‘NTRU Fatigue: How
Stretched is Overstretched’, with Léo Ducas, published at Asi-
acrypt 2021.

7.1 Introduction
One could view lattice reduction, or more specifically the BKZ algo-
rithm, as a way to solve the approximate Shortest Vector Problem,
or to create a good basis. However, in practice BKZ goes beyond
that and can also recover (hidden) geometric structures of a lattice.
For example if a rank d lattice contains an unusually short vector,
much shorter than the Gaussian Heuristic prescribes, then the BKZ
algorithm recovers this shortest vector with a much smaller blocksize
β ≪ d.

Heuristically, this behaviour can be fully explained, and after a
line of works [GN08b; AFG13; ADPS16; DDGR20; PV21] we can
predict accurately for which blocksize β an unusual short vector is
recovered. For most lattice-based cryptosystems, key recovery or de-
cryption can be reduced to finding such an unusually short vector, and
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7. Overstretched NTRU

thus these predictions directly give an upper bound on the security of
such schemes. In fact, for most schemes and common parameters this
is (close to) the best known attack.

One such cryptosystems is the NTRU cryptosystem of Hoffstein,
Pipher and Silverman [HPS98; Che+20]. The NTRU secret key con-
sists of polynomials f ,g ∈ Z[X]/(Xn − 1) with n prime, and with
small, e.g., ternary, coefficients, and the public key is given by h := g/f
mod q for some modulus q. The public key and the modulus q allow
one to define an ‘NTRU lattice’ of dimension d = 2n, which con-
tains an unusually short vector related to the secret key. Recovery
of this vector immediately leads to full key-recovery, and thus the
estimated security, for example that of the NIST 3rd round finalist
NTRU [Che+20], is directly based on the predictions of how the BKZ
algorithms recovers this unusually short vector in the NTRU lattice.

However, only recently, it was discovered that the security of NTRU
is in fact more subtle than the problem of finding a single unusually
short vector in a lattice; the NTRU lattice contains more structure.
The first dent in this status quo came in 2016, from two concurrent
works of Albrecht et al., and Cheon et al. [ABD16; CJL16], which
exploit the specific algebraic structure of the NTRU lattice to im-
prove upon pure lattice reduction attacks1. This approach was shown
to be applicable when the modulus q is large enough (say, super-
polynomial), a regime coined “overstretched”.

Shortly thereafter Kirchner and Fouque [KF17] showed that this
improved complexity does not require any algebraic structure, and is
instead rooted in the purely geometrical fact that the NTRU lattice
contains an unusually dense sublattice of large rank, i.e. a sublattice
of small determinant.2 Due to this dense sublattice lattice reduction
attacks perform much better than initially expected. They also go fur-
ther in their analysis, and conclude that moduli q as small as n2.783+o(1)

already belong to the overstretched regime —for random ternary se-
crets. In particular, for q larger than this bound, the security of NTRU
is significantly less than that of Learning With Errors [Reg04] and of

1Though the idea had been inconclusively considered already in 2002 by Gen-
try, Jonsson, Nguyen Stern and Szydlo as reported in [GS02, Sec. 6].

2Note that one may associate a short vector to a dense sublattice of dimension
1.
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Regular

Unusual Short Vector(s)

Overstretched

Dense Sublattice
NIST: q = Θ(n)

q

[ADPS16] q ≥ n2.783+o(1) [KF17]
Fatigue Point?

Figure 7.1: A sketch of the regular versus the overstretched regime,
and the unknown fatigue point in between.

its Ring variant [SSTX09; LPR13] using similar parameters.3

However, it is not so clear from the analysis of Kirchner and Fouque
whether this asymptotic quantity n2.783+o(1) is an estimate or merely
an upper bound on the fatigue point, that is the value of q separating
the standard regime from the overstretched regime. Their analysis is
based on a lemma of Pataki and Tural [PT08], that constraints the
shape of lattice basis in terms of the volume of their sublattices. While
it allows to conclude that the dense sublattice must be discovered after
reducing the lattice basis beyond these constraints, it does not really
explain how lattice reduction ends up discovering the dense sublattice,
nor does it exclude that the discovery could happen earlier.

So far, it has been generally considered that only advanced schemes
—requiring very large q— such as NTRU-based Homomorphic En-
cryption [BLLN13] or cryptographic multi-linear maps [GGH13] could
be affected by this overstretched regime. Yet, because the analysis of
Kirchner and Fouque is only asymptotic, and because it may only pro-
vide an upper bound on the fatigue point, there is at the moment little
documented evidence that the overstretched regime may not in fact
extend further down, maybe down to the NTRU encryption scheme
itself [HPS98; Che+20]! Admittedly, this seems like a far fetched con-
cern: asymptotically this scheme chooses q = O(n), with a hidden
constant between 4 and 5 in practice. However, this scheme being
now a finalist of the NIST standardisation process for post-quantum
cryptography, it appears rather imperious to refine our understanding
of the phenomenon, and to finally close this pending question.

3In fact, the presence of n rotations of the secret key already implies a
minor security degradation compared to (Ring)-LWE already in the standard
regime [MS01; DDGR20].
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Figure 7.2: Progressive BKZ with 8 tours per blocksize on matrix
NTRU instances with parameters n = 127, σ2 = 2

3
for several moduli

q. Left: the first blocksize β at which Progressive BKZ detects the
Secret Key Recovery (SKRκ) or Dense Sublattice Discovery (DSDκ)
event. We did 10 runs per modulus q. For the 2016-estimates, we
use the geometric series assumption (GSA) for the shape of the basis
and a probabilistic model for the discovery of the secret vector (see
Section 7.2.3). Right: the positions κ at which a secret key or dense
sublattice vector are detected over 80 runs per modulus.

We found further motivation to go down this rabbit hole by mea-
suring the concrete value of the fatigue point experimentally. Until
now, all documented experiments on the overstretched regime [ABD16;
KF17; LW20] have focused on rather large values of q, and only used
weak lattice reduction (LLL [LLL82], BKZ with blocksize 20): their
goal was to demonstrate the claimed general behaviour when parame-
ters are far in the overstretched regime. On the contrary, we focus the
attention to the fatigue point for this preliminary experiment. That
is, we ran strong reduction (progressive-BKZ [Sch87; AWHT16] up to
blocksize 60) until a vector related to the secret key appeared for a
range of moduli q. We distinguished the standard regime from the
overstretched regime by classifying according to which event occurs
first

• Secret Key Recovery (SKRκ): a vector as short as a secret key
vector is inserted in the basis at any given position κ.

• Dense Sublattice Discovery (DSDκ): a vector strictly longer than
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7.1. Introduction

the secret key but belonging to the dense sublattice generated
by the secret key is inserted in the basis at any given position κ.

The result (Fig. 7.2) is rather striking: for n = 127, we start seeing
a deviation from the standard regime for q as small as 700, while a
naive interpretation of the prediction by Kirchner and Fouque [KF17]
would suggest a fatigue point at q ≈ n2.783 ≈ 700 000. We can conclude
either that the asymptotic bound is not tight, or that the hidden
asymptotic term (the o(1) in n2.783+o(1)) is significantly negative in
practice. In any case, the bound of Kirchner and Fouque does not
seem to provide accurate concrete predictions.

Remark

At this point, we should clarify why the DSD event should essentially
be considered a successful attack. First, for q not too much larger
than the fatigue point, an SKR event typically quickly follows after
the DSD event; what happens is that DSD events cascade, until the
full dense sublattice has been extracted: the first half of the reduced
basis precisely generates the dense sublattice. Lattice reduction will
happen independently on each half of the basis, meaning that the
dimension of the search space for the secret key has effectively been
halved, and therefore making the problem much easier.

However, as q increases, DSD becomes easier and easier, to the
point that it becomes even easier than secret key recovery within the
dense sublattice. In other terms, there is a superstretched regime for
larger q, where DSD does not directly lead to SKR.

Nevertheless, we argue —essentially rephrasing [ABD16]— that
the DSD event is typically sufficient for an attack. First, the dense
sublattice vector discovered is of length significantly lower than q;
in an FHE scheme such as [BLLN13] it is sufficient to decrypt fresh
ciphertexts.4 Secondly, in the case of cyclotomic or circulant NTRU, it
is possible to recover the secret key from the dense sublattice by other
means than pure lattice reduction; in particular the recent line of work
on the principal ideal-SVP [EHKS14; CDPR16; Bia+17] showed that
this can be done classically in subexponential time exp(Õ(

√
n)) and

quantumly in polynomial time.
4The secret key being shorter is only required to deal with ciphertexts obtained

by homomorphic computation.
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7. Overstretched NTRU

7.1.1 Contributions

Having identified precisely what event distinguishes the standard
regime of NTRU from its overstretched regime, we may now proceed
to a refined analysis, and determine precisely both the fatigue point
and the precise cost5 of attacks in the overstretched regime. The
refined analysis in this work diverges from the one of Kirchner and
Fouque [KF17] on the following points:

1. we exploit the fact that BKZ runs SVP on large blocks (β ≥ 2)
not only to deduce the shape of the basis, but also to actually
discover dense sublattice vectors,

2. we do not solely focus on the behaviour at position κ = n−β+1
out of d = 2n dimensions, but instead predict the most relevant
position,

3. we propose an average-case analysis of volumes of the relevant
lattices and sublattices, leading to a concrete prediction rather
than a worst-case bound,

4. we also validate the intermediate and final predictions quantita-
tively with extensive experiments.

We note that contributions 1 and 2 alone already give us an im-
portant asymptotic result: the fatigue point of NTRU is indeed lower
than predicted by Kirchner and Fouque, namely, it should happen at
q = n2.484+o(1) instead of n2.783+o(1).

Furthermore, for the concrete average case analysis we differenti-
ates between the circulant version of NTRU [HPS98] and its matrix
version [CG05; Gen+19]. We note minor deviations in the concrete
analysis of volumes of relevant sublattices, that on average slightly
favours the attacker in the matrix case, but also shows a larger vari-
ance in the concrete hardness of the circulant case. The concrete anal-
ysis in this work is versatile, as one only has to estimate the volume
of the dense sublattice to analyse a different variant.

5In this work, we only measure cost of lattice reduction in terms of the re-
quired BKZ blocksize; the computational cost of BKZ is essentially an orthogonal
question.
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7.1. Introduction

In summary: we achieve an explicative and predictive model for
the fatigue of NTRU, with concrete predictions confirmed in practice.
In particular, the fatigue point is estimated to be at q ≈ 0.004 · n2.484

for n > 100 and ternary errors. All artefacts for experiments and pre-
dictions are open-source6, and are based on the FPLLL and FPyLLL
libraries [tea21a; tea21b].

Impact

We wish to clarify that this work does not contradict the concrete
security of the NTRU candidate to the NIST competition [Che+20];
on the contrary, we close a pending question regarding a potential
vulnerability.

Limitation: the lucky-lifts

During the experiments, we also noted rare occurrence of DSD events
that qualitatively differ from what we expected. Namely, the vector
from the dense sublattice was found at positions κ quite larger than
what was predicted by the model, as shown in Fig. 7.11 (a). More
remarkable, these vectors were extremely unbalanced: their 2n − κ
last (Gram-Schmidt) coordinates were much smaller than the κ first
coordinates (Fig. 7.11 (b)). We call these DSD events lucky-lifts (DSD-
LL), while the one we model and mostly observe are called after the
Pataki-Tural Lemma (DSD-PT). Despite those two phenomena being
very distinct, they nevertheless occured for the same BKZ blocksizes
β, at least in the range of parameters we could experiment with.

It could very well be that these rare DSD-LL events are just arte-
facts of the modest parameters of the experiments and that these
events vanish as the dimension grows. Yet, as they seem of a very dif-
ferent nature, a definitive conclusion would require a dedicated study.

7.1.2 Organisation

We introduce some preliminaries, the NTRU lattice, and the state-of-
the-art estimates in Section 7.2. In Section 7.3 we introduce the new
DSD-PT estimate and give an asymptotic analysis. In Section 7.4 we

6Available at: https://github.com/WvanWoerden/NTRUFatigue
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7. Overstretched NTRU

give an average-case analysis to construct a concrete estimator. In the
final Section 7.5 we compare the estimate with experiments.

7.2 The NTRU lattice and estimates

7.2.1 NTRU and lattice attacks

We start with the historical definition of NTRU.

Definition 99 (NTRU). Let n be prime, q a positive integer and let
f ,g ∈ (Z/qZ)[X] be polynomials of degree n with small coefficients
sampled from some distribution χ under the condition that f is invert-
ible in Rq := (Z/qZ)[X]/(Xn − 1). The pair (f ,g) forms the secret
key, and the public key is defined as h := g/f mod q. The NTRU
problem is to recover any rotation (X i · f , X i ·g) of the secret key from
h.

For NTRUencrypt [HPS98; Che+20] f and g have ternary coeffi-
cients, with a fixed number of about n/3 of each value in {−1, 0, 1}.
For the analysis we consider the case where each coefficient is sampled
from a discrete Gaussian over Z with some variance σ2 > 0. For sim-
plicity the ternary case is treated as a discrete Gaussian with variance
σ2 = 2

3
.

More generally we consider a matrix description of NTRU where
the polynomials are replaced by matrices F,G,H ∈ Zn×n such that
H := G ·F−1 mod q [CG05; Gen+19]. Variants of NTRU, e.g., based
on different algebraic rings [Ber+20], can be encoded in the structure
of the matrices. For example, the original problem can be encoded
by setting Fi,j := f(i+j mod n) where f =

∑n−1
i=0 fiX

i, for each poly-
nomial respectively. We call the original variant circulant NTRU,
based on the resulting shape of the matrices F,G, and we treat f ,g
as n-dimensional vectors. We also consider the variant, called ma-
trix NTRU, where the matrices F,G have no extra structure and the
coefficients are independently sampled from a discrete Gaussian.

To reduce the NTRU problem to a lattice problem we define the
NTRU lattice, which contains a particularly dense sublattice generated
by the secret key.
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7.2. The NTRU lattice and estimates

Definition 100. Let (n, q,F,G,H) be an NTRU instance. We de-
fine the NTRU lattice as

LH,q :=

(
qIn H
0 In

)
· Z2n,

and its (secret) dense sublattice of rank n by:

LGF := BGF · Zn ⊂ LH,q,where BGF :=

(
G
F

)
.

Solving the NTRU problem is equivalent to recovering the dense
sublattice basis BGF = [G;F] up to some permutation of the columns.
For uniformity of notation we will denote such a column by (g; f).
These column vectors have a length of about ∥(g; f)∥ ≈

√
2nσ2, which

for common parameters is much shorter than the expected minimal
length gh(LH,q) ≈

√
nq/(πe) of the full lattice LH,q for a truly uniform

random H ∈ (Z/qZ)n×n. To recover the secret key we thus have to
find these exceptionally short vectors in the full lattice LH,q.

In [CS97] Coppersmith and Shamir showed that we can slightly
relax the problem as any small vector from the dense sublattice LGF

is enough to decode a message. We therefore focus the analysis on the
recovery of elements from LGF, and not (directly) on the full secret
basis BGF. To recover short vectors we resort to lattice reduction.

7.2.2 Lattice reduction on q-ary lattices

While by now the behaviour of BKZ on random lattices is reasonably
understood, this is less the case for q-ary lattices (for certain param-
eters) such as the NTRU lattice LH,q.

Definition 101 (q-ary lattices). A lattice L of dimension d is said
to be q-ary if for some q > 0 we have

qZd ⊂ L ⊂ Zd.

Note that the first n basis vectors of LH,q are orthogonal q-vectors
(q, 0, . . . , 0), (0, q, 0, . . . , 0), . . ., and so the initial basis profile starts
with ∥b̃0∥ = · · · = ∥b̃n−1∥ = q. Additionally after projecting away
from these q-vectors, the remaining basis vectors are again orthogonal
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Figure 7.3: The Z-shape of an NTRU-lattice basis with parameters
q = 1031, n = 127 before and after LLL reduction, versus the ZGSA.

with length 1, and thus we have ∥b̃n∥ = · · · = ∥b̃d−1∥ = 1. Note that
in the BKZ algorithm the length of b0 can not increase, and is thus
always at most q. Also b1 can not increase in length if b0 remains
unchanged, and so on. For dual-BKZ or the self-dual LLL the profile
lengths can not drop below 1 anywhere by the same reasoning. Still
LLL and BKZ guarantee that the profile slope in the middle is not
too steep. So after LLL reduction the profile must be flat at the
start and end, and have a sloped part in the middle, we call this a Z-
shape [AD21; AL22]. Because BKZ is not self-dual we do not have any
guarantee that the last profile elements do not drop below 1, however
we could for example run BKZ only on an appropriate middle context
L[n−m:n+m) to force this behaviour. With this description one would
expect the middle part to follow the GSA, leading to an alternative
heuristic for q-ary lattices.

Heuristic 102 (Z-shape Geometric Series Assumption (ZGSA)).
Let B be a basis of a 2n-dimensional q-ary lattice L with n q-vectors.
After BKZ-β reduction the profile has the following shape:

∥b̃i∥ =


q if i ≤ n−m,
√
q · α

2n−1−2i
2

β , if n−m < i < n+m− 1,
1, if i ≥ n+m− 1,
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where αβ = gh(β)2/(β−1), and m = 1
2
+ log(q)

2 log(αβ)
.

Similar to the regular GSA this gives us a good first order estimate,
as can be observed in Figure 7.3. Asymptotically setting β = B · n
and q = nQ, we obtain log(αβ) =

log(n)
B·n +O (n−1), and m = 1

2
QB · n+

O
(

n
log(n)

)
.

7.2.3 Estimates

The main question of this work is to better understand how BKZ
recovers the dense sublattice LGF from an NTRU lattice LH,q. Sev-
eral works exist that give estimates on the blocksize β for which BKZ
successfully recovers the secret key (g, f), or more generally a vec-
tor from the dense sublattice. We discuss the state-of-the-art esti-
mates, one known as the 2016 Estimate [ADPS16] with further refine-
ments [DDGR20; PV21], and one by Kirchner and Fouque [KF17].

While the 2016 Estimate already gives a clear explanation how
BKZ recovers a suitable vector, the Kirchner and Fouque estimate is
only based on an impossibility result. To be more precise about what
we mean with recovery we define the following two events.

Definition 103 (BKZ Events). For a BKZ run on an NTRU lattice
L with dense sublattice LGF we define two events:

1. Secret Key Recovery (SKR): The first time one the secret
keys (g; f) is inserted.

2. Dense Sublattice Discovery (DSD): The first time a dense
lattice vector v ∈ LGF strictly longer than the secret key(s) is
inserted.

We further specify SKRκ and DSDκ when the insertion takes place at
position κ in the basis.

2016 Estimate [ADPS16] for SKR

The 2016 Estimate is aimed at the more general problem of detecting
an unusually short vector in a lattice. To obtain an estimate for the
NTRU problem, and more specifically the SKR event, we apply it to
the unusually short vector (g; f) ∈ LH,q.
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Heuristic claim 104 (SKR – 2016 Estimate). Let L be a lattice of
dimension d and let v ∈ L be a unusually short vector ∥v∥ ≪ gh(L).
Then under the Geometric Series Assumption BKZ recovers v if√

β/d · ∥v∥ < √αβ
2β−d−1 · vol(L)1/d,

where αβ = gh(β)2/(β−1).

Justification. The left hand side of the inequality is an estimate for
∥πd−β(v)∥, while the right hand size is the expected norm of b̃d−β

under the GSA. When the inequality is satisfied we expect that the
shortest vector in L[d−β:d) is in fact (a projection of) the unusually
short vector, and thus it is inserted by BKZ at position d − β. See
Figure 7.4 for an illustration.

Except for very small blocksizes β, the unusually short vector v
is recovered from its projection πd−β(v) with high probability, either
directly by Babai’s nearest plane algorithm, or by later BKZ tours
on the blocks L[d−2β+1:d−β+1),L[d−3β+2:d−2β+2), . . . ; lifting the vector
block by block. △

For q-ary lattices we can easily change the estimate to make use
of the ZGSA instead, although for successful blocksizes b̃d−β will not
lie on the flat tail-part, and thus this will not change anything. Addi-
tionally for q-ary lattices it can be beneficial to apply the estimate not
to the full lattice but on some projected sublattice L[i:d) for i ≤ n; the
left hand side of the equation is expected to remain unchanged, while
the right hand side might increase as vol(L) loses only a factor qi and
the dimension decreases by i. Note that we do not necessarily have
to explicitly let BKZ act on this projected sublattice, as BKZ already
does this naturally.

Asymptotics. Consider the NTRU lattice LH,q and suppose that q =
Θ(nQ), ∥v∥ = ∥(g; f)∥ = Θ(nS) and β = (B + o(1))n. Applying
the 2016 Estimate the right hand side of the inequality is minimised
when only keeping k = min

(
(
√
2BQ− 1)n, n

)
of the q-vectors, so by

applying the estimate to the projected sublattice LH,q
[n−k:2n). For S ≥ 1

we have k = n, and solving the equation gives B = 2
Q+2−2S . For S < 1

we have k = (
√
2BQ − 1)n, and solving gives B = 2Q

(Q+1−S)2 . Note in
particular that in terms of q we require a blocksize of β = Θ̃ (n/ log(q)).
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index i
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BKZ-40 GSA

d− β

Figure 7.4: Illustration of the 2016 Estimate on a 100-dimensional lat-
tice with an unusually short vector v. Around β = 40 the projection
π100−β(v) is expected to be the shortest vector in the projected sub-
lattice L[d−β:d), which is thus recovered by the SVP call on this block
inside BKZ-β.

Refinements. The 2016 Estimate gives a clear explanation on how and
where the secret vector is recovered, namely its projection is found in
the last BKZ block. This also allows to further refine the estimate
and give concrete predictions. For example by using a BKZ-simulator
instead of the GSA, and by accounting for the probability that after
the projection ∥πd−β(v)∥ has been found, it is successfully lifted to the
full vector v. Also instead of working with the expected length of the
projection, we can directly model the probability distribution under
the assumption that v is distributed as a Gaussian vector. Such refine-
ments were applied in [DDGR20; PV21], and the resulting concrete
predictions match with experiments to recover an unusually short vec-
tor. Current simulators for the behaviour of the BKZ algorithm do
not account correctly for the Z-shape [AD21]. Therefore, in this work,
we will rely on the (Z)GSA for the basis shape, and we adjust the
slope to account for the speed of convergence using experimentally
determined values. We also use the advanced probabilistic model for
the detection and lifting of the short vector.

For NTRU there is not just a single unusually short vector, but
there are n = d/2 of them, which makes it more likely that at least one
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Figure 7.5: Illustration of both sides of the equation when applying
Lemma 105 to D = LGF ⊂ LH,q and J = {n, . . . , d − 1}. Following
the Pataki and Tural Lemma, the striped area can be at most as large
as the solid area. For larger blocksize β, the BKZ-β ZGSA contradicts
this, and thus the basis must have deviated from it (and thereby have
revealed some information).

of them is recovered. Because the refined concrete estimator already
works with a probability distribution, we can easily take multiple vec-
tors into account. The resulting predictions for the SKR event match
the experiments reasonably well for smallish q as can be seen in Fig-
ure 7.2. For large q, the so-called overstretched regime, the estimate
is however too pessimistic.

Kirchner–Fouque estimate [KF17] for DSD

In 2016 Albrecht, Bai and Ducas [ABD16] showed that for very large
values of q one can mount an algebraic subfield attack on the cyclo-
tomic NTRU problem with subexponential or even polynomial com-
plexity. This allowed them to break several homomorphic encryption
schemes that relied on NTRU in the overstretched regime.

However soon after, Kirchner–Fouque [KF17] showed that this
elaborate algebraic attack was unnecessary: (dual-)BKZ already be-
haves much better in this regime than the 2016 Estimate predicts,
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7.2. The NTRU lattice and estimates

leading to the same asymptotic improvements. The key idea behind
their analysis is that in the overstretched regime the NTRU lattice
LH,q contains an exceptionally dense sublattice LGF of low volume.
This gives a constraint on the basis profile via the following lemma by
Pataki and Tural.

Lemma 105 (Pataki and Tural [PT08]). Let L be a d-dimensional
lattice with basis b0, . . . ,bd−1. For any k-dimensional sublattice L′ ⊂
L we have

vol(L′) ≥ min
J

∏
j∈J
∥b̃j∥,

where J ranges over the k-size subsets of {0, . . . , d− 1}.

Applying Lemma 105 to the n-dimensional sublattice LGF ⊂ LH,q,
and assuming a non-increasing profile, we obtain an upper bound on
the volume of LH,q

[n:2n). See Figure 7.5 for an illustration of these vol-
umes. Assuming the ZGSA the latter volume increases when running
BKZ-β for increasing blocksizes, eventually contradicting the upper
bound. This allows us to detect if a q-ary lattice is in fact an NTRU
lattice, but additionally Kirchner–Fouque argue that BKZ must some-
how have detected the dense sublattice after this point. Based on this
impossibility argument they introduced the following estimate.

Heuristic claim 106 (DSD – Kirchner–Fouque Estimate). Let
LH,q be an NTRU lattice of dimension 2n, with dense sublattice
LGF ⊂ LH,q. Under the Z-shape Geometric Series Assumption
BKZ-β triggers the DSD event if

vol(LGF) < q
m−1

2 · α− 1
2
(m−1)2

β ,

where αβ = gh(β)2/(β−1), and m = 1
2
+ log(q)

2 log(αβ)
.

To apply this estimate we can bound vol(LGF) using the Hadamard
inequality by ∥(g; f)∥n. As a first approximation this is reasonably
tight because the secret basis BGF is close to orthogonal.
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7. Overstretched NTRU

Asymptotics. Consider the NTRU lattice LH,q and suppose that q =
Θ(nQ), ∥(g; f)∥ = Θ(nS) and β = (B+o(1))n. We apply the Kirchner–
Fouque Estimate using that m ≈ BQ

2
n and αβ ≈ (Bn)1/(Bn).The left

hand side of the inequality is bounded by nnS+o(n) and the right hand
side equals n

BQ2

8
n+o(n); solving gives B ≥ 8S

Q2 . Note that in terms of n
and q we require a blocksize of β = Θ̃

(
n/ log2(q)

)
, improving upon the

2016 Estimate by a factor log(q). So for large enough q the Kirchner–
Fouque Estimate predicts a lower successful blocksize than the 2016
Estimate. We call the value of q for which BKZ starts to behave
better than predicted by the 2016 Estimate the fatigue point. For the
common situation that S = 1

2
, e.g., when each secret coefficient has

standard deviation σ = Θ(1), the Kirchner–Fouque Estimate predicts
that the fatigue point lies at some q ≤ n2.783+o(1).

7.3 A new dense sublattice discovery
estimate

7.3.1 Preliminary experiments

Both the 2016 Estimate and the Kirchner–Fouque Estimate analyse
an event that leads to successful recovery of a vector of the dense
NTRU sublattice. This only gives an upper bound on the hardness;
a different event leading to the recovery might happen at a lower
blocksize. Additionally the Kirchner–Fouque Estimate is only based
on an impossibility result and gives no explanation as to how BKZ
actually recovers a vector from the dense sublattice. In order to derive
a tight estimate we first run experiments to track down at which point
a dense sublattice vector is actually found during the BKZ tours, i.e.,
when the DSDκ event is triggered and at what position. Then we
model this event in order to hopefully derive a tight estimate.

We run progressive BKZ on NTRU lattices LH,q for fixed param-
eters n = 127, σ2 = 2

3
, and several moduli q. For each BKZ insertion

at position κ we check if the inserted vector belongs to the dense sub-
lattice LGF, and thereby if the SKRκ or DSDκ event takes place, after
which we stop.

The results are shown in Figure 7.2. We take a closer look at the
observed SKRκ and DSDκ events and where they are triggered. We

194



7.3. A new dense sublattice discovery estimate

can group the observations in three typical circumstances.

• SKR-2016. The SKRκ event is mostly triggered for small val-
ues of q, and this mostly happens at the position κ = 2n− β, so
in the last block [2n− β : 2n), or slightly earlier. This coincides
exactly with the SKR2n−β event as predicted by the 2016 Esti-
mate [ADPS16] with further refinements [AGVW17; DDGR20;
PV21].

• DSD-PT. The DSDκ event is mostly triggered at positions κ =
n + k − β for 0 < k ≪ n. The inserted dense vector v is
often significantly longer than the secret key but still shorter
than the q-vectors. On closer inspection the projected length
∥πn+k−β(v)∥ is close to the expected length

√
β

n+k
∥v∥ for all

instances, more specifically the length of v is well balanced over
the Gram-Schmidt directions b̃0, . . . , b̃n+k−1. We name these
events after the Pataki–Tural Lemma (DSD-PT).

• DSD-LL. For a few instances the DSDκ event is triggered at
large positions κ, up to 2n − β. The inserted dense vector v
is again significantly longer than the secret key, but it has an
unexpectedly short projection πκ(v) on the BKZ block [κ : κ +
β). We call these events lucky-lifts (DSD-LL).

The DSD-LL event could potentially be explained by the relatively
large amount of shortish vectors in the close to orthogonal dense sub-
lattice LGF compared to what one would expect based on the Gaussian
Heuristic. These many vectors might compensate for the low proba-
bility event that: (1) such a long vector has such a short projection,
and (2) the projected vector is correctly lifted by Babai’s nearest plane
algorithm (thus a lucky lift). The DSD-LL event remains rare for all
parameters we used in the experiments, and the successful blocksizes
do not seem to deviate from the DSD-PT events. Although we think
this circumstance deserves further analysis we therefore base the esti-
mate on the more common DSD-PT event.

For the DSD-PT event the projected length ∥πn+k−β(v)∥ is close to√
β

n+k
∥v∥, and thus the inserted dense vector v must in fact be (close

to) a shortest vector of the intersected sublattice LH,q
[0:n+k)∩LGF. If not,
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7. Overstretched NTRU

the shortest vector would typically have an even smaller projection
and would thus be inserted instead. For ease of analysis we therefore
assume that v is a shortest vector of LH,q

[0:n+k) ∩LGF. In short the new
estimate can be described as follows.

Heuristic claim 107 (DSD-PT estimate). A tour of BKZ-β trig-
gers the DSD event if

πn+k−β(v) < ∥b̃n+k−β∥,

where v is a shortest nonzero vector of LH,q
[0:n+k) ∩ LGF for some 0 <

k ≤ n.

7.3.2 Asymptotic analysis

For 0 ≤ r ≤ 2n denote the (possibly trivial) intersected sublattice by
LGF

∩[0:r) := LH,q
[0:r) ∩ LGF. To directly apply Claim 107 we are interested

in the length of v, and thus the value of λ1
(
LGF

∩[0:n+k)

)
. We break down

the analysis into several steps. In order to obtain a bound on the first
minimum we first compute a bound on the volume of the intersection
LGF

∩[0:n+k) in terms of the basis profile and the volume of LGF. Together
with the ZGSA and a simple bound for vol(LGF) we can then apply
Minkowski’s bound on the first minimum. By optimising κ = n+k−β
we obtain a new asymptotic estimate.

Intersection.

To understand the behaviour of the volume of the intersected lattice
we first need a small technical Lemma.

Lemma 108 ([DDGR20]). Given a lattice L with volume vol(L),
and a primitive dual vector v ∈ L∗. Let v⊥ denote the subspace or-
thogonal to v. Then L ∩ v⊥ is a (possibly trivial) lattice with volume
vol(L ∩ v⊥) = ∥v∥ · vol(L).

Recall that we defined vol({0}) = 1 for the trivial lattice. The
following Lemma generalises the Pataki–Tural Lemma on which the
estimate of Kirchner–Fouque is based. More specifically the Pataki–
Tural Lemma only considers the case where the intersection is always
trivial (s = 0).
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7.3. A new dense sublattice discovery estimate

Lemma 109 (Generalisation of [PT08]). Let L be a d-dimensional
lattice with basis b0, . . . ,bd−1, and consider the (possibly trivial) sub-
lattice L[0:s) for 0 ≤ s ≤ 2n. For any n-dimensional sublattice L′ ⊂ L
we have

vol(L[0:s) ∩ L′) ≤ vol(L′) ·
(
min
J

∏
j∈J
∥b̃j∥

)−1

,

where k := dim(L[0:s) ∩L′) and J ranges over the (n− k)-size subsets
of {s, . . . , d− 1}.

Proof. We write L′
∩[0:r) := L[0:r) ∩ L′. For j = k, . . . , n we define

sj ∈ {s, . . . , d} as the maximal index such that dim
(
L′

∩[0:sj)

)
= j,

i.e., we obtain the following strict chain of sublattices:

L′
∩[0:s) = L′

∩[0:sk) ⊊ L
′
∩[0:sk+1)

⊊ · · · ⊊ L′
∩[0:sn) = L′.

Fix j ∈ {k, . . . , n − 1}. Because the basis vectors b0, . . . ,bd−1 are
linearly independent we have that L′

∩[0:s(j+1))
= L′

∩[0:sj+1). This allows
us to focus on the volume decrease from index sj + 1 to sj, for which
we know that

L′
∩[0:sj) = L′

∩[0:sj+1) ∩ (b̃sj)
⊥,

where (b̃sj)
⊥ denotes the subspace orthogonal to b̃sj . The correspond-

ing dual basis of b0, . . . ,bsj contains a dual vector d ∈ L∗
[0:sj+1) of

length
∥∥b̃sj

∥∥−1 with span(d) = span(b̃sj). Let π be the orthogonal
projection onto span

(
L′

∩[0:sj+1)

)
, then π(d) ∈

(
L′

∩[0:sj+1)

)∗, and

L′
∩[0:sj) = L′

∩[0:sj+1) ∩ d⊥ = L′
∩[0:sj+1) ∩ π(d)⊥.

Let m ∈ Z≥1 be such that π(d)/m is primitive w.r.t.
(
L′

∩[0:sj+1)

)∗,
then by Lemma 108 we obtain:

vol
(
L′

∩[0:sj)

)
= vol

(
L′

∩[0:sj+1)

)
· ∥π(d)/m∥

≤ vol
(
L′

∩[0:sj+1)

)
· ∥b̃sj∥−1.

We conclude by chaining the above inequality for j = k, . . . , n−1.
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Before recovering a dense lattice vector we heuristically assume
that there is no special relation between the current lattice basis and
the dense sublattice. More specific we can consider that the span
of b0, . . . ,bn−1 and that of LGF behave like random n-dimensional
subspaces, and thus they have a trivial intersection with high proba-
bility in the 2n-dimensional space. As a direct result we expect that
dim

(
LGF

∩[0:n+k)

)
= k for k = 0, . . . , n. Applying this to Lemma 109 we

obtain the following corollary.

Corollary 110. Let LH,q be an NTRU lattice with dense sublattice

LGF of dimension n, if dim
(
LGF

∩[0:n+k)

)
= k for some k ≥ 0, then

vol
(
LGF

∩[0:n+k)

)
≤ vol

(
LGF

)
·
(

d−1∏
j=n+k

∥b̃j∥
)−1

.

Note that Corollary 110 already shows that the new estimate can
not be worse than the Kirchner–Fouque Estimate. Namely if the
Kirchner–Fouque Estimate is triggered, then for intersection dimen-
sion k = 1 the right hand side is smaller than ∥b̃n∥. Assuming a
non-decreasing profile we then have λ1

(
LGF

∩[0:n+1)

)
= vol

(
LGF

∩[0:n+1)

)
≤

∥b̃n∥ ≤
∥∥b̃n+1−β

∥∥, which implies that BKZ-β would find a dense sub-
lattice vector in the block L[n+1−β:n+1) (or earlier).

Volume dense sublattice.

To use Corollary 110 we also need to bound the volume of the dense
sublattice LGF. Because the secret basis is close to orthogonal the
Hadamard Inequality vol(LGF) ≤ ∥(g; f)∥n is sufficient as a first order
approximation.

Conclusion.

To obtain a heuristic asymptotic estimate we will assume that before
finding a dense lattice vector the basis follows the ZGSA shape.

Heuristic claim 111. The BKZ algorithm with blocksize β = Bn
applied to an NTRU instance with parameters q = Θ(nQ), ∥(g; f)∥ =
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O(nS) triggers the DSD event if

B =
8S
Q2 + 1

+ o(1).

Justification. By the Hadamard Inequality we have log(vol(LGF)) ≤
Sn log(n) + O(n). Let k := Kn > 0 for some constant 0 < K ≤ 1.
Heuristically we expect that dim(LH,q

[0:n+k) ∩ LGF) = k, and thus by
Corollary 110 and by assuming the ZGSA we obtain a bound on the
volume of the intersected sublattice:

log(vol(LH,q
[0:n+k) ∩ LGF))

≤ Sn log(n)− 1

2

n+m−1∑
i=n+k

(
Q+

2n− 1− 2i

Bn

)
log(n) +O(n)

= Sn log(n)− (BQ− 2K)2
8B n log (n) +O(n).

By Minkowski’s bound we bound the first minimum using the above
volume

log(λ1(LH,q
[0:n+k) ∩ LGF)) ≤ 1

2
log(Kn)

+
log(vol(LH,q

[0:n+k) ∩ LGF))

Kn +O(1)

≤
(
−(BQ− 2K)2

8BK +
S
K +

1

2

)
log (n) +O(1).

After projecting onto the block [n + k − β : n + k) the above short
vector does not increase in length.7 BKZ detects the projected dense
lattice vector in this block if the length is less than

∥∥b̃n+k−β

∥∥ =
(
1
2
Q+

B−K
B
)
log(n) +O(1). Solving for B shows that this is the case when

B ≥ 2
√
(2S − K)2 +K2Q2 + 2(2S − K)

Q2
+ o(1).

7One may also be concerned that the short vector would collapse to the zero
vector 0 after projection onto the block [n + k − β : n + k), but this becomes
increasingly unlikely as the dimension β of the block grows.
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Figure 7.6: Comparison of asymptotic estimates and new fatigue point
for n → ∞ when the secret key coefficients have standard deviation
σ = Θ(1).

When K = 4S
Q2+1

the right hand side is minimised and we obtain
that BKZ detects the projected dense lattice vector when B ≥ 8S

Q2+1
,

which concludes the claim. This routine computation can be verified
symbolically via the sage notebook claim3_5.ipynb8. △

The new estimate gives an asymptotic improvement over the es-
timate by Kirchner and Fouque ( 8S

Q2 ). Asymptotically the optimal
position is at κ = n + k − β ≈ n − 1

2
β. Interestingly, if we do not

optimize k and only consider k = O(1) we obtain the same asymp-
totic estimate as Kirchner and Fouque, which again emphasizes that
we generalised their analysis.

For the fatigue point we compare the relative blocksize of 8S
Q2+1

to
that of the 2016 Estimate given by 2Q

(Q+1−S)2 for S < 1 and by 2
Q+2−2S

for S ≥ 1. For ternary secrets (S = 1
2
) this narrows down the fatigue

point from q ≤ n2.783+o(1) to q = n2.484+o(1) compared to the Kirchner–
Fouque Estimate. This is still far above the (sub)linear parameters
used for NTRU encryption schemes, and thus asymptotically we can
close the pending question if these parameters fall in the weaker over-
stretched regime or not. In practice however we do observe fatigue
points that are significantly lower than the naive value of q = n2.484,
which motivates a concrete analysis with concrete predictions.

8Available at: https://github.com/WvanWoerden/NTRUfatigue
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7.4. A concrete average-case analysis

7.4 A concrete average-case analysis

In this section we consider a concrete analysis of the new DSD-PT
estimate, based on simple heuristics, to better predict the behaviour
in practice, and to show that the analysis matches experiments and is
thus likely to be tight. The first order asymptotics shown in Section
7.3.2 will remain unchanged, but the differences are significant for
practical parameters. Again we split the analysis into several steps,
but now derive heuristic expectations instead of loose upper bounds.

We assume that lattice vectors we encounter follow the Gaussian
heuristic, and thus in particular that vectors are spherically distributed
after normalisation. When projecting such vectors to a lower dimen-
sion they become shorter. The following Lemma shows how much
shorter we expect them to become.

Lemma 112. Let x ∈ Sd−1 follow a spherical distribution, and let
πV : Rd → V be a projection to some subspace V ⊂ Rd of rank k > 0,
then

E[log(∥πV (x)∥)] =
1

2
(ψ(k/2)− ψ(d/2)),

where ψ is the digamma function.

Proof. Let X0, . . . , Xd−1 be standard normal random variables, then

the vector x = (x0, . . . , xd−1), with xj = Xj/
√∑d−1

i=0 X
2
i , is spherically

distributed. Without loss of generality we can assume that πV projects
onto the first k-coordinates. Then we conclude by Lemma 53 that

E[log(∥πV (x)∥)] =
1

2
E

[
log

(∑k−1
i=0 X

2
i∑d−1

i=0 X
2
i

)]

=
1

2
E

[
log

(
k−1∑
i=0

X2
i

)]
− 1

2
E

[
log

(
d−1∑
i=0

X2
i

)]
=

1

2
(ψ(k/2)− ψ(d/2)).
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7.4.1 Intersection

We start by giving a concrete average-case estimate for the intersection
volumes. Assuming that projections behave as random we obtain the
following concrete estimate.

Heuristic claim 113. Let L be a 2n-dimensional NTRU lattice with
dense sublattice LGF, before the DSD event is triggered we have for
k = 1, . . . , n that dim

(
LGF

∩[0:n+k)

)
= k, and

E[log vol(LGF
∩[0:n+k))] = log vol(LGF)−

(
2n−1∑
j=n+k

log∥b̃j∥
)

+
n∑

l=k+1

ψ

(
l

2

)
− ψ

(
n+ l

2

)
+
ζ ′(l)

ζ(l)
,

where ζ(l) :=
∑∞

m=1
1
ml is the Riemann zeta function and ζ ′(l) :=∑∞

m=1
log(m)
ml its derivative.

Justification. We follow the proof of Lemma 109. It is tight except
for the length decrease from ∥d∥ to the projected and primitive vec-
tor ∥π(d)∥/m. Note that when obtaining log vol

(
LGF

∩[0:n+l−1)

)
from

log vol
(
LGF

∩[0:n+l)

)
for some l = k + 1, . . . , n, the dual vector d lives in

a (n+ l)-dimensional space and is projected to an l-dimensional space.
Heuristically we assume that the normalisation of d is spherically dis-
tributed (or that π projects to a random l-dimensional subspace). By
Lemma 112 the log-expected decrease in length from this projection
then equals

E [log(π(∥d∥))− log(∥d∥)] = ψ

(
l

2

)
− ψ

(
n+ l

2

)
.

To conclude we also have to include the primitivity of π(d) and thus
the log-expectation of m ≥ 1 such that π(d)/m is primitive. For
any basis d0, . . . ,dl−1 and π(d) =

∑l−1
i=0 xidi, the scaling is given by

m = gcd(x0, . . . , xl−1). Heuristically we assume that the absolute co-
efficients |x0|, . . . , |xl−1| are random integers in the interval {1, . . . , B}
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Figure 7.7: Experimental values of log vol
(
LGF

∩[0:n+k)

)
versus Claim

113 for circulant and matrix NTRU respectively. For each variant we
used 256 LLL reduced NTRU lattices with parameters q = 257, n =
79, σ2 = 2

3
and computed the intersection for each k.

and we let B →∞. For l ≥ 2 we have (see e.g., [DE+04])

Px∈{1,...,B}l [gcd(x0, . . . , xl−1) = m] =
1

ζ(l)
· 1

ml
+O(log(B)/(Bml−1)),

where the Riemann zeta function ζ(l) =
∑∞

m=1
1
ml is just the normal-

isation factor. From this we conclude that

lim
B→∞

Ex∈{1,...,B}l [log gcd(x0, . . . , xl−1)]

= lim
B→∞

1

ζ(l)

B∑
m=1

[
log(m)

ml
+O

(
log(m) log(B)

Bml−1

)]
= −ζ

′(l)

ζ(l)

for l ≥ k + 1 ≥ 2. △
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Validation.

To validate Claim 113 we computed the actual intersection volumes
vol
(
LGF

∩[0:n+k)

)
for LLL reduced NTRU instances. We observed here,

and also in further experiments, that the assumption on the dimension
dim

(
LGF

∩[0:n+k)

)
= k holds before we get close to triggering the DSD

event. Figure 7.7 shows that the prediction perfectly matches the ex-
periments for matrix NTRU. For circulant NTRU we see both that
the expectation is slightly off and that the variance is much higher.
The higher variance can be explained from the fact that the projec-
tions are very much dependent due to the circulant structure; in fact
a closer inspection shows that for k close to n the differences with the
prediction are highly correlated. We were not able to explain the error
in the predicted expectation, but it seems to be caused by the circu-
lant structure in combination with the Z-shape: the error decreased
and eventually disappeared for large values of q and σ, for which the
Z-shape disappeared (and before the DSD event was triggered). A
maximal log-error of 2.5 is reached at k = 1. Note that a log-error
of ϵ on vol

(
LGF

∩[0:n+k)

)
translate into a factor of eϵ/k on the predicted

length for the shortest vector. Except for very small k, this error
appears benign.

7.4.2 Dense sublattice

In this section we give a concrete estimate for the expected volume
of the dense NTRU sublatice LGF. Directly from the construction
we obtain a basis [G;F] of LGF, with F invertible. We consider two
cases, that of regular NTRU, where F and G are circulant matrices,
and that of matrix NTRU, where all entries are independently sam-
pled. For both constructions the entries are sampled from independent
discrete Gaussians over Z, with some standard deviation σ > 0. As
the only heuristic we assume that the individual entries in fact follow
a continuous Gaussian instead of the discrete one.

Matrix NTRU.

We start with matrix NTRU, where we heuristically assume that all
2n × n coefficients of the basis [G;F] are sampled according to inde-
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pendent continuous Gaussians with standard deviation σ. Under this
heuristic we can derive an exact expression for the expected log-volume
of the dense sublattice.

Lemma 114. Let [G;F] be a basis of the lattice LGF where all sam-
pled entries are i.i.d. continous Gaussians with standard deviation
σ > 0, then

E[log(vol(LGF))] =
1

2
n
(
log(2σ2)− ψ(n)

)
+

n−1∑
i=0

ψ

(
2n− i

2

)
.

Proof. By Lemma 53 the log-expectation of the norm of each basis
element equals (ln(2σ2) + ψ(n))/2. Note that the i-th Gram-Schmidt
vector b̃i is obtained after projecting the i-th basis vector orthogo-
nally away from an i-dimensional subspace, and thus onto a 2n − i
dimensional subspace. However after normalisation the basis vectors
follow a spherical distribution and thus by Lemma 112 we have

E[log∥b̃i∥] = (ln(2σ2) + ψ(n))/2 + ψ

(
2n− i

2

)
− ψ(n)

= (ln(2σ2)− ψ(n))/2 + ψ

(
2n− i

2

)
.

We conclude by noting that E[log(vol(LGF))] =
∑n−1

i=0 E[log∥b̃i∥].

Circulant NTRU.

For circulant NTRU both G and F in the basis [G;F] are circulant
matrices. Again we replace discrete with continuous Gaussians. The
eigenvalues and eigenvectors of a circulant matrix are well known and
we use this to obtain an exact expression for the expected volume of
the dense sublattice.

Lemma 115. Let [G;F] be a basis of the lattice LGF where G,F are
circulant and all sampled entries are i.i.d. continous Gaussians with
with standard deviation σ > 0, then

E[log(vol(LGF))] =
1

2
n
(
log(2nσ2) + ψ(1)

)
+

1

2
(n− 1)(1− log(2)).
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Figure 7.8: Experimental values of log(vol(LGF)) versus Lemma 114
for matrix NTRU with discrete Gaussians and variance σ2 = 2

3
. For

each parameter n we generated 512 instances.

Proof. For n×n circulant matrices G,F the eigenvectors are identical
and given by vj := (1, ωj, ω2j, ω(n−1)j) for j = 0, . . . , n − 1, where
ω := e2πi/n ∈ C is a primitive n-th root of unity. Suppose that the
circulant matrix G is generated by the vector c = (c0, . . . , cn−1), then
the corresponding eigenvalues are given by the DFT coefficients of c,
namely λj := c0+cn−1ω

j+ . . .+c1ω
(n−1)j. We have that λ0 =

∑n−1
j=0 cj,

and thus λ0 follows a Gaussian distribution with variance nσ2, and in
particular λ20 ∼ χ2

1,nσ2 . Additionally for j = 1, . . . , n− 1 we can write
λj = X + i · Y ∈ C where X, Y ∈ R are both linear combinations
of the ci’s and thus (X, Y ) follows a jointly Gaussion distribution. A
simple computation shows thatX and Y both have variance nσ2/2 and
that they are uncorrelated, which for Gaussians implies that they are
independent [PP02, p. 212]. So |λj|2 = X2 + Y 2 ∼ χ2

2,nσ2/2. Note that
all circulant matrices have the same eigenvectors and thus the squared
singular values of the concatenation of two circulant matrices are the
sum of the squared absolute eigenvalues. So [G;F] has one squared
singular value s20 distributed as χ2

1,nσ2 + χ2
1,nσ2 = χ2

2,nσ2 , and n − 1
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7.4. A concrete average-case analysis

Figure 7.9: Experimental values of log(vol(LGF)) versus Lemma 115
for circulant NTRU with discrete Gaussians and variance σ2 = 2

3
. For

each parameter n we generated 512 instances.

squared singular values s21, . . . , s2n−1 distributed as χ2
2,nσ2/2+χ

2
2,nσ2/2 =

χ2
4,nσ2/2. By Lemma 53 they have a log-expectation of

E[log s20] = log(2nσ2) + ψ(1), and E[log s2j ] = log(nσ2) + ψ(2)

for j = 1, . . . , n− 1. We conclude by noting that

E[log(vol(LGF))] =
1

2

n−1∑
i=0

log(s2i ).

Validation.

To validate the concrete estimate for vol(LGF) we generated the
NTRU sublattice for several dimensions and computed its volume. We
sample the secret coefficients following a discrete Gaussian with vari-
ance σ2 = 2

3
and ran experiments for both matrix NTRU and circulant
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7. Overstretched NTRU

NTRU. In Figures 7.8 and 7.9 we see that the predictions from Lem-
mas 114 and 115 perfectly fit the observed volumes in all dimensions.
We do note that the variance is quite significant for the circulant case,
but it can be fully explained by the computed eigenvalue distributions
in the proof of Lemma 115. We will later see that this high variance
has a large influence on the successful BKZ blocksize (Section 7.5.1,
Figure 7.11).

7.4.3 Further refinements

We discuss some further refinements, some of which were already suc-
cessfully applied to the 2016 Estimate [AGVW17; DDGR20; PV21].

Gaussian Heuristic. For the asymptotic analysis we used Minkowski’s
bound to estimate the length λ1

(
LGF

∩[0:n+k)

)
in terms of the volume

vol
(
LGF

∩[0:n+k)

)
. A natural way to obtain a concrete estimate for the

expected minimal length is by assuming that the intersection LGF
∩[0:n+k)

follows the Gaussian Heuristic and thus for the prediction we assume
that

λ1
(
LGF

∩[0:n+k)

)
= gh(LGF

∩[0:n+k)) ≈
√
k/(2πe) · vol

(
LGF

∩[0:n+k)

)1/k
.

We should however be careful with this assumption, as in fact it is false
for k = n. E.g., the above predicts that λ1(LGF) ≈

√
n/(2πe)·

√
2nσ2,

while we know that λ1(LGF) = ∥(g; f)∥ ≈
√
2nσ2, a factor Θ(

√
n)

shorter than predicted. The reason for this is that the dense sublattice
is up to rotation and scaling very similar to the orthogonal lattice
Zn, precisely the lattice for which it is well known that the Gaussian
Heuristic is false. For small k ≪ n we do observe that the intersected
lattice LGF

∩[0:s) follows the Gaussian Heuristic; the orthogonal structure
seems to be broken by the intersection. However we do not have
a clear idea how large k can become before the orthogonal structure
returns and the minimal length stops following the prediction from the
Gaussian Heuristic. We think this behaviour deserves some further
investigation, e.g., if the transition is very sudden or not, and we
leave it as an open problem. This near-orthogonality of LGF

∩[0:s) may be
critical to model the DSD-LL events.
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7.4. A concrete average-case analysis

Probabilities. So far we have only considered expectations of volumes
and projections. While this is enough to give a rough concrete estimate
we want to be more precise. Success probabilities can accumulate up
over multiple BKZ blocks and (progressive) tours, possibly leading to
success at much lower blocksizes than the rough estimate. We continue
using the expected values for the volume of the dense sublattice and
the intersection volumes to obtain the expected length λ1

(
LGF

∩[0:s)
)

of
the dense sublattice vector via the Gaussian Heuristic. However we
then model the short dense sublattice vector v ∈ LGF

∩[0:s) as an s-
dimensional Gaussian vector with the same expected length; allowing
us to compute the exact probability that

∥∥πs−β(v)
∥∥ ≤ ∥∥b̃s−β∥ using

the CDF of the chi-square distribution with β degrees of freedom.
Up to now we have ignored the probability that after πs−β(v) is

inserted, it is also correctly lifted to the full vector v by later BKZ
tours. While this almost always happens for higher blocksizes, it is
not so likely for lower blocksizes, and ignoring this leads to overly
optimistic predictions. For BKZ-β to successfully lift or eventually pull
the vector v to the front it should also satisfy ∥πi(v)∥ ≤ ∥b̃i∥ for all i =
s−2β+1, s−3β+2, . . .. These conditions are not independent which
makes them hard to compute exactly. We simplify the computation
by only considering the dependence for consecutive positions i, i −
β + 1 as done in [DDGR20]. We iteratively run the estimator for
progressive β = 2, 3, . . . and take account of all probabilities assuming
that all tours behave completely independently. The new concrete
estimate will be the expected successful blocksize. Additionally this
allows us to combine both the (probabilistic) SKR 2016 Estimate and
the new DSD-PT estimate in a single estimator. With some more
administration we can also predict the distribution of the successful
location κ, and predict the probability that the SKR event happens
before the DSD event.

BKZ shape for low blocksizes. While the formulas for the (Z)GSA
slope αβ and the expected first minimum gh(β) convert to the ex-
perimental values for large blocksizes of say β ≥ 50, they are not as
accurate for small β. As expected the convergence is worse for pro-
gressive BKZ when we only use a few tours of each blocksize. We ran
some experiment on random low dimensional q-ary lattices to obtain
practical estimates for gh(β) with β ≤ 50. Earlier works about the
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7. Overstretched NTRU

2016 Estimate resorted to BKZ simulators to predict the BKZ shape,
which account for the number of tours and also the special shape of the
head and tail that do not perfectly follow the GSA shape. Together
with the earlier mentioned refinements this resulted in very precise
predictions [DDGR20; PV21]. However how BKZ acts on a Z-shaped
basis is much less understood [AD21] and as of yet there are no accu-
rate BKZ simulators. Understanding the behaviour and creating an
accurate simulator would be very interesting, but is out of the scope of
this work. We continue using the ZGSA, but we resort to experimental
values for αβ obtained by running BKZ on random q-ary lattices for
large q. To remain consistent we also do not use a simulator for the
GSA shape, and accept the small discrepancy between the predictions
and practical experiments.

7.5 Experimental validation

7.5.1 Successful blocksize

We start with comparing the concrete predictions to the preliminary
experiment from Section 7.3.1. We ran progressive BKZ with 8 tours
on matrix NTRU instances with parameters n = 127, σ2 = 2

3
for

several moduli q. In Figure 7.10 we show the blocksizes at which the
SKR or DSD event is first detected, and compare them to the concrete
estimator. We ran the estimator three times for each modulus q: only
accounting for SKR, only accounting for DSD-PT, and accounting
for both. Note that the combined estimate can be strictly lower than
both the first two because the probabilities to succeed accumulate over
both events. We calibrated the values of αβ by running the same BKZ
routine on (2 · 127)-dimensional q-ary lattices with q ≈ 220.

We observe that the experiments match the estimates reasonably
well, with an average blocksize error of less than 2 for the DSD events
and less than 3 for the SKR events. We shortly discuss potential
sources of the small errors error.

• We do not actually run the classical BKZ algorithm, but the
BKZ 2.0 algorithm as it is more feasible to run for large block-
sizes. One part of the latter algorithm is that in each BKZ block
[κ : κ+β) the last β− 1 vectors are randomised before finding a
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Figure 7.10: Experiment versus prediction for progressive BKZ with
8 tours on matrix NTRU instances with parameters n = 127, σ2 = 2

3

for several moduli q. We did 10 runs per modulus q.

short projected vector. This temporarily breaks the GSA shape
and results a small ‘bump’ in the profile that is pushed to the
right during a tour. On average we measured at the SKR events
a log-increase of 0.048 on the value of ∥b̃κ∥ compared to the GSA
(while the rest of the basis matches very closely). Although anec-
dotal, adjusting the estimator with this offset of 0.048 resulted
in very close predictions for the SKR events.

• For small blocksizes β ≤ 30 we see that the DSD-PT estimate is
slightly pessimistic compared to the experiments. However the
successful profile slope αβ (computed from the profile at the mo-
ment of detection) does closely match the predicted slope αβpred

,
pointing to a wrong calibration of the slope parameter for very
low blocksizes. Note that the non-flat part of the Z-shape in the
experiments has size less than the 2·127 dimensional lattice used
for calibration, which plausibly explain why the slope converges
quicker than expected.
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Figure 7.11: Results from running progressive BKZ with 8 tours on 200
circulant NTRU instances in the overstretched regime with parameters
n = 151, q = 2003 and σ2 = 2

3
. (a) Distribution of κ at which the DSDκ

event is triggered. (b) The log-length decrease from ∥v∥ to ∥πκ(v)∥
normalised by the expected decrease (Lemma 112). (c) Successful
blocksize β versus the position κ, and (d) versus the volume vol(LGF).

7.5.2 Detailed behaviour

Because the estimator computes actual probabilities we can com-
pare the predictions to the experiments on a deeper level. We
ran 200 experiments on circulant NTRU instances with parameters
n = 151, q = 2003 and σ2 = 2

3
. These parameters fall into the over-

stretched regime. The results, compared to the estimator, are shown
in Figure 7.11. The average successful blocksize over all 200 instances
is βavg = 40.99, which is close to the estimated value of βpred = 41.21.
We note however that the average squared error is as large as 16.9;
the successful blocksizes range from 27 to 49 for identical initial pa-
rameters. Looking at Figure 7.11(d) we see that this can mostly be
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explained by the large variance of the volume of the dense sublattice
vol(LGF), as earlier noticed in Figure 7.9. Adjusting the estimate with
the concrete volume (instead of the average case prediction) decreases
the average squared error all the way down to 0.83. E.g., the large
average squared error is not an imprecision of the estimator, but an
inherent high variance in the hardness of circulant NTRU instances.
In many schemes this variance is significantly reduced by sampling the
secret keys f ,g under some fixed constraints on the lengths ∥f∥, ∥g∥
or even stronger restrictions.

We now take a look at the positions κ at which the DSDκ events
took place. In Figure 7.11(a) we see that most events (169/200) hap-
pen for κ ≤ n, as predicted by the DSD-PT estimate. We see in
Figure 7.11(b) that for these instances the projection πκ(v) of the
dense sublattice vector v is also not much shorter than expected,
which matches the DSD-PT event as defined in Section 7.3.1. For
the remaining events (31/200) with κ > n we note that κ seems to be
evenly distributed over n + 1, . . . , 2n − β, while the projected length
becomes increasingly smaller than expected for increasing κ.

These DSD-LL events do not seem properly predicted by the
model. Indeed, looking at κ around 2n − β the model predicts that
the probability that a random vector has such a short projection is
as small as 10−55, and the probability that such a vector would cor-
rectly be lifted by Babai’s nearest plane algorithm is even smaller (see
script lucky_lift.sage). Interestingly however is that the transition
between DSD-PT and DSD-LL events is rather continuous, and it is
not so clear where to put the threshold between these two events.

In Figure 7.11(c) we see no clear difference between the successful
blocksizes at positions κ ≤ n versus those at κ > n, and their av-
erage of 41.1 and 40.4 respectively. This suggests that, at least for
these parameters, the DSD-LL events do not significantly contribute
to making the attack cheaper. This was also the case for all other
experiments we ran with different parameters.

In Figure 7.11(a) we also show the predicted distribution of the
event positions κ. We correctly predicted the peak around κ ≈ n −
1
2
βpred, and that κ ≤ n for the DSD-PT events. However the prediction

is much more concentrated than the experimentally observed events,
and neglects to notice the events at κ ≤ n − 1

2
βpred. We give two

possible explanations for this.
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7. Overstretched NTRU

• The estimate assumes an average-case dense sublattice volume,
ignoring the high variance of the dense sublattice volume. Ad-
justing for this using the real volumes makes the prediction less
concentrated and closer to the observed events. However this
still not captures all events at κ ≤ n− 1

2
βpred.

• The experiments and the estimator inherently measure two dif-
ferent things. The experiment detects a DSDκ event if the pro-
jection πκ(v) is inserted and is lifted to a dense sublattice vector
v by Babai’s nearest plane algorithm. The estimator however es-
timates the probability that the projection is short enough and
that the projection is eventually lifted to the dense sublattice
vector v by later tours of the BKZ algorithm. Therefore a DSD-
PT event predicted at position κ might experimentally only be
detected one tour later at κ−β+1 or at an even lower position.
This could potentially be resolved by also taking into account
the direct lift of Babai’s nearest plane in the estimator, but note
that for the eventual goal of estimating the successful blocksize
this will not matter.

7.5.3 Fatigue point

The concrete estimator follows the experiments reasonably well and
thus we can use it to estimate the concrete fatigue point for dimensions
that are not feasible in practice. To verify the estimate of the fatigue
point we also did some experiments in dimensions that are still feasible.
For this we ran a soft binary search, only decreasing the interval length
by 3/4 so as not view a probabilistic result as a definitive answer. More
specifically, starting with a range of [qmin, qmax] we ran an experiment
for a prime q ≈ (qmin + qmax)/2. If it succeeds with an SKR event
we update qmin to (qmin + q)/2 + 1, if it succeeds with a DSD event
we update qmax to (qmax + q)/2− 1. We repeat this until the interval
does not contain any prime and we return (qmin + qmax)/2 as a rough
estimate of the fatigue point. We averaged this over 20 experiments
for each parameter n. We chose for matrix NTRU because of the lower
variance in the hardness of these instances.

We compared this to the prediction. Because the estimator ac-
counts for probabilities of events, we can predict for which value of q
about 50% of the instances succeeds with a DSD event. Because it
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would be unreasonable to calibrate the low blocksize slope values αβ

for each dimension we reused those of the 2 · 127 dimensional q-ary
lattice from an earlier experiment. This might make the estimates a
bit less precise for n≪ 127, and n≫ 127 if the successful blocksize is
small around the fatigue point.

The results are shown in Figure 7.12 and plotted against Cn2.484 for
several constants C. Remarkably the experiments and concrete pre-
dictions closely follow the asymptotics already for reasonably small
values of n. A loglog-linear regression of the 50% DSD-PT estimate
over all primes 199, . . . , 499 gives 0.0034 ·n2.506. Restricting the expo-
nent to 2.484 gives 0.0038 ·n2.484 with a log-standard deviation of only
0.006.

The experimental average appears slightly higher than the esti-
mator prediction for 50% DSD - 50% SKR. The main reason for this
seems to be that the estimator is slightly pessimistic for detecting the
SKR event, as already observed and explained in Section 7.5.1. An-
other small detail is that the binary search is slightly biased to higher
values of q because at each iteration we pick the next prime after
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Figure 7.12: Concrete fatigue point versus asymptotics using pro-
gressive BKZ with 8 tours on matrix NTRU instances with variance
σ2 = 2

3
. The 0.5 percentile line shows for which q we estimate that

the DSD event is triggered before the SKR event for about 50% of the
instances.
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Figure 7.13: Experiment versus prediction for progressive BKZ with 8
tours on matrix NTRU instances with parameters n = 113, σ2 = 2

3
for

several moduli q. We did 100 runs per modulus q and the plot shows
the ratio of these runs succeeding with a DSD event (before an SKR
event).

(qmin + qmax)/2.

7.5.4 Zoom on the fatigue point: a smooth
probabilistic transition

We take a closer look at the transition from the non-overstretched
to the overstretched regime. For this we ran several experiments on
matrix NTRU instances with parameters n = 113, σ2 = 2

3
for several

moduli q, with 100 runs each. We compare the DSD success ratio with
the probabilistic concrete estimate. The results are shown in Figure
7.13. Just as in Figure 7.12 we see a shift between the experiment
and prediction, which can again be explained by the SKR estima-
tor being too pessimistic. Note however that while the discrepancy
looks significant in this zoomed plot, it only emphasises a small error
of about 2 block sizes between the experiments and the predictions.
Ignoring this shift the shape of the predicted transition matches the
experiments very well.
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