
Lattice cryptography: from cryptanalysis to New
Foundations
Woerden, W.P.J. van

Citation
Woerden, W. P. J. van. (2023, February 23). Lattice cryptography: from
cryptanalysis to New Foundations. Retrieved from
https://hdl.handle.net/1887/3564770

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3564770

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3564770

Part III

Basis Reduction

157

CHAPTER 6
Background on Basis

Reduction

This chapter gives an introduction to different types of basis re-
duction algorithms, and the state-of-the-art of modelling their
behaviour.

6.1 Introduction
Every R-linear subspace V ⊂ Rn has an orthogonal basis, and many
efficient algorithms in linear algebra rely on such a basis. Similarly,
an orthogonal basis B of a lattice would make many problems effi-
ciently solvable, e.g., solving CVP for t = Bx would be as simple as
rounding the coefficients c = B⌊x⌉. Any rank n lattice L = L(B) has
(for n > 1) an infinite number of other bases B ·U for U ∈ GLn(Z),
but for most lattices none of those are orthogonal. Still most lattices
have close to orthogonal bases, which still allows us to do some algo-
rithmic tasks efficiently. We call such a basis well-reduced or simply
good. Basis reduction is the act of turning a (bad) basis into a good
basis. A common way to measure the orthogonality of a basis is by

159

6. Background on Basis Reduction

0 b̃0 = b0

b1b̃1

0

b̃0 = b0

b1

b̃1

Figure 6.1: Babai’s fundamental domain for a good basis (left) versus
a bad (right) basis.

its orthogonality defect δ(B) :=
∏

i∥bi∥∏
i∥b̃i∥

, where b̃i is the i-th Gram-
Schmidt vector. We have δ(B) ≥ 1 with equality if and only if the
basis is orthogonal. Since we can rewrite δ(B) =

∏
i∥bi∥

vol(L(B))
, we see

that to minimize the orthogonality defect a good basis must consist of
short vectors. For a lattice basis orthogonality and shortness are thus
directly connected.

To break most lattice based schemes we do not have to compute a
basis with the lowest orthogonality defect, or consisting of the short-
est vectors; a somewhat orthogonal basis is often sufficient. Once a
certain orthogonality is reached we can use the good basis to decrypt
a message, recover a secret key, or forge a signature. In part II of
this thesis we have shown how to solve exact versions of the shortest
and closest vector problem, in moderate dimensions. Running these
algorithms on the high dimensional lattices common in cryptography
is far beyond feasible, and would also find much shorter vectors than
needed to break the scheme. In this chapter we show how to boot-
strap these exact algorithms in moderate dimensions, to reduce a large
dimensional basis. In particular this allows to compute approximate
shortest vectors from lower dimensional exact SVP oracles.

160

6.1. Introduction

0 n0

Bad Profile

Good Profile

index i

lo
g
∥b̃

i∥

Area = log vol(L)

Figure 6.2: A good versus a bad basis log-profile.

6.1.1 Basis profile

It turns out that algorithmically, the profile of a basis, i.e., its GSO
norms (∥b̃i∥)i are much more interesting than the norms of the basis
vectors themself. They are directly related, i.e., by Lemma 38 a size-
reduced basis consists of short vectors if and only if the GSO norms
are short. Still, most cryptanalytic algorithms actually rely on the
profile, and not the basis norms.

One such example is Babai’s nearest plane algorithm. Recall from
Section 2.4.3 that given a basis B of L, Babai’s nearest plane algorithm
decodes any target t ∈ span(L) to a close vector c ∈ L such that
t− c ∈ P(B̃). As a result Babai’s algorithm perfectly decodes targets
up to distance 1

2
mini∥b̃i∥ from the lattice, and has worst-case and

average-case squared decoding distance proportional to
∑

i∥b̃i∥2.
Due to the invariant

∏
i∥b̃i∥ = vol(L), both mini∥b̃i∥ and

∑
i∥b̃i∥2

are optimal (maximized and minimized respectively) when ∥b̃0∥ =
. . . = ∥b̃n−1∥ = vol(L)1/n, i.e. when the GSO profile is perfectly bal-
anced. Such a basis with a perfectly balanced profile might not exist,
e.g. by the Gaussian Heuristic we already have ∥b̃0∥ ≥ λ1(L) ≈√
n/(2πe) vol(L)1/n ≫ vol(L)1/n. A typical reduced basis profile

starts high and decreases quickly (see Figure 6.2). We could (infor-
mally) speak of the slope of a profile.

For a not so orthogonal bad basis the slope is steep, and the first
GSO norm ∥b̃0∥ is very large, leading to a poor decoding error propor-

161

6. Background on Basis Reduction

tional to
∑

i∥b̃i∥2 ≥ ∥b̃0∥2. Similarly, the last GSO norm ∥b̃n−1∥ is
very small, leading to a poor bounded distance decoding performance.
In contrast, a close to orthogonal good basis has a gradual declining
and much more balanced slope, and therefore achieves much better
decoding performances.

In the following Sections we consider three ways of obtaining a good
basis. The exponential time HKZ algorithm, which achieves a very
good slope by minimizing ∥b̃0∥, then ∥b̃1∥, and so on. The polynomial-
time LLL algorithm, which achieves a mildly good slope, by improving
the slope locally. And lastly the BKZ algorithm that combines these
ideas and offers a tunable time-quality trade-off between the two.

6.2 HKZ reduction
One approach to balance the typically decreasing basis profile (∥b̃0∥,
. . . , ∥b̃n−1∥), is by minimizing the first norm ∥b̃0∥, then the second
∥b̃1∥, and so on. The first GSO vector b̃0 is just the first basis vector
b0, so by definition it is minimized when ∥b0∥ = λ1(L). For a fixed
b0, the second GSO vector b̃1 is exactly the first basis vector in L[1:n),
and is thus minimized when ∥b̃1∥ = λ1(L[1:n)). We can continue this
greedy process until the end. The resulting basis is said to be Hermite-
Korkine-Zolotarev reduced.

Definition 88 (Hermite-Korkine-Zolotarev reduced). A basis B =

[b0, . . . ,bn−1] is called Hermite-Korkine-Zolotarev (HKZ) reduced if
it is size-reduced and

∥b̃κ∥ = λ1(L[κ:n)) for all κ = 0, . . . , n− 1.

That such a basis exists follows from the fact that any shortest
vector of L[κ:n) is primitive in L[κ:n).

An alternative recursive definition would be as follows: a size-
reduced basis [b0, . . . ,bn−1] is HKZ reduced if ∥b0∥ = λ1(L), and
B[1:n) is HKZ reduced (or equals {0}). From this Algorithm 7 to
obtain an HKZ reduced basis is straightforward. Compute a shortest
vector, project away from it, and repeat on the projected lattice.

HKZ reduction is very strong, and could be interpreted as (close
to) optimal for many purposes. In particular, an HKZ reduction oracle

162

6.3. The LLL algorithm

Algorithm 7: The HKZ algorithm.
Data: A rank n lattice L (represented by any basis).

1 for κ = 0, . . . , n− 1 do
2 πκ := π(b0,...,bκ−1)⊥ ;
3 w← a shortest vector in πκ(L);
4 Lift w to a lattice vector bκ ∈ L such that πκ(bκ) = w;
5 Size-reduce bκ w.r.t. [b0, . . . ,bκ−1];
6 end
7 return B = [b0, . . . ,bn−1];

would break almost all lattice-based cryptography. However, this good
reduction quality comes at a cost. Since one has to solve an exact SVP
instance in dimension n, computing an HKZ reduced basis quickly
becomes unfeasible.

6.3 The LLL algorithm

The LLL algorithm by Lenstra, Lenstra and Lovász [LLL82] is a basis
reduction algorithm that runs in polynomial time and which reaches
approximation factors exponential in the dimension. It was the first
polynomial time basis reduction algorithm, and it has found countless
applications. Furthermore, it is a fundamental building block in more
complex basis reduction algorithms.

The general idea of the LLL algorithm is to improve the basis
slope, by making sure that consecutive GSO norms ∥b̃κ∥, ∥b̃κ+1∥ do
not decrease too quickly. This is achieved by locally reducing all the
rank two projected sublattices L[κ:κ+2) = L([πκ(bκ), πκ(bκ+1)]) for κ =
0, . . . , n− 2.

6.3.1 Lagrange reduction

So let us first focus on the rank two case L = L([b0,b1]). We want two
basis vectors to be as short and as orthogonal as possible. Following
the HKZ reduction algorithm it is natural to let the first basis vector
be a shortest vector of the lattice. In this way we obtain a good GSO
profile, and by size-reduction a close to orthogonal basis. The resulting

163

6. Background on Basis Reduction

b0

b1

Figure 6.3: Illustration of the Wristwatch Lemma 89. There always
exists a basis [b0,b1] with b0 a shortest vector, and b1 in the green
strap of width 1

2
∥b0∥ (in the direction orthogonal to b0).

basis is called Lagrange reduced, and visually looks like a ’Wristwatch’
basis (see Figure 6.3).

Lemma 89 (Wristwatch Lemma). Let L ⊂ Rd be a lattice of rank 2,
then there exists a B = [b0,b1] of L that satisfies

1. ∥b0∥ ≤ ∥b1∥, and

2. |⟨b0,b1⟩| ≤ 1
2
∥b0∥2 (size-reduction).

In particular this implies that ∥b0∥ = λ1(L) and ∥b̃0∥ ≤
√

4/3 · ∥b̃1∥.
We call such a basis Lagrange reduced.

There is an efficient algorithm to obtain such a basis.

Lemma 90. On input a basis of a rank 2 lattice L, Algorithm 8
terminates and returns a Lagrange reduced basis [b0,b1] of L, i.e. a
basis satisfying the condition in Lemma 89.

Proof. Swapping basis vectors, and subtracting integer multiples of
other basis vectors, are all unimodular operations. Therefore the re-
turned basis is still a basis of the input lattice. This also implies that
b0,b1 are nonzero throughout the algorithm.

The algorithm terminates in a finite number of steps given that
the norm of ∥b0∥ strictly decreases in each iteration, and because by
a packing argument there are only a finite number of lattice points in

164

6.3. The LLL algorithm

Algorithm 8: Lagrange reduction
Input : A rank 2 basis [b0,b1].
Input : A Lagrange reduced basis of the input lattice.

1 repeat
2 swap b0 ↔ b1

3 k ←
⌊
⟨b0,b1⟩
⟨b0,b0⟩

⌉
4 b1 ← b1 − k · b0 // size-reduction
5 until ∥b0∥ ≤ ∥b1∥
6 return [b0,b1]

L of norm at most some bound. A closer inspection shows that the
number of iterations is of order at most O(log(∥b0∥)).

Now let us consider the two conditions of Lemma 89. The second
condition ∥b0∥ ≤ ∥b1∥ is true by the termination condition of the
repeat loop. The size-reduction operation just before that makes sure
that the first condition |⟨b0,b1⟩| ≤ 1

2
∥b0∥2 is also true.

Proof Lemma 89. The existance of such a basis follows directly from
Lemma 90. Let [b0,b1] be a Lagrange reduced basis. Consider any
nonzero lattice vector v = xb0 + yb1 ∈ L with (0, 0) ̸= (x, y) ∈ Z2.
We want to show that ∥v∥ ≥ ∥b0∥. When y = 0 this is trivial, and
when x = 0 it follows from ∥b1∥ ≥ ∥b0∥. For the case x ̸= 0 and y ̸= 0
we have

∥v∥2 = x2 · ∥b0∥2 + y2 · ∥b1∥2 + 2xy⟨b0,b1⟩
≥ (x2 + y2 − |xy|)∥b0∥2 ≥ min{x2, y2} · ∥b0∥2 ≥ ∥b0∥2,

and thus ∥b0∥ = λ1(L). For the GSO norms ∥b̃0∥, ∥b̃1∥ we have

∥b0∥2 ≤ ∥b1∥2 = ∥b̃1∥2 + |⟨b0,b1⟩|2/∥b0∥2 ≤ ∥b̃1∥2 +
1

4
∥b0∥2,

and thus ∥b̃0∥ = ∥b0∥ ≤
√

4/3 · ∥b̃1∥.

6.3.2 LLL

If all the projected sublattice bases B[i:i+2) are Lagrange reduced, then
we obtain ∥b̃i+1∥ ≥

√
3/4∥b̃i∥ for all i = 0, . . . , n − 2. In other

165

6. Background on Basis Reduction

words, the profile cannot decrease too quickly. Simply stated the
LLL algorithm proceeds as follows: if any local basis B[i:i+2) is not
Lagrange reduced, then reduce it. Clearly if the algorithm terminates
all local bases are Lagrange reduced. To show that it terminates in
a polynomial number of iterations we need to slightly relax the local
Lagrange condition ∥πi(bi)∥ ≤ ∥πi(bi+1)∥.

Definition 91 (LLL reduced). A lattice basis B = [b0, . . . ,bd−1] is
called δ-LLL reduced, for δ ∈ (1

4
, 1], if

1. The Lovász Condition δ∥πi(bi)∥2 ≤ ∥πi(bi+1)∥2
holds for all 0 ≤ i < n− 1, and

2. it is size-reduced.

We call δ ∈ (1
4
, 1] the reduction parameter. Note that δ = 1

represents exact Lagrange reduction, but for this value we cannot show
that the algorithm terminates in polynomial time. A δ-LLL reduced
bases does not decrease too steeply, i.e. combining the two conditions
we obtain

∥b̃κ+1∥ ≥
√
δ − 1

4
∥b̃κ∥,

for all κ = 0, . . . , n − 2. This directly has implications for the length
of the basis vectors.

Corollary 92 (LLL results). Let δ ∈ (1
4
, 1]. For a δ-LLL reduced

basis B = [b0, . . . ,bn−1] of the lattice L, we have

∥b0∥ ≤ (δ − 1
4
)−(n−1)/2 · λ1(L)

∥b0∥ ≤ (δ − 1
4
)−(n−1)/4 · vol(L)1/n

Proof. Let γ :=
√

1/(δ − 1
4
). By combining the LLL conditions we

have
∥b0∥ = ∥b̃0∥ ≤ γ · ∥b̃1∥ ≤ . . . γn−1 · ∥b̃n−1∥.

In particular we have ∥b0∥ ≤ γn−1 ·mini∥b̃i∥, and the first statement
follows from the fact that mini∥b̃i∥ ≤ λ1(L). For the second statement

166

6.3. The LLL algorithm

we have

det(L)1/n =

(
n−1∏
i=0

∥b̃i∥
)1/n

≥
(

n−1∏
i=0

∥b̃0∥ · γi
)1/n

= ∥b0∥ · γ(n−1)/2.

For δ = 1 we have ∥b0∥ ≤ (4/3)(n−1)/2 · vol(L)1/n. Recall that
Hermite’s bound says precisely that such a vector exists, i.e., λ1(L) ≤
(4/3)(n−1)/2 · vol(L)1/n. As such, the LLL algorithm can be seen as an
algorithmic instantiation of Hermite’s bound: it does not just show
existence, it actually computes a vector of (almost) that length.

6.3.3 LLL algorithm

We will now discuss why the LLL algorithm terminates in a polyno-
mial number of iterations. To show that the LLL algorithm runs in
polynomial-time one would additionally have to show that the oper-
ations, like computing the GSO (using rationals), run in polynomial-
time. We will not cover this, but this is precisely where the global
size-reduction of the basis comes into play.

Algorithm 9: LLL reduction
Input : A basis B = [b0, , . . . ,bn−1] of a lattice L and a

reduction parameter δ ∈ (1
4
, 1].

Output: A δ-LLL reduced basis of the input lattice.
1 Size-reduce B
2 while ∃index i that does not satisfy Lovász’ condition do
3 Let U ∈ GL2(Z) be s.t. B[i:i+2) ·U is Lagrange reduced

// Using Algorithm 8
4 [bi,bi+1]← [bi,bi+1] ·U // Update B
5 Size-reduce B

6 end
7 return B

To argue that the number of iterations is polynomially bounded in
the input size we use a potential argument.

167

6. Background on Basis Reduction

Definition 93 (Potential). For a basis B, we define the potential DB

as

DB =
n∏

i=1

vol(L0:i) =
n−1∏
i=0

∥b̃i∥n−i.

Lemma 94. For any integer basis B ∈ Zm×n and reduction parame-
ter δ ∈ (1

4
, 1), Algorithm 9 is correct and terminates after at most

O(n2 log(max
i
∥bi∥))

iterations.

Proof. The correctness is clear from the loop condition.
To show that the number of iterations is polynomially bounded we

first argue that the potential decreases significantly during each loop.
First note that size-reducing a basis does not change the GSO norms,
and thus the size-reduction operations do not change the potential.
Now let us consider a loop, where 0 ≤ i ≤ n− 2 is the index at which
Lovász’ condition is not satisfied. At the start of the loop we thus
have

δ∥πi(bi)∥2 > ∥πi(bi+1)∥2.
Let [ci, ci+1] = [bi,bi+1] · U be the new basis vectors, c̃i, c̃i+1 the
new GSO vectors, and let DB and DB′ be the old and new potential
respectively. The lattice L[i:i+2) stays the same (and thus its span), so
all GSO norms ∥b̃j∥ for j ̸∈ {i, i+ 1} remain unchanged in this loop.
Furthermore we have the invariant

∥c̃i∥ · ∥c̃i+1∥ = vol(L[i:i+2)) = ∥b̃i∥ · ∥b̃i+1∥.

By Lagrange reduction, the vector c̃i is a shortest vector in L[i:i+2),
and in particular ∥c̃i∥ ≤ ∥πi(bi+1)∥. To summarize we have

∥c̃i∥2 ≤ ∥πi(bi+1)∥2 < δ · ∥b̃i∥2,

and together with the invariant this gives

∥c̃i∥n−i · ∥c̃i+1∥n−(i+1) <
√
δ · ∥b̃i∥n−i · ∥b̃i+1∥n−(i+1),

and thus DB′ <
√
δ · DB. So the potential decreases by a constant

factor 1
2
<
√
δ < 1 each iteration.

168

6.3. The LLL algorithm

To conclude we now have to upper and lower bound the potential.
For the lower bound note that for any integer basis B we have DB ≥ 1.
For the upper bound we have

DB ≤
n−1∏
i=0

∥bi∥n−i ≤ B
1
2
n(n+1),

where B := maxi∥bi∥. By the constant factor decrease each iteration,

and a lower and upper bound of 1 and B
1
2
n(n+1), there can be at most

O(n2 logB) iterations.

We obtained the lower bound DB ≥ 1 by restricting to integer
bases. This is not necessary, alternatively by Hermite’s inequality or
Minkowski’s Theorem we could lower bound each volume vol(L0:i) in
terms of λ1(L0:i) ≥ λ1(L), which only depends on the lattice.

The LLL algorithm does not even need a basis, it can also be
modified to work directly on the Gram matrix. The upper triangular
Cholesky matrix C from the decomposition G = C⊤C of a Gram
matrix plays the role of (basis and) GSO. The Gram matrix is modified
by the unimodular transformations as G′ = U⊤GU.

A small modification to the LLL algorithm by Pohst [Poh87] al-
lows to remove the requirement that the input vectors are linearly
independent. After this modification the input can consists of any
number of vectors, and the output will consists of an LLL reduced
basis of the lattice generated by the input vectors. In the next section
we will use this property to ‘insert’ short vectors in a basis. Given
a basis B = [b0, . . . ,bn−1] and a short vector v ∈ L(B), we can run
the modified LLL reduction algorithm on [v,b0, . . . ,bn−1]. Because
the first GSO norm can never increase during the LLL reduction algo-
rithm we end up with an LLL reduced basis B′ = [b′

0, . . . ,b
′
n−1] with

∥b′
0∥ ≤ min{∥b0∥, ∥v∥}.
A nice property of the LLL algorithm is that it is self-dual: to be

more precise, if a basis B is δ-LLL reduced, then the reversed dual
basis D of B is after size-reducing also δ-LLL reduced. This means
that e.g. Corollary 92 can also be implied to the reverse dual basis
[dn−1, . . . ,d0], and thus give a lower bound on ∥b̃n−1∥ = 1/∥dn−1∥.

169

6. Background on Basis Reduction

6.4 BKZ reduction
We have seen the two extreme cases of basis reduction, the HKZ al-
gorithm delivers close to optimal reduction at the cost of solving SVP
in the full lattice, and the LLL algorithm that gives exponential ap-
proximation factors but runs in polynomial time. We will now discuss
a generalisation, that delivers a trade-off between these two extremes.

So how to generalize the LLL and HKZ algorithms? The common
theme is that they both rely on an SVP oracle for projected sublattices
L[κ:κ+β), which we call a block.

The difference being that HKZ works on blocks L[κ:n) of rank at
most n, while the LLL works on blocks L[κ:κ+2) of rank 2 (Lagrange
reduction). From this perspective the natural generalisation is to work
on blocks L[κ:κ+β) of rank at most β. This is precisely what Block-
Korkine-Zolotarev [Sch87] reduction does, and we call the parameter
β the blocksize.

Definition 95 (BKZ). A basis B = [b0, . . . ,bn−1] is called BKZ-β
reduced if it is size-reduced and

∥b̃κ∥ = λ1(L[κ:min (κ+β,n))) for all κ = 0, . . . , n− 1.

For β = 2 we recover the definition of 1-LLL, and for β = n we
recover the definition of HKZ. The condition on ∥b̃κ∥ is often relaxed
by a factor 1+ ϵ for some ϵ > 0 close to 0, both to allow for numerical
imprecisions and potential arguments like LLL. This is similar to the
relaxation of the Lovász Condition in LLL. In what follows we will
ignore this factor.

Similar to LLL a BKZ reduced basis contains a short basis vector.

Lemma 96 (BKZ approximation [Sch94]). For a BKZ-δ reduced ba-
sis B = [b0, . . . ,bn−1] of the lattice L, with 2 ≤ β ≤ n, we have

∥b0∥ ≤ γ
n−1
β−1
β · vol(L)1/n,

where γβ is Hermite’s constant of rank β.

In addition a Hermite factor bound ∥b0∥ ≤ √γβ
n−1
β−1

+1 · vol(L)1/n
is claimed without proof in [GN08b]. Because γβ ≤ O(β) the bound
decreases as the blocksize β increases; a larger blocksize gives a better
reduced basis.

170

6.4. BKZ reduction

6.4.1 BKZ algorithm

The BKZ algorithm (see Algorithm 10) computes a BKZ reduced ba-
sis from any other basis. The algorithm greedily attempts to satisfy
the BKZ condition at each position by computing a shortest vector
in each block L[κ:min (κ+β,n)), and replacing the basis vector bκ accord-
ingly. This makes the basis BKZ-β reduced at position κ, but might
invalidate the condition at other positions. Applying this once to all
positions κ = 0, . . . , n − 2 is called a tour. The BKZ algorithm re-
peats such tours until the basis remains unchanged and is thus BKZ
reduced.
Algorithm 10: The BKZ algorithm.
Input : A lattice basis B, blocksize β.
Output: A BKZ-β reduced basis of the input lattice.

1 LLL reduce B
2 while B is not BKZ-β reduced do
3 for κ = 0, . . . , n− 2 do // A single BKZ-β tour
4 b← min{β, n− κ}
5 w← a shortest vector in L[κ:κ+b)

6 Lift w to a full vector v ∈ L[0:κ+b) s.t. πκ(v) = w
7 Insert v in B at position κ using LLL
8 LLL reduce B[0:κ+b)

9 end
10 end
11 return B

The BKZ algorithm as stated is not known to terminate in a poly-
nomial number of tours. Terminating variants exist that succeed after
about O(n2 log(n)/β2) tours [HPS11b; LN20], but the resulting bases
are not precisely BKZ-β reduced, and the resulting worst-case bounds
on ∥b0∥ are a polynomial factor worse than Lemma 96.

The troubles of proving a polynomial bound on the number of
tours, with a potential argument like LLL, seems to be related to the
fact that the BKZ algorithm is not self-dual like LLL. There do exists
variants of BKZ, like SDBKZ [MW16], that are self-dual, and that
have easier provable runtime and quality bounds.

In practice however, not much improvement to the basis profile is
attained after say a few dozen tours. The cost of BKZ is thus mainly
dominated by the exponential (in β) cost of finding a shortest vector

171

6. Background on Basis Reduction

0 20 40 60 80 100
index i

lo
g

||b
i||

κ κ+ β

β

0 20 40 60 80 100
index i

lo
g

||b
i||

κ κ+ β

β

Figure 6.4: The BKZ algorithm: inserting a shortest vector in the
projected sublattice L[κ:κ+β).

in a β-dimensional lattice. Throughout this thesis we will therefore
ignore the lattice rank and the number of iterations and cost the BKZ
algorithm in terms of the blocksize β.

6.4.2 Progressive BKZ

The cost of a BKZ-β tour quickly grows when increasing β. We thus
want to limit the number of tours we have to run at the maximal
blocksize β. The better the basis is already reduced, the less tours
are needed to reach a (close to) BKZ-β reduced basis. If we first re-
duce the basis with a lower blocksize β′ < β, then afterwards only
a few expensive tours are needed. Beyond the number of expensive
tours needed this also has benefits for the underlying SVP subroutine.
When using (extreme) enumeration a better basis lowers the cost sig-
nificantly, and when using sieving a better basis improves both the
number of dimensions for free and the number of sieving iterations
needed during progressive sieving. The idea of progressive BKZ (Al-
gorithm 11) is to apply this idea recursively: run only a few tours (say
1 or 2) for increasing β′ = 2, 3, . . . , β.

172

6.5. Behaviour of reduction algorithms

Algorithm 11: Progressive BKZ.
Input : A lattice basis B, blocksize β, tours T > 0.

1 for β′ = 2, 3, . . . , β do
2 Run T BKZ-β′ tours.
3 end
4 return B

6.4.3 Slide reduction

An alternative generalisation of LLL is the slide reduction algorithm.
It uses SVP oracles both on primal blocks L[κ:κ+β), and on dual blocks
L∗

[κ:κ:β). This gives more control over the profile and makes slide re-
duction easier to (provably) analyse than BKZ. For n ≥ 2β this also
leads to slightly better asymptotic bounds on the norm ∥b0∥ of the
first basis vector.

Unfortunately, in practice the performance of BKZ seems to be
better than slide reduction, and as a result most (concrete) cryptanal-
ysis has been based on the BKZ algorithm. Also, the BKZ algorithm
reduces the full bases, which is important for solving certain variants
of SVP that are common in cryptography. In contrast, slide reduc-
tion focusses mostly on decreasing the norm ∥b0∥ of the first basis
vector, e.g. solving approx-SVP. Indeed, recently it was hinted that
slide reduction can be competitive with BKZ for approx-SVP [MW16;
Wal21]. While it would be interesting to see how the slide reduction
algorithm behaves on the lattice problems in this thesis, we keep our
focus on the BKZ algorithm which is much better understood from a
concrete perspective.

6.5 Behaviour of reduction algorithms

For cryptanalysis it is important to understand the practical behaviour
of lattice reduction algorithms. In particular in cryptographic dimen-
sions, in which it is infeasible to obtain experimental evidence. In this
section we explain the heuristic models behind the behaviour of HKZ,
LLL and BKZ. These models are often build on the Gaussian Heuristic
and based on extensive experimental evidence in feasible dimensions.

173

6. Background on Basis Reduction

0 20 40 60 80 100
index i

lo
g

||b
i||

HKZ profile
HKZ shape
HKZ shape (adjusted)

Figure 6.5: A typical HKZ reduced basis of a rank 100 lattice versus
the HKZ shape of Definition 97, with and without adjustments for the
tail part.

6.5.1 HKZ shape

In Figure 6.5 we see that the typical log-profile of a HKZ reduced
random lattice basis is somewhat concave. This shape is correctly
predicted by applying the Gaussian Heuristic to the HKZ definition.

Definition 97. We define the HKZ shape (ℓ0, . . . , ℓn−1) of rank n by
the following sequence

ℓ0 := gh(n), ℓi = gh(n− i) ·
(∏

j<i

ℓj

)−1/(n−i)

.

The above profile shape is for a lattice with volume 1. In general
for a HKZ reduced basis B of rank n the Gaussian Heuristic says that
log∥b̃i∥ ≈ log ℓi +

1
n
log(detL). This estimate is accurate for i ≪ n,

say when i ≤ n− 50, as can be seen in Figure 6.5.
The tail part of the estimate is inaccurate, because the Gaussian

Heuristic gives false predictions in such low dimensions. One way to
solve this is to experimentally observe a HKZ profile for a lattice of
rank 50, and use that for the last part of the estimate. This adjusted
estimate, as shown in Figure 6.5, closely predicts the actual HKZ
profile.

174

6.5. Behaviour of reduction algorithms

0 20 40 60 80 100
index i

lo
g

||b
i||

LLL
LLL GSA
BKZ-40
BKZ-40 GSA

Figure 6.6: Illustration of the Geometric Series Assumption for 100
dimensional LLL and BKZ-40 reduced bases.

6.5.2 Geometric Series Assumption

In Figure 6.6 we see that the typical log-profile of an LLL or BKZ-β
reduced basis for β ≪ n is close to a straight line, i.e. ∥b̃i+1∥/∥b̃i∥ = α
for some constant α > 1. We can predict the constant by the Gaussian
Heuristic, which gives us the Geometric Series Assumption (GSA).

Heuristic 98 (Geometric Series Assumption (GSA)). Let B be a ba-
sis of rank n that is BKZ-β reduced, then its profile satisfies

log(∥b̃i∥) =
n− 1− 2i

2
· log(αβ) +

log(det(B))

n
,

where αβ = gh(β)2/(β−1).

Justification. Let us zoom in on a BKZ block L′ = L[κ:κ+β). By the
Gaussian Heuristic we have λ = λ1(L′) = gh(β) ·vol(L′)1/β. Under the
assumption that the GSO norms decrease exponentially by some factor
αβ > 1 we have ∥b̃κ+i∥ = λ/αi, and thus vol(L′)1/β = λ/α

(β−1)/2
β . To

conclude the constant αβ > 1 must satisfy

λ = gh(β) · vol(L′) = gh(β) · λ/α(β−1)/2
β ,

175

6. Background on Basis Reduction

from which it follows that αβ = gh(β)2/(β−1). △

The GSA is reasonably precise for say β ≥ 50 and a not too large
blocksize β ≪ n compared to the lattice rank. For small blocksizes β
one can determine the value of αβ experimentally to still get accurate
predictions.

However, one should be careful when using the GSA to estimate
the start (head) and the end (tail) of the profile. Firstly by definition
the last BKZ block L[n−β:n) is HKZ reduced and thus the tail of the
profile is slightly concave. Secondly, the Gaussian Heuristic is only
an average-case statement, and during BKZ reduction vectors slightly
shorter than the prediction can be found. By their shortness the BKZ
algorithm is biased towards keeping those vectors and pushing them
to the front of the basis. As a result the head of the profile can be a
bit lower than predicted by the GSA.

6.5.3 Simulators

While the Geometric Series Assumption gives a good first order esti-
mate of the basis profile after BKZ-reduction, it is known to be inaccu-
rate in small dimensions or when the dimension is only a small multiple
of the blocksize due to the head and tail behaviour. Additionally it
does not account for the slower convergence when running progres-
sive BKZ with only a few tours. To resolve these problems [CN11]
introduced a BKZ simulator based on the Gaussian Heuristic.

This simulator keeps track of the profile ℓ = (∥b̃0∥, . . . , ∥b̃n−1∥),
and runs BKZ tours where instead of computing a shortest vector it
just updates

ℓκ = min

ℓκ, gh(b) ·
(

κ+b−1∏
i=κ

ℓi

)1/b
 ,

for b = min{β, n − κ} (or experimental values of gh(b) for b < 50),
and adjusts the remaining norms ℓκ, . . . , ℓκ+b−1 accordingly. Such a
simulator predicts correctly both the center (body) and tail part of
the profile. This simulator was later refined by a probabilistic variant
of the Gaussian Heuristic that can return slightly short vectors with a
small probability [YD17; BSW18]. Due to this addition the head be-
haviour is also captured. In short, these simulators allow for accurate

176

6.5. Behaviour of reduction algorithms

and efficient predictions of the profile shape for random lattices, even
for progressive BKZ with a limited number of tours.

177

