
Lattice cryptography: from cryptanalysis to New
Foundations
Woerden, W.P.J. van

Citation
Woerden, W. P. J. van. (2023, February 23). Lattice cryptography: from
cryptanalysis to New Foundations. Retrieved from
https://hdl.handle.net/1887/3564770

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3564770

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3564770

CHAPTER 5
The Closest Vector Problem

with Preprocessing

This chapter is based on the joint work ‘The randomized slicer
for CVPP: sharper, faster, smaller, batchier’, with Léo Ducas
and Thijs Laarhoven, published at PKC 2020.

5.1 Introduction
The Closest Vector Problem (CVP) can be viewed as an inhomoge-
neous version of the Shortest Vector Problem (SVP). It asks to com-
pute a closest lattice vector to a given target vector in the real span of
the lattice. This is also sometimes referred to as decoding the target.
These two problems are closely related, and just as for SVP, solving
CVP efficiently would directly break most lattice-based cryptographic
schemes; e.g., decoding an encrypted message, or forging a signature
often essentially boils down to recovering a close(st) lattice point. In
many cases it is sufficient to solve an approximate version γ-CVP,
where one has to compute a lattice vector that lies at most a factor γ
further away than a closest one.

133

5. CVP with Preprocessing

CVP is no easier than SVP, there exists an efficient reduction from
approx-SVP to approx-CVP that preserves both the lattice dimension
and approximation factor [GMSS99]. In fact most lattice problems
have such a dimension-preserving reduction to CVP [Mic08; BN09;
MV13]. Provable worst-case reductions in the other direction are less
straightforward and tight, and often increase both the dimension and
approximation factors.

Still from an average-case perspective, most algorithms for SVP
can be adapted to work for CVP with about the same (heuristic) com-
plexity. I.e., the current fastest approaches for solving CVP are just
as SVP based on lattice sieving [AKS01; BDGL16; Alb+19; DSW21]
and lattice enumeration [Kan83; FP85; GNR10; AN17; ANS18], where
the former offers a better asymptotic scaling of the time complexity
in terms of the lattice dimension, at the cost of an exponentially large
memory consumption.

In contrast to SVP however, CVP receives as input, next to a
lattice (basis), a target vector. Even though solving a single instance
is as hard as SVP, one could wonder if we can amortize the cost by
decoding many targets over the same lattice.

The closest vector problem with preprocessing (CVPP). The closest
vector problem with preprocessing (CVPP) is a variant of CVP, where
the solver is allowed to perform some preprocessing on the lattice at no
additional cost, before being given the target vector. Closely related
to this is batch-CVP, where many CVP instances on the same lattice
are to be solved; if an efficient global preprocessing procedure can be
performed using only the lattice as input, and that would help reduce
the costs of single CVP instances, then this preprocessing cost can be
amortized over many problem instances to obtain a faster algorithm
for batch-CVP. This problem of batch-CVP most notably appears
in the context of lattice enumeration for solving SVP or CVP, as a
fast batch-CVP algorithm would potentially imply faster SVP and
CVP algorithms based on a hybrid of enumeration and such a CVPP
oracle [GNR10; DLW20a].

Voronoi cells and the iterative slicer. One method for solving CVPP
is the iterative slicer by Sommer–Feder–Shalvi [SFS09]. Preprocess-
ing consists of computing a large list of lattice vectors, and a query is

134

5.1. Introduction

Laa'16

DLW'19

Laa'19

CVPP complexities

without nearest neighbor search

Optimal

Optimal / DLW'19

20d 20.1d 20.2d 20.3d 20.4d 20.5d 20.6d
20d

20.2d

20.4d

20.6d

20.8d

21.0d

21.2d

→ Space complexity (= List size)

→
T
im
e
co
m
pl
ex
ity

Figure 5.1: Query complexities for solving CVPP without nearest
neighbour techniques. The blue curve refers to [Laa19], the red curve
to [DLW19], the green curve to [Laa16], and the black curve is the
result of our refined analysis. The red point indicates the point where
red and black curves merge into one.

processed by “reducing” the target vector t with this list, i.e. repeat-
edly translating the target by some lattice vector until the shortest
representative t′ in the coset of the target vector is found. The clos-
est lattice vector to t is then given by t − t′, which lies at distance
∥t′∥ from t. For this method to provably succeed, the preprocessed
list needs to contain all O(2d) so-called Voronoi relevant vectors of
the lattice, which together define the boundaries of the Voronoi cell of
the lattice. This leads to a 4d+o(d) algorithm by bounding the number
of reduction steps by 2d+o(d) [MV13], which was later improved to an
expected time of 2d+o(d) by randomizing the algorithm such that the
number of expected steps is polynomially bounded [DB15].

Approximate Voronoi cells and the randomized slicer. The large num-
ber of Voronoi relevant vectors of a lattice, needed for the iterative
slicer to be provably successful, makes the straightforward application
of this method impractical and does not result in an improvement over

135

5. CVP with Preprocessing

the best (heuristic) CVP complexities without preprocessing. There-
fore we fall back on heuristics to analyse the iterative slicer, as they
often better represent the practical complexities of an algorithm than
the proven worst-case bounds. Laarhoven [Laa16] proposed to use
a smaller preprocessed list of size 2d/2+o(d) containing all lattice vec-
tors up to some radius, while heuristically retaining a constant suc-
cess probability of finding the closest vector with the iterative slicer.
Doulgerakis–Laarhoven–De Weger [DLW19] formalized this method
in terms of approximate Voronoi cells, and proposed an improvement
based on rerandomizations. Rather than hoping to find the solution
in one run of the iterative slicer, which would require a preprocessed
list of size at least 2d/2+o(d), the algorithm uses a smaller list and runs
the same reduction procedure many times. Each time starting with
a randomly sampled members from the coset of the target vector.
The success probability of this randomized slicing procedure, which
depends on the size of the list, determines how often it has to be
restarted, and thus plays an important role in the eventual time com-
plexity of the algorithm. Doulgerakis–Laarhoven–De Weger [DLW19]
obtained a heuristic lower bound on the success probability of this ran-
domized slicer, which Laarhoven [Laa19] later improved upon in the
low-memory regime. In particular, these two bounds cross each-other,
which suggests that there should be a better (sharp) global bound.
Thus the question remains open, what is the actual asymptotic success
probability of the randomized slicing procedure, and therefore what is
the actual asymptotic time complexity of the current state-of-the-art
heuristic method for solving CVPP.

5.1.1 Contributions

Success probability asymptotics via random walks

The main contribution of this work is to answer the central open prob-
lem resulting from the approximate Voronoi cells line of work – giving
sharp (heuristic) asymptotics on the success probability of the ran-
domized slicer when using a list of the αd+o(d) shortest lattice vectors.
To find these sharp bounds, in Section 5.3 we show how to model the
flow of the algorithm as a random walk on the coset of the lattice
corresponding to the target vector, and we heuristically characterise
transition probabilities between different states in this infinite graph.

136

5.1. Introduction

0

t

List L:

α
t′
γ

β

Figure 5.2: The iterative slicer as a random walk over the coset t+L
using the list of lattice vectors L = L ∩ B(⃗0, α).

We show that the transition probabilities only depend on the norm of
coset representatives and therefore the graph can be simplified to an
interval (0,∞) representing the norm. The aforementioned problem of
finding the success probability of the slicer then translates to: what is
the probability in this graph of starting from a given initial norm and
ending at any target norm of at most γ? From [DLW19] we know that
we almost always reach a state of norm at most some β = f(α) ≥ γ –
reaching this state occurs with probability at least 1/ poly(d). How-
ever, reaching a state β′ < β occurs only with exponentially small
probability 2−Θ(d). Now, whereas the analysis of [DLW19] can be in-
terpreted as lower-bounding the success probability by attempting to
reach the target norm in a single step after reaching radius β, we are
interested in the arbitrary-step transition probabilities from β to at
most γ, so as to obtain sharp bounds.

As every path in our graph from β to γ has an exponentially small
probability in d, the total success probability is dominated by that
of the highest probable path for large d; which after an appropriate
log-transform boils down to a shortest path in a graph. Therefore
obtaining the success probability of the randomized slicer is reduced

137

5. CVP with Preprocessing

to determining a shortest path in this infinite graph. We show in
Section 5.4 how we can approximately compute this shortest path
numerically, using a suitably dense discretization of the search space
or using convex optimization. In Section 5.5 we go a step further by
proving an exact analytic expression of the shortest path, which results
in sharp asymptotics on the success probability of the randomized
slicer for the general case of approx-CVP.

Heuristic claim 74 (Success probability of the randomized slicer).
Given a list L of the αd+o(d) shortest lattice vectors as input, the success
probability pα2,γ2 of one iteration of the randomized slicer for γ-CVPP
equals:

pα2,γ2 =
n∏

i=1

(
α2 − (α2 + xi−1 − xi)2

2xi−1

)d/2+o(d)

with n defined by equation (5.1) on page 154, and xi as in Definition 81
depending only on α and γ.

Running the randomized slicer for O(p−1
α2,γ2) iterations, we expect

to solve γ-CVPP with constant probability. Together with a (naive)
linear search over the preprocessed list, this directly leads to explicit
time and space complexities for a plain version of the randomized slicer
for solving CVPP, described in Figure 5.1. When using a large list of
size at least 20.1436d+o(d) from the preprocessing phase of CVPP, we
derive that one step is optimal, thus obtaining the same asymptotic
complexity as [DLW19]. When using less than 20.1436d+o(d) memory we
gradually see an increase in the optimal number of steps in the short-
est path, resulting in ever-increasing improvements in the resulting
asymptotic complexities for CVPP as compared to [DLW19].

Extensions in full work

In the full version1 of this work we exhibit the versatility of the random
walk model. For example we show how to adapt the graph slightly
to analyse the success probability of the iterative slicer for the BDD-
variant of CVP, where the target lies unusually close to the lattice.
In addition, by using a similar random walk model, we derive a tight

1Full version: https://eprint.iacr.org/2020/120.pdf

138

https://eprint.iacr.org/2020/120.pdf

5.2. The randomized iterative slicer

probability analysis of graph-based Nearest Neighbour Search tech-
niques, and the resulting time-memory trade-off when applied to siev-
ing algorithms, improving on previous upper bounds.

Next to the versatility we also further improve the time-memory
trade-off by using the asymptotic best bucketing technique [BDGL16]
as explained in Section 3.3. While in previous works [Laa16; Laa19]
these bucketing techniques came at the cost of large memory over-
heads, we show how this can be achieved efficiently with only a small
memory overhead for CVPP, and no overhead for batch-CVPP.

5.1.2 Working heuristics

The first heuristic which we use is the commonly used Gaussian heuris-
tic, which predicts the number of lattice vectors and their density
within certain regions based on the lattice volume. Its use for analysing
sieve-type algorithms is well established [NV08; BGJ15; BDGL16;
Laa16] and seems consistent with various experiments conducted in
the past.

The second heuristic assumption we use is also central in previous
work on the randomized iterative slicer [DLW19; Laa19], and consists
of assuming that the input target can be randomized, yielding essen-
tially independent experiments each time we randomize the input over
the coset of the target vector. Practical experiments from [DLW19]
seem to support this assumption.

5.2 The randomized iterative slicer
The iterative slicer (Algorithm 4) is a simple but effective algorithm
that aims to solve the closest vector problem or variants thereof. It
starts with a preprocessing stage that only depends on the input lat-
tice, after which it can solve multiple problem instances over this fixed
lattice, amortizing the cost of preprocessing.

5.2.1 The algorithm

The preprocessing consists of finding and storing a list L ⊂ L of lattice
vectors. Then given a target point t ∈ Rd the iterative slicer tries
to reduce the target t by the list L to some smaller representative

139

5. CVP with Preprocessing

Algorithm 4: The iterative slicer of [SFS09]
Input: A target vector t ∈ Rd, a list L ⊂ L.
Output: A close vector v ∈ L to t.

1 Function IterativeSlicer(L, t):
2 t0 ← t;
3 for i← 0, 1, 2, . . . do
4 ti+1 ← min

v∈L∪{0}
{ti − v};

5 if ti+1 = ti then return t0 − ti ;
6 end

t′ ∈ t + L in the same coset of the lattice. This is repeated until
the reduction fails or until the algorithm succeeds, i.e., when ∥t′∥ ≤
γ ·dist(L, t). We then obtain the lattice point t−t′ that lies at distance
at most γ ·dist(L, t) to t. Observe that t′ is a shortest vector in t+L
if and only if v = t− t′ ∈ L is a closest lattice vector to t.

To provably guarantee that the closest vector is found we need
the preprocessed list L to contain all the Voronoi-relevant vectors;
the vectors that define the Voronoi cell of the lattice. However most
lattices have O(2d) relevant vectors, which is too much to be practi-
cally viable. Under the Gaussian heuristic, Laarhoven [Laa16] showed
that 2d/2+o(d) short vectors commonly suffice for the iterative slicer to
succeed with high probability, but this number of vectors is still too
large for any practical algorithm. The randomized slicer (Algorithm
5) of Doulgerakis–Laarhoven–De Weger [DLW19] attempts to over-
come this large list requirement by using a smaller preprocessed list
together with rerandomizations to obtain a reasonable probability of
finding a close vector – the success probability of one run of the iter-
ative slicer might be small, but repeating the algorithm many times
using randomized inputs from t+L, the algorithm then succeeds with
high probability, without requiring a larger preprocessed list.

Because we can only use a list of limited size, one can ask the
question which lattice vectors to include in this list L. Later in the
analysis it will become clear that short vectors are more useful to
reduce a random target, so it is natural to let L consist of all short
vectors up to some radius. Let α > λ1(L) be this radius and denote

140

5.2. The randomized iterative slicer

Algorithm 5: The randomized iterative slicer of [DLW19]
Input: A target vector t ∈ Rd, a list L ⊂ L, a target distance

γ ∈ R.
Output: A close vector v ∈ L, s.t. ∥t− v∥ ≤ γ.

1 Function RandomizedSlicer(L, t, γ):
2 repeat
3 t′ ← Sample(t+ L);
4 v← IterativeSlicer(L, t′);
5 until ∥t′ − v∥ ≤ γ;
6 return v + (t− t′);

its square by a := α2. The preprocessed list then becomes

La := {x ∈ L : ∥x∥2 ≤ a}.

Throughout this work let us assume that the lattice L is normalized
such that λ1(L) ≈ gh(L) = 1. Then under the Gaussian heuristic
the list consists of |La| = αd+o(d) lattice points, which determines (ig-
noring nearest neighbour data structures) the space complexity of the
algorithm and also determines the time complexity of each iteration.

5.2.2 Average-case CVPP

Recall from Section 2.3 that the approximate γ-CVP problem for
γ ≥ 1 asks you, given any target t, to find a lattice point at distance
at most γ ·dist(L, t) from the lattice. Throughout this chapter we will
write c := γ2 for the squared approximation factor, where c = 1 corre-
sponds to exact CVPP. We will only consider the average-case version
of this problem, where the lattice follows the Gaussian Heuristic and
the target (coset) is uniformly random t + L ∼ U(Rd/L). Under the
Gaussian Heuristic this implies that dist(L, t)→ gh(L) = 1 as d→∞,
and to simplify the analysis we will simply assume that dist(L, t) = 1.

The preprocessing variant γ-CVPP additionally allows to do any
kind of preprocessing given only a description of the lattice L (and
not the target t). The size of the final preprocessing advice is counted
in the eventual space complexity of the CVPP algorithm.

141

5. CVP with Preprocessing

5.2.3 Success probability

The iterative slicer is not guaranteed to succeed as the list does not
contain all relevant vectors. However, suppose that the iterative slicer
has a success probability of pa,c given a random target. It is clear that
having a larger preprocessed list increases the success probability, but
in general it is hard to concretely analyse the success probability for
a certain list. Heuristically however, we can do such an analysis.

Under the Gaussian heuristic we can derive bounds on pa,c, as was
first done by [DLW19]. They obtained the following two regimes for
the success probability as d→∞:

• For a ≥ 2c− 2
√
c2 − c we have pa,c → 1.

• For a < 2c − 2
√
c2 − c we have pa,c = exp(−C · d + o(d)) for a

constant C = C(a, c) > 0 depending on a, c.

The second case above illustrates that for a small list size the algo-
rithm needs to be repeated a large number of times with fresh targets
to guarantee a high success probability. This gives us the random-
ized slicer algorithm. To obtain a fresh target the idea is to sample
randomly a not too large element from the coset t + L, and assume
that the reduction of this new target is independent from the initial
one. Experiments from [DLW19] suggest that this is a valid assump-
tion to make, and given a success probability pa,c ≪ 1 it is enough to
repeat the algorithm Θ(1/pa,c) times to find the closest lattice point.
However this success probability in the case a < 2c− 2

√
c2 − c is not

yet fully understood. Two heuristic lower bounds [DLW19; Laa19]
are known and are shown in Figure 5.3. None of these lower bounds
fully dominates the other, which implies that neither of the bounds is
sharp. In the remainder of this work we consider this case where we
have a small success probability.

5.3 The random walk model
To interpret the iterative slicer algorithm as a random walk we first
look at the probability that a target t is reduced by a random lattice
point from the preprocessed list La. By the Gaussian heuristic this
lattice point is distributed uniformly over the ball of radius

√
a. To

142

5.3. The random walk model

reduce the squared norm ∥t∥2 from x to at most y ∈ [(
√
x−√a)2, x]

by some v with ∥v∥2 = a, the inner product between t and v must
satisfy:

⟨t,v⟩ ≤ −(a+ x− y)/2.

Using the asymtotic formulas in Lemma 46 for the volume of a spher-
ical cap we then deduce the following probability:

Pr
v∈√a·Bd

(
∥t+ v∥2 ≤ y

∣∣∣ ∥t∥2 = x
)
=

(
1− (a+ x− y)2

4ax

)d/2+o(d)

.

Clearly any reduction of t from a squared norm of x to a squared norm
strictly less than (

√
x − √a)2 is unreachable by a vector in

√
a · Bd.

The probability that the target norm is successfully reduced to a value
less than ∥t∥2 decreases in a and thus we prefer to have short vectors
in our list. As the list La does not contain just one, but ad/2 lattice
vectors we obtain the following heuristic reduction probability for a
single iteration of the iterative slicer:

Pr
(
∃v ∈ La : ∥t+ v∥2 ≤ y

∣∣∣ ∥t∥2 = x
)2/d

→ min

{
1, a ·

(
1− (a+ x− y)2

4ax

)}
as d→∞. The reduction probability takes the form exp(−Cd+o(d))
for some constant C ≥ 0 that only depends on a, x and y. As we are
interested in the limit behaviour as d→∞ we focus our attention to
this base exp(−C), which we call the base-probability of this reduc-
tion and denote it by pa(x, y). Although these transition probabilities
represent a reduction to any square norm ≤ y, they should asymptot-
ically be interpreted as a reduction to ≈ y, as for any fixed ε > 0 we
have that pa(x, y − ϵ)d/pa(x, y)d = 2−Θ(d) → 0 as d→∞. If ∥t∥2 = x
is large enough we can almost certainly find a lattice point in La that
reduces this norm successfully. In fact a simple computation shows
that this is the case for any x > b := a2/(4a − 4) as d → ∞. So
in our analysis we can assume that our target is already reduced to
square norm b, and the interesting part is how probable the remaining
reduction from b to c is.

143

5. CVP with Preprocessing

∥t∥2
0 1 ≤ c y x b

pa(x, y)

Definition 75 (Transition base-probability). Let a, b ∈ R be such
that 1 < a < 2 and b = a2/(4a − 4). The transition base-probability
pa(x, y) to reduce ∥t∥2 from x to y is given by

pa : Sa → (0, 1],

(x, y) 7→
(
a− (a+ x− y)2

4x

)1/2

,

with Sa = {(x, y) ∈ [1, b]2 : b ≥ x ≥ y and (
√
x − √a)2 < y} the

allowed transitions.

Proof. We have to show that indeed pa(x, y) ∈ (0, 1] for (x, y) ∈ Sa,
and the given constraints on a and b. For the lower bound note that
expanding (

√
x−√a)2 < y, and rewriting gives a+ x− y < 2

√
a
√
x.

Because y ≥ x, and a > 1, both sides are positive and thus squaring
gives (a+ x− y)2 < 4ax, and in particular

a− (a+ x− y)2
4x

=
4ax− (a+ x− y)2

4x
> 0.

For the upper bound we use that x ≤ b = a2/(4a− 4), and x− y ≥ 0
to show that

4ax− 4x ≤ a2 ≤ (a+ x− y)2,
from which it follows that

4ax− (a+ x− y)2
4x

≤ 4x

4x
= 1.

Using the above reduction probabilities we model the iterative
slicer as a random walk over an infinite graph where the nodes are
given by the interval [1, b] such that each node xi ∈ [1, b] is associated
with the squared norm ∥ti∥2 of the partly reduced target. Note that

144

5.3. The random walk model

each possible random walk b = x0 → x1 → · · · → xn = c has a cer-
tain success probability. Assuming the different steps are independent
this success probability is just the product of the individual reduction
probabilities. For an n-step path we could split our list La in n parts,
one for each step, to obtain this independence without changing the
asymptotic size of these lists. Again this success probability is of the
form exp(−Cd+ o(d)) for some constant C ≥ 0 that only depends on
x0, . . . , xn and a.

Definition 76 (Path). Let a, b, c ∈ R be such that 1 < a < 2 and
b = a2/(4a − 4) > c ≥ 1. Let n ≥ 1 be an integer. We denote an n-
step path on the interval [1, b] by x0 → x1 → · · · → xn for xi ∈ [1, b].
We define the set of all n-step paths with positive probability from b to
c by:

Sa[b
n→ c] := {(b = x0, x1, . . . , xn = c) ∈ Rn+1 : ∀i (xi−1, xi) ∈ Sa}.

The transition base-probability of such a path is given by

Pa[b
n→ c] : Sa[b

n→ c]→ (0, 1],

x 7→
n∏

i=1

pa(xi−1, xi).

The success probability of reaching c from b is determined by the
total probability of all successful paths. Note that all these paths have
some probability of the form exp(−Cd+o(d)) and thus the probability
for the path with the smallest C ≥ 0 will dominate all other paths
for large d. As a result, almost all successful walks will go via the
highest probable path, i.e., the one with the highest base-probability.
After applying a log-transform this becomes equivalent to finding the
shortest path in a weighted graph.

Definition 77 (Transition graph). Let a, b ∈ R be such that 1 < a <

2 and b = a2/(4a − 4). Let V = [1, b] and E = [1, b]2 be an infinite
graph G = (V,E) with weight function w : E → R≥0 ∪ {∞} given by:

w(x, y) =

{
− log pa(x, y), if (x, y) ∈ Sa;

∞, otherwise.

145

5. CVP with Preprocessing

One can associate n-step paths in this graph from b to c ∈ [1, b) with
the space Sa[b

n→ c]. The length of a path x ∈ Sa[b
n→ c] is denoted by

ℓa[b
n→ c](x) and the shortest path length by

ℓa,opt[b→ c] = inf
n∈Z≥1

inf
x∈Sa[b

n→c]

ℓa[b
n→ c](x).

Obtaining the success probability in this model therefore becomes
equivalent to obtaining the length of the shortest path ℓa,opt[b→ c] as
we have Pa[b

n→ c](x) = exp(−ℓa[b n→ c](x)).

5.4 Numerical approximations

We reduced the problem of obtaining the success probability of the
iterative slicer to the search of a shortest path in a specially con-
structed weighted infinite graph. We might not always be able to find
an exact solution in the input variables to the length of the shortest
path. However for fixed parameters we can always try to numerically
approximate the success probability, by approximating the shortest
path in our infinite graph. We present two fairly standard methods
for doing so. The first method first discretizes the infinite graph and
then determines the shortest path using standard algorithms such as
Dijkstra’s algorithm [Dij59]. The second method uses the fact that
the weight function wa : Sa → R≥0 is convex. A fact that we will later
use to derive an explicit solution.

5.4.1 Discretization

A natural way to approximate the shortest path in an infinite graph
is to first discretize to a finite subgraph with k vertices. Then one can
determine the shortest path in this subgraph using standard meth-
ods to obtain a short path in the infinite graph. The details of this
approach are shown in Algorithm 6.

Using any optimized Dijkstra implementation the time and space
complexity of Algorithm 6 is O(|Ed| + |Vd| log |Vd|) = O(k2). In gen-
eral this method gives a lower bound on the success probability for
any fixed a and c. Because the weight function wa : Sa → R≥0 is con-
tinuous Algorithm 6 converges to the optimal path length as k →∞.

146

5.4. Numerical approximations

Algorithm 6: A discretized shortest path algorithm
Input: Parameters 1 < a < 2, b = a2/(4a− 4) and c ∈ [1, b)

describing the graph, and a discretization value k.
Output: A shortest path on the discretized graph from b to c.

1 Function DiscretizedDijkstra(a, b, c, k):
2 Compute Vd = {c+ i·(b−c)

k
: i = 0, . . . , k};

3 Compute Ed = {(x, y) ∈ V 2
d ∩ Sa} and the weights

wa(x, y);
4 Compute shortest path on Gd = (Vd, Ed) from b to c

using [Dij59].

The C++ implementation of this method used for the experiments is
made available on Github2.

For this method to converge to the shortest path in the full graph
we only need a continuous weight function. Furthermore the number
of steps does not have to be specified a priori. The high memory usage
of O(k2) could limit the fineness of our discretization. To circumvent
this we can generate the edges (and their weight) on the fly when
needed, which reduces the memory consumption to O(k).

5.4.2 Convex optimization

Where the first method only needed wa : Sa → R≥0 to be continuous,
the second method makes use of the convexity of this function.

Lemma 78 (Convexity of Sa and wa). Let 1 < a < 2, the set of al-
lowed transitions Sa is convex and the weight function wa is strictly
convex on Sa.

Proof. The convexity of Sa = {(x, y) ∈ [1, b]2 : b ≥ x ≥ y and (
√
x −√

a)2 < y} follows immediately from the convexity of the function
f(x) = (

√
x−√a)2 on [0,∞). Remember that for (x, y) ∈ Sa

wa(x, y) = − log pa(x, y) = −
1

2
log

(
a− (a+ x− y)2

4x

)
,

2Implementation: https://github.com/WvanWoerden/randomized-slicer

147

https://github.com/WvanWoerden/randomized-slicer

5. CVP with Preprocessing

and thus we have

d2

dx2
wa(x, y) =

8xpa(x, y)
2 + (4a− 2(a+ x− y))2 − 16pa(x, y)

4

32x2pa(x, y)4
,

d

dy

d

dx
wa(x, y) =

−8xpa(x, y)2 + (4a− 2(a+ x− y)) · 2(a+ x− y)
32x2pa(x, y)4

,

d2

dy2
wa(x, y) =

8xpa(x, y)
2 + 4(a+ x− y)2

32x2pa(x, y)4
.

As pa(x, y) > 0 and a + x − y ≥ a > 0 for (x, y) ∈ Sa we have
d2

dy2
wa(x, y) > 0. We consider the Hessian H of wa. Computing the

determinant gives:

det(H) =
2(a+ x− y)4 · (4ax− (a+ x− y)2)

1024x6pa(x, y)8

and we can conclude that det(H) > 0 from the fact that 4ax − (a +
x − y)2 > 0 and (a + x − y)4 > 0 for (x, y) ∈ Sa. So H is positive
definite, which makes wa strictly convex on Sa.

Corollary 79 (Convexity of Sa[b
n→ c] and ℓa[b

n→ c]). Let a, b, c ∈ R
be such that 1 < a < 2 and b = a2/(4a − 4) > c ≥ 1. For any (fixed)
integer n ≥ 1, the space of n-step paths Sa[b

n→ c] is convex and the
length function ℓa[b

n→ c] is strictly convex on Sa[b
n→ c].

Proof. The convexity of Sa[b
n→ c] follows immediately from that of

Sa. Note that ℓa[b
n→ c](x) =

∑n
i=1wa(xi−1, xi) and thus it is convex

as a sum of convex functions. Furthermore, for each variable at least
one of these functions is strictly convex and thus the sum is strictly
convex.

So for any fixed n ≥ 1 we can use convex optimization to numer-
ically determine the optimal path of n steps. In fact, because of the
strict convexity, we know that this optimal path of n steps (if it exists)
is unique. However the question remains what the optimal number of
steps is, i.e., for which n we should run the convex optimization algo-
rithm. We might miss the optimal path if we do not guess the optimal
number of steps correctly. Luckily because wa(b, b) = 0 by definition,
we can increase n without being afraid to skip some optimal path.

148

5.4. Numerical approximations

Lemma 80 (Longer paths are not worse). Let a, b, c ∈ R be such that

1 < a < 2 and b = a2/(4a − 4) > c ≥ 1. If ℓa[b
n→ c] and ℓa[b

n+k→ c]
for n, k ≥ 0 both attain a minimum, then

min
x∈Sa[b

n→c]

ℓa[b
n→ c](x) ≥ min

x∈Sa[b
n+k→ c]

ℓa[b
n+k→ c](x).

Proof. Suppose ℓa[b
n→ c] attains its minimum at y = (b = y0, y1, . . . ,

yn = c) ∈ Sa[b
n→ c]. Using that wa(b, b) = 0 we get that:

min
x∈Sa[b

n+k→ c]

ℓa[b
n+k→ c](x) ≤ ℓa[b

n+k→ c](b, . . . , b = y0, . . . , yn = c)

= k · wa(b, b) + ℓa[b
n→ c](y)

= ℓa[b
n→ c](y).

This completes the proof.

So increasing n can only improve the optimal result. When run-
ning a numerical convex optimization algorithm one could start with
a somewhat small n and increase it (e.g., double it) until the result
does not improve any more.

5.4.3 Numerical results

We ran both numerical algorithms and got similar results. Running
the convex optimization algorithm gave better results for small a =
1+ε as the fineness of the discretization is not enough to represent the
almost shortest paths in this regime. This is easily explained as b ≈ 1

4ε

and thus for fixed c the distance between b and c, i.e., the interval to
be covered by the discretization quickly grows as ε→ 0.

The new lower bound that we obtained numerically for exact CVPP
(c = 1) is shown in Figure 5.3. For α ≤ 1.1047 we observe that the
new lower bound is strictly better than the two previous lower bounds.
For α > 1.1047 the new lower bound is identical to the lower bound
from [DLW19]. Taking a closer look at the short paths we obtained
numerically we see that α ≈ 1.1047 is exactly the moment where this
path switches from a single step to at least 2 steps. This makes sense
as in our model the lower bound from [DLW19] can be interpreted as

149

5. CVP with Preprocessing

Laa'16

DLW'19

Laa'19

Success probability bounds

Optimal

Optimal / DLW'19

20d 20.1d 20.2d 20.3d 20.4d 20.5d 20.6d

20d

2- 0.2d

2- 0.4d

2- 0.6d

2- 0.8d

2- 1.0d

2- 1.2d

→ List size

→
S
uc
ce
ss
pr
ob
ab
ili
ty

Figure 5.3: Lower bounds on success probability of the iterative slicer
for CVPP (c = 1) computed with a discretization parameter of k =
5000.

a ’single step’ analysis. This also explains the asymptote for this lower
bound as for α ≤ 1.0340 it is not possible to walk from b to c = 1 in
a single step.

When inspecting these short paths b = x0 → x1 → · · · → xn = c
further we observed an almost perfect fit with a quadratic formula
xi = u · i2 + v · i + b for some constants u, v. In the next section
we show how we use this to obtain an exact analytic solution for the
shortest path.

5.5 An exact solution

In order to determine an exact solution of the shortest path, and thus
an exact solution of the success probability of the iterative slicer we
use some observations from the numerical results. Due to Corollary 79
we know that for any fixed n ≥ 1 our minimization problem is strictly
convex. As a result there can be at most one local minimum which, if
it exists, is immediately also the unique global minimum.

150

5.5. An exact solution

What remains is to explicitly construct such a local minimum,
after which we only have to optimize over n. We recall from Section
5.4.3 that the optimal path x0 → · · · → xn seems to take the shape
xi = u · i2 + v · i + b with xn = c. So for our construction we assume
this shape, which reduces the problem to determining the constants
u, v. Furthermore, as we are trying to construct a local minimum, we
assume that all partial derivatives in the non-constant variables are
equal to 0. This gives enough restrictions to obtain a verbose, but
explicit solution.

Definition 81 (Explicit construction). Let a, b, c ∈ R be such that
1 < a < 2 and b = a2/(4a − 4) > c ≥ 1, and let n ≥ 1 be an integer.
We define

xi := ua[b
n→ c] · i2 + va[b

n→ c] · i+ b,

with ua[b
1→ c] := 0, va[b

1→ c] := c− b and for n ≥ 2:

ua[b
n→ c] :=

(b+ c− a)n−
√

(an2 − (b+ c))2 + 4bc(n2 − 1)

n3 − n ,

va[b
n→ c] :=

(a− 2b)n2 + (b− c) +
√

(an2 − (b+ c))2 + 4bc(n2 − 1)n

n3 − n .

Lemma 82. Let a, b, c, n and xi be as in Definition 81. By construc-
tion we have xn = c and

∂

∂xi

n∑
j=1

− log pa(xj−1, xj) = 0

for all i ∈ {1, . . . , n− 1}.

Proof. Note that the partial derivative constraints can be reduced to
the single constraint ∂

∂xi
(− log pa(xi−1, xi)− log pa(xi, xi+1)) = 0 for a

symbolic i. Together with the constraint xn = c one can solve for u, v
in xi = u · i2 + v · i+ b. For a symbolic verification see the Sage script
in Appendix A of the full version3.

What remains is to show that the explicit construction indeed gives
a valid path, i.e., one that is in the domain Sa[b

n→ c]. An example of

151

5. CVP with Preprocessing

10 steps

24 steps

(optimal)

30 steps

Optimal paths for

1-CVPP (a=1.02)

0 5 10 15 20 25 30
0
c

5

10

b

15

→ Steps

→
S
qu
ar
ed
no
rm

Figure 5.4: Some examples of the constructed paths in Definition 81
for a = 1.02, c = 1.

how these constructed paths look are given in Figure 5.4. We observe
that if n becomes too large these constructed paths are invalid as they
walk outside the interval [c, b]. This is an artefact of our simplification
that wa(x, y) = − log pa(x, y) which does not hold for (x, y) ̸∈ Sa.
We can still ask the question for which n this construction is actually
valid.

Lemma 83 (Valid constructions). Let a, b, c be as in Definition 81.

Let n ≥ 1 be an integer such that b−c
a
≤ n < 1

2
+

√
(4b−a)2−8(2b−a)c

2 a
and

xi = ua[b
n→ c] · i2 + va[b

n→ c] · i+ b.

Then x = (x0, . . . , xn) ∈ Sa[b
n→ c] and x is the unique minimum of

ℓa[b
n→ c].

Proof. We have to check that x satisfies the two conditions

xi−1 ≥ xi and (
√
xi−1 −

√
a)2 < xi,

3Full version: https://eprint.iacr.org/2020/120.pdf

152

https://eprint.iacr.org/2020/120.pdf

5.5. An exact solution

for all i ∈ {1, . . . , n}. Note that for n = 0 we must have b = c and
the statement becomes trivial. For n = 1 we have x = (b, c) and the
conditions follows from 0 ≤ b − c ≤ na ≤ a. So we can assume that
n ≥ 2. First we rewrite ua[b

n→ c] to:

ua[b
n→ c]

=
(b+ c− a)n−

√
((b+ c− a)n)2 + (a2n2 − (b− c)2)(n2 − 1)

n3 − n ,

which makes it clear that ua[b
n→ c] ≤ 0 when an ≥ b− c. As a result

the differences

xi−1 − xi = (1− 2i) · ua[b n→ c]− va[b n→ c],

are increasing in i ∈ {1, . . . , n}. Therefore for the first condition it is
enough to check that

x0 − x1 =
(b− c) + (2b− a)n−

√
(an2 − (b+ c))2 + 4bc(n2 − 1)

n2 + n
≥ 0.

In fact a solution with x0 = x1 = b is not so interesting, so solving for
x0 − x1 > 0 gives for n ≥ 2 the sufficient condition

n <
1

2
+

√
(4b− a)2 − 8(2b− a)c

2 a
.

For the second condition we first show the stronger property that
xi−1 − xi ≤ a, and again by the increasing differences it is enough
to show that xn−1 − xn ≤ a; rewriting gives the following sufficient
statement for n ≥ 2:

−an+ b− c ≤ 0.

Now we prove that √xi−1 −
√
xi <

√
a. If xi−1 = xi the condition

holds trivially, else xi−1 > xi and we get

(
√
xi−1 −

√
xi)

2 < (
√
xi−1 −

√
xi)(
√
xi−1 +

√
xi) = xi−1 − xi ≤ a.

Note that if √xi−1 −
√
a ≥ 0, then we can rewrite √xi−1 −

√
xi <

√
a

and square to obtain the condition (
√
xi−1−

√
a)2 < xi. Alternatively,

if √xi−1 −
√
a < 0, then due to a < 2 we obtain (

√
xi−1 −

√
a)2 <

(1−
√
2)2 < 1 ≤ xi.

We conclude that x ∈ Sa[b
n→ c], and because we have the equality

ℓa[b
n→ c](x) =

∑n
i=1− log pa(xi−1, xi) on Sa[b

n→ c], the claim that this
is a global minimum follows from Definition 81 and Lemma 79.

153

5. CVP with Preprocessing

So by Lemma 81 there exists some s ∈ N such that for all (b −
c)/a ≤ n ≤ s we have an explicit construction for the optimal n-step
path. By Lemma 80 we know that of these paths the one with n = s
steps must be the shortest. However for n > s our construction did not
work and thus we do not know if any shorter path exists. Inspired by
Lemma 80 and numerical results we obtain the following alternative
exact solution for n > s.

Theorem 84 (Optimal arbitrary-step paths). Let a, b, c ∈ R be such
that 1 < a < 2 and b = a2/(4a− 4) > c ≥ 1. Let n satisfy

n =

⌈
−1

2
+

1

2a

√
(4b− a)2 − 8(2b− a)c

⌉
. (5.1)

For k ≥ n the unique global minimum of ℓa[b
k→ c] is given by

x = (b, . . . , b, b = y0, . . . , yn = c) ∈ Sa[b
k→ c]

with yi = ua[b
n→ c] · i2 + va[b

n→ c] · i + b and the length is equal to
ℓa[b

n→ c](y).

Proof. By Corollary 79 it is enough to show that x is a local minimum,
therefore we check the partial derivatives. For i > k − n we have
∂
∂xi
ℓa[b

k→ c](x) = ∂
∂xi
ℓa[b

n→ c](y) = 0 by construction. For i < k − n
we have xi−1 = xi = xi+1 = b, which results in ∂

∂xi
ℓa[b

k→ c](x) =

−a−1
2b

< 0. For the most interesting case i = k − n we need that

n ≥ −1
2
+

√
(4b−a)2−8(2b−a)c

2 a
. Because as a result we get y0− y1 ≤ a2

2b−a
,

which together with y0 − y1 ≤ b − c ≤ b − 1 is precisely enough to
show that ∂

∂xk−n
ℓa[b

k→ c](x) ≤ 0.
To conclude let z ̸= x ∈ Sa[b

n→ c], then by Corollary 79 and using
that zi − xi = zi − b ≤ 0 for all 0 ≤ i ≤ k − n we have:

ℓa[b
k→ c](z) > ℓa[b

k→ c](x) + ⟨y − x,∇ℓa[b k→ c](x)⟩

= ℓa[b
k→ c](x) +

∑
i≤k−n

(zi − xi) ·
∂

∂xi
ℓa[b

k→ c](x)

≥ ℓa[b
k→ c](x).

and thus x is the unique global minimum of ℓa[b
k→ c].

154

5.5. An exact solution

Corollary 85 (Optimal minimum-step paths). Let a, b, c ∈ R be such
that 1 < a < 2 and b = a2/(4a − 4) > c ≥ 1. The optimal path in
the transition graph in Definition 77 from b to c consists of n steps,
with n defined by equation (5.1). The optimal path is of the form
b = x0 → x1 → · · · → xn = c with xi = ua[b

n→ c] · i2+ va[b n→ c] · i+ b.

Heuristic claim 86. Given the optimal path b = x0 → · · · → xn = c
from Corollary 85, the success probability of the iterative slice algo-
rithm with list size an/2+o(n) for

√
c-CVPP is given by

exp

(
−

n∑
i=1

wa(xi−1, xi)d+ o(d)

)
.

As we have an exact formula for the optimal number of steps, and
the lower bound from [DLW19] uses a ‘single-step’ analysis we know
exactly in which regime Corollary 85 improves on theirs. Namely for
those a > 1 and c ≥ 1 such that for n defined by equation (5.1) we have
n > 1. For exact CVPP we obtain improvements for a < 1.22033, i.e.,
when using less than 20.1436d+o(d) memory, as can be seen in Figure 5.1.
This improvement can also be visualized through Figure 5.5, which
plots the optimal number of steps against the size of the preprocessed
list. Whenever the optimal strategy involves taking more than one
step, we improve upon [DLW19]. For the crossover points where the
number of optimal steps changes we have a more succinct formula for
the shortest path and the success probability.

Lemma 87 (Success probability for integral n). Let a, b, c ∈ R be
such that 1 < a < 2 and b = a2/(4a − 4) > c ≥ 1. If n defined
similar to equation (5.1), but without rounding up, is integral, then
the optimal path from b to c has probability((

a

2− a

)n

·
(
1− 2n(a− 1)

2− a

))d/2+o(d)

.

Proof. For such n we obtain the expression xi = b − (i + 1) · i · a2−a
2−a

.
The result follows from simplifying the remaining expression.

155

5. CVP with Preprocessing

CVPP = 1-CVPP2-CVPP5-CVPP

Optimal number of steps

for (approximate) CVPP

20d 20.1d 20.1436d 20.2d 20.3d
1

2

4

8

16

32

→ List size

→
N
um
be
r
of
st
ep
s

Figure 5.5: Optimal number of steps n against the list size |L| =
αd+o(d) = ad/2+o(d). We improve upon [DLW19] whenever n > 1. For
large list sizes the optimal number of steps of cost exp(−Cd + o(d))
drops to 0, as then the success probability of the iterative slicer equals
2−o(d).

156

