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CHAPTER 4
Advanced Lattice Sieving on

GPUs, with Tensor Cores

This chapter is an extended version of the joint work ‘Advanced
lattice sieving on GPUs, with tensor cores’, with Léo Ducas and
Marc Stevens, published at Eurocrypt 2021.

4.1 Introduction
Lattice sieving algorithms [AKS01; NV08; MV10; HPS11a] are asymp-
totically superior to enumeration techniques [FP85; Kan83; SE94;
GNR10], but this has only recently been shown in practice. Progress
on sieving, both on its theoretical [Laa15; BGJ15; BDGL16; HKL18]
and practical performances [Fit+14; Duc18; LM18; Alb+19], brought
the cross-over point with enumeration as low as dimension 80. Prac-
tical performance is often measured by solving TU Darmstadt SVP
Challenges, given a random challenge lattice, one has to find a lattice
vector of length 1.05·gh(L), i.e. a factor 1.05 above the expected length
of the shortest vector. The work of M. R. Albrecht et al. at Eurocrypt
2019 [Alb+19], named the General Sieve Kernel (G6K), set new TU
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4. Advanced Lattice Sieving on GPUs

Darmstadt SVP-records [SG10] on a single machine up to dimension
155, while before the highest record was at 152 using enumeration
techniques on a large cluster with multiple orders of magnitude more
computational resources. They achieved this with an asymptotically
non-optimal sieving algorithm based on [BGJ15; HK17], which with
sufficient memory runs in time 20.349n+o(n).

While it is now clear that, in terms of time, sieving beats enu-
meration not only asymptotically, but also in practice, there are still
two big open questions in the development of practical lattice sieving
algorithms.

Firstly, can the asymptotically optimal sieve [BDGL16], running
in time 20.292n+o(n), be made practical and improve on the current
record-holding sieve in feasible dimensions? While concrete parame-
ters for lattice-based cryptography schemes are based on the asymp-
totic complexity of this sieve, there has to date been no practically (or
even asymptotically) efficient implementation of it. The asymptotic
analysis of the algorithm hides some potentially large polynomial and
subexponential factors, which are poorly understood from a concrete
perspective. Additionally, a naive implementation leads to subexpo-
nential time, or even exponential space overhead factors, that make
the algorithm uncompetitive [MLB17] in feasible dimensions. Another
interesting question is how the properties of this sieve interact with
parallelization efforts that are necessary for large scale attacks.

This brings us to the second open question: can these advanced
sieving algorithms scale efficiently beyond a shared-memory architec-
ture, e.g., to a large cluster of computers? The large number of lattice
vectors and their interactions makes lattice sieving algorithms non-
trivial to parallelize. Before scaling up to a cluster of computers, a
natural intermediate step is to port cryptanalytic algorithms to Graph-
ical Processing Units (GPUs); not only are GPUs far more efficient for
certain parallel tasks, but their bandwidth and computation capacity
ratio are already more representative of the difficulties to expect when
scaling up beyond a single computational server. This step can there-
fore already teach us a great deal about how a cryptanalytic algorithm
should scale in practice.
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4.1. Introduction

4.1.1 Related work

We give here a short survey of past efforts on the parallelization of
lattice sieving algorithms.

In 2011, Milde and Schneider [MS11] gave the first parallel im-
plementation of the Gauss Sieve. The global list is distributed over
several independent Gauss Sieve instances that are connected in a cy-
cle. A vector is passed along and reduced with each local list and vice
versa, before being inserted. As a result the vectors in the distributed
list are nearly pairwise reduced; nearly because the lists could have
changed in the meantime. This method scales almost linearly up to
about 5 threads, but the efficiency quickly degrades above that due to
the many non pairwise reduced vectors in the distributed list.

This problem was tackled by Ishiguro et al. [IKMT14] in 2014: by
storing a full copy of the list in shared-memory on each node, they
make sure that all vectors in the distributed list are pairwise reduced.
The resulting implementation scales well to hundreds of threads and,
by also abusing the ideal structure, was used to solve a TU Darmstadt
Ideal SVP challenge in dimension 128. However, because each node
has to store the full list, the maximum list size, and thus the largest
achievable dimension, is limited by the smallest node.

Also in 2014, Mariano et al. [MDB14] implemented a parallel ver-
sion of the List Sieve algorithm, with super-linear scalability at least
up to 32 threads. The claimed super-linear speed-up is possible due
to relaxations to the List Sieve properties made by the parallel vari-
ant. Around the same time Mariano et al. [MTB14] proposed a fine-
grained parallel shared-memory implementation of the Gauss Sieve
that achieves almost linear speed-up at least up to 64 cores, and
achieves similar run times as Ishiguro et al.

Later that year Bos et al. [BNP17] presented another distributed
implementation of the Gauss Sieve similar to the works of Milde et al.,
and Ishiguro et al., solving the scalability problems of the former in a
different way, while maintaining the use of fully distributed lists.

In 2017, both Ishiguro et al.’ and Bos et al.’ parallel Gauss Sieve
implementations were adapted to a (multi-)GPU setting by Yang et
al. [YKYC17], solving a TU Darmstadt Ideal SVP challenge in dimen-
sion 130 on 8 GPUs in 824 hours.

The first parallel implementations for more advanced and asymp-
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totically faster bucketed sieves such as the Hash Sieve [Laa15] and
BDGL Sieve [BDGL16] were introduced by Mariano et al. in 2015
[MBL15] and 2017 [MLB17] respectively. Both implementations use a
queued model similar to the Gauss Sieve, which in combination with
the bucketing techniques leads, both asymptotically and in practice, to
a much higher memory usage, making them infeasible for dimensions
above 100.

In 2019, a large combined effort of Albrecht, Ducas, Herold, Kir-
shanova, Postlethwaite, and Stevens [Alb+19] introduced the open-
source General Sieve Kernel (G6K), which combined many of the
state-of-the art advanced techniques such as Progressive Sieving and
Dimensions for Free into a single implementation. G6K assumes a sin-
gle node shared-memory model, and contains several sieving variants,
from simple List and Gauss Sieves to parallel variants of [BGJ15] and
[HK17]. The authors also set a new TU Darmstadt SVP challenge
record at dimension 155 in about 14 days using 72 CPU cores. For
more information about G6K see Section 3.5.

4.1.2 Contributions

The main contribution of this work is to answer the two open questions
(partially). We show that lattice sieving, including the more advanced
algorithmic improvements, can effectively be accelerated by GPUs. In
particular, we show that the NVIDIA Tensor cores, only supporting
specific low-precision computations, can be used efficiently for lattice
sieving. We exhibit how the most computationally intensive parts of
complex sieving algorithms can be executed in low-precision even in
large dimensions.

We show and demonstrate by an implementation that the use of
Tensor cores results in large efficiency gains for cryptanalytic attacks,
both in hardware and energy costs. We present several new compu-
tational records, reaching dimension 180 for the TU Darmstadt SVP
challenge record with only a single high-end machine with 4 GPUs
and 1.5TB RAM in 51.6 days. Not only did we break SVP-records
significant faster, but also with < 4% of the energy cost compared to
a CPU only attack. For instance, we solved dimension 176 using less
time and with less than 2 times the overall energy cost compared to
the previous record of dimension 155. Furthermore by re-computing
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data at appropriate points in our algorithms we reduced the memory
usage per vector by 60% compared to the base G6K implementation
with minimal computational overhead.
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Figure 4.1: Solved TU Darmstadt lattice challenges measured in wall-
clock time1, as reported on the challenge website [SG10]. Details on
the used hardware are also reported there. In short, the enumeration
records used large clusters of computers, while the sieving records used
a single (large) server.

Secondly, we introduce the first practical implementation of the
asymptotically best BDGL Sieve from [BDGL16] inside the G6K frame-
work, both for CPU-only (multi-threaded and AVX2-optimized) and
with GPU acceleration. In contrast to [MLB17] our implementation
does not use significant extra memory, and can therefore be used in
much higher dimensions. We use this to shed some light on the prac-
ticality of this algorithm. In particular we show that our CPU-only
BDGL Sieve variant already improves over the previous record-holding
sieve in sieving dimensions as low as 90, with a 5× speed-up around
dimension 120. Furthermore, we show that this cross-over point lies
much higher for our GPU accelerated sieve due to memory-bottleneck
constraints.

1Comparing wall-clock times between distinct hardware is in general not a
good practice, but the different nature of CPUs and GPUs makes it hard to fairly
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One key feature of G6K is to also consider lifts of pairs even if
such a pair is not necessarily reducible, so as to check whether such
lifts are short; the more such pairs are lifted, the more dimensions for
free one can hope for [Duc18; Alb+19]. Yet, Babai lifting of a vector
has quadratic running time which makes it too expensive to apply to
each pair. We introduce a filter based on dual vectors that detects
whether pairs are worth lifting. With adequate pre-computation on
each vector, filtering a pair for lifting can be made linear-time, fully
parallelizable, and very suitable to implement on GPUs.

Open source code

The CPU implementation of the BDGL Sieve has been integrated in
G6K, with further improvements, and we aim for long term mainte-
nance.2. The GPU implementations has also been made public, but
with lower expectation of quality, documentation and maintenance.3

4.1.3 Prerequisites

The reader of this chapter is assumed to be familiar with the con-
tents of Chapter 3, in particular lattice sieving, bucketing techniques,
Dimensions for Free and G6K.

4.2 GPU architecture and sieve design

In this section we explain the architecture of a GPU, the global design
of our new sieve implementations and how we reduce memory usage
and movement.

4.2.1 GPU device architecture

We give a short summary of the NVIDIA Turing GPU architecture
on which our implementations and experiments are based. Since this

compare them on other metrics. As further motivation the estimated energy usage
of our server was only a factor 2 higher than the one used for the G6K records.

2https://github.com/fplll/g6k/pull/61
3https://github.com/WvanWoerden/G6K-GPU-Tensor
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4.2. GPU architecture and sieve design

work was done a new generation named Ampere was launched, dou-
bling many of the performance metrics mentioned here.

CUDA cores and memory

An NVIDIA GPU can have up to thousands of so-called CUDA cores
organized into several execution units called Streaming Multiproces-
sors (SM ). These SM use their many CUDA cores (e.g. 64) to service
many more resident threads (e.g. 1024), in order to hide latencies of
computation and memory operations. Threads are bundled per 32 in
a warp, that follow the single-instruction multiple-data paradigm.

The execution of a GPU program, also called a kernel, consists
out of multiple blocks, each consisting of some warps. Each individual
block is executed on any available single SM. The GPU RAM, also
called global memory, can be accessed by all cores, but is relatively
slow. Global memory operations always pass through a GPU-wide
L2 cache. In addition, each SM benefits from an individual L1 cache
and offers a fast addressable shared memory that can only be used by
threads in that block. The fastest type of memory are the registers,
which are local to each thread, and which act as the input and output
of computational operations.

To implement GPU kernel functions for an NVIDIA GPU one can
use CUDA [NBGS08; NVF20] which is an extension of the C/C++ and
FORTRAN programming languages. A kernel is executed by a specified
number of threads grouped into blocks, all with the same code and in-
put parameters. During execution each thread learns that it is thread
t inside block b and one needs to use this information to distribute the
work. For example when loading data from global memory we can let
thread t read the t-th integer at an offset computed from b, because
the requested memory inside each block is contiguous such a mem-
ory request can be executed very efficiently; such memory request are
known as coalescing reads or writes and they are extremely important
to obtain an efficient kernel.

Tensor cores

Driven by the machine learning domain there have been tremendous
efforts in the past few years to speed up low-precision matrix multipli-
cations. This lead to the so-called Tensor cores, that are now standard
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GPU SM 1
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Figure 4.2: Device architecture of the NVIDIA RTX 2080 Ti and the
system used in this work.

in high-end NVIDIA GPUs. Tensor cores are optimized for 4× 4 ma-
trix multiplication and also allow a trade-off between performance and
precision. In particular we are interested in the 16-bit floating point
format fp16 with a 5-bit exponent and a 10-bit mantissa, for which
the tensor cores obtain an 8× speed-up over regular 32-bit operations
on CUDA cores.

RTX2080 Ti details. In this work we used the NVIDIA RTX2080 Ti
with 68 Streaming Multiprocessors, whose architecture is depicted in
Figure 4.2. There are 64 cores in each SM, that can service up to
1024 resident threads. There is a large register file of 65536 × 32-bit
registers, where up to 256 registers can be assigned to a thread. Each
SM has a dedicated 96KiB memory that is split into a private L1
cache and shared memory (either 32-64 KiB or 64-32 KiB split). The
Turing architecture is the 2nd NVIDIA GPU generation to feature
special Tensor units, eight per SM.

While a high-end CPU with many cores can reach a performance in
the order of a few tera floating point operations per second (TFLOPS),
the RTX2080 Ti can achieve 13 TFLOPS for 32-bit floating point
operations on its regular CUDA cores. The specialized Tensor cores
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enable the RTX2080 Ti to theoretically reach in the order of 107 fp16-
TFLOPS, improving by two orders of magnitude on a single high-end
CPU.

Efficiency

For cryptanalytic purposes it is not only important how many opera-
tions are needed to solve a problem instance, but also how cost effective
these operations can be executed in hardware. The massively-parallel
design of GPUs with many relatively simple cores results in large ef-
ficiency gains per FLOP compared to CPU designs with a few rather
complex cores; both in initial hardware cost as in power efficiency.
Showing that these simple cores can be used effectively also shortens
the gap to design low-cost and highly efficient customized hardware
for lattice sieving.

As anecdotal evidence we compare the acquisition cost, energy us-
age and theoretical peak performance of the CPU and GPU in the
new server we used for our experiments: the Intel Xeon Gold 6248
launched in 2019 and the NVIDIA RTX2080 Ti launched in 2018 re-
spectively. The CPU had a price of about e2500 and has a TDP of
150 Watt, while the GPU was priced at about e1000 and has a TDP
of 260 Watt. For 32-bit floating point operations the theoretical peak
performance is given by 3.2 TFLOPS4 and 13.45 TFLOPS for the
CPU and GPU respectively, making the GPU a factor 2.4 better per
Watt and 10.5 better per Euro spend on acquisition. For general 16-
bit floating point operations these number double for the GPU, while
the CPU obtains no extra speed-up (one actually has to convert the
data back to 32-bit). When considering the specialized Tensor cores
with 16-bit precision the GPU has a theoretical peak performance of
107.6 TFLOPS, improving by a factor 19.4 per Watt and a factor 84
per Euro spend on acquisition compared to the CPU.

4.2.2 Sieve design

The great efficiency of the GPU is only of use if the state-of-the-art al-
gorithms are compatible with the massively-parallel architecture and

4With 64 FLOP per core per cycle using two AVX-512 FMA units and a maximal
clock frequency of 2500MHz when using AVX-512 on all 20 cores.
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Bucketing Reducing Insertion

Database

Loop until target saturation achieved

Figure 4.3: High level diagram of the implemented Sieving process.

the specific low-precision operations of the Tensor cores. To show this
we extended the lattice sieving implementation of G6K. We will focus
our main discussion on the sieving part, as the other G6K instruc-
tions are asymptotically irrelevant and relatively straightforward to
accelerate on a GPU (which we also did).

All of our CPU multi-threaded and GPU-powered sieve implemen-
tations follow a similar design (cf. Fig. 4.3) consisting out of three
sequential phases: bucketing, reducing and result insertion. We call
the execution of this triplet an iteration and these iterations are re-
peated until the desired saturation is achieved. Note that our sieves
are not ‘queued’ sieves such as the Gauss-Sieve of [MV10] and the
previous record setting bgj1 and hk3 sieves; this relaxation aligns
with the batched nature of GPU processing and allows to implement
an asymptotically optimal BDGL-like sieve [BDGL16], without major
memory overhead.

Bucketing

During the bucketing phase, the database is subdivided in several
buckets B1, . . . , Bm ⊂ L, each containing relatively close vectors. How
the subdivision is done is precisely where sieving variants differ, and
how different (asymptotic) time complexities are achieved. We do not
necessarily bucket our full database, as some vectors might be too
large to be interesting for the reduction phase in the first few itera-
tions. For each bucket we collect the database indices of the included
vectors. For the sieves we consider, these buckets can geometrically
be interpreted as spherical caps or cones with for each bucket Bk an
explicit or implicit bucket center ck ∈ Rn indicating its direction. For
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4.2. GPU architecture and sieve design

each included vector v ∈ Bk, we also store the inner product ⟨ck,v⟩
with the bucket center, which is obtained freely from the bucketing
process. Note that a vector may be included in several buckets, some-
thing which we precisely control by the multi-bucket parameter, whose
value we will denote by M . The optimal amount of buckets m and
the expected number of vectors in a bucket differs for each of our
bucketing implementations. In Section 4.3, we further exhibit our dif-
ferent bucketing implementations and compare their performance and
quality.

Reducing

During the reduction phase, we try to find all close pairs of lattice
vectors inside each bucket, i.e., at distance at most some length bound
ℓ. Using negation, we orient the vectors inside a bucket into the direc-
tion of the bucket center based on the earlier computed inner product
⟨ck,vi⟩. In case the bucketing center ck is itself a lattice vector (as
can be the case for BGJ-like sieves, but not for BDGL), it is also in-
teresting to check if ck − vi − vj is a short lattice vector, leading to a
triple reduction [HK17].

For each bucket Bk, we compute all pairwise inner products ⟨vi,vj⟩
for vi,vj ∈ Bk. Together with the already computed lengths ∥vi∥, ∥vj∥,
∥ck∥ and inner products ⟨ck,vi⟩, ⟨ck,bj⟩ we can then efficiently decide
if vi − vj or ck − vi − vj is short. Note that we compute the length
of both the pair and the triple essentially from a single inner product
computation. We return the indices of pairs and triplets that result
in a vector of length at most the length bound ℓ, together with the
length of the new vector. In Section 4.4 we further discuss the reduc-
tion phase and implementation details of our reduction kernel on the
GPU using low-precision Tensor cores.

The number of inner products we have to compute per bucket
grows quadraticly in the bucket size |Bk|, while the number of buckets
only decreases linearly in the bucket size. Therefore, one would in
principle want many buckets that are rather small and of high quality,
improving the probability that a checked pair actually gives a reduc-
tion. For a fixed bucketing algorithm more buckets generally increase
the cost of the bucketing phase, while decreasing the cost of the re-
duction phase due to smaller bucket sizes. We try to balance the cost
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of these phases to obtain optimal performance.
Next to finding short vectors in the sieving context we also want

to find pairs that lift to short vectors in the larger lifting context.
Unfortunately it is too costly to just lift all pairs as this has a cost of
at least Θ((l−κ)2) per pair. In Section 4.5 we introduce a filter based
on dual vectors that can be computed efficiently for each pair given a
bit of pre-computed data per vector. The few pairs that survive this
filter are more likely to lift to a short vector and we only lift those
pairs.

Result insertion

After the sieving part we have a list of tuples with indices and the cor-
responding length of the new vector they represent. The hash identifier
of the new vector can efficiently be recomputed by linearity of the hash
function and we check for duplicates in our current database. For all
non-duplicate vectors we then compute their x-representation. After
all new entries are created they are inserted back in the database,
replacing entries of greater length.

4.2.3 Data storage and movement

Recall from Section 3.5 that G6K stores quite some data per vector
such as the coefficients x in terms of the basis, a Gram-Schmidt rep-
resentation y, the lift target t, a SimHash, and more. Theoretically
we could remove all data except the x-representation and compute
all other information on-the-fly. However, as most of this other infor-
mation has a cost of Θ(n2) to compute from the x-representation this
would mean a significant computational overhead, for example increas-
ing the cost of an inner product from Θ(n) to Θ(n2). Also given the
limited amount of performance a CPU has compared to a GPU we cer-
tainly want to minimize the amount of such overhead for the CPU. By
recomputing at some well chosen points on the GPU, our accelerated
sieves minimize this overhead, while only storing the x-representation,
length and a hash identifier per vector, leading to an approximately
60% reduction in storage compared to the base G6K implementation.
As a result we can sieve in significantly larger dimensions with the
same amount of system RAM.
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While GPUs have an enormous amount of computational power,
the memory bandwidth between the database in system RAM and the
GPU’s RAM is severely limited. These are so imbalanced that one can
only reach theoretical peak performance with Tensor cores if every byte
that is transferred to the GPU is used in at least 213 computations. A
direct result is that reducing in small buckets is (up to some threshold)
bandwidth limited. Growing the bucket size in this regime would not
increase the wall-clock time of the reduction phase, while one does
consider more pairs. So larger buckets are preferred, in our hardware
for a single active GPU the threshold seems to be around a bucket
size of 214, matching the 213 computations per byte ratio. Because in
our hardware each pair of GPUs share their connection to the CPU,
halving the bandwidth for each, the threshold grows to around 215

when using all GPUs simultaneously.

The incidental benefit of large buckets is that the conversion from
the x-representation to the y-representation, which can be done di-
rectly on the GPU, is negligible compared to computing the many
pairwise inner products. To further limit the movement of data we
only return indices instead of a full vector; if we find a short pair
vi − vj on the GPU we only return i, j and ∥vi − vj∥2. The new
x-representation and hash identifier can efficiently (in O(n)) be com-
puted on the CPU directly from the database.

4.3 Bucketing

The difference between different lattice sieve algorithms mainly lies
in their bucketing method. These methods differ in their time com-
plexity and their performance in catching close pairs. In this sec-
tion we exhibit a Tensor-GPU accelerated bucketing implementation
triple_gpu similar to bgj1 and hk3 inspired by [BGJ15; HK17],
and two optimized implementations of the asymptotically best known
bucketing algorithm [BDGL16], one for CPU making use of AVX2
(bdgl) and one for GPU (bdgl_gpu). After this we show the practical
performance difference between these bucketing methods.
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4.3.1 BGJ-like bucketing (triple_gpu)

Recall from Section 3.3 that the bucketing method used in bgj1 and
hk3 is based on spherical caps, directed by explicit bucket centers that
are also lattice points. Inspired by this we start the bucketing phase
by first choosing some bucket centers b1, . . . ,bm from the database;
preferably the directions of these vectors are somewhat uniformly dis-
tributed over the sphere. Then we associate each vector v ∈ L in our
database to the bucket Bkv where

kv = argmax
1≤k′≤m

∣∣∣∣〈 bk′

∥bk′∥
,v

〉∣∣∣∣ .
In this we differ from the original versions of bgj1 and hk3 [BGJ15;
HK17; Alb+19] in that they use a fixed filtering threshold on the
angle |⟨bk/∥bk∥,v/∥v∥⟩|. We further relax this condition somewhat
by the multi bucket parameter M , to associate a vector to the best M
buckets. As a result our buckets do not exactly match spherical caps,
but they should still resemble them; in particular such a change does
only affect the asymptotic analysis up to subexponential factors. We
chose for this alternation as this fixes the amount of buckets associated
to each vector, which reduced some communication overhead in our
highly parallel GPU implementations.

In each iteration the new bucket centers are chosen, normalized
and stored once on each GPU. Then we stream our whole database
v1, . . . ,vN through the GPUs and try to return for each vector the
indices of the M closest normalized bucket vectors and their corre-
sponding inner products ⟨vi,bk⟩. For efficiency reasons the bucket
centers are distributed over 16 threads and each thread stores only the
best encountered bucket for each vector. Then we return the buckets
from the best M ≤ 16 threads, which are not necessarily the best
M buckets overall. The main computational part of computing the
pairwise inner products is similar to the Tensor-GPU implementation
for reducing, and we refer to Section 4.4.1 for further implementation
details.

The cost of bucketing is O(N · n) per bucket. Assuming that the
buckets are of similar size |Bk| ≈ M · N/m the cost to reduce is
O(M ·N

m
· n) per bucket. To balance these costs for an optimal run-

time one should choose m ∼ M ·
√
N buckets per iteration. For
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the regular 2-sieve strategy with an asymptotic memory usage of
N = (4/3)n/2+o(n) = 20.208n+o(n) this leads to a total complexity of
20.349n+o(n) using as little as 20.037n+o(n) iterations. Note that in low
dimensions we might prefer a lower number of buckets to achieve the
minimum required bucket size to reach peak efficiency during the re-
duction phase.

4.3.2 BDGL-like bucketing (bdgl and bdgl_gpu)

Recall from Section 3.3 that the asymptotically optimal bucketing
method from [BDGL16] improves over the bgj1 and hk3 sieves by
using structured bucket centers. One splits the dimension n into k
smaller blocks of similar dimensions n1, . . . , nk that sum up to n, and
(after some orthonormal transformation) the set C of bucket centers is
a direct product C = C1×±C2 · · ·×±Ck of local bucket centers. For a
vector v we only have to pick the closest local bucket centers to find the
closest global bucket center, implicitly considering m = 2k−1

∏
b |Cb|

bucket centers at the cost of only
∑

b |Cb| ≈ O(m1/k) inner products.
To optimize the parameters we again balance the cost of bucket-

ing and reducing. Note that for k = 1 we essentially obtain bgj1
with buckets of size Õ(N1/2) and a time complexity of 20.349n+o(n). For
k = 2 or k = 3 the optimal buckets become smaller of size Õ(N1/3) and
Õ(N1/4) respectively and of higher quality, leading to a time complex-
ity of 20.3294n+o(n) and 20.3198n+o(n) respectively. By letting k slowly
grow, e.g., k = Θ(log(n)) there will only be a subexponential 2o(n)
number of vectors in each bucket, leading to the best known time
complexity of 20.292n+o(n).

We will take several liberties with the above strategy to address
practical efficiency consideration and fine-tune the algorithm. For ex-
ample, for a pure CPU implementation we may prefer to make the
average bucket size somewhat larger than the ≈ N1/(k+1) vectors that
the theory prescribes; this will improve cache re-use when searching for
reducible pairs inside buckets. In our GPU implementation, we make
this average bucket size even larger, to prevent memory bottlenecks
in the reduction phase.

Furthermore, we optimize the construction of the local bucket cen-
ters c ∈ Ci to allow for a fast computation of the local inner products
⟨c,v⟩. While [BDGL16] choose the local bucket centers Ci uniformly
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at random, we apply some extra structure to compute each inner prod-
uct with a vector v in time O(log(ni)) instead of O(ni). The main
idea is to use the (Fast) Hadamard Transform H on say 32 ≤ ni co-
efficients of v. Note that this computes the inner product between v
and 32 orthogonal ternary vectors, which implicitly form the bucket
centers, using only 32 log2(32) additions or subtractions. To obtain
more than 32 different buckets we permute and negate coefficients of
v in a pseudo-random way before applying H again. This strategy can
be heavily optimized both for CPU using the vectorized AVX2 instruc-
tion set (bdgl) and for GPU by using special warp-wide instructions
(bdgl_gpu). In particular this allows a CPU core to compute an inner
product every 1.3 to 1.6 cycles for 17 ≤ ni ≤ 128. We first explain im-
plementation details specifically targeted for the AVX2 CPU instruction
set, and then we discuss how to similarly implement it for the GPU.

Bucketing on AVX2 CPU cores

For the sake of this discussion, let us fix the dimension of the local
blocks to n

k
= 48. We represent the input vector v ∈ R48 using 16-bits

fixed-point precision; so that we can fit v within 3 AVX2 registers. We
then construct on-the-fly a pseudo-random sequence of m′′ = m′/32
permutations πi acting over the 48 coordinates of v. For brevity these
permutations also include pseudo-random negations. The permutation
are constructed by sequential updates as πi = τi ◦ πi−1.

The pseudo-randomness is obtained simply by iterating a single
round of AES-NI using the seed both for fixed key material and initial
value; each round produces 128 pseudo-random bits used for a permu-
tation update (the choice for AES is due to hardware-acceleration).
The permutation update τi is constructed from this pseudo-random
bits by combining AVX2 bytewise shuffle instructions within each
AVX2 registers (chosen pseudo-randomly among a few predefined shuf-
fles), and controlled swaps between pairs of AVX2 registers (directly
constructed from the pseudo-randomness using bitwise operations).

Finally, we also rely on the Fast Hadamard transform H : R48 →
R32 over the first 32 coordinates of a permuted vector w = π(v) ∈ R48.
We note that each output of H(π(v)) for a random permutation im-
plicitly corresponds to an inner product ⟨v, c⟩ for some ternary vector
c ∈ {−1, 0, 1}48 of hamming weight 32. Because the output of the
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Hadamard transform H is also in the form of AVX2 registers, extract-
ing (the index of) argmaxc∈S⟨c,v⟩ can also be done in a vectorized
and on-the-fly manner.

For large m′, we can bucket a vector v in less than 1.6 ·m′ many
CPU cycles. Another advantage is that this whole procedure fits
within register memory: there is no need to access the vectors c ∈ S
from memory. This therefore leaves all the memory bandwidth and
cache storage to concurrent processes working on other tasks.

The CPU implementation of bdgl has been integrated in G6K.5 As
it may be of independent interest, the AVX2 bucketer is also provided
as a stand-alone program.6

Bucketing on GPU cores

We also created a GPU accelerated version bdgl_gpu based on the
ideas from the CPU implementation. We describe some implementa-
tion details of the local bucketing step.

Recall that 32 threads are grouped in a warp, following the single-
instruction multiple-data paradigm. One could interpret instructions
executed by a warp as AVX2 instructions on very wide (1024 bit) reg-
isters. We let each warp process multiple vectors at the same time
and each vector v = (v1, . . . , vn/k) is distributed over the 32 threads
by storing vi in thread i (mod 32) ∈ {1, . . . , 32}. Processing multiple
vectors at the same time allows to amortize the cost of generating the
appropriate randomness and to hide data latencies.

Depending on the dimension we use a Hadamard transform over
the first 32 or 64 coefficients, extracting 32 or 64 implicit inner prod-
ucts at a time respectively. Similar to AVX2 we have the __shfl_sync
instruction to move data between threads in a warp. For example
the __shfl_xor_sync instruction exchanges data between all threads
i and XOR (i, c) for some value c. We used this to implement the Fast
Hadamard Transform with a logarithmic number of such exchanges in
a straightforward way.

The pseudo-randomness is obtained from the cuRAND library.
The total permutation consists out of three parts. First we try to
fully permute the coefficients inside the Hadamard region by doing

5https://github.com/fplll/g6k/pull/61
6https://github.com/lducas/AVX2-BDGL-bucketer
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random swaps using the __shfl_xor_sync instruction and a coin-flip
over several rounds. Note that exchanging threads also need to do
a shared coin-flip, but only once per round for all vectors that are
processed at the same time. The second step consists out of random
sign flips of coefficients inside the Hadamard region. Lastly coeffi-
cients from outside the Hadamard region are randomly swapped with
coefficients inside the region, this happens locally on each thread.

To prevent many branches and a high overhead each thread only
stores the best encountered bucket for each vector it processes. So
thread i ∈ [1, . . . , 32] stores the best of the buckets i, i+ 32, i+ 64, . . .
for each vector. Of these 32 results we then take the best M buckets.
This is a performance trade-off and as a result we do not necessarily
obtain the best M buckets overall. We will see in Section 4.3.3 that
for small values of M this does not influence the bucketing quality
that much.

4.3.3 Quality comparison

In this section we compare the practical bucketing quality of the BGJ-
and BDGL-like bucketing methods we implemented. More specifi-
cally, we consider triple_gpu, 1-bdgl_gpu and 2-bdgl_gpu where
the latter two are instances of bdgl_gpu with k = 1 and k = 2 blocks
respectively. Their quality is compared to the idealized theoretical
performance of bgj1 with uniformly distributed bucket centers.7 For
triple_gpu, we follow the Gaussian Heuristic and sample bucket cen-
ters whose directions are uniformly distributed. As a result the quality
difference between triple_gpu and the idealized version highlights the
quality loss resulting from our implementation decisions. Recall that
compared to bgj1 the main difference is that for every vector we re-
turn the M closest bucket centers instead of using a fixed threshold
for each bucket. Also these are not exactly the M closest bucket cen-
ters, as we first distribute the buckets over 16 threads and only store a
single close bucket per thread. For our bdgl_gpu implementation the
buckets are distributed over 32 threads and we add to this that the
bucket centers are not random but somewhat structured by the direct

7Volumes of caps and wedges for predicting the idealized behavior where ex-
tracted from [AGPS20], and more specifically https://github.com/jschanck/
eprint-2019-1161/blob/main/probabilities.py.
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product and Hadamard construction. In particular the product con-
struction has an inherent subexponential quality loss, which is further
analysed in [Duc22].

To compare the geometric quality of bucketing implementations,
we measure how uniform vectors are distributed over the buckets and
how many close pairs end up in at least one common bucket. The first
measure is important as the reduction cost does not depend on the
square of the average bucket size

(
1
m

∑m
k=1 |Bk|

)2, which is fixed, but
on the average of the squared bucket size 1

m

∑m
k=1 |Bk|2, which is only

minimal if the vectors are equally distributed over the buckets. For all
our experiments we observed at most an overhead of 0.2% compared
to perfectly equal bucket sizes and thus we will further ignore this part
of the quality assessment. To measure the second part efficiently we
sample 220 close unit pairs (x,y) ∈ Sn×Sn uniformly at random such
that ⟨x,y⟩ = ±1

2
. Then we count the number of pairs that have at

least 1 bucket in common, possibly over multiple iterations. We run
these experiments with parameters that are representative for practical
runs. In particular we consider (sieving) dimensions up to n = 144 and
a database size of N = 3.2 · 20.2075n to compute the number of buckets
given the desired average bucket size and the multi-bucket parameter
M . Note that we specifically consider the geometric quality of these
bucketing implementations for equivalent parameters and not the cost
of the bucketing itself.

To compare the bucketing quality between the different methods
and the idealized case we first consider the experimental results in
graphs a. and b. of Figure 4.4. Note that the bucketing methods
triple_gpu and 1-bdgl_gpu obtain extremely similar results overall,
showing that the structured Hadamard construction is competitive
with fully random bucket centers. We see a slight degradation of
5% to 20% for triple_gpu with respect to the idealized case as a
result of not using a fixed threshold. We do however see this gap
decreasing when M grows to 4 or 8, indicating that these two methods
of assigning the buckets become more similar for a larger multi-bucket
parameter. At M = 16 we see a sudden degradation for triple_gpu
which exactly coincides with the fact that the buckets are distributed
over 16 threads and we only store the closest bucket per thread. The
quality loss of 2-bdgl_gpu seems to be between 15% and 36% in the
relevant dimensions, which is quite significant but reasonable given a
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Figure 4.4: Bucketing Quality Comparison. We sampled 220 pairs
v,w of unit vectors such that |⟨v,w⟩| = 0.5 and we measured how
many fell into at least 1 common bucket. The number of buckets is
computed based on the desired average bucket size |Bk|, the multi-
bucket parameter M , and a representative database size of N = 3.2 ·
20.2075n. The found pairs in a. and b. are normalized w.r.t. idealized
theoretical performance of bgj1 (perfectly random spherical caps).
For c. the number of applied iterations is varied such that the total
reduction cost is fixed.

loss potentially as large as subexponential [BDGL16, Theorem 5.1].
Now we focus our attention on graph c. of Figure 4.4 to consider

the influence of the average bucket size on the quality. We observe
that increasing the average bucket size reduces the bucketing quality;
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many small buckets have a better quality than a few large ones. This
is unsurprising as the asymptotically optimal BDGL sieve aims for
high quality buckets of small size. Although our k-bdgl_gpu buck-
eting method has no problem with efficiently generating many small
buckets, the reduction phase cannot efficiently process small buckets
due to memory bottlenecks. This is the main trade-off of (our imple-
mentation of) GPU acceleration, requiring a bucket size of 215 versus
e.g., 210 leads to a potential loss factor of 7 to 8 as shown by this graph.
For triple_gpu this gives no major problems as for the relevant di-
mensions n ≥ 130 the optimal bucket sizes are large enough. However
2-bdgl_gpu should become faster than bgj1 exactly by considering
many smaller buckets of size N1/3 instead of N1/2, and a minimum
bucket size of 215 shifts the practical cross-over point above dimension
130, and potentially much higher.

4.4 Reducing

Together with bucketing, the most computationally intensive part of
sieving algorithms is that of finding reducing pairs or triples inside
a bucket. We consider a bucket of s vectors v1, . . . ,vs ∈ Rn with
bucket center c. Only the x-representations are sent to the GPU and
there they are converted to the 16-bit Gram-Schmidt representations
y1, . . . ,ys and yc that are necessary to quickly compute inner prod-
ucts. Together with the pre-computed squared lengths ∥y1∥2, . . . ,
∥ys∥2 and inner products ⟨yc,y1⟩, . . . , ⟨yc,ys⟩, the goal is to find all
pairs yi − yj or triples yc − yi − yj of length at most some bound ℓ.
A simple derivation shows that this is the case if and only if

for pairs:

⟨yi,yj⟩ ≥
∥yi∥2 + ∥yj∥2 − ℓ2

2
, or

for triples:

⟨yi,yj⟩ ≤ −
∥yc∥2 + ∥yi∥2 + ∥yj∥2 − ℓ2 − 2⟨yc,yi⟩ − 2⟨yc,yj⟩

2
.

And thus we need to compute all pairwise inner products ⟨yi,yj⟩. If
we consider the matrix Y := [y1, . . . ,ys] ∈ Rn×s then computing all
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pairwise inner products is essentially the same as computing one half
of the matrix product YtY.

Many decades have been spend optimizing (parallel) matrix multi-
plication for CPUs, and this has also been a prime optimization target
for GPUs. As a result we now have heavily parallelized and low-level
optimized BLAS (Basic Linear Algebra Subprograms) libraries for ma-
trix multiplication (among other things). For NVIDIA GPUs close
to optimal performance can often be obtained using the proprietary
cuBLAS library [NVI], or the open-source, but slightly less optimal
CUTLASS library [Ker+22]. Nevertheless the BLAS functionality is
not perfectly adapted to our goal. Computing and storing the matrix
YtY would require multiple gigabytes of space. Streaming the result
YtY to global memory takes more time than the computation itself.
Indeed computing YtY using cuBLAS does not exceed 47 TFLOPS
for n ≤ 160, and this will be even lower when also filtering the results.

For high performance, in our implementation we combined the ma-
trix multiplication with result filtering. We made sure to only return
the few indices of pairs that give an actual reduction to global mem-
ory; filtering the results locally while the computed inner products are
still in registers. Nevertheless the data-movement design, e.g., how we
efficiently stream the vectors yi into the registers of the SMs, is heav-
ily inspired by CUTLASS and cuBLAS. To maximize memory read
throughput, we had to go around the dedicated CUDA tensor API
and reverse engineer the internal representation to obtain double the
read throughput.

4.4.1 Reduction kernel

In this section we discuss some implementation details of our Tensor-
GPU kernel to find reductions. For bucketing methods as triple_gpu
the implementation is similar. For performance results see Figure
4.6. We consider a bucket of s vectors Y := [y1, . . . ,ys] ∈ Rn×s and
we need to filter pairs based on their inner product. Note that we
essentially want to compute one half of the matrix YtY.
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Fragments

When working with Tensor cores a fundamental building block is a
fragment: a 16× 16 fp16 matrix that is distributed over a warp, each
thread storing 8 of the 256 values. CUDA allows a matrix multiply
and accumulate operation C = C +AB with fragments A,B,C ac-
celerated by the Tensor cores.

Note that the accumulation fragments that contain the resulting
inner products are distributed over the threads in a black-box man-
ner which is not specified by NVIDIA; each thread knows some inner
product values but not to which pairs they belong. The official solu-
tion is to first store the results back to shared memory using a special
CUDA instruction, but this severely degrades performance. We re-
verse engineered the distribution so we can immediately process the
inner products while they are still stored in registers, something which
might break in future hardware or CUDA versions. Additionally we
also used this to improve the loading of fragments from global mem-
ory. Before starting the expensive reduction kernel in which every SM
loads fragments of Y from global memory we first reorder the storage
of Y such that all 8 fp16 coefficients that are stored on a single thread
are stored in a consecutive 128 bits range, allowing to load it with a
single coalescing instruction directly into the correct local registers,
instead of 4 different non-coalescing 32-bit load instructions without
this reordering.

Data movement

Optimizing a GPU kernel is all about data movement. Given the mem-
ory hierarchy (see Figure 4.2) with different capacities, bandwidths
and latencies the main challenge is to get the data into the registers
in time to run the appropriate computations. By reusing data locally
as much as possible we can improve the ratio of computations versus
memory that is moved.

Each block computes a row of YtY of 128 vectors wide, using 8
warps, i.e., 256 threads in total. As a result each coefficient that is
loaded from Y is used for 128 multiply and add operations, enough to
prevent a significant memory bottleneck between global memory and
each SM. Inside each row we process a matrix block of 128× 256 at a
time, where each warp takes care of 4× 4 = 16 fragments in a 64× 64
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Figure 4.5: Example of the computation on a 64× 64 sub-block done
by a single warp. Each cell is a 16 × 16 matrix fragment. The full
128× 256 block is processed by 8 warps in parallel.

matrix sub-block (see Figure 4.5). After processing a matrix block we
shift to the next one, until we exceed the diagonal; we only want to
compute half of the symmetric result matrix.

When loading a row of fragments of Y from global memory all 8
warps in a block work together to only fetch each element once, the
values are temporarily stored in what we call cache registers. From
here these elements are stored in shared memory after which all warps
are synced such that we can be sure the shared memory contains the
correct elements. Then each warp separately loads the 4 vertical and
4 horizontal fragments that it needs to compute its 64 × 64 matrix
sub-block from shared memory to what we call the compute registers.

Loading data from shared and global memory involves significant
latencies from tens to hundreds of cycles. During this time we need
to make sure our kernel is still computing with data that is already in
registers. For example while data is being loaded from global memory
we can do computations with the data in our shared memory (with a
much lower latency). A well know technique to further hide latencies is
double buffering in which we double the amount of registers and shared
memory we mentioned before. While one half of the compute registers
is used for computation the other half is obtaining new data from
the shared memory; continuously alternating their roles to hide the
shared memory latency. Note that all these techniques are limited by
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the amount of registers and shared memory we have, so they require a
careful balancing. The double buffering technique is also used between
the CPU and GPU to simultaneously transfer new bucket vectors and
old results during kernel executions.

Processing the results

While computing the inner products is the computational intensive
part of the reduction kernel filtering out the results also involves some
overhead. Especially since this has to happen using regular CUDA
cores, which are relatively slow compared to Tensor cores. Also fil-
tering results involves branches, something which can heavily degrade
performance when threads in a warp diverge in which branch they
take.

For the filtering of pairs we have to compare the value of the com-
puted inner product with (∥yi∥2 + ∥yj∥2 − ℓ2)/2. To avoid having
to compute this value completely we pre-compute for each vector the
value 1

2
∥yi∥2− 1

4
ℓ2 such that for each pair the comparison value can be

computed by a single addition. Similarly when checking for triples we
pre-compute the value 1

4
ℓ2 − 1

4
∥b∥2 − ∥yi∥2 + ⟨b,yi⟩ for each vector.

Note that after this pre-computation we do not even have to pass the
length bound ℓ to the kernel as this is already incorporated in the
pre-computed values.

No SimHash filter

We quickly discuss why for our Tensor-GPU implementation we did
not choose to make use of the so-called SimHash filter (see [Cha02;
Fit+14; Duc18]) based on fast binary operations that has been used
successfully to speed-up sieve implementations for the CPU. We do
note that the Tensor cores have support for the necessary binary com-
putations. Our reasons are as follows. Firstly the speed-up from using
a SimHash filter is less with respect to the 16-bit GPU computations
than with respect to the 32-bit CPU computations. Secondly post-
processing the passing pairs and triplets on the GPU (recomputing
their lengths) has to happen in higher precision on relatively slow
CUDA cores, something which can quickly become a bottleneck with
a low fidelity filter such as the SimHash. And lastly to compensate for
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Figure 4.6: Efficiency of the reduction GPU kernel for different bucket
sizes on a RTX 2080 Ti, only counting the 2n FLOPS per inner prod-
uct. The overhead includes obtaining the vectors from the database,
sending them to the GPU, conversions, recomputing length at higher
precision, and retrieving the results from the GPU in a pipelined man-
ner.

false negatives of the SimHash the database size needs to be a larger,
which hinders our focus on minimizing RAM usage.

Efficiency

To measure the efficiency of our Tensor-accelerated GPU kernel we
did two experiments: the first experiment runs only the kernel with
all (converted) data already present in global memory on the GPU,
while the second experiment emulates the practical efficiency by in-
cluding all overhead. This overhead consists of obtaining the vectors
from the database, sending them to the GPU, converting them to the
appropriate representation, running the reduction kernel, recomput-
ing the length of the resulting close pairs, and retrieving the results
from the GPU. Each experiment processed a total of 228 vectors of
dimension 160 in a pipelined manner on a single NVIDIA RTX 2080
Ti GPU and with a representative number of 10 CPU threads. We
only counted the 2n 16-bit floating point operations per inner product
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and not any of the operations necessary to transfer data or to filter
and process the results. The theoretical limit for this GPU when only
using Tensor cores and continuously running at boost clock speeds is
107 TFLOPS, something which is unrealistic in practice.

The results of these experiments are displayed in Figure 4.6. We
see that the kernel itself reaches around 65 TFLOPS starting at a
bucket size of at least 212. When including the overhead we see that
the performance is significantly limited below a bucket size of 213 which
can fully be explained by CPU-GPU memory-bottlenecks. For bucket
sizes of at least 214 we see that the overhead becomes reasonably small.
We observed that this threshold moves to 215 when using multiple
GPUs, because in our hardware the CPU-GPU bandwidth is shared
per pair of GPUs.

4.4.2 Tensor cores and precision

The main drawback of the high performance of the tensor cores is
that the operations are at low precision. Because the runtime of siev-
ing algorithms is dominated by computing pairwise inner products
to find reductions or for bucketing (in case of triple_gpu) we focus
our attention on this part. Other operations like converting between
representations are computationally insignificant and can easily be ex-
ecuted by regular CUDA cores at higher precision.

As the GPU is used as a filter to find (extremely) likely candidates
for reduction, we can tolerate some relative error, say up to 2−7 in the
computed inner product, at the loss of more false positives or missed
candidates. Furthermore it is acceptable for our purposes if say 1% of
the close vectors are missed because of even larger errors. We consider
the case that the vectors are represented using the fp16 format. In
addition we also assume that the inner product is accumulated in 16-
bit precision8.

By first normalizing the vectors we can assume for analysis that
they are unit vectors (a normalization close to unit length is actually
done in our implementation). Computing the inner product of two
vectors using Tensor cores leads to errors in two places, first there

8Although the Tensor cores have an option to use 32-bit accumulate, which
severely increases the precision, this is capped at half speed in some of the consumer
GPUs.
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is some representation error when representing the vectors in 16-bit
precision, and secondly some computation error accumulates during
the inner product computation.

Representation error

First we show that the representation error between a unit vector y =
(y1, . . . , yn) ∈ Rn of unit length and its closest 16-bit representative ŷ
is small. With a 5 bit exponent and 10 bit mantissa we have |yi− ŷi| ≤
max{|yi| ·2−11, 2−25}. For the full unit vector this gives an error bound
of

∥y − ŷ∥ ≤ max{2−11, 2−25 · √n}. (4.1)

Note that for the scope of lattice sieving the dimension n is at most
a few hundred, and thus we can safely assume a fixed error bound of
2−11 independent of the dimension. By the Cauchy-Schwarz inequality
the representation error contributes at most max{2−10, 2−24 · √n} to
the eventual pairwise inner product between unit vectors and is thus
small enough compared to the tolerated error of 2−7.

Computation error

Next we have to consider the computation of the inner product. For
each combined multiplication and addition there can be some small
error at most µ; we have µ ≤ 2−12 in the [−1, 1] range. The main
problem is that these errors can accumulate resulting in a worst case
error of the form µ · n, which could already be problematic for say
n ≥ 32. For Tensor cores n can be replaced by n/4 because the
Tensor cores act on 4× 4 blocks and the internal computation is at a
higher precision [Bla+20], but this still gives a worst-case bound that
is too large for our regime.

These worst-case bounds assume that the error at each operation
is both maximal and of the same sign, something that is not observed
in practice. A common heuristic for an average-case analysis is the
assumption that the error is equally likely to be positive as negative,
which improves the accumulated error from µ ·n to O(µ

√
n) with high

probability. See [HM19] for probabilistic bounds under such error

112



4.5. A dual hash for BDD

16 32 64 128 256 512 1024 2048

2−14

2−13

2−12

2−11

2−10

2−9

2−8

Dimension (n)

C
om

pu
ta

ti
on

E
rr

or

Max (2−13.61 · √n)
99th percentile (2−14.31 · √n)
Average (2−16.01 · √n)

Figure 4.7: Computation error |S − Ŝ| observed in dimension n over
16384 sampled pairs of unit vectors y,y′ that satisfy S := ⟨y,y′⟩ ≈
0.5.

models. We see in Figure 4.7 that this heuristic randomized analy-
sis closely matches the experimentally observed growth Θ(

√
n) of the

computation error.
We conclude that when accepting some inaccuracy in a small ra-

tio of inner products the 16-bit Tensor cores contribute effectively in
dimensions as large as 211.

4.5 A dual hash for BDD

Let us recall the principle of the ‘dimensions for free’ trick [Duc18]; by
lifting many short vectors from the sieving context L[l:r) of dimension
n := r − l we can recover a short(est) vector in some larger context
L[l−k:r) for k > 0. The sieving implementation G6K [Alb+19] puts
extra emphasis on this by lifting many vectors it encounters while
reducing a bucket, even when these reduced vectors are not short
enough to be added to the database. Recall that for lifting a vector
we have to solve an (approx)-CVP instance w.r.t. the lifting context
L[l−k:l). By applying the appropriate isometry we identify L[l−k:l) in
this section with a full rank lattice in Rk (this coincides with the y-
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representation that G6K already stores). Lifting using Babai’s nearest
plane algorithm has a significant cost of Θ(n · k + k2) per vector, and
thus it would be inefficient to lift all reduction pairs encountered.
Therefore the G6K implementation first filters on their length in the
sieving context, which is already being computed, and only lifts them
when they are short enough. The O(n ·k) part of the cost, to compute
the corresponding target ti − tj ∈ Rk, can be amortized to O(k) over
all pairs by pre-computing t1, . . . , ts, leaving the cost of Θ(k2) for the
Babai nearest plane algorithm w.r.t. B[l−k:l). In theory by pruning and
early aborting the lifting process the cost of Θ(k2) could be reduced
somewhat more.

To minimize the overhead from the lifting process we want it to
be less costly than the reduction part that has a cost of about O(n)
per pair. Thus the filter should have an acceptance rate of at most
O(n/k2). A squared length filter of 1.8 on the sieving length, leads to
an exponentially small acceptance rate in the sieving dimension n =
r− l. However assuming BGJ1 bucketing and input vectors of squared
length 4

3
the acceptance rate would be about 0.9754n+o(n); giving a

concrete acceptance rate of order 10−2 even in sieving dimensions as
large as n = 128.

When using GPUs we have an additional problem that we cannot
run the lifting computation inline in the reduction kernel, as this would
diminish the overall performance by using more registers and shared
memory for storing the targets, and because the remaining threads in
a warp would also have to wait for this. Therefore one would need
to return all the pairs of indices that pass the filter and store them
temporarily in global memory. With an acceptance rate in the order
of 10−2 this would imply tens of millions of results for the usual bucket
sizes, taking more than ten times the storage of the input vectors. This
would become a bottleneck in practice, even ignoring the reduction
kernel overhead of saving those results in the first place.

As an alternative we introduce a stronger filter with an emphasis
on the extra length added by the lifting. Most short vectors will lift
to rather large vectors, as by the Gaussian Heuristic we can expect
an extra length of gh(L[l−k:l)) ≫ gh(L[l−k:r)). For the few lifts that
we are actually interested in we expect an extra length of only δ ·
gh(L[l−k:l)), for some 0 < δ < 1 (say δ ∈ [0.1, 0.5] in practice). This
means that we need to catch those pairs ti − tj that lie exceptionally
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close to the lattice L[l−k:l), also known as δ-BDD instances, and their
share decreases exponentially as δk, assuming the targets are uniform
over span(Lbdd)/Lbdd, where Lbdd := L[l−k:l). E.g., for reasonable
parameters δ = 0.5 and k = 24 this amounts to only 6 · 10−8 of all
pairs.

So we want to filter δ-BDD instances over the k-dimensional lattice
Lbdd. More abstractly we need a filter that quickly checks if pairs
are (exceptionally) close over the torus span(Lbdd)/Lbdd

∼= Rk/Lbdd.
Constructing such a filter directly for this rather complex torus and
our practical parameters seems to require at least quadratic time like
Babai’s nearest plane algorithm. Instead we introduce a dual hash to
move the problem to the much simpler but possibly higher dimensional
torus Rh/Zh ∼=

[
−1

2
, 1
2

)h. More specifically, we will use inner products
with short dual vectors to build a BDD distinguisher in the spirit
of the so-called dual attack on LWE given in [MR09] (the general
idea can be traced back at least to [AR05]). This is however done
in a different regime, where the shortest dual vectors are very easy
to find (given the small dimension k of the considered lattice); we
will also carefully select a subset of those dual vectors to optimize the
fidelity of our filter. Recall that the dual of a lattice Lbdd is defined
as L∗

bdd := {w ∈ span(Lbdd) : ⟨w,v⟩ ∈ Z for all v ∈ Lbdd}.

Definition 71 (Dual hash). For a full rank lattice L ⊂ Rk, dual hash
length h ≥ k and a full (row-rank) matrix D ∈ Rh×k with rows in the
dual L∗, we define the dual hash

HD : Rk/L → Rh/Zh ∼=
[
−1

2
,
1

2

)h

,

t 7→ Dt.

The dual hash relates distances in Rk/L to those in Rh/Zh. Note
that the distance dist(t′,Zh) is well defined for any t′ ∈ Rh/Zh.

Lemma 72. Let L ⊂ Rk be a full rank lattice with some dual hash
HD of length h. Then for any t ∈ Rk we have

dist(HD(t),Zh) ≤ σ1(D) · dist(t,L),

where σ1(D) denotes the largest singular value of D ∈ Rh×k.
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Proof. Let x ∈ L such that ∥x − t∥ = dist(t,L). By definition we
have Dx ∈ Zh and thus HD(t−x) ≡ HD(t) mod Zh. We conclude by
noting that dist(HD(t− x),Zh) ≤ ∥D(t− x)∥ ≤ σ1(D)∥t− x∥.

So if a target t lies very close to the lattice then HD(t) lies very
close to Zh. We can use this to define a filter that passes through
BDD instances.

Definition 73 (Filter). Let L ⊂ Rk be a full rank lattice with some
dual hash HD. For a hash bound H we define the filter function

FD,H : t 7→
{
1, if dist(HD(t),Zh) ≤ H,
0, else.

Note that computing the filter has a cost of O(h ·k) for computing
Dt for D ∈ Rh×k followed by a cost of O(h) for computing dist(Dt,Zh)
using simple coordinate-wise rounding. Given that h ≥ k, computing
the filter is certainly not cheaper than ordinary lifting, which is the
opposite of our goal. However this changes when applying the filter to
all pairs ti−tj with 1 ≤ i < j ≤ h. We can pre-compute Dt1, . . . ,Dts
once, which gives a negligible overhead for large buckets, and then
compute D(ti − tj) by linearity, lowering the total cost to O(h) per
pair.

4.5.1 An average-case analysis of the dual hash

Lemma 72 allows us to choose a dual hash boundH such that our filter
FD,H returns 1 for all δ-BDD instances. Such a worst-case bound is
far from practical behaviour, thereby giving a much looser filter than
needed. In this section we introduce an average-case analysis, both
for which bound to pick and for the positive rate of our filter. We
assume that the targets are uniformly distributed, e.g., uniform over
Rk/Lbdd, more specifically unless otherwise stated we assume without
loss of generality (given that the dual hash filter only depends on
the coset and not the particular representative) that the targets are
uniform over the Voronoi cell V(Lbdd) ⊂ Rk.

The dual hash bound

We discuss what bound H to pick for the dual hash filter FD,H ,
such that we detect those targets t that lie at some close distance
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dist(Lbdd, t) ≤ R := δ · λ1(Lbdd) of the lattice. We consider the
unique decoding regime, i.e., when δ < 1

2
. In this regime we can as-

sume without loss of generality that the normalized targets t/ ∥t∥ are
uniformly distributed over the sphere. Suppose that D⊤D has eigen-
values σ2

1, . . . , σ
2
k with corresponding normalized (orthogonal) eigen-

vectors v1, . . . ,vk. By a change of basis we can equivalently assume
that t =

∑k
i=1 tivi with (t1, . . . , tk)/∥t∥ uniformly distributed over the

sphere. Computing the expectation we see

E[dist(HD(t),Zh)2] ≤ E[∥Dt∥2] = E

[
k∑

i=1

t2i · σ2
i

]

=
k∑

i=1

σ2
i · E[t2i ] = ∥t∥2 ·

1

k

k∑
i=1

σ2
i

So instead of the worst case bounds from Lemma 72, the average-case
expected distance dist(HD(t),Zh) is bounded by

√
1
k

∑k
i=1 σ

2
i · ∥t∥.

Note that if the latter bound is relatively small then we can also expect
that all coordinates of Dt lie in [−1

2
, 1
2
], and thus the first inequality

is tight. If we explicitly assume that dist(HD(t),Zh) = ∥Dt∥ in this
regime we can also compute the variation which equals

Var
[
∥Dt∥2

]
=

∥t∥4
(k/2 + 1)

1

k
·

k∑
i=1

σ4
i −

(
1

k

k∑
i=1

σ2
i

)2
 .

We see that when all eigenvalues σ2
1, . . . , σ

2
k are equal the variance is

0, and more generally the more balanced they are the better. For the
rest of the section we assume that the dual hash bound for targets
at distance R is set to R ·

√
1
k

∑k
i=1 σ

2
i , accepting that we only detect

say half of such targets. Note that the bound is based on targets at
distance exactly R, the targets that lie closer are even more probable
to pass the filter. By adding some multiple of the variance to this
bound one could obtain more quantative values for the false negative
rate using Chebyshev’s inequality. For a random lattice most targets
are still uniquely decodable even for δ somewhat larger than 1

2
, and

thus we can still use the above bound as a good estimate.
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Figure 4.8: Experimental results of the true positive rate of the dual
hash filter FD,H in Lbdd of dimension k = 24 with h = 64 dual vectors.
The 217 targets were sampled uniformly in a ball of radius R := 0.5 ·
gh(Lbdd). With a bound of H2 = E := R · 1

k
Tr(D⊤D) the true

positive rate is 72.8%, and at 1 and 2 standard deviations higher it is
respectively 94.8% and 99.5%.

Positive rate

We try to understand the positive rate ppos of the filter, e.g., the ra-
tio of targets t ∼ Rk/Lbdd for which FD,H(t) = 1. It seems hard to
determine the exact positive rate, as multiple factors play are role.
Still we can get some good estimate by splitting the analysis in two
cases: the preserved and the unpreserved regime. Consider a target
t ∈ Rk and let x be a closest vector in Lbdd to t. We will say that
we are in the preserved regime whenever D(t − x) ∈ [−1

2
, 1
2
]h (i.e.,

Dx remains a closest vector of Dt among Zh), in which case it holds
that ∥D(t− x)∥2 = dist(HD(t),Zh). The unpreserved regime consid-
ers those targets for which there is no equality, i.e., ∥D(t − x)∥2 >
dist(HD(t),Zh).

Preserved Regime. We assumed without loss of generality that the
targets t are uniform over the Voronoi cell V(Lbdd), such that their
closest vector is 0. In the preserved regime we have the equality
dist(HD(t),Zh) = ∥Dt∥2, and thus FD,H(t) = 1 if and only if ∥Dt∥2 ≤
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H. The positive rate ppres is then given by

ppres = Pr
t∼U(V(Lbdd))

[∥Dt∥2 ≤ H] .

We proceed in the same way as earlier by picking applying a basis
transformation using the normalized eigenvectors v1, . . . ,vk of D⊤D.
Let V := [v1; . . . ;vk], then we have

ppres = Pr
t∼V ·U(V(Lbdd))

[
k∑

i=1

t2i · σ2
i ≤ H2

]
=

vol(V · V(Lbdd) ∩ EH,σ2
1 ,...,σ

2
k
)

vol(V · V(Lbdd))
,

where EH,σ2
1 ,...,σ

2
k

is the ellipsoid defined by {t ∈ Rk :
∑k

i=1 t
2
i ·σ2

i ≤ H2}.
We can simply bound the volume in the numerator by that of the
ellipsoid, and note that the volume of the denominator equals the
determinant det(Lbdd). So we conclude that

ppres ≤
vol(EH,σ2

1 ,...,σ
2
k
)

vol(V(Lbdd))
=

vol(Bk) ·Hk

det(Lbdd) ·
∏k

i=1 σi
.

Note that the inequality is only provably tight whenH/σk ≤ 1
2
λ1(Lbdd),

where σ2
k is the smallest eigenvalue, but again for random lattices we

can expect the estimate to also be reasonably close also for larger
bounds.

Unpreserved Regime. In the unpreserved regime dist(HD(t),Zh) is not
really a useful metric, as there will seemingly be no clear relation with
∥D(t − x)∥2. Inspired by practical observations, we analyse these
positives from the heuristic assumption in this regime that every Dt
is uniformly distributed over [−1

2
, 1
2
)h modulo Zh. Then we can ask the

question how probable it is that ∥Dt∥2 = dist(Dt,Zh) ≤ H; i.e., that
the target passes the filter even though it is not close to the lattice.
This is equivalent to the volume of the intersection of an h-dimensional
ball with radius H and the hypercube [−1

2
, 1
2
]h. We can bound this by

just the volume of the ball,

punpr := Pr
v∈U [− 1

2
, 1
2
)h

[
v ∈ H · Bh

]
= Pr

v∈U(H·Bh)

[
v ∈ [−1

2
, 1
2
)h
]
· vol(H · Bh) ≤ Hh · volBh.
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Figure 4.9: Dual hash filter correlation on the context L[14:30) for a
reduced 160-dimensional lattice using 48 dual vectors. The BDD-
bound was computed with a representative squared length bound of
1.44 and the 220 targets are uniformly sampled over the Voronoi cell
around 0.

For a small boundH the probability Prv∈U(H·Bh)

[
v ∈ [−1

2
, 1
2
)h
]

is close
to 1 and thus the bound is rather tight. For somewhat larger values of
H we can estimate Prv∈U(H·Bh)

[
v ∈ [−1

2
, 1
2
)h
]

by heuristically assum-
ing independence between the coordinates. Recall that if v ∼ U(Bh),
then each coefficient v2

i follows a Beta(1
2
, h+1

2
) distribution with CDF

Ix(
1
2
, h+1

2
), leading to the heuristic estimate

punpr ≈ I 1
4H2

(1
2
, h+1

2
)h ·Hh · volBh.

Alternatively one can use Monte-Carlo sampling to estimate punpr.
The number of samples (under a fixed error variance) is inversely pro-
portional to the event probability, and thus directly estimating punpr

for low values ofH is too costly. Luckily for small values ofH the prob-
ability Prv∈U(H·Bh)

[
v ∈ [−1

2
, 1
2
)h
]

is large and thus we can estimate
that probability instead, leading to an efficient Monte-Carlo estimate
both for small and large values of H. To determine in which regime we

120



4.5. A dual hash for BDD

1.0 1.5 2.0 2.5 3.0 3.5
Dual hash bound H2

10−8

10−4

100

P
os

it
iv

e
R

at
e

Unpreserved Positive Rate vs Dual Hash Bound H

punpr (Monte Carlo)

I 1
4H2

(1
2,

h+1
2 )h ·Hh · volBh

Hh · volBh

Figure 4.10: The unpreserved positive rate punpr for h = 48.
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are one could use the heuristic estimate for Prv∈U(H·Bh)

[
v ∈ [−1

2
, 1
2
)h
]

presented earlier. Note that punpr only depends on the filter threshold
H and the number of dual vectors h and not on the specific matrix
D. We could thus precompute punpr for relevant parameters instead
of computing it on the fly.

Choosing a dual hash

We will shortly discuss how to pick the dual hash matrix D ∈ Rh×k.
The goal is to obtain a filter with a good correlation, i.e., a good
trade-off between the positive-rate and the sensitivity. We fix the
target distance to some 0 < R ≤ 1

2
λ1(Lbdd), and as the computational

cost mostly depends on the number of dual vectors h we will try to
optimize D for a fixed number of dual vectors h.
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To simplify the overall optimization we set the dual hash bound to
H := R ·

√
1
k

∑k
i=1 σ

2
i , such that the false negative rate is expected to

be reasonable for uniform targets at distance at most R. We can now
focus on minimizing the positive rate.

In the preserved regime the (bound on the) positive rate is propor-
tional toHk/

∏k
i=1 σi. Note that Tr(D⊤D) =

∑k
i=1 σ

2
i and det(D⊤D) =∏k

i=1 σ
2
i , the positive rate in the preserved regime is thus propertional

to

ppres ∼
( 1
k
Tr(D⊤D))k/2√
det(D⊤D)

,

which is a well known conditioning metric for matrices. To optimize
this one can think of picking h dual vectors that are of about the
same length and somewhat orthogonal. For the unpreserved regime
the positive rate is mostly proportional to Hk, which means we want
Tr(D⊤D)k/2 to be small; this can be achieved by working with short
dual vectors.

To summarize we want to find a set of short dual vectors to form
the dual hash such that D is well conditioned. One initial method is to
just pick the h shortest dual vectors (modulo sign). This satisfies the
needs of the unpreserved regime, but the conditioning of the resulting
matrix is often not that great. Given a list of short dual vectors we
can greedily try to improve the conditioning of D by replacing some
of the (row) vectors from the list.

From experiments we can conclude that this greedy method to
improve the filter works really well. For example with the parameters
as in Figure 4.9, picking the 48 shortest dual vectors leads to a positive
rate of 1.3 · 10−4 for a false negative rate of 1%; using the greedy
construction improves the positive rate down to 1.4 ·10−5 for the same
false negative rate. The additional overhead of the greedy method
is negligible in somewhat large dimensions and easily won back from
allowing a lower number of dual vectors h.

4.5.2 Application and results

We shortly discuss how one would use the introduced dual hash tech-
niques in practice for solving SVP challenges more efficiently. Recall
that for such challenges we are given a lattice L of dimension d and we
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try to find a short vector of norm at most 1.05 · ghL. We do this by
sieving in some smaller context L[l:d) (for progressively decreasing l),
and by lifting vectors from this context to the full lattice L[0:d) = L,
hoping to encounter a short enough vector. The goal of the dual hash
is to efficiently filter pairs of vectors which difference lies close to the
lattice L[0:l), thereby increasing the number of dimensions for free l.

Choosing the parameters

To use the dual hash in practice as a filter we need to decide on
what context to use it and what the threshold should be. Applying
the dual hash to the full lift context L[0:l) might fail to return short
vectors for positions l′ > 0, which are also needed to improve the
quality of the basis. Therefore we apply the dual hash to the smaller
filter context Lbdd := L[f :l). If a vector is short in the context L[l′:r)

for some l′ < f then we can also expect it to be short in the filter
context, and therefore to be catched by our filter.

We also need to decide on a distance threshold. Let v be a lattice
vector in L[l:r) of length R. We can assume that R ≥ ℓ, where ℓ is
the sieving length bound, as otherwise the vector would already be
inserted (and always lifted) in the sieving database. Suppose that v
lifts to a short vector with length at most ℓl′ in L[l′:r) for κ ≤ l′ ≤ f .
This corresponds to a target t at distance at most

dist(t,L[l′:l))
2 ≤ ℓ2l′ − ℓ2.

from the lattice L[l′:l). Although we cannot know what the length
of t would be in the filter context we can expect this to be close to√

l−f
l−l′
∥t∥ by the Gaussian Heuristic. Therefore setting the filter length

bound to

Fl′ :=

√
l − f
l − l′ (ℓ

2
l′ − ℓ2)

allows a significant part of the short lifts in the context L[l′:r) through
the filter. Note that most of the pairs we lift are much larger on the
sieving part, and thus have to be even shorter in the filter context; def-
initely passing the above filter length bound. We conclude by setting
the filter to aim for a length of at most F := maxκ≤l′≤f{Fl′}.
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Given the filter length bound we could immediately apply Lemma
72 to obtain a threshold for the dual hash that guarantees that our
filter has no false negatives. However as usual there is a trade-off
between the number of false negatives and the positive rate of the
filter. For our purposes we set the bound at the expectation plus
3 standard deviations in the preserved regime to prevent most false
negatives. For a more precise bound under a fixed false negative ratio
one could fall back to Monte-Carlo sampling methods as we do not
know of a closed form formula for the distribution. Figure 4.9 shows
the effectiveness of the dual hash filter based on realistic parameters
as encountered during a 130-dimensional pump on a 160-dimensional
lattice. The pre-processing of the basis consisted of a workout with
pumps up to dimension 128.

4.5.3 Implementation details

Given a list of pre-computed Dt1, . . . ,Dtm we want to use the GPU to
efficiently compute dist(D(ti − tj),Zh) for all i < j. As usual the ac-
tual implementation requires some trade-offs to significantly improve
performance. Given that the dimension of the dual hash seems to have
more impact than the precision of the values we choose for an 8-bit
integer representation for the dual hash coordinates in [−1/2, 1/2) by
dividing it in 256 equally sized intervals. The added benefit of this
representation is that the mod Z operations are implicitly handled by
integer overflow. Both CUDA and Tensor cores have special instruc-
tions and very good performance for 8-bit arithmetic, even when using
32 bits to accumulate inner products.

Given a list of pre-computed Dt1, . . . ,Dtm we want to use the
GPU to efficiently compute dist(D(ti − tj),Zh)2 for all i < j, where
the coordinates use an 8-bit integer representation. We focus on the
core computation as for the memory movement one can apply a similar
strategy as for the reduction kernel.

Dual hash for CUDA cores

Although CUDA cores are flexible we have to pack 4 of the 8-bit values
together in a 32-bit register a = a3|a2|a1|a0 and apply special opera-
tions to obtain optimal 8-bit arithmetic performance. First we need
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to take the coordinate-wise difference and then take the modulo to get
back in the interval [−1/2, 1/2). By representing these values using
signed integers the modulo is equivalent to integer overflow. CUDA
has an operation to take the coordinate-wise difference, however this
actually decodes into multiple instructions. Therefore as a trade-off we
just take the 32-bit integer different between a and b, ignoring off by
one errors in each coordinate due to a possible carry bit. For comput-
ing the length we can use the relatively new operation __dp4a(a,b,c)
that computes the inner product between the packed a and b and ac-
cumulates this in a 32-bit integer c. So in only two cycles we can
compute the squared distance over 4 coordinates modulo Z4.

Dual hash for Tensor cores

Although Tensor cores can be up to 4 times faster than the CUDA
cores for similar precision they can basically do only a single thing
well: pairwise inner products, i.e., a matrix product. So to use the
Tensor cores effectively we need to convert this computation to that
of a matrix product. We quickly discuss how one could potentially
make such an adjustment.

We could use the fact that dist(x,Z)2 ≈ (1 − cos(x · 2π))/16 for
x ∈ [−1

4
, 1
4
]+Z. For the remaining range the value of (1−cos(x·2π)/16

is somewhat smaller, but in the BDD-regime we are working these
values still seem large enough to reject bad vectors. So using this
similarity we want to compute

dij :=
h∑

l=1

1− cos((D(ti − tj))l · 2π)
16

.

from some pre-computed values depending on Dti and Dtj respec-
tively. Rewriting using trigonometric identities we get:

dij =
m

16
− 1

16

(
m∑
l=1

cos(2πDti) cos(2πDtj) + sin(2πDti) sin(2πDti)

)
.

If we pre-compute that values (cos((Dti)l ·2π))l and (sin((Dti)l ·2π))l
we can compute the above sum by computing two h-dimensional (pair-
wise) inner products which Tensor cores can do efficiently. Again we
can use 8-bit representations and computing the inner product (with
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32-bit accumulate) is up to 4 times faster on Tensor cores compared
to CUDA cores. However here we need to compute two h-dimensional
inner products instead of one, but this is compensated by not having
to compute the coordinate-wise difference first. So one could expect
up to 4 times the performance compared to CUDA cores. In the end
we did not implement this adaptation as the pairwise dual hash com-
putations were not a bottleneck, and thus improving it would only
result in a minor overall speed-up.

4.6 New records

4.6.1 Comparison

We compare several of our sieve implementations experimentally. Al-
though our BDGL-like implementations bdgl and bdgl_gpu will even-
tually be faster than the BGJ-like implementations triple by G6K9

and triple_gpu by us, the cross-over point could be outside of prac-
tical dimensions. For the comparison we run a pump up to dimension
120 and 140 for CPU and GPU respectively in a lattice of dimen-
sion 160 that has been pre-processed by a workout up to dimension
118 and 138. In Figure 4.11 we display the wall-clock time taken for
each Sieve operation during the pump up. All our GPU implementa-
tions use a multi-bucket parameter of 4, which should give a balanced
comparison based on Figure 4.4. Any on-the-fly lifting or dual hash
techniques are disabled. For the remaining parameters we refer to the
next Section 4.6.2.

CPU sieves

We observe in Figure 4.11 that our BDGL implementations 2-bdgl
and 3-bdgl are extremely practical. They both improve upon the
record-holding triple sieve from dimension ±85 and onwards. The
speed-up of 2-bdgl and 3-bdgl over triple increases to a factor of
5.3× and 3.1× respectively in dimension 12010. We also see that while

9The triple sieve in G6K is in the meantime renamed to hk3 after [HK17].
10In the original work we reported a speed-up of 2.7× for 3-bdgl. By optimis-

ing the cache locality of the reduction phase this was improved to 3.1×. These
optimisations were much more effective for the larger buckets of 2-bdgl, resulting
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a. (CPU only) b. (CPU and GPU)
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20.337n−28.72

3-bdgl (Ours)
20.310n−24.77
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2-bdgl_gpu (Ours)
20.335n−32.39

Figure 4.11: Comparison of different sieve implementations
from [Alb+19] and this work. We ran a single pump up in a well-
reduced 160-dimensional lattice to a sieving dimension of 120 and 140
for CPU only and GPU accelerated respectively. The timings give
the amount of time spend in each sieving dimension. All experiments
used a saturation of 37.5% with a database size of 2.77 · 20.2075n. All
40 CPU cores and 4 GPU’s were used. The fitting is obtained by a
linear least-squares regression on the last 10 dimensions in log-space.

3-bdgl is asymptotically faster than 2-bdgl, this is not concretely the
case below dimension 120. Given the extrapolations we expect the
cross-over around dimension 146.

Given the large speed-up of the 2-bdgl sieve over the record-
holding triple sieve we also tried to resolve the 155-dimensional
Darmstadt 1.05-approxSVP record challenge. We solved the challenge
(with seed 1) with 2-bdgl in 51.7 hours on 40 cpu cores (machine spec-
ifications as in Table 4.1), or about 2069 cpu hours, compared to a
reported 1056 cpu days for the triple sieve. This is more than a fac-
tor 12× speed-up (ignoring cpu core differences). Part of the speed-up
(about a factor 4×) can be explained by a few more dimensions for
free (34 vs 28). It is unclear if we got lucky or if this increase can be
attributed to the algorithm.

in the final 5.3× speed-up.
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GPU sieves

Firstly, we observe that the GPU accelerated sieves are significantly
faster than the CPU-only sieves. In dimension 120 triple_gpu is a
tremendous factor 121× faster than triple. Secondly, we observe a
different behaviour of the asymptotically superior sieve 2-bdgl_gpu
versus triple_gpu. While for the CPU-only version the cross-over
between the two was already in dimensions around 85, for the GPU
version the cross-over lies in a dimension greater than 140. Following
the extrapolations, we only expect them to cross in dimension ±154.
The main reason for this is that the BDGL sieve obtains its speed-up
from having many small buckets, but for the GPU implementation
there is a large minimum bucket size to prevent memory bottlenecks
in the reduction phase. The large minimum bucket size shifts the
cross-over point by more than 70 dimensions. In this light, it did
not appear pertinent to implement 3-bdgl_gpu, which, while being
asymptotically faster, would cross-over even later.

4.6.2 SVP parameter tuning

There are many parameters in our implementation that can be tuned
for optimal performance with respect to memory and time complex-
ity. We will focus on triple_gpu as we have shown it to be the
fastest implementation in practical sieving dimensions n ≤ 150. As
low level parameters, such as minimum bucket sizes for GPUs, are
discussed earlier, here we discuss the higher level parameters to solve
1.05-approxSVP for a lattice of dimension d.

Given the large amount of computational power available with the
4 GPUs, we can potentially solve lattice 1.05-approxSVP up to di-
mension 180 in reasonable time on a single machine. The main limit-
ing factor at that point is the available memory, in our case 1.5 TiB
RAM. We have spent significant efforts aiming to reduce the memory
footprint of our G6K-GPU implementation, such as maintaining only
basis coordinates, length and a hash of each vector in our database.
Many parameters can be safely tweaked in certain regions without sig-
nificantly affecting time complexity, hence we focus more on suitable
values that limit memory usage.

To increase dimensions-for-free, and thus decrease memory usage,
we enabled DownSieve for all workouts for a stronger preprocessing.
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TD4F(n) = ⌊n/ log(n)⌋ MaxSieveDim(n) = n− TD4F(n) + 4
SaturationRatio = .375 DBSizeLimit(n) = DBSize(n− T4DF(n))
SaturationRadius = 4/3 DBSize(d) = 2.77× (4/3)(d/2)

DualHashMinDim = 106 DualHashDim = 24,DualHashVecs = 32
PreferLeftInsert = 1.2 DownSieve = True
MultiBucket = 2 Sieve = triple_gpu

Figure 4.12: Main parameters used for the record runs.

We found that with DownSieve on, a larger PreferLeftInsert is more
benificiary. I.e., prefer to insert even a slightly improved b′i into the
basis over a more significantly improved b′i+1.

Another main parameter affecting memory use is the constant fac-
tor in database size, normally chosen as 3.2 in G6K [Alb+19]. We
opted to reduce this to 2.77, resulting in DBSize(d) = 2.77× (4/3)(d/2)

for sieve dimension d, and compensate by also reducing SaturationRatio
from .5 to .375.

Additionally, we introduced a database size limit by setting an
experimentally-verified target TD4F(n) = ⌊n/ log(n)⌋ for the number
of dimensions-for-free, and limiting the database size to DBSizeLimit(n)
= DBSize(n−T4DF(n)). This means that the database size limit does
not affect sieving up to the target dimensions-for-free. However, for
unlucky cases, we allow G6K workouts of up to 4 dimensions larger
without further increasing the database size. Because triple_gpu
also considers triples we can be certain that saturation will still be
reached.

As discussed before, we use DualHash lifting: starting from a siev-
ing dimension of 106 in the filter context [l − 24, l] using 32 dual
vectors. To reduce memory overhead from storing buckets and results
(before insertion), we set MultiBucket = 2. Our main parameters are
summarized in Figure 4.12.

4.6.3 New SVP records

With the parameters tuned as discussed above, we have solved sev-
eral Darmstadt Lattice 1.05-approxSVP Challenges for lattices with
dimension in the range of 158 till 180 (all with seed=0). Details about
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(T)D4F = target/actual dimensions for free
MSD = maximum sieving dimension
FLOP = # bucketing + reduction core floating point operations

Dimensions Norm Cost

dim TD4F D4F MSD Norm/GH FLOP Walltime Mem GiB

158 31 29 129 1.04329 262.1 9h 16m 89
160 31 33 127 1.02302 261.8 8h 24m 88
162 31 31 131 1.04220 263.2 18h 32m 156
164 32 28 136 1.04368 264,8 2d 01h 179
166 32 30 136 1.03969 264.8 2d 01h 234
168 32 31 137 1.04946 265.3 2d 18h 318
170 33 31 139 1.04594 266.3 5d 11h 364
172 33 35 137 1.04582 265.0 2d 09h 364
174 33 35 139 1.04913 266.3 5d 06h 518
176 34 33 143 1.04412 267.5 12d 11h 806
178 34 32 146 1.02725 268.6 22d 18h 1060
180 34 30 150 1.04003 269.9 51d 14h 1443

Machine specification:
2× Intel Xeon Gold 6248 (20C/40T @ 2.5-3.9GHz)
4× Gigabyte RTX 2080 TI (4352C @ 1.5-1.8GHz)
1.5 TiB RAM (2666 MHz)
Average load: 40 CPU threads @ 93%

4 GPUs @ 79%/1530MHz/242Watt

Table 4.1: Darmstadt Lattice 1.05-approxSVP Challenge results

the effort and results for each challenge are presented in Table 4.1.
With a new top record of the 1.05-approxSVP challenges with di-

mension 180, we improve significantly upon the last record of dimen-
sion 155 by [Alb+19]. Note that this last record was achieved on
a single large machine with 72 CPU cores in 14 days and 16 hours,
where we were able to find an even shorter vector of length 0.9842 · gh
in about 5 hours (68× faster). Also we can improve this record from
155 by no less than 21 dimensions by solving lattice 1.05-approxSVP
for dimension 176 on our 4-GPU machine in less wall-clock time: 12
days and 11 hours. As proof we present our short vector for Darm-
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(68, 33, -261, 11, 101, 354, -48, -398, 196, -84, 217, 319, -137, -157, -29, 304, -14, 312, 28,
-240, -347, -6, -153, -35, -214, 67, -565, 91, 365, 382, -168, 152, 30, 42, -12, -14, -230, 54,
304, 51, 398, 380, 76, -111, 437, 374, -554, -171, -90, -92, 564, 32, 217, 60, -107, 475,

-290, -326, -224, -218, 27, -271, 12, 200, 463, -365, 119, -431, 92, 450, 58, 183, 342, 82,
-144, 77, -95, -62, -245, 171, 169, -106, -330, 236, 194, 41, -84, -297, 567, 58, 553, 279,
260, 140, -141, -30, -183, -448, -112, 45, 135, -260, -261, 1, -105, 507, 105, -414, -161,

-9, -337, -287, 431, 92, -91, 350, -376, -75, 11, -249, 119, -172, -351, 410, 97, -320, -270,
223, -287, 97, 235, 242, 279, -222, 384, -95, 501, 317, 167, -130, -103, 441, 424, 25, 187,
-128, -9, -90, 328, -107, -132, -81, 2, 94, -326, -109, 465, 49, -30, 345, 125, -114, 909, 180,

-5, -112, 190, 182, -65, -291, -83, 445, -68, -318, -18, -732, -241, 246, -34, 299)

Figure 4.13: A solution to the Darmstadt Lattice 1.05-approxSVP
Challenge in dimension 180 with seed 0.

Wattage Total usage

dim time CPU+GPU only system CPU+GPU only system

155 352 h 560 W 720 W 197 kWh 254 kWh
176 229 h 1268 W 1428 W 379 kWh 427 kWh

Table 4.2: Power use comparison for records of dimension 155 (G6K)
and 176 (ours).

stadt Lattice 1.05-approxSVP Challenge dimension 180 with seed 0 in
Figure 4.13.

4.6.4 Remarks

Power use

To compare power efficiency of our new record computation for di-
mension 176 with the previous record computation for dimension 155,
we estimated the power use as shown in Table 4.2 as follows. Their
dimension 155 computation ran for 352 hours on 4 CPUs (Intel Xeon
E7-8860V4) that have a TDP of 140 Watt each. Our dimension 176
computation ran for 299 hours on 2 CPUs (Intel Xeon Gold 6248)
with a TDP of 150 Watt each, and 4 GPUs that typically used 242
Watt as measured through the nvidia-smi tool. For both systems we
approximate other system power usage covering motherboard, RAM
and disk as about 160W.

Note in Table 4.2 that while solving the challenge for dimension
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176 is about two orders of magnitude harder compared to dimension
155, we spent less than a factor 2 more in electricity.

Memory use

From the measured memory usage in Table 4.1, we estimate that our
implementation requires about 416 Bytes per vector including the
amortized overheads, for dimensions higher than 137. Hence, siev-
ing up to dimension 146 could still fit within our 1.5 TiB of available
RAM, which allowed us to solve the lattice challenge of dimension
180.
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