
Lattice cryptography: from cryptanalysis to New
Foundations
Woerden, W.P.J. van

Citation
Woerden, W. P. J. van. (2023, February 23). Lattice cryptography: from
cryptanalysis to New Foundations. Retrieved from
https://hdl.handle.net/1887/3564770

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3564770

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3564770

Part II

Short and Close Lattice
Vectors

59

CHAPTER 3
Theory of Lattice Sieving

This chapter gives an introduction to the state-of-the-art of lat-
tice sieving.

3.1 Introduction
The hardness of the Shortest Vector Problem (SVP) is fundamental
to the security of lattice-based cryptography; an efficient algorithm
for SVP would break almost all lattice-based schemes. More precisely,
the best asymptotic and concrete attacks on many schemes boil down
to solving SVP in some (possibly lower dimensional) lattice, and thus
parameters for lattice-based schemes are directly influenced by the
complexity of solving SVP.

Lattice sieving algorithms solve SVP in single exponential time,
making them asymptotically superior to enumeration techniques run-
ning in super-exponential time, at the cost of also using single expo-
nential space. The central idea of sieving algorithms is to start with a
large list of (long) lattice vectors, and to find many sums and differ-
ences of these vectors that are shorter. These shorter combinations are
inserted back into the list, possibly replacing longer vectors, and this

61

3. Theory of Lattice Sieving

v1

v2

Find close vectors v1,v2 ∈ L. Replace v2 ← v1 − v2.

Figure 3.1: Lattice Sieving

process is repeated until the list contains many short vectors, among
which (hopefully) a shortest one of the lattice. See Figure 3.1 for one
such iteration.

The first lattice sieving algorithm [AKS01] was proposed in 2001
by Ajtai, Kumar, and Sivakumar (AKS), giving the first provable al-
gorithm that solved SVP in single exponential time 2O(n) for a rank n
lattice. By choosing the AKS parameters carefully, Nguyen et al. later
showed that the AKS sieve can provably solve SVP in time 25.9n+o(n)

and space 22.95n+o(n). In a further line of work [PS09; MV10; HPS11a]
algorithmic and analytic improvements brought the constants down to
time 22.456n+o(n) and space 21.233n+o(n). Provably solving (worst-case)
SVP with lattice sieving leads to many technical problems, such as
showing that we can actually find enough short combinations and in
particular that they are new, i.e., they are not present in our list yet;
unfortunately, side-stepping these technicalities leads to the mentioned
high time and memory complexities.

In contrast, for cryptanalysis we are interested in the average-case
behaviour of lattice sieving algorithms. Instead of provable results
these algorithms are based on heuristics, which are often verified ex-
perimentally, or which can only be proven (partially) for average-case
instances. The first and simplest of these practical sieving algorithms
by Nguyen and Vidick uses a list of N = (4/3)n/2+o(n) = 20.2075n+o(n)

vectors and runs in time N2+o(1) = 20.415n+o(d) by repeatedly checking

62

3.2. Heuristic lattice sieving

all pairs v ± w [NV08]. The list size of (4/3)n/2+o(n) is the mini-
mal number of vectors that is needed in order to keep finding enough
shorter pairs.

In a line of works [Laa15; BGJ15; BL16; BDGL16] the time com-
plexity was gradually improved to 20.292n+o(n) by nearest neighbour
searching techniques to find close pairs more efficiently [IM98]. In-
stead of checking all pairs they first apply some bucketing strategy
in which close vectors are more likely to fall into the same bucket.
By only considering the somewhat-close pairs inside each bucket, the
total number of checked pairs can be decreased.

To lower the space cost below N = 20.2075+o(n) one has to look
beyond sums and differences of pairs, and consider triples u± v ±w
or more generally k-tuples [BLS16; HK17; HKL18]. The current best
triple sieve [HKL18] has a space complexity of 20.1887n+o(n), but comes
with a higher time complexity of 20.3588n+o(n).

3.1.1 Organisation

In Section 3.2 we introduce the basics of lattice sieving algorithms and
their heuristic analysis. Section 3.3 introduces some Nearest Neigh-
bour Search techniques to obtain asymptotically faster sieving algo-
rithms. In Section 3.4 we introduce more advanced practical sieving
techniques that give significant polynomial and even subexponential
speed-ups. In Section 3.5 we give an overview of the General Sieve
Kernel (G6K), the current state-of-the-art framework and implemen-
tation for (lattice reduction via) lattice sieving.

3.2 Heuristic lattice sieving
In this section we introduce a very basic lattice sieving algorithm in-
spired by the first practical sieving algorithm [NV08], and explain
heuristically why it works. Lattice sieving algorithms start with a
large list L0 ⊂ L consisting of N long lattice vectors. Given any ba-
sis one can always produce long lattice vectors by discrete Gaussian
sampling, or simply by taking small random combinations of the basis
vectors. Note that due to the additive structure of the lattice, for
any two lattice vectors x,y ∈ L0, the difference x− y is still a lattice
vector. And, in particular the difference might be a shorter lattice

63

3. Theory of Lattice Sieving

vector. The idea behind lattice sieving is to compute the difference
x − y for all lattice vectors x,y ∈ L0 and store those that are short
enough in a new list L1. We call such pairs (x,y) a reduction.

Definition 65 (Reduction). Let R > 0 be some length bound (clear
from the context), and let x,y ∈ Rn be (lattice) vectors, we call (x,y)
a reduction or a reducing pair if

∥x− y∥ ≤ R.

With the appropriate length bound the new list L1 contains shorter
vectors than the original list L0, and this process is repeated with
more lists L2, L3, . . . and decreasing bounds R2 ≥ R3 ≥ . . . until some
saturation condition is met (which will be discussed later). This basic
sieving algorithm is summarized in Algorithm 2. Given the algorithm
as stated it might as well happen that such reductions do not exist, or
at least not enough of them, such that after some iterations we have
Li = {0}. Clearly if we add more vectors to the initial list L0, then
more pairs are considered, and thus we expect to find more reductions.

Algorithm 2: Lattice sieving algorithm.
Input : A basis B of a lattice L, list size N , a saturation

radius R and a progress factor 2/3 < γ < 1.
Output: A list L of short vectors saturating the ball of radius

R.
1 Sample a list L0 ⊂ L of size N .
2 i← 0.
3 while Li does not saturate the ball of radius R do
4 Ri+1 ← γ ·maxv∈Li

∥v∥
5 Li+1 = ∅.
6 for every pair v,w ∈ Li do
7 if v −w /∈ Li+1 and ∥v −w∥ ≤ Ri+1 then
8 Li+1 ← Li+1 ∪ {v −w}
9 end

10 end
11 i← i+ 1

12 end
13 return Li

64

3.2. Heuristic lattice sieving

So how large does the initial list N = |L0| need to be to find enough
reductions?

Reduction probability

Let’s first dive deeper into sufficient conditions for lattice vectors to
give a reduction. Pairs (x,y) give a reduction if their difference is small
enough, i.e., if they are somewhat close to each-other. Alternatively
this means that the vectors x and y have a small angle to each-other.
This can be made rigorous in terms of the inner product.

Lemma 66. Let x,y ∈ Rn be (lattice) vectors, then (x,y) is a re-
duction for some length bound R > 0 if and only if

⟨x,y⟩ ≥ ∥x∥
2 + ∥y∥2 −R2

2
.

in particular if ∥x∥ = ∥y∥ = R then (x,y) is a reduction if and only
if

⟨x/ ∥x∥ ,y/ ∥y∥⟩ ≥ 1

2
.

A normalized inner product of at least 1
2

corresponds to the vectors
having an angle less than π/3 between each-other. Independent of the
length of the vectors x,y, if R ≥ max{∥x∥ , ∥y∥} then the condition
that the angle is less than π/3 is sufficient. Note that in some sense
this is the worst-case scenario, the angle condition is only necessary
when the vectors have the same length.

In order to say something about the probability that a pair (x,y) ∈
Li × Li gives a reduction we have to assume that these vectors follow
some distribution. This is where the heuristics come in. Recall that
the Gaussian Heuristic indicates that given some ball R · Bn of radius
R, there are approximately |R · Bn ∩ L| = (R/ gh(L))n lattice vectors
in it, and those lattice vectors are uniformly distributed over the ball.
In addition, for most use cases, any dependencies between the lattice
vectors is ignored. Vectors that are uniformly distributed over a ball
are in particular uniformly distributed over the sphere after normal-
ization. Given the sufficient condition on the angle we can thus work
with the following weaker heuristic.

65

3. Theory of Lattice Sieving

Heuristic 67. For nonzero list vectors v ∈ Li \ {0}, the directions
v/ ∥v∥ are independently uniformly distributed over the sphere Sn−1.

This heuristic matches what we observe in practice, and one could
argue that this is in fact the worst-case distribution when ones goal
is to find pairs that have a small angle1, i.e., if the distribution is less
uniform and biased into a certain direction then one would expect to
find more pairs with a small angle.

As a technical motivation, ignoring dependency issues, note that if
we sample the initial list from a discrete Gaussian with large enough
parameter, then their directions are indeed close to uniform. Now if
vectors x,y have uniform directions, then their difference x − y also
has a uniform direction. Furthermore heuristically there is no direct
relation between the direction of x − y and its shortness, so the new
list also contains vectors with uniform directions.

Given this heuristic we can compute a lower bound on the proba-
bility that any two vectors give a reduction. Note that for this only
one of the two vectors has to follow the heuristic.

Lemma 68. For any x ∈ Rn \ {0}, let y ∈ Rn \ {0} be such that
y/ ∥y∥ is uniform over Sn−1, and let R ≥ max{∥x∥ , ∥y∥} be a length
bound, then the probability that (x,y) is a reduction is at least

Pr[∥x− y∥ ≤ R] ≥ (3/4)n/2+o(n),

with equality if R = ∥x∥ = ∥y∥.
Proof. Let x̃ = x/ ∥x∥ , ỹ = y/ ∥y∥, the condition ⟨x̃, ỹ⟩ ≥ 1

2
implies

that (x,y) is a reduction with the length bound R ≥ max{∥x∥ , ∥y∥}.
The condition is necessary only when R = ∥x∥ = ∥y∥. For any
x̃ ∈ Sn−1 the probability

Pr
ỹ∼Sn−1

[
⟨x̃, ỹ⟩ ≥ 1

2

]
=

vol
(
Cn−1
x̃, 1

2

)
vol(Sn−1)

= Cn−1(1/2) = (3/4)n/2 · nO(1),

is given by the relative volume Cn−1(1/2) of the spherical cap, whose
asymptotic formula is given by Lemma 46.

1Technically, the existence of a very good non-lattice kissing number configu-
rations would imply a counter-example to this statement, but it is not clear that
such a configuration exists, and in particular such a distribution does not occur
naturally in practice.

66

3.2. Heuristic lattice sieving

Following Lemma 68 we have to consider about (4/3)n/2+o(n) pairs
to find at least a single reduction. Given a list Li of length N and
a length bound of R = maxv∈Li

∥v∥ we can consider about ≈ 1
2
N2

pairs, and the total number of reductions will heuristically be at least
N2 ·(3/4)n/2+o(n). These reductions form the new list Li+1 which again
has to be of size close to N . Solving the list balancing equation

N = N2 · (3/4)n/2+o(n),

we thus need a list of size N = (4/3)n/2+o(n) to make sure that the
lists do not decrease in size (ignoring duplicates).

In Algorithm 2 the length bound is set slightly smaller at R =
γ · maxv∈Li

∥v∥ for some progress factor γ < 1. Depending on the
specific factor one would have to increase the list size slightly; but by
setting e.g., γ = 1 − 1

n
an asymptotic list size of N = (4/3)n/2+o(n)

is again sufficient, while still obtaining an exponential decrease in the
length bounds Ri.

Duplicates

In the above analysis we are assuming that each of the found reduc-
tions x − y is distinct. This cannot stay true as otherwise we would
eventually find nonzero vectors shorter than λ1(L) under Heuristic 67.
Suppose the lattice is normalized to gh(L) = 1, i.e., such that the
Gaussian Heuristic indicates that λ1(L) ≈ 1. Asymptotically, for large
n almost all of the reductions in the new list have length close to the
length bound R (say between 0.99R and R), and given Heuristic 67 it
is natural to assume that these reductions give vectors close to uniform
among the lattice vectors in that thin layer. By the Gaussian Heuristic
there exist about Rn+o(n) such lattice vectors. Given (4/3)n/2+o(n) uni-
form samples from this set we only expect a significant Θ(1) fraction
of duplicates when R ≤

√
4/3 + o(1). A natural saturation condition

is thus to stop whenever Li contains a significant fraction of the lattice
vectors of length at most

√
4/3 · gh(L), and before this happens the

relative number of duplicates is expected to be insignificant.

Definition 69 (Saturation). For a rank n lattice L, we say that a
list L ⊂ L of lattice vectors is saturating (a ball) with radius R if

|L ·R · Bn| ≥ 1
2
· (R/ gh(L))n

67

3. Theory of Lattice Sieving

The saturation condition is usually applied with radius R =
√

4/3·
gh(L). The constant 1

2
is somewhat arbitrary and can be tweaked in

practice. A lower constant makes it easier to reach saturation but
results in less short vectors in the final list. A larger constant (of at
most 1) makes saturation harder to reach and increases the occurrence
of duplicates, but results in more short vectors in the final list.

Heuristic runtime analysis

Again we consider a lattice L that is normalized such that gh(L) = 1.
Suppose we set γ = 1 − 1

n
, then a list size of N = (4/3)n/2+o(n) is

enough, and there are N2 = (4/3)n+o(n) reductions to check every
iteration, each at the cost of O(n) arithmetic operations to compute
an inner product. Checking for duplicates can be done in O(logN) or
amortized O(1) vector operations per vector by keeping the list sorted
or by a hash-set.

By first LLL reducing the basis and then sampling vectors by tak-
ing small random combinations (or by Gaussian sampling) we can con-
struct an initial list L0 of vectors such that R1 = maxv∈L0 ∥v∥ = 2O(n).
Given that γk = (1− 1

n
)k decreases like (1/e)k/n we obtain Ri ≈

√
4/3

after at most a polynomial number of k = O(n2) iterations, and fol-
lowing the previous discussion the saturation condition will (have)
trigger(ed).

In total the complexity is thus dominated by the poly(n) · N2 =
(4/3)n+o(n) time cost of checking all pairs and the poly(n) · N =
(4/3)n/2+o(n) memory cost of storing the lists.

A single list

Algorithm 2 uses multiple lists L1, L2, . . . to clarify the steps in the
heuristic analysis. In practice it is common to use a single list, where
new reduced vectors x − y either replace the longest of x or y, or
replace just the longest element in the list. The list and length bound
are then continuously updated and the vectors are getting shorter and
shorter until saturation is achieved. This has the added benefit of
explicitly reusing all the short enough vectors found so far (although
this was implicitly done in Algorithm 2 by forcing 0 to be part of each
list).

68

3.2. Heuristic lattice sieving

One could pick random pairs to reduce, which might result in a
loss of performance due to rechecking the same pair. The approach of
the Gauss Sieve [MV10] is to split the list into two parts: the queue
part Q and the list part L. At the start of the sieve all vectors are in
the queue part, and the list part is empty. If the queue part becomes
too small before saturation is achieved we sample more vectors into
it.

A queue vector v ∈ Q is only inserted in the list part if it does not
form a reduction with any of the list vectors (withR = max{∥v∥ , ∥w∥}
for w ∈ L). This is achieved by explicitly checking for reductions be-
tween v and all list vectors, where any reduction (v,w) replaces the
longest of the two vectors, and is inserted back into the queue part
(if it was not in the database yet). By following this strategy any
pair of vectors is only checked for a reduction once (except if a vec-
tor disappears and later reappears in the database), preventing most
of the duplicate checks, and giving a significant speed-up in lowish
dimensions.

Another improvement is to not store both the vector x and its
negation −x, which saves a factor 2 in memory. Additionally we can
check if either ±(x−y) or ±(x+y) is short by looking at the absolute
inner product |⟨x,y⟩|, which saves a factor 4 in the number of inner
products we have to compute.

Triple sieve

In Section 3.3 we will explain how to decrease the time complex-
ity below N2 = (4/3)n+o(n), by making reductions easier to find.
However all such methods do no improve the memory usage below
N = (4/3)n/2+o(n), as we still require the same number of reductions.

To improve the memory cost we have to go beyond pairs and
consider triples (x,y, z) such that x ± y ± z is short or even k-
tuples (x1, . . . ,xk) [BLS16; HK17; HKL18]. The probability that a
triple uniformly sampled from the sphere gives a reduction is about
(16/27)n/2+o(n), which is much smaller than for a pair. But at the
same time there are about N3 triples to consider, leading to the list
balancing equation

N = (16/27)n/2+o(n) ·N3,

69

3. Theory of Lattice Sieving

with solution N = (27/16)n/4+o(n) = 20.1887n+o(n) compared to a list
size of (4/3)n/2+o(n) = 20.2075n+o(n) for the sieve based on pairs. This
comes at the cost of a higher time, as we now need to check N3 =
20.5662n+o(n) triples. Considering tuples of k ≥ 4 vectors further de-
creases the memory cost, but with a large impact on the runtime.

Provable sieves

In the literature on lattice sieving there is a large gap between the
heuristic (and real-world average-case) performance of lattice sieving
algorithms and the provable sieving algorithms. Heuristically we need
a list size of about (4/3)n/2+o(n) to keep finding enough reduction,
and this seems realistic in practice. However in the worst-case we
could construct such a list that has no reduction at all. For a naive
provable result on finding enough reductions one would have to at least
square the list size to (4/3)n+o(n) = 20.415n+o(n). The exact number that
is needed is directly related to the non-lattice variant of the kissing
number, which bound can be improved to 20.401n+o(n).

Still the problem remains that many of the found reductions might
collide, and this is where most of the technical difficulties in provable
sieving algorithms stem from. One technical solution is to add extra
random errors to the lattice point in order to somehow ‘hide the lattice
structure’ from the sieving algorithm, which allows one to prove re-
sults about the distribution of the list and the probability of obtaining
duplicates, but this comes at the cost of significantly increasing the
asymptotic complexity. When allowing for a constant approximation
factor, e.g., that the algorithm returns provably only a vector of size
µ · λ1(L) for some constant µ > 1, this increase in complexity can
be prevented, leading to a 20.802n+o(n) time and 20.401n+o(n) space al-
gorithm [AUV19; EV22; RV22], surprisingly not only in the standard
Euclidean norm, but for any p-norm.

3.3 Bucketing and sieving variants
Recall from Section 3.2 that for a (pair-)sieve we need a list of N =
(4/3)n/2+o(n) lattice vectors, and we need to find all the reductions
among the N2 pairs. Naturally the naive algorithm that checks all
pairs takes a time complexity on the order of N2.

70

3.3. Bucketing and sieving variants

Create a bucket B ⊂ L. Search reducing pairs in B.

Figure 3.2: Lattice sieving with bucketing.

This can be improved by bucketing methods. The idea is to first
group vectors together that point somewhat in the same direction.
Then within each group each pair is more likely to give a reduction;
and this is where we improve the time complexity. To find all reduc-
tions we might have to repeat the bucketing process (after randomiz-
ing) for multiple iterations. See Algorithm 3.

Suppose that in each iteration we have m buckets B1, . . . , Bm.
Each of the N vectors is added to on average M buckets, depending on
some bucket condition, at a cost of Tb per vector. For convenience we
will for now assume that M ≈ 1, such that assuming that the buckets
are well balanced, they are of size |Bi| ≈ N/m.

We assume that any pair of vectors that lies in the same bucket
has (at least) some conditional probability p to give a reduction. To
find N reductions we thus have to check in total about N/p bucketed
pairs, and when p≫ N−1 this is less than in the naive algorithm.

This is only helpful if the cost of the bucketing process is less or
equal to Õ(N/p). Per iteration we have m buckets and we find on the
order of p · (N/m)2 reductions per bucket. To find N reductions we
thus have to repeat r = m

N ·p many iterations. At each iteration we
have to find an appropriate bucket for each of the N vectors at a cost
of Tb per vector, the total cost of bucketing is thus given by

r ·N · Tb =
n

N · p ·N · Tb =
m

p
· Tb.

71

3. Theory of Lattice Sieving

As an alternative explanation of the bucketing cost note that each
vector has after bucketing an expected number of |Bi| · p = N

m
· p

reductions, to achieve a total of N reductions we thus have to bucket
N/(N

m
· p) = m/p vectors with a total cost of m

p
· Tb.

The total time complexity of bucketing and checking pairs for re-
ductions is thus given by

T = Õ

(
m · Tb
p

+
N

p

)
.

Investing more time in bucketing often allows for more and higher
quality buckets, which results in a larger reduction probability p and
thus in a lower reduction cost. Investing less time in bucketing in
general leads to a higher reduction cost. For a fixed bucketing algo-
rithm the optimal parameters are (often) such that the above terms
are balanced, which means that m · Tb ≈ N .

Algorithm 3: Bucketed lattice sieving algorithm.
Input : A basis B of a lattice L, list size N , and a

saturation radius R.
Output: A list L of short vectors saturating the ball of radius

R.
1 Sample a list L ⊂ L of size N .
2 while L does not saturate the ball of radius R do
3 B1, . . . , Bm ← Bucket(L,m).
4 for every bucket Bi do
5 for every pair v,w ∈ Bi do
6 if v −w /∈ L and ∥v −w∥ < maxu∈L ∥u∥ then
7 Replace longest vector in L by v −w.
8 end
9 end

10 end
11 end
12 return L

We now discuss two different bucketing algorithms, and their opti-
mal time complexity. The first is relatively simple and very practical,
while the second is somewhat more complicated but reaches the best
known asymptotic time complexity.

72

3.3. Bucketing and sieving variants

BJG1 sieve

We start with the simple 1 layer variant of [BGJ15], better known
as the BGJ1 sieve. Recall that the idea of bucketing is to subdivide
our large list into groups of vectors pointing somewhat in the same
direction. We can take this quite literal and pick b1, . . . ,bm ∈ Sn−1

bucket directions uniformly at random, and put a vector v in bucket i if
it points mostly in the direction of bi, i.e., if ⟨bi/∥bi∥,v/∥v∥⟩ ≥ α for
some parameter α > 0. For a vector v we can compute the above inner
product for each of the m buckets, and thus we obtain a bucketing cost
of Tb = O(m · n) per vector.

Geometrically each bucket presents a spherical cap Cn−1
bi,α

in some
random direction. The probability that a (normalized) lattice vector
lies in such a cap is given by its relative volume Cn−1(α) = (1 −
α2)n/2+o(n), and thus we need m = (1 − α2)−n/2+o(n) such buckets to
make sure each vector is on average part of M ≈ 1 bucket. I.e.,
geometrically we need about (1 − α2)−n/2+o(n) such spherical caps to
cover each point on the sphere (in expectation).

Now what about the improved probability p, that a pair inside a
bucket gives a reduction. Recall that before bucketing this probability
is about (3/4)n/2+o(n). For a pair inside a spherical cap with parameter
α the probability is, as expected, better.

Lemma 70. Let b ∈ Sn−1 be a direction, and let v,w ∼ Sn−1. Then
for any parameter

√
1/2 > α > 0 we have

Pr

[
⟨v,w⟩ ≥ 1

2

∣∣∣∣ ⟨v,b⟩ ≥ α and ⟨w,b⟩ ≥ α

]
=

(3
4
− α2

(1− α2)2

)n/2+o(n)

.

Proof. Let A be the event that ⟨v,w⟩ ≥ 1
2
, and let B be the event that

⟨v,b⟩ ≥ α and ⟨w,b⟩ ≥ α. Note that Pr[A] = Cn−1(1/2), and Pr[B] =
Cn−1(α)2. For γ ∈ [1

2
, 1] the probability density function for the event

⟨v,w⟩ = γ is asymptotically proportional to Cn−1(γ) = (1 − γ2)n/2.
Furthermore the probability Pr[B|⟨v,w⟩ = γ] can geometrically be
interpreted as the wedge Wn−1

v,w,α := Cn−1
v,α ∩ Cn−1

w,α with relative volume
Wn−1(α, γ). We have

Wn−1(α, γ) · Cn−1(γ) = ((1 + γ − 2α2)(1− γ))n/2+o(n),

and for 0 < α <
√

1/2 the constant (1 + γ − 2α2)(1 − γ) is strictly
maximized for γ = 1

2
. Asymptotically, we thus have Pr[B|A] =

73

3. Theory of Lattice Sieving

Pr[B|⟨v,w⟩ ≥ 1
2
] = 2o(n) · Pr[B|⟨v,w⟩ = 1

2
] = (1 − 4

3
α2)n/2+o(n). Now

by Bayes’ theorem we have

Pr[A|B] =
Pr[B|A] · Pr[A]

Pr[B]
=

(1− 4
3
α2)n/2+o(n) · Cn−1(1/2)

Cn−1(α)2

=

(3
4
− α2

(1− α2)2

)n/2+o(n)

.

To summarize we have m = (1 − α2)−n/2+o(n), Tb = Õ(m), and
p = (3

4
− α2/((1 − α2)2))n/2+o(n). Now let us pick α such that the

total time complexity is minimized. From N = m · Tb = Õ(m2)
we obtain (1 − α2)−n/2+o(n) = m ≈ N1/2 = (4/3)n/4+o(n) and thus

α =
√
1−

√
4/3+ o(1) ≈ 0.366. This gives p = (

√
4/3− 1

3
)n/2+o(n) =

2−0.142n+o(n), and a total time complexity of N/p = 20.349n+o(n).
When applying the same bucketing strategy recursively the time

complexity can be further reduced to 20.311n+o(n) [BGJ15]. However,
the recursion comes with large overheads, and therefore it is unclear
how practical this version is.

BDGL sieve

The asymptotically optimal bucketing method from [BDGL16] is sim-
ilar to BGJ1 as in that it is based on spherical caps. The difference
is that in contrast to BGJ1 the bucket centers are not arbitrary but
structured, allowing to find the correct bucket without having to com-
pute the inner product with each individual bucket center. This allows
us to reduce the bucketing cost below Tb = Õ(m) per vector.

Following [BDGL16], such a bucketing strategy looks as follows.
First we split the dimension n into k smaller blocks of similar dimen-
sions n1, . . . , nk that sum up to n. In order to randomize this splitting
over different iterations one first applies a random orthonormal trans-
formation Q to each input vector. Then the set C of bucket centers
is constructed as a direct product of random local bucket centers, i.e.,
C = ±C1 ×±C2 · · · × ±Ck with Cb ⊂ Rnb . A (normalised) list vector
v is then similarly split into parts v1, . . . ,vk, and we have to find the
bucket centers (c1, . . . , ck) ∈ C such that

∑
i⟨ci,vi⟩ ≥ α. Note that to

74

3.3. Bucketing and sieving variants

Bucketing Tb |Bi| ctime

None 0 Õ(N) 0.415

BGJ1 Õ(m) Õ(N1/2) 0.349

BDGL (k = 1) Õ(m) Õ(N1/2) 0.349

BDGL (k = 2) Õ(m1/2) Õ(N1/3) 0.329

BDGL (k = 3) Õ(m1/3) Õ(N1/4) 0.320

BDGL (k = Θ(log(n))) Õ(m1/k) Õ(N1/(k+1)) 0.292

Table 3.1: Bucketing cost Tb per vector, optimal bucket size |Bi| and
the resulting time complexity 2ctimen+o(n) for the discussed bucketing
algorithms with a space complexity of N = 20.2075n+o(n).

find the closest global bucket center to v, we only have to pick the clos-
est local bucket centers ci to vi, implicitly considering m = 2k

∏
b |Cb|

global bucket centers at the cost of only Tb =
∑

b |Cb| ≈ O(m1/k) lo-
cal inner products. By sorting the local inner products we can also
efficiently find all bucket centers within a certain angle. For a fixed
number of buckets m we can expect some performance loss compared
to BGJ1 as the bucket centers are not perfectly random, but this does
not influence the asymptotics. I.e., the analysis of [BDGL16, Theorem
5.1] shows this leads to at most a subexponential loss if k = O(log(n)),
and the experimental analysis of [Duc22] shows that it is also reason-
able small in practice.

To optimize the parameters we again balance the cost of bucket-
ing and reducing. Note that for k = 1 we essentially obtain BGJ1
with buckets of size Õ(N1/2) and a time complexity of 20.349n+o(n). For
k = 2 or k = 3 the optimal buckets become smaller of size Õ(N1/3) and
Õ(N1/4) respectively and of higher quality, leading to a time complex-
ity of 20.3294n+o(n) and 20.3198n+o(n) respectively. By letting k slowly
grow, e.g., k = Θ(log(n)) there will only be a subexponential 2o(n)
number of vectors in each bucket, leading to the best known time
complexity of 20.292n+o(n). Note however that a lot of subexponential
factors might be hidden inside this o(n), and thus for practical di-
mensions a rather small value of k = 2, 3, 4 might give best results.
See Table 3.1 for an overview of the time complexity of the discussed
bucketing algorithms.

75

3. Theory of Lattice Sieving

3.4 Advanced lattice sieving
In this section we discuss some more advanced techniques used in
lattice sieving. The ideas and implementation tricks in this section
only give subexponential, polynomial or even only constant speed-
ups, and do not improve the asymptotic time complexity, however
they do give significant practical speed-ups. These ideas have largely
contributed to pushing the cross-over between enumeration and sieving
techniques as low as dimension 70.

3.4.1 XOR Popcount SimHash

The main operation in lattice sieving algorithms is the computation of
many pairwise inner products ⟨vi,vj⟩ given a list v1, . . . ,vm ∈ Rn of
vectors (or alternatively pairwise between two lists), with the goal of
finding those pairs (vi,vj) that are relatively close. The cost of such
an inner product computation is 2n floating point operations, or n
so-called Fused multiply-add (FMA) instructions on say 16 or 32-bit
floats. Such floating point operations are complex and require many
logical gates to function.

The SimHash filter, better known as the ‘XOR popcount trick’
[Cha02; Fit+14; Duc18; Alb+19; AGPS20], is a cheaper computation,
that already throws out most of the candidates that are far away from
each-other, so that the full inner product only has to be computed on
the more likely candidates. The idea is that given two normalized close
pairs v,w ∈ Sn−1 (with e.g., ⟨v,w⟩ ≥ 1

2
), and a random direction

y ∼ U(Sn−1), the inner products ⟨v,y⟩ and ⟨w,y⟩ are correlated,
in particular their signs are more likely to coincide. For a list of
random (but fixed) directions y1, . . . ,yh ∈ Sn−1 we can thus define
the SimHash SH : Sn−1 → {0, 1}h by

SH : v 7→
({

0, if ⟨v,yi⟩ ≤ 0,

1, if ⟨v,yi⟩ > 0.

)
i

.

If v,w are uniformly random, then SH(v) and SH(w) have on expec-
tation h/2 bits in common. Now if v and w or v and −w are close,
then SH(v) and SH(w) are expected to have significantly more or sig-
nificantly less than h/2 bits in common respectively. Assuming that
the SimHashes are pre-computed (which takes negligible time when

76

3.4. Advanced lattice sieving

amortized over many pairs), we can compute the number of bits (not)
in common by doing an h-bit XOR, followed by a population count
instruction (which counts the number of ones), which can be much
cheaper than the 2n floating point operations. The number of direc-
tions h and the filter threshold can be balanced for filter strength and
computation cost, for theory on this matter look at [AGPS20]. In
practice the SimHash with h = 256 has been successfully used up to
dimension 128, saving about a factor 10 on computation time [Fit+14;
Alb+19].

3.4.2 Progressive sieving

Due to the exponential time complexity sieving quickly becomes more
costly in higher dimensions, especially when the starting list also con-
sists of very long vectors. Relatively, the cost of sieving in slightly
lower dimensions becomes almost negligible. The idea of Progressive
Sieving is to first sieve in a lower dimensional projected sublattice,
and to slowly increment the dimension and list size, while also lifting
the list along the way. As a result, the list vectors are already quite
short when the highest dimension is reached, and thus we have to
run less high dimensional sieving iterations, at the cost of (more) low
dimensional sieving iterations.

Recall that for a lattice L with basis B = (b0, . . . ,bd−1) we denote
the projected sublattice L(πl(bl), . . . , πl(br−1)) by L[l:r). There are
two main directions to implement this idea (although a combination
is also possible) [Duc18; LM18; Alb+19]. Either we form a chain of
sublattices

L[0:r) ⊊ L[0:r+1) ⊊ . . . ⊊ L[0:d) = L,
for some 1 ≤ r < d or a chain of projections

L[l:d)
πl←− L[l−1:d)

πl−1←−− · · · π1←− L[0:d) = L,

for some 1 ≤ l < d. Both ways give significant speed-ups compared to
directly sieving in the full dimension, but they both come with their
own pros and cons.

For the sublattice approach, after extending, we do not have to
lift the short vectors we have in any way, they are by definition part
of the super-lattice. With a normal descending basis profile we have

77

3. Theory of Lattice Sieving

L[0:r) → L[0:r+1)

0 dr

L[l:d) → L[l−1:d)

0 dl

Figure 3.3: Progressive step via a chain of sublattices (on the left)
versus a chain of projections (on the right).

gh(L[0:r)) > gh(L[0:r+1)), so after extending the vectors are somewhat
longer relative to the local Gaussian Heuristic, but only by a bit. The
main disadvantage of the sublattice approach is that after extending,
all the short vectors still lie in the same lower rank sublattice, and one
has to be careful with sampling new vectors, and in the further sieving
process, to also obtain short vectors in L[0:r+1) \L[0:r). Without taking
explicit care one might implicitly get stuck in a lower rank sublattice,
which makes the sublattice approach tricky to work with.

For the projection approach, after extending, the vectors have to
be lifted to undo the projection. Undoing e.g., a single projection
πi efficiently, while limiting the increase in size, can be done using
Babai’s nearest plane algorithm. The main disadvantage is that the
squared length of a vector can still increase by 1

4
∥b̃i∥2, which can be

significant. At the same time the Gaussian Heuristic predicts that the
first minimum of the extended lattice is larger and thus the relative
increment in length is somewhat damped by this. The current state-of-
the-art sieving implementations use this method, because it is reliable
and combines well with the Dimensions for Free technique.

3.4.3 Dimensions for free

When a lattice sieving algorithm finishes it does not only recover the
shortest vector, but a significant proportion of all lattice vectors up to
some radius R. For a pair-sieve with a list size of N = (4/3)n/2+o(n) we
naturally have this for R ≈

√
4/3+ o(1). The idea of the ‘dimensions

for free’ technique [Duc18], is to sieve in a projected sublattice L[l:d)

for some l > 0, and to lift all the short vectors to the full context.
If l is not too large, then with high probability one of them lifts to a
shortest vector of the full lattice.

78

3.5. The General Sieve Kernel

0 L[l:d) dl

To simplify the analysis we simply assume that the sieve in the
projected sublattice L[l:d) computes a list L of all vectors of length up
to
√
4/3·gh(L[l:d)). The projection πl(v) of a shortest vector v ∈ L[0:d)

is thus part of the list πl(v) ∈ L if ∥πl(v)∥ ≤
√

4/3 ·gh(L[l:d)). For not
too large l, Babai’s algorithm then successfully recovers v back from
πl(v).

The maximum value for l for which the above is true depends on
the basis profile (∥b̃0∥, . . . , ∥b̃d−1|∥). For a well-reduced basis (more
on this in Part III) we obtain about l = O(log(d)/d) ‘dimensions
for free’, and thus we only have to sieve in a lattice of dimension
n = d−O(log(d)/d), leading to a subexponential speed-up.

Note that with the progressive sieve based on a chain of projections
we do not have to pick the parameter l a priori. We can increase the
chain step by step (decreasing l), while at every step we lift the list
to the full context. At every step we are increasing the probability
that the projection πl(v) is part of the list, and we recover it at the
appropriate l without having to specify it beforehand.

Looking from another perspective, every short vector in a projected
sublattice L[l:d) has some probability to lift to a (close to) shortest
vector of the full lattice. Therefore to increase the the dimensions for
free we could lift any short enough vector that we see on the fly: for
example any new vector inserted in the sieving list, or even vectors
that are short, but not short enough to be inserted.

We can expect about l = 20 (for d = 100) to l = 40 (for d = 450)
dimensions for free, and even more when enabling on the fly lifting,
making this an extremely important technique that we explicitly have
to take into account for concrete hardness estimates.

3.5 The General Sieve Kernel
The General Sieve Kernel (G6K) [Alb+19] is a lattice reduction frame-
work based on sieving algorithms that is designed to be ‘stateful’ in-
stead of treating sieving as a black-box SVP oracle. In short it allows
to easily move between different contexts L[l:r), while maintaining a

79

3. Theory of Lattice Sieving

database L of short vectors. This encompasses advanced techniques
like progressive sieving and dimensions for free. It includes an open-
source implementation of the framework that broke several new TU
Darmstadt SVP Challenges [SG10] up to dimension 155. This im-
plementation is multi-threaded and low-level optimized, and includes
many of the implementation tricks from the advanced lattice sieving
literature and some more. In this section we recall the state, instruc-
tions, global strategies and some implementation details of G6K.

3.5.1 State

Naturally, the state includes a lattice basis B ∈ Zd×d and its corre-
sponding Gram-Schmidt basis B̃. The current state keeps track of a
sieving context L[l:r) and a lifting context L[κ:r) for 0 ≤ κ ≤ l ≤ r ≤ d.
The sieving dimension will often be denoted by n := r − l. There
is a database L containing N lattice vectors from the sieving context
L[l:r). To conclude G6K also keeps track of good insertion candidates
iκ, . . . , il for the corresponding positions in the current lattice basis.

3.5.2 Instructions

We begin with several instructions that change the sieving context,
and we explain how the database is updated such that it does not get
invalidated.

• Extend Left: The extend left operation moves the sieving
context from L[l:r) to L[l−k:r) for some 0 < k ≤ l. The database
vectors are lifted from L[l:r) to L[l−k:r) using Babai’s nearest plane
algorithm in the context L[l−k:l).

• Shrink Left: The shrink left operation moves the sieving con-
text from L[l:r) to L[l+k:r) for some 0 < k ≤ r− l. Each database
vector v ∈ L ⊂ L[l:r) is projected to πl+k(v) ∈ L[l+k:r), and
duplicates are removed.

• Extend Right: The extend right operation moves the sieving
context from L[l:r) to the super-lattice L[l:r+k) for some 0 < k ≤
d− r. The database can remain unchanged.

80

3.5. The General Sieve Kernel

• Insertion: The insertion operation inserts one of the insertion
candidates ik (often a short vector) back into the basis, at some
position κ ≤ k ≤ l. I.e., assuming the vector ik is primitive we
choose some local (basis) transformation on the context L[k:r)

such that ik becomes the new basis vector at position k, and
the Gram-Schmidt basis B̃ is updated accordingly. If k = l the
database vectors still live in the context L[l:r) after the basis
change, and so we do not have to do anything. Typically how-
ever, we will have k < l, which makes it less trivial. By carefully
choosing the local transformation and by moving to a slightly
smaller sieving context L[l+1:r) we can however still recycle most
of the database after an insertion. For prevent confusion we
assume that after an insertion operation the sieving context is
always moved to L[l+1:r).

These instruction were focused on moving between different contexts
and maintaining the database along the way. We now consider some
instructions that act on the database.

• Sieve: The sieve operation applies a lattice sieving algorithm
to the database vectors in order to decrease their size. The end
result is an updated database that is saturated in the sieving
context L[l:r) according to some saturation condition. During
the sieving process any short enough vector is lifted to the lifting
context L[κ:r), and, if short enough, replaces one of the insertion
candidates iκ, . . . , il.

• Grow: The grow operation increases the size of the database
by sampling new vectors. This might be needed to have enough
vectors to run a sieving algorithm, for example after increasing
the dimension of the sieving context. The sampling procedure is
not fixed, but preferably generates shortish vectors (by using the
known some-what reduced basis, or short vectors in the current
database).

• Shrink: The shrink operation decreases the size of the database
by throwing away the longest vectors.

81

3. Theory of Lattice Sieving

3.5.3 Global strategies

The implementation of G6K consists of a high level Python layer and
a low-level C++ layer. The earlier mentioned instructions can be called
and parametrized from the Python layer, while the core implementa-
tion consists of highly optimized C++ code. This allows one to quickly
experiment with different global strategies.

For example, the leftwards progressive sieving technique explained
in Section 3.4.2, can be described as follows: start in a small context
of say L[d−40:d) and alternate the Extend Left, Grow and Sieve
instructions. The authors of G6K call such an alternation of extend-
ing and sieving a pump up, up to some final context L[l:d), and recall
that it is much more efficient than running a single Grow and Sieve
instruction in the final context L[l:d). A full pump consists of a pump
up followed by a pump down: repeat the Insertion instruction to im-
prove the basis while making the context smaller again, and optionally
combine this with the Sieve instruction to find better insertion can-
didates. To solve SVP-instances among other things G6K combines
such pumps in a workout, which is a sequence of longer and longer
pumps, until a short enough vector is found in the full context by lift-
ing. Each pump improves the quality of the basis, which as a result
lowers the expected length increase from lifting, making consequent
pumps faster and simultaneously improving the probability to find a
short vector in the full context.

3.5.4 Sieve implementations

The current open-source implementation of G6K contains multiple
sieving algorithms that implement the Sieve instruction. There are
single-threaded implementations of the Nguyen–Vidick (nv) [NV08]
and Gauss sieve (gauss) [MV10], mostly for low dimensions and test-
ing purposes. Furthermore G6K includes a fully multi-threaded and
low-level optimized version of the Becker–Gama–Joux (BGJ) sieve
with a single bucketing layer (bgj1) [BGJ15]. The filtering tech-
niques from bgj1 were also extended and used in a triple sieve im-
plementation (hk3) [BLS16; HK17]. This implementation considers
both pairs and triples and its behaviour automatically adjusts based
on the database size, allowing for a continuous time-memory trade-
off between the (pair) sieve bgj1 and a full triple sieve with minimal

82

3.5. The General Sieve Kernel

memory. Note that the asymptotically best sieve algorithm, which
we will refer to as BDGL [BDGL16], has been implemented before
[MLB17], but not inside of G6K. In Chapter 4 we discuss an opti-
mized implementation of the BDGL sieve inside G6K, which has since
been merged into the open-source implementation of G6K.

3.5.5 Data representation

Given that lattice sieving uses an exponential number of vectors, it
is of practical importance how much data is stored per vector in the
database. G6K stores for each lattice vector v = Bx ∈ Rn the (16-
bit integer) coordinates x ∈ Zn as well as the (32-bit floating-point)
Gram-Schmidt representation y = (⟨v, b̃i⟩/∥b̃i∥)i ∈ Rn normalized
by the Gaussian Heuristic of the current sieving context. The latter
representation is used to quickly compute inner products between any
two lattice vectors in the database, and to change between contexts.
On top of that other preprocessed information is stored for each vec-
tor, like the corresponding lift target t in span(L[κ:l)), the squared
length ∥v∥2, a 256-bit SimHash (see Section 3.4.1) and a 64-bit hash
as identifier. In order to sort the database on length, without having
to move the entries around, there is also a lightweight database that
only stores for each vector the length, a SimHash and the correspond-
ing database index. A hash table keeps track of all hash identifiers,
which are derived from the x-coordinates, in order to quickly check
for duplicates. All of this adds up to a total of ≈ 210 bytes per vector
in a sieving dimension of n = 128.

83

