
Lattice cryptography: from cryptanalysis to New
Foundations
Woerden, W.P.J. van

Citation
Woerden, W. P. J. van. (2023, February 23). Lattice cryptography: from
cryptanalysis to New Foundations. Retrieved from
https://hdl.handle.net/1887/3564770

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3564770

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3564770

CHAPTER 2
Preliminaries

2.1 Notation

The notation x := y means that x is defined to be equal to y. The
set of all integer, rational and real numbers is denoted by Z,Q and
R respectively. For a real number x ∈ R we write ⌊x⌉ for the unique
integer such that x − ⌊x⌉ ∈ [−1

2
, 1
2
). All vectors x,y and matrices

A,B are denoted by bold lower and upper case letters respectively.
All vectors are column-vectors and we write B = [b1, . . . ,bn] for a
matrix where the i-th column vector is bi. For matrices A,B, we

denote the horizontally stacked matrix
(
A
B

)
, by [A;B].

We denote the standard Euclidean inner product of two vectors
v = (v1, . . . , vd),w = (w1, . . . , wd) ∈ Rd by ⟨v,w⟩ := ∑d

i=1 viwi, and
the norm of a vector v by ∥v∥ :=

√
⟨v,v⟩. For a non-empty discrete

set S ⊂ Rd and a target t ∈ Rd we denote the distance of t to the
set by dist(S, t) := minx∈S∥t− x∥. We write Sd ⊂ Rd+1 and Bd ⊂ Rd

for the Euclidean d-sphere and d-ball of radius 1 respectively. For
a and b integers with a ≤ b, we denote by Ja, bK the set of integers
{a, a+1, . . . , b}. For a finite set E , we will denote by |E| its cardinality.
We denote the n-dimensional volume of a measurable n-dimensional

21

2. Preliminaries

body S ⊂ Rd by voln(S). If the supposed dimension is clear from the
context we just denote vol(S). For a function f : A→ B, and a subset
S ⊂ A we denote f(S) :=

∑
x∈S f(x).

2.2 Lattices and their properties

2.2.1 Lattice

Definition 1 (Lattice). A lattice L ⊂ Rd is a discrete subgroup of
the vector space Rd; i.e., L ⊂ Rd is non-empty and

• is an additive group: for all v,w ∈ L we have v ±w ∈ L; and

• is discrete: the exists some positive radius r > 0 such that all
pairs v,w ∈ L of distinct lattice vectors we have ∥v −w∥ ≥ r.

A simple example of a lattice is the orthogonal lattice Zd, or any
subgroup L ⊂ Zd of it.

Definition 2 (Lattice Basis). Let b0, . . . ,bn−1 ∈ Rd be R-linearly
independent vectors, we call the matrix B = [b0, . . . ,bn−1] a (lattice)
basis1, and we define the lattice L(B) generated by the Z-span of B as

L(B) := B · Zn =

{
n−1∑
i=0

xibi : xi ∈ Zn

}
.

Lemma 3. For every B = [b0, . . . ,bn−1], the Z-span L(B) of B is
a lattice. Conversely, every lattice has a basis.

Definition 4 (Rank). The rank rk(L) of a lattice L is defined as the
R-rank of its R-span rk(L) := rk(spanL).

The rank of a lattice coincides exactly with the number of vectors
in any basis of it. Unless stated otherwise any lattice mentioned in
the remainder of this thesis is assumed to be of rank at least 1. We
call a lattice L ⊂ Rd full rank if its rank equals the dimension d of
the vector space Rd. Given a basis B of a lattice of rank n, all the
other bases are of the form B ·U for a unimodular U ∈ GLn(Z), i.e.,

1We start counting at 0 for notational purposes later.

22

2.2. Lattices and their properties

an integer matrix U ∈ Zn×n with det(U) = ±1. For rank n ≥ 2 each
lattice has an infinite number of distinct bases.

Definition 5 (Primitive). For a rank n lattice L ⊂ Rd, we call a set
of vectors v0, . . . ,vk ∈ L primitive if they can be extended to a full
basis [v0, . . . ,vk,bk+1, . . . ,bn−1] of L.

A single vector v ∈ L is primitive if it cannot be scaled down to
another lattice vector, i.e. if there exists no λ > 1 such that v/λ ∈ L.

Another way to capture the geometry of a lattice is by a Gram
matrix.

Definition 6 (Gram). For a lattice basis B of rank n, we define its
Gram matrix G ∈ Rn×n as the (positive definite) matrix consisting of
all pairwise inner products

G := B⊤B = (⟨bi,bj⟩)0≤i,j<n.

We denote ⟨x,y⟩G := x⊤Gy, and ∥x∥G :=
√
⟨x,x⟩G.

For any basis B, its gram matrix G = B⊤B, and any two vectors
v = Bx,w = By ∈ span(L), we have

⟨v,w⟩ = ⟨Bx,By⟩ = x⊤(B⊤B)y = x⊤Gy = ⟨x,y⟩G.

The Gram matrix stores all geometric information, but not the par-
ticular embedding of the lattice into Rd, e.g., for any orthonormal
transformation O ∈ Od(R), the bases B and OB have the same Gram
matrix.

2.2.2 Properties

We discuss some important properties of a lattice. Because a lattice
L is a normal subgroup of span(L), we can consider their quotient
group.

Definition 7 (Lattice Torus). For a lattice L we define its lattice
torus T(L) as

T(L) := (spanL)/L.

23

2. Preliminaries

b1

b2 b1

b2

Figure 2.1: The fundamental domain P(B) for two different bases.
They both have the same volume vol(L) and tile the space.

One can view T(L) as the span span(L) up to the translation
by lattice vectors. We call a set P ⊂ span(L), that represent each
element of T(L) precisely once, a fundamental domain of the lattice
L. Geometrically, translated copies v + P for v ∈ L give a tiling of
span(L).

For any basis B of a rank n lattice L, the map x 7→ Bx gives an
isomorphism from Rn/Zn to T(L), so T(L) can be viewed as a n-torus.
Since [−1

2
, 1
2
)n is a fundamental domain of Zn ⊂ Rn, the parallelepiped

B · [−1
2
, 1
2
)n is a fundamental domain of L.

Definition 8. For a basis B of a rank n lattice L ⊂ Rd we define
the fundamental parallelepiped P(B) as

P(B) = B · [−1
2
, 1
2
)n =

{
n−1∑
i=0

xibi : xi ∈ [−1
2
, 1
2
)

}
,

which is a fundamental domain of L, i.e., a set of representatives of
the quotient group T(L).

The volume vol(P(B) = vol(T(L)) of such a fundamental domain
does not depend on the basis B of L, and is called the (co)volume of
a lattice.

24

2.2. Lattices and their properties

Definition 9 ((Co)volume). The (co)volume vol(L) of a lattice L is
defined as

vol(L) := vol((spanL)/L) = det(B⊤B)1/2,

which is independent of the basis B of L.

The discreteness of a lattice implies that all distinct lattice vectors
have at least some minimum distance λ1(L) between them. Equiva-
lently, by the additivity, we only have to look at the minimum distance
between the origin and any nonzero lattice vector.

Definition 10 (First Minimum). The first minimum λ1(L) ∈ R>0 of
a lattice L is defined as the minimal norm of a nonzero lattice vector

λ1(L) := min
v∈L\{0}

∥v∥ .

We introduced the volume of a lattice and its first minimum.
Minkowski proved, already in 1889, that these two properties are re-
lated in the following way.

Theorem 11 (Minkowski’s Theorem). For a lattice L of rank n we
have the following bound on the first minimum

λ1(L) ≤ 2 · vol(L)1/n
(volBn)1/n

≤ √n · vol(L)1/n.

Proof. Let us assume without loss of generality that the lattice is full
rank, i.e., span(L) = Rn. We will give a rather visual proof for the
first inequality, following Figure 2.2. For this consider the Voronoi
domain V(L), which contains all vectors in the span of the lattice for
which 0 is a closest lattice vector, namely

V(L) := {v ∈ Rn : ∥v∥ = dist(L,v)}.

See the grey box in Figure 2.2 as an example. Because every vector
t ∈ Rn has at least one closest lattice vector, we obtain a covering
V(L)+L of Rn. Furthermore, the intersection (v1+V(L))∩(v2+V(L))
for distinct lattice vectors v1 ̸= v2, is by definition contained in the
rank n− 1 hyperplane of vectors that are equidistant to both v1 and
v2. In particular, their overlap has trivial n-dimensional volume. So

25

2. Preliminaries

1
2λ1(L)

vol(L)

vol(12λ1(L) · Bn)

Figure 2.2: Visual proof of Minkowski’s Theorem.

the translated Voronoi domains L+ V(L) form an essentially disjoint
tiling of Rn. We can conclude that vol(V(L)) = vol(L).

Since the ball 1
2
λ1(L) ·Bn of radius 1

2
λ1(L) is by definition included

in V(L), we have

1
2
λ1(L) · vol(Bn)1/n = vol(1

2
λ1(L) · Bn)1/n ≤ vol(V(L)) = vol(L),

and the first part of the theorem follows. The second inequality follows
by lower bounding the volume volBn.

By the Minkowski’s Theorem we can also ask for each rank n what
the largest possible ratio is for λ1(L)/ vol(L)1/n. The lattice attain-
ing the maximal ratio corresponds to the best n dimensional lattice
packing.

Definition 12 (Hermite’s constant). The Hermite constant γn is de-
fined as the maximal ratio

γn := max
L:rk(L)=n

λ1(L)2
vol(L)2/n ,

over all rank n lattices.

26

2.2. Lattices and their properties

We have γ2 = 4
3

and the maximum is attained by the hexagonal
lattice in Figure 2.2. More generally, we can define the n successive
minima λ1(L), . . . , λn(L) of a rank n lattice.

Definition 13 (Successive Minima). For 1 ≤ i ≤ n the i-th mini-
mum λi(L) of an n-dimensional lattice L is defined as

λi(L) := min{λ > 0 : dim(Bn
λ ∩ L) ≥ i}.

2.2.3 Dual lattice

Any lattice L has a corresponding dual lattice.

Definition 14 (Dual Lattice). For a lattice L we define the dual lat-
tice, denoted by L∗, as

L∗ := {w ∈ span(L) : ⟨v,w⟩ ∈ Z for all v ∈ L}.

Given any basis B of L, the dual lattice L∗ has a unique dual basis
D of B such that D⊤B = In. Explicitly we have D = (B⊤)−1 for a
full rank lattice, and D = B(B⊤B)−1 for the general case. The dual
of a dual lattice is again the primal lattice (L∗)∗ = L. The volumes of
a lattice and its dual are also related.

Lemma 15 (Dual Volume). vol(L∗) = 1/ vol(L)

Next to their volume, a lattice and its dual have more subtle geo-
metric connections, known as transference relations. We consider one
of them by Banaszczyk [Ban93].

Theorem 16 (Transference bound [Ban93]). For a lattice L of rank
n and its dual L∗ we have

1 ≤ λ1(L) · λn(L∗) ≤ n.

Note that from applying Minkowski’s Theorem 11 both to the pri-
mal and the dual lattice, and by using Lemma 15, we can already
obtain λ1(L) · λ1(L∗) ≤ n. Theorem 16 is a strengthening of this
result.

27

2. Preliminaries

0

λ1(L)

v

‖v‖ = λ1(L)

0

t

v

‖t− v‖ ≤ ρ < λ1(L)/2

Shortest Vector Problem (SVP) Bounded Distance Decoding (BDD)

Figure 2.3: The Shortest Vector Problem and Bounded Distance De-
coding.

2.3 Lattice problems

2.3.1 Short and close vectors

Cryptography relies on hard problems. For lattices the most famous
of them all is the Shortest Vector Problem (SVP).

Definition 17 (Shortest Vector Problem (SVP)). Given as input a
basis B of a lattice L, compute a nonzero vector v ∈ L of length
∥v∥ = λ1(L).

The Closest Vector Problem could be interpreted as the inhomo-
geneous version of SVP.

Definition 18 (Closest Vector Problem (CVP)). Given as input a
basis B of a lattice L, and a target vector t ∈ span(L), compute a
lattice vector c ∈ L closest to t, i.e., ∥t− c∥ = dist(L, t).

We denote oracles solving SVP and CVP by v = SVP(L), and
c = CVP(L, t).

28

2.3. Lattice problems

2.3.2 Approximate variants

Instead of the exact versions of the lattice problems, it is often enough
to solve an approximate version to break lattice-based schemes.

Definition 19 (Approximate Shortest Vector Problem (γ-SVP)).
Given as input a basis B of a lattice L, and an approximation factor
γ ≥ 1, compute a nonzero vector v ∈ L of length ∥v∥ ≤ γ · λ1(L).

Definition 20 (Approximate Closest Vector Problem (γ-CVP)).
Given as input a basis B of a lattice L, a target vector t ∈ Rd and
an approximation factor γ ≥ 1, compute a vector v ∈ L such that
∥t− v∥ ≤ γ · dist(L, t).

The above problems can be hard to verify as λ1(L) and dist(L, t)
might be unknown. A common way to state the above problems such
that they become efficiently verifiable is as follows.

Definition 21 (Hermite SVP (γ-HermiteSVP)). Given as input a
basis B of a rank n lattice L, an approximation factor γ > 0, compute
a nonzero vector v ∈ L of length ∥v∥ ≤ γ · det(L)1/n.

For small values of γ it is possible that no solution exists. By
Minkowski’s Theorem 11 there does exist a solution to γ-HermiteSVP
when γ ≥ √n.

Definition 22 (Hermite CVP (γ-HermiteCVP)). Given a basis B of
a lattice L, a target vector t ∈ Rd and an approximation factor γ > 0,
compute a vector v ∈ L such that ∥t− v∥ ≤ γ · det(L)1/n.

2.3.3 Unique variants

The approximate variants above can have none or multiple solutions
for certain inputs. Here we discuss some variants that are promised
to always have precisely one unique solution (up to sign).

Definition 23 (Unique SVP (γ-uniqSVP)). Given as input a factor
γ > 1 and a basis B of a lattice L satisfying λ2(L) ≥ γ ·λ1(L), compute
the (unique up to sign) nonzero vector v ∈ L of length ∥v∥ = λ1(L).

29

2. Preliminaries

The Bounded Distance Decoding (BDD) problem is a variant of
CVP. To make the solution unique the target is promised to lie at
a distance less than 1

2
λ1(L) from the lattice. Two distinct solutions

v,w ∈ L would give a nonzero lattice vector of length ∥v −w∥ ≤
∥v − t∥+ ∥t−w∥ < λ1(L), which gives a contradiction.

Definition 24 (Bounded Distance Decoding (δ-BDD)). Given as
input a basis B of a lattice L, a distance promise δ ∈ [0, 1

2
), and a

target vector t ∈ span(L) satisfying dist(L, t) ≤ δ ·λ1(L), compute the
(unique) closest lattice vector c ∈ L to t, i.e., ∥t− c∥ = dist(L, t).

These two problems are very much related. For any γ > 1, there
is a polynomial time reduction from (1

2γ
)-BDD to γ-uniqSVP, and

for any polynomially bounded γ there is a polynomial time reduction
from γ-uniqSVP to (1/γ)-BDD [LM09]. Essentially, (up to a small
approximation factor 2), these problems are equivalent. Note that γ-
uniqSVP becomes easier for large γ, while δ-BDD becomes easier for
small δ.

2.4 Projecting
Projections are a fundamental tool in lattice theory and lattice algo-
rithms. They naturally reduce high-dimensional (lattice) problems to
lower-dimensional ones.

Definition 25 (Projection). Let V ⊂ Rd be a linear subspace. Any
element x ∈ Rd can uniquely be written as x = xV +xV ⊥ where xV ∈ V
and xV ⊥ ∈ V ⊥. We define the (orthogonal) projection πV : Rd → Rd

onto V as the linear map

πV : x 7→ xV for all v ∈ Rd,

and the orthogonal projection πV ⊥ : Rd → Rd away from V as the
linear map

πV ⊥ : x 7→ xV ⊥ for all v ∈ Rd.

Note that it is only meaningful to use a projection once, i.e., for any
v ∈ Rd we have that π2(v) = π(v). Projections are useful because they
not only decrease the dimensionality, but also the length of elements.

30

2.4. Projecting

Lemma 26. For any orthogonal projection π : Rd → Rd, and any
v ∈ Rd we have

∥π(v)∥ ≤ ∥v∥.

2.4.1 Lattice projections

When projecting lattices we do want the discrete lattice structure to
be preserved, which is not in general the case. This only happens if the
projection is properly aligned with the lattice. One such a properly
aligned example is a projection away from a lattice vector.

Lemma 27. Let L ⊂ Rd be a lattice. For any vector v ∈ L, let πv⊥

be the projection away from v, then πv⊥(L) is again a lattice (possibly
of rank 0).

Proof. Suppose L is of rank n ≥ 1, and assume without loss of gener-
ality that v is scaled such that it is a primitive lattice vector. We can
extend v to a basis [v,b1, . . . ,bn−1] of L. Every element w ∈ L can
thus be uniquely written as

w = x0 · v +
n−1∑
i=1

xibi,

with xi ∈ Z. After projecting we have

πv⊥(w) =
n−1∑
i=1

xiπv⊥(bi).

The vectors πv⊥(b1), . . . , πv⊥(bn−1) are R-linearly independent, be-
cause v,b1, . . . ,bn−1 are, and thus they form a basis B′. We can
conclude that πv⊥(L) = {∑n−1

i=1 xiπv⊥(bi) : xi ∈ Z} = L(B′) is a
lattice.

Lemma 27 shows that we can project away from a lattice vector,
and keep the discrete lattice structure. In the proof we use the fact
that L has a basis starting with (a primitive multiple of) v. In other
words, we only have to consider the case where we project away from
the first basis vector. Similarly, for the more general case, we only have
to consider the case where we project away from the first i basis vec-
tors. A useful object to consider in this setting is the Gram-Schmidt
Orthogonalisation (GSO) of a basis.

31

2. Preliminaries

Definition 28 (Gram-Schmidt Orthogonalisation (GSO)). Let B =

[b0, . . . ,bn−1] be a basis. The Gram-Schmidt Orthogonalisation of B,
denoted by B̃ = [b̃0, . . . , b̃n−1], is defined as

b̃0 = b0

b̃i = bi − πspan(b0,...,bi−1)(bi) = πi(bi),

where πi := πspan(b0,...,bi−1)⊥.

The GSO B̃ of a basis B is in general not a basis of the same lattice,
but it is a basis of the R-span span(L(B)). The GSO has a connection
with the QR factorization of the basis B, where Q is orthonormal
and R is upper triangular, namely the diagonal of R then consists of
∥b̃0∥, . . . , ∥b̃n−1∥. The same is true for the upper triangular matrix C
in the Cholesky decomposition G = C⊤C of the Gram matrix G of
B. In later chapters the GSO norms (∥b̃0∥, . . . , ∥b̃n−1∥) will play an
important role, and we call them the profile of a basis.

Lemma 29. Let L be a lattice with basis B = [b0, . . . ,bn−1], then
πi(L) is a lattice for 0 ≤ i < n, with basis [πi(bi), . . . , πi(bn−1)] and
GSO [b̃i, . . . , b̃n−1].

Proof. We prove this by induction on i = 0, . . . , n−1. For i = 0, π0 is
the identity, and the result is trivially true. For 0 < i = j+1 ≤ n− 1,
we assume by the induction hypothesis that L′ = πj(L) is a lattice,
with basis [πj(bj), . . . , πj(bn−1)], and GSO [b̃j, . . . , b̃n−1]. The first
basis vector of L′ is πj(bj) = b̃j. Note that πj+1 = πb̃⊥

j
◦ πj. In

particular
πj+1(L) = πb̃⊥

j
(πj(L)) = πb̃⊥

j
(L′),

which is a lattice by Lemma 27. Furthermore, from the proof of
Lemma 27 it follows that πb̃⊥

j
(L′) has basis

[πb̃⊥
j
(πj(bj+1)), . . . , πb̃⊥

j
(πj(bn−1))] = [πj+1(bi), . . . , πj+1(bn−1)].

The GSO is clear from its definition. We can conclude by induction.

For any rank n lattice L, for which the basis B = [b0, . . . ,bn−1]
is clear from the context, we denote the rank n − l projected lattice

32

2.4. Projecting

πl(L(B)) by L[l:n). We refer to [l : n) as the context in which we work,
and we call [0 : n) the full context. Similarly, we denote the rank
0 < r ≤ n sublattice L([b0, . . . ,br−1]) ⊂ L(B), by L[0:r), and the cor-
responding context by [0 : r). Projections and sublattices can be com-
bined, we denote for 0 ≤ l < r ≤ n the basis [πl(bl), . . . , πl(br−1)] by
B[l:r). We call the rank r− l lattice generated by this basis a projected
sublattice L[l:r) := L(B[l:r)) of L, and refer to the context as [l : r).
Furthermore, if the GSO of the full basis B is B̃ := [b̃0, . . . , b̃n−1],
then the GSO of B[l:r) is given by B̃[l:r) := [b̃i, . . . , b̃j−1].

Projecting
[l1 : r)→ [l2 : r)

0 r nl2l1

Sublattice
[l : r1)→ [l : r2)

0 nlr2 r1

Figure 2.4: Moving to a smaller context by projecting (left), or by
going to a sublattice (right).

Projections can be viewed as a way to move from a context [l1 : r),
to a smaller context [l2 : r) for l1 < l2 ≤ r, while taking a sublattice
can be viewed as a way to move from a context [l, r1), to a smaller
context [l : r2) for l ≤ r2 < r1. See Figure 2.4 for an illustration.

2.4.2 Lifting

So far we have considered the technique of moving from a large con-
text to a smaller context by projecting or going to a sublattice. Now
suppose we have done such a move, but we want to revert it, i.e., we
want to move back to a larger context. Moving a lattice vector from
L′ to a superlattice L ⊃ L′ is trivial, since for any vector v ∈ L′ we
have by definition that v ∈ L.

For projections this is not so simple. To move from a context
[l2 : r), back to [l1 : r) for l1 < l2 ≤ r, we have to undo the pro-
jection π(b̃l1

,...,b̃l2−1)⊥
away from span(L[l1:l2))

⊥. Concretely, given a
vector w′ ∈ L[l2:r) we have to find a preimage w ∈ L[l1:r), such that
π(b̃l1

,...,b̃l2−1)⊥
(w) = w′. We call this process lifting, and w a lift of w′

from the context [l2 : r) to [l1 : r).

33

2. Preliminaries

Lifting

w ∈ L[l1:r) ← w′ ∈ L[l2:r)

0 r nl2l1

∈ L[l1:r)t w′

c = CVP(L[l1:l2), t) ∈ L[l1:l2)

t− c w′ ∈ L[l1:r)

−

Figure 2.5: Undoing the projection from the context [l2 : r) to [l1 : r)
for l1 < l2 ≤ r gives some target t in the context [l2 : r). To obtain a
small lift we need to find a close vector c ∈ L[l1:l2) to t and subtract
it.

Computing some lift is not hard, since B[l2:r) is a basis of L[l2:r) we
can write

w′ =
r−1∑
i=l2

xi · πl2(bi),

with xi ∈ Z. A lift of w′ is then given by w =
∑r−1

i=l2
xi·πl1(bi) ∈ L[l1:r).

However, such a lift is not unique, and the default lift above can be
very long. Preferably, we want some control over the length of the lift.
Computing the shortest lift reduces to CVP in the lattice L[l1:l2), see
Figure 2.5.

Lemma 30. Let L ⊂ Rd be a lattice, with basis [b0, . . . ,bn−1]. For
l1 < l2 ≤ r, consider the vector w′ ∈ L[l2:r). Given any lift w =
t + w′ ∈ L[l1:r) of w′, satisfying πl2(w) = w′, and t ∈ spanL[l1:l2), a
shortest lift of w′ is given by

(t− c) +w′,

where c = CVP(L[l1:l2), t) is a closest vector to t.

Proof. Given the lift w of w′, the full set of lifts is given by w− c for
c ∈ L[l1:l2) ⊂ L[l1:r), since we require that πl2(c) = 0. For any such

34

2.4. Projecting

c ∈ L[l1:l2), the squared norm of the lift w − c is given by

∥w − c∥2 = ∥t− c+w′∥2 = ∥t− c∥2 + ∥w′∥2.

To minimize the above we have to minimize ∥t−c∥ for c ∈ L[l1:l2). This
is exactly a CVP instance in the lattice L[l1:l2) with target t. A closest
vector c ∈ L[l1:l2) to t will thus give a shortest lift (t− c) +w′.

In general solving CVP instances is hard, and thus we cannot al-
ways obtain an optimal lift. In dimension 1, however, CVP is as simple
as rounding.

Corollary 31. Let L ⊂ Rd be a lattice, with basis [b0, . . . ,bn−1], and
let w′ =

∑r−1
i=l+1 xiπl+1(bi) ∈ L[l+1:r), with xi ∈ Z, be a projected lattice

vector. A shortest lift w of w′ from [l + 1 : r) to [l : r) is given by

w =

(
r−1∑

i=l+1

xiπl(bi)

)
−
⌊

r−1∑
i=l+1

xi ·
⟨b̃l,bi⟩
⟨b̃l, b̃l⟩

⌉
· b̃l.

In particular the squared norm of w′ to w increases by at most 1
4
∥b̃l∥2.

Proof. One lift of w′ is w =
∑r−1

i=l+1 xiπl(bi) ∈ L[l:r). We obtain the

orthogonal sum w = t + w′ ∈ L[l:r) for t =
(∑r−1

i=l+1 xi · ⟨b̃l,bi⟩
⟨b̃l,b̃l⟩

)
· b̃l,

where we also use that ⟨b̃l, πl(bi)⟩ = ⟨b̃l,bi⟩. By Lemma 30 a shortest
lift (t − c) + w′ now follows from computing a closest vector c ∈
L[l:l+1) = b̃l · Z to t. For t = λ · b̃l with λ ∈ R, a closest vector is
simply given by c = ⌊λ⌉ · b̃l.

2.4.3 Babai’s Nearest Plane Algorithm

Computing the optimal shortest lift reduces to a CVP instance. So
optimally lifting a lattice vector from a context of [l : r) to [0 : r),
is hard for large l. However, by Corollary 31, lifting from [l : r) to
[l − 1 : r) is as simple as rounding, and the squared norm increases by
at most 1

4
∥b̃l−1∥2. If we repeat this l times, we arrive at [0 : r), with

an increase of at most 1
4

∑l−1
i=0∥b̃i∥2.

Let us take this idea and build a general approximate CVP algo-
rithm from it. First we extract an important property from Corol-
lary 31.

35

2. Preliminaries

0 b̃0 = b0

b1b̃1

0

b̃0 = b0

b1

b̃1

Figure 2.6: Babai’s fundamental domain and Babai’s nearest plane
algorithm for two different bases of the same lattice.

Definition 32 (Size-reduction). We call a vector t ∈ Rd size-reduced
w.r.t. a vector v ∈ Rd if ⟨t,v⟩ ∈ [−1

2
, 1
2
) · ∥v∥2. We call a vector

t ∈ Rd size-reduced w.r.t. a basis B = [b0, . . . ,bn−1] if t is size-reduced
w.r.t. b̃i for all 0 ≤ i < n.

Rephrased, any target t ∈ spanL(B) that is size-reduced w.r.t. the
basis B lies in Babai’s fundamental domain.

Definition 33 (Babai’s fundamental domain). For a basis B with
GSO B̃ = [b̃0, . . . , b̃n−1], we define Babai’s fundamental domain as

P(B̃) := B̃ · [−1
2
, 1
2
)n =

{
n−1∑
i=0

λib̃i : λi ∈ [−1
2
, 1
2
) for all 0 ≤ i < n

}
.

Babai’s nearest plane algorithm (see Algorithm 1) computes for
any target t ∈ P(B̃) a coset representative e ∈ t+ L(B) that is size-
reduced w.r.t. the basis, i.e. such that e ∈ P(B̃). In other words
it computes a close vector c = t − e ∈ L(B) to t. It does so by
size-reducing one step at a time, from i = n− 1 to i = 0.

Lemma 34. For any lattice L with basis B, Babai’s fundamental do-
main P(B̃) is a fundamental domain of the lattice. Let t ∈ span(L) be
any target and (c, e)← Babai(B, t) the output of Algorithm 1. Then
e := t− c ∈ P(B̃), i.e. Babai’s nearest plane algorithms computes the
unique close vector with error in P(B̃).

36

2.4. Projecting

Proof. After iteration i in Algorithm 1, we have by construction that
⟨e, b̃i⟩ ∈ [−1

2
, 1
2
) · ∥b̃i∥2. In later iterations j < i we only add integer

multiples of bj to e, and because bj ⊥ b̃i the above inner product stays
unchanged. So after all iterations of Algorithm 1 we have e ∈ P(B̃).
Because at the start e = t, and we only added lattice vectors to e we
have that t− e = c ∈ L. So Algorithm 1 is correct.

From this correctness it follows that P(B̃) represents each coset
t + L for t ∈ span(L) at least once. For uniqueness let e, e′ ∈ P(B̃)
with e+ L = e′ + L. Then their difference v = e− e′ ∈ L is a lattice
vector. We can write

v =
n−1∑
i=0

xibi,

with xi ∈ Z. Suppose that v ̸= 0, and let j = argmaxi{xi ̸= 0}. Since
e, e′ ∈ P(B̃), and |xj| ≥ 1, we get the following contradiction

∥b̃j∥2 > |⟨e, b̃j⟩ − ⟨e′, b̃j⟩| = |⟨v, b̃j⟩| = |⟨
j∑

i=0

xibi, b̃j⟩|

= |xj · ⟨bj, b̃j⟩| ≥ ∥b̃j∥2.

So v = 0, and e = e′.

Algorithm 1: Babai’s nearest plane algorithm Babai(B, t)

Input : A basis B = [b0, . . . ,bn−1] of a lattice L with
Gram-Schmidt orthogonalization
B̃ = [b̃0, . . . , b̃n−1], and a target t ∈ span(L).

Output: (c, e) such that c+ e = t, with c ∈ L and e ∈ P(B̃).
1 e := t, c := 0
2 for i = n− 1 down to 0 do
3 k :=

⌈
⟨e,b̃i⟩
∥b̃i∥2

⌋
4 e := e− kbi

5 c := c+ kbi

6 end
7 return (c, e)

37

2. Preliminaries

The shape of Babai’s fundamental domain, and thus the usefulness
of Babai’s nearest plane algorithm, depends on the norms of the GSO
vectors.

Corollary 35. For any lattice L with basis B = [b0, . . . ,bn−1], and
target t ∈ span(L), let (c, e)← Babai(L, t). Then

∥t− c∥2 ≤ 1

4

n−1∑
i=0

∥b̃i∥2 ≤
1

4

n−1∑
i=0

∥bi∥2.

Furthermore, if dist(L, t) < 1
2
mini∥b̃i∥, then c is the unique closest

lattice vector to t.

For a uniformly random target t ∈ T(L) Babai’s nearest plane
algorithm recovers a uniform error in P(B̃). The expected squared
distance is thus 1

12

∑n−1
i=0 ∥b̃i∥2, a factor 3 better than the worst-case.

Since P(B̃) is a fundamental domain of L, it has volume vol(L).
As a result we obtain the following invariant.

Corollary 36. For a rank n lattice with basis B and GSO B̃, we
have

vol(P(B̃)) =
n−1∏
i=0

∥b̃i∥ = vol(L).

More generally we have that vol(L[l:r)) =
∏r−1

i=l ∥b̃i∥. Due to the
invariant

∏n−1
i=0 ∥b̃i∥ = vol(L), the relevant quantities

∑n−1
i=0 ∥b̃i∥2 and

mini∥b̃i∥, for the performance of Babai’s nearest plane algorithm, are
optimal when ∥b̃0∥ = . . . = ∥b̃n−1∥ = vol(L)1/n, i.e. when the GSO
norms are perfectly balanced. In Chapter 6 we will see that balancing
these GSO norms is the main objective of basis reduction algorithms.

It is more than natural to size-reduce a basis B w.r.t. itself.

Definition 37 (Size-reduced basis). A basis B = [b0, . . . ,bn−1] is
called size-reduced if bj is size-reduced with respect to the preceding
basis vectors [b0, . . . ,bj−1] for all 1 ≤ j < n. In particular, we have

|⟨b̃i,bj⟩| ≤
1

2
∥b̃i∥2 for all 0 ≤ i < j < n.

38

2.4. Projecting

To size-reduce a basis we can simply apply Babai’s nearest plane
algorithm several times (in the order b1, . . . ,bn−1). Size-reduction
relates the basis norms (∥bi∥)i to the GSO norms (∥bi∥)i.

Lemma 38 (Relations). For a size-reduced basis B we have

∥b̃j∥2 ≤ ∥bj∥2 ≤ ∥b̃j∥2 +
1

4

∑
i<j

∥b̃i∥2.

2.4.4 Dual basis

Recall that for a lattice L and its dual L∗ we have the volumet-
ric relation vol(L∗) = 1/ vol(L). More generally, there also exists
a relation between the GSO norms of a basis and the GSO norms
of the corresponding dual basis, after some changes to the order-
ing. Let us consider a basis B = [b0, . . . ,bn−1] with dual basis
D = [d0, . . . ,dn−1]. Note that dn−1 is by definition orthogonal to
b0, . . . ,bn−2, and thus dn−1 lies in the span of b̃n−1. Furthermore we
know that ⟨dn−1,bn−1⟩ = 1, which gives us the following relation

∥dn−1∥ · ∥b̃n−1∥ = ⟨dn−1, b̃n−1⟩ = ⟨dn−1,bn−1⟩ = 1.

Increasing the last GSO norm ∥b̃n−1∥ thus corresponds to decreasing
the length of the last dual basis vector dn−1. If we apply the GSO
process in the reversed order, then we obtain relations like this for
every GSO norm.

Lemma 39. Let B = [b0, . . . ,bn−1] be a basis with dual basis D =
[d0, . . . ,dn−1]. Let D−1 = [dn−1, . . . ,d0] be the reversed dual basis
with GSO [d̃n−1, . . . , d̃0], then [d̃i] is a (reversed) dual basis of [b̃i],
i.e.,

span(d̃i) = span(b̃i), and ∥d̃i∥ · ∥b̃i∥ = 1.

In the rest of this thesis, we will refer to (∥d̃n−1∥, . . . , ∥d̃0∥) =
(∥b̃n−1∥−1, . . . , ∥b̃0∥−1) as the profile of the dual basis, i.e., we will
implicitly refer to the GSO norms of the reversed dual basis.

39

2. Preliminaries

2.5 Volumes & distributions

2.5.1 Volumes

We will discuss some higher dimensional geometric objects and their
volumes, which play an important role in the analysis of lattice algo-
rithms.

Definition 40 (Sphere and Ball). For n ≥ 1 we define the (n − 1)-
sphere Sn−1

r ⊂ Rn and the n-ball Bn
r ⊂ Rn of radius r > 0 by

Sn−1
r := {x ∈ Rn : ∥x∥ = r}, and Bn

r := {x ∈ Rn : ∥x∥ ≤ r},

and we denote Sn−1 and Bn for the sphere and ball of radius 1.

Their volumes are given by

voln(Bn
r) = rn · Vn,

voln−1(Sn−1
r) = rn−1 · Vn · n,

where Vn := voln(Bn) = πn/2/Γ(n/2+1), with Γ the gamma function.

Definition 41 (Half-space). For any v ∈ Rn and a ∈ R we define
the half-space Hv,a by

Hv,a := {x ∈ Rn : ⟨v,x⟩ ≥ a}.

The cap in direction v of a sphere consists of all spherical vectors
that are somewhat close to v, or equivalently that have a small angle
with v.

Definition 42 (Cap). For any v ∈ Sn−1 and a ∈ [0, 1] we define the
(spherical) cap Cn−1

v,a by the intersection

Cn−1
v,a := Sn−1 ∩Hv,a,

and we denote its relative (n− 1)-dimensional volume, which is inde-
pendent of v, by Cn−1(a) := voln−1(Cn−1

v,a)/ voln−1(Sn−1).

The intersection of two caps is called a wedge.

40

2.5. Volumes & distributions

Definition 43 (Wedge). For any v,w ∈ Sn−1, and a ∈ Rn, we de-
fine the (spherical) wedge Wn−1

v,w,a by the intersection

Wn−1
v,w,a := Cn−1

v,a ∩ Cn−1
w,a ,

and for c ∈ [−1, 1] and any v,w ∈ Sn−1 such that ⟨v,w⟩ = c,
we denote its relative (n − 1)-dimensional volume by Wn−1(a, c) :=
voln−1(Wn−1

v,w,a)/ voln−1(Sn−1).

In Chapter 3 we will see that these volumes play an important role
in the complexity analysis of lattice sieving algorithms. To compute
the exact volume of caps and wedges we rely on the (regularized)
incomplete beta function.

Definition 44. For constants a, b ∈ Rn we define the incomplete beta
function B(x; a, b) by

B(x; a, b) =

∫ x

0

ta−1(1− t)b−1dt,

and the regularized incomplete beta function by

Ix(a, b) :=
B(x; a, b)

B(a, b)
.

The beta distribution Beta(a, b) with a, b > 0, is the distribution with
support [0, 1] and CDF x 7→ Ix(a, b).

The regularized incomplete beta function allows us to give an ex-
plicit formula for the relative cap volume.

Lemma 45. For any a ∈ [0, 1], the relative volume Cn−1(a) of a
spherical cap equals

Cn−1(a) =
1

2
Ia2

(
1

2
,
n− 1

2

)
.

From this we can also compute wedge volumes by explicit inte-
gration. Computing the exact volumes will be useful when deriving
concrete complexity estimates, but for the asymptotic complexity re-
sults we have simpler formulas.

41

2. Preliminaries

w′v′

v a

Figure 2.7: Illustration of a spherical cap Cv,a (in green) and a spherical
wedge Cv,w,a′ = Cv,a′ ∩Cw,a′ (in purple). The spherical variant consists
of just the border, while the ball variant covers the filled in areas.

Lemma 46 (Volumes [MV10; BDGL16]). For constants a ∈ [0, 1],
c ∈ [2a2 − 1, 1], and growing n, we have

Cn−1(a) = (1− a2)n/2 · nO(1), and

Wn−1(a, c) =

(
1− 2a2

1 + c

)n/2

· nO(1).

We see that for fixed constants a, c the volumes scale single expo-
nentially as 2Cn+o(n) for some constant C = C(a, c).

Caps and wedges can similarly be defined for balls, but as for large
dimensions n most of the volume is located close to the edge, they
are asymptotically similar (in particular Lemma 46 also applies to the
ball variant).

2.5.2 Distributions

Now that we have introduced caps we can have a better understand-
ing of the properties of uniform samples from a sphere or ball. To
better understand the spherical and ball distributions we show how to

42

2.5. Volumes & distributions

sample from them using nothing more than a (continuous) Gaussian
distribution.

Definition 47. We define a (continuous) Gaussian distribution χµ,σ2

with mean µ ∈ R, and standard deviation σ > 0 on R by the probability
density function

f(x) =
1

σ
√
2π
· e− 1

2(
x−µ
σ)

2

.

Unless otherwise stated µ = 0, and we simply denote χσ2 := χ0,σ2.

As implied we have mean E[χµ,σ2] = µ and variation V[χµ,σ2] = σ2.
We can now directly construct a uniform sample over the sphere Sn−1

by sampling n Gaussian coefficients and renormalizing the vector.

Lemma 48. Let X1, . . . , Xn ∼ χσ2 for any σ > 0 be independent
Gaussian variables, then

(X1, . . . , Xn)√
X2

1 + . . .+X2
n

∼ U(Sn−1)

Note that for σ = 1 and large n the denominator
√
X2

1 + . . .+X2
n

is highly concentrated around
√
n, which implies that each individual

spherical coordinate is distributed close to Gaussian with standard
deviation 1/

√
n. Using the cap volume formulas we can give an exact

description of the coefficient distribution.

Lemma 49. Let (u1, . . . , un) ∼ U(Sn−1), then u2i ∼ Beta(1
2
, n−1

2
) on

[0, 1] which has CDF x 7→ 2Cn−1(
√
x) = Ix(

1
2
, n−1

2
).

The uniform distribution over a ball is similar to that of a sphere,
but in addition to the direction we now also have to sample a length.

Lemma 50 (Ball-sphere relation). Let U be uniform over [0, 1], and
S uniform over Sn−1, then

U1/n · S ∼ U(Bn).

This also directly implies that the expectation of ∥x∥2 for x ∼
U(Bn) is given by E[U1/n] = n

n+1
, i.e., for growing n a sample from the

unit ball Bn comes arbitrarily close to the boundary in expectation.
Indeed up to a small difference in dimension the coefficients behave
exactly the same as a spherical sample due to the following Lemma.

43

2. Preliminaries

Figure 2.8: Visualisation of the norm of 10000 vectors sampled uni-
formly over B30, represented by vectors in B2 with the same norm and
a uniform direction. Almost all volume of a high-dimensional ball lies
near its border.

Lemma 51. If (u1, . . . , un+2) ∼ U(Sn+1) is spherically distributed,
then (u1, . . . , un) ∼ U(Bn) is uniform over the ball.

Corollary 52. Let (u1, . . . , un) ∼ U(Bn), then u2i ∼ Beta(1
2
, n+1

2
)

with CDF x 7→ Ix(
1
2
, n+1

2
).

We write the chi-square distribution with k degrees of freedom as
χ2
k,σ2 :=

∑k
i=1X

2
i , where X1, . . . , Xk are independently distributed as

χσ2 . The chi-square distribution has expectation kσ2, and the follow-
ing log-expectation.

Lemma 53. Let X be distributed as χ2
k,σ2, then

E [log (X)] = log(2σ2) + ψ(k/2),

where ψ(x) := Γ′(x)/Γ(x) is the digamma function.

We will also define the discrete Gaussian distribution over Z.

Definition 54. We define the Gaussian function on Z with param-
eter s > 0 as ρs(x) = exp(−πx2/s2). Then the discrete (centered)

44

2.6. Heuristics

Gaussian distribution DZ,σ2 on Z with parameter s is defined by

Pr
X∼DZ,σ2

[X = x] =
ρs(x)

ρs(Z)
=

ρs(x)∑
y∈Z ρs(y)

.

For large enough s, say s ≥ 3, the variance of DZ,σ2 is very close to
s2/(2π). The discrete Gaussian distribution can easily be generalized
to any rank n lattice, but we will do this in Chapter 10 in the quadratic
form setting.

2.6 Heuristics
For cryptanalysis it does not matter if your algorithm cannot solve a
particular worst-case instance, as long as it can solve the instance that
results in breaking the cryptosystem. Problem instances from most
cryptosystems, and in particular those in lattice-based cryptography,
rely heavily on randomness to hide secret information.

Often these systems are not perfectly random, but have some hid-
den secret structure. However, before finding this secret structure (and
possibly breaking the scheme), these instances ‘behave’ like random
instances. For cryptanalysis, we are thus interested in the behaviour
of our algorithms on those random average-case instances.

Analysing how algorithms behave on average-case instances is of-
ten hard. In particular, such an analysis may involve many complex
distributions with many dependencies between them. As a result there
is a big gap between provable and practical algorithms for lattice prob-
lems. Heuristics allow to bridge this gap, and as such, they play an
important role in this thesis. For example the best provable SVP al-
gorithm runs in time 2n+o(n), while the best practical algorithm runs
heuristically in time 20.292n+o(n). We can heuristically assume that
some distributions are simpler (and less dependent) then they actu-
ally are, and do our analysis with those. Heuristics are not necessarily
true in a mathematical sense, it is often easy to give counterexamples.
However, if they give estimates that match the practical behaviour of
algorithms, then they are still very useful.

One should not blindly follow heuristics. Heuristics should de-
scribe practical behaviour, and thus it is important to validate them
experimentally. Experiments of feasible size can validate heuristics,

45

2. Preliminaries

S

Gaussian Heuristic

|S ∩ L| ≈ Vol(S)
Vol(P(B))

Figure 2.9: Gaussian Heuristic

and those heuristics can then be used to analyse how the algorithm
would behave on instances of cryptographic size.

2.6.1 Gaussian Heuristic

The most commonly used, and heavily verified heuristic for lattice
algorithms is the so-called Gaussian Heuristic. Heuristics are often
inspired by provable average-case statements, and for the Gaussian
Heuristic one could give the following origin.

Lemma 55. For a rank n lattice L, a measurable set S ⊂ span(L)
and a uniform target t ∈ T(L) = span(L)/L we have

Et∼U(T(L)) |(t+ L) ∩ S| =
voln(S)

vol(L) .

Lemma 55 essentially says that for a volume S, the number of
lattice vectors in L∩S is vol(S)/ vol(L) in expectation if we translate
S around. Here 1/ vol(L) should be interpreted as the density of the
lattice inside its span, e.g. we expect about 1 lattice vector per volume
of size vol(L). The Gaussian Heuristic builds from this interpretation.

46

2.6. Heuristics

Heuristic 56 (Gaussian Heuristic). For a rank n lattice L and a
measurable set S ⊂ span(L) the Gaussian Heuristic states that

|L ∩ S| ≈ voln(S)

vol(L) .

Furthermore, the lattice vectors in L∩S are uniformly distributed over
S.

In some sense the Gaussian Heuristic completely forgets about the
lattice structure, and treats the lattice L as some kind of uniform cloud
of vectors with density 1/ vol(L). In a reasonable set S ⊂ span(L),
we then naturally expect about vol(S)/ vol(L) lattice vectors. The
set S is often chosen as a (linear transformations of a) hypercube or
ball. E.g., if we apply the Gaussian Heuristic to a ball we obtain an
estimate for the first minimum of a lattice.

Heuristic claim 57. Let L be a rank n lattice with volume vol(L).
The expectation gh(L) of the first minimum λ1(L) under the Gaussian
Heuristic is given by

gh(L) := vol(L)1/n
vol(Bn

1)
1/n
≈
√
n/(2πe) · vol(L)1/n.

We also denote gh(n) := vol(Bn
1)

−1/n ≈
√
n/(2πe) for the expected

first minimum of a rank n lattice with volume 1.

Justification. Assume without loss of generality that the lattice is of
full rank n = d. We apply the Gaussian Heuristic to the ball S =
Bn
λ ⊂ Rn of radius λ > 0. According to the Gaussian Heuristic the

number |L ∩ Bn
λ | of lattice vectors in the ball is about (λ/ gh(L))n.

E.g. for λ < gh(L) we expect (for large n), no lattice vectors in the
ball (except 0), while for λ > gh(L) we expect many lattice vectors in
the ball. We can conclude that λ1(L) ≈ gh(L). △

The above estimate for λ1(L) works particularly well in dimen-
sions n ≥ 50. The expected minimum gh(L) is precisely a factor 2
smaller than the upper bound on λ1(L) by Minkowski’s Theorem 11.
So Minkowski’s Theorem is rather tight, but a factor 2 can still be

47

2. Preliminaries

significant if we want to consider the concrete performance of algo-
rithms.

Under the Gaussian Heuristic one could say that average-case exact
SVP is equal to γ-HermiteSVP with γ ≈

√
n/(2πe). Under the same

reasoning, a random target t ∈ (spanL)/L lies at distance about
gh(L) from the lattice. In particular, a random target lies at distance
δ · gh(L) from the lattice with exponentially small probability ≈ δn

for a constant 0 < δ < 1.
Sometimes the Gaussian Heuristic is a stronger heuristic than what

is actually necessary. Therefore there exists many (often weaker) vari-
ants of it. For example, sometimes it is enough to only assume that
the direction x/∥x∥ of some lattice vector is uniform (over the sphere).

To avoid confusion we restrict the use of “Theorem”, “Lemma”, and
“Corollary” to formal claims, and refer to “Heuristic claims” for claims
that are based on heuristics.

2.6.2 Random lattices

We finish with a short remark on what we mean by average-case in-
stances. For lattice problems the randomness can be in several places,
but in particular we discuss here the randomness of the input lat-
tice(s). Formally the set of full rank n lattices can be identified with
the quotient group GLn(R)/GLn(Z). By rescaling the set of all lat-
tices L with unit (co)volume vol(L) = 1, can be identified with the
group SLn(R)/SLn(Z). Siegel [Sie45] showed that the Haar measure
on SLn(R) induces a natural finite measure µn on SLn(R)/SLn(Z).
We can thus speak of a uniform distribution over the set of full rank
n lattice of unit (co)volume.

This gives a proper definition of what a ‘random’ lattice is, but
such lattices do not naturally appear in cryptography. For example,
we often restrict to integer, q-ary or other classes of lattices. Still it
can be useful to see how certain lattice properties behave over this
distribution. E.g., for a lattice taken uniform w.r.t. µn, the first min-
imum can be shown to have expectation gh(L) and also to be heavily
concentrated around gh(L) for increasing n. Similarly there exist ex-
pectation and concentration results for statements like Lemma 55,
see [AEN19] for a survey. These essentially say: almost all lattices
follow the Gaussian Heuristic.

48

2.7. Cryptography

Goldstein-Mayer introduced a way to sample integer lattices that
in the limit (after rescaling) is statistically close to uniform w.r.t. µn.
Such lattices are often used to test the average-case behaviour of
algorithms. For example the TU Darmstadt SVP challenges give a
Goldstein-Mayer random lattice and require you to compute a short
vector of length at most 1.05 · gh(L).

Throughout this thesis we will be a bit more lenient with the term
random lattice. We might even turn things around and informally
call a lattice random if it follows the expected average-case behaviour.
E.g. if it follows the Gaussian Heuristic in the general sense, or if at
least λ1(L) ≈ gh(L). To motivate this further: from a cryptanalytic
perspective, the average-case is often the hardest for lattice problems.
If a lattice does not behave like the average-case, then it leaks some
structure or bias that an attacker could exploit. Assuming random-
ness therefore does not make the problem easier, but does make it
easier to analyse. Furthermore, in cryptanalysis these heuristics are
often applied to sufficiently randomised (projected sub)lattices, which
makes their analysis tight. A common rule of thumb is thus: lat-
tices behave like the average-case, precisely until one recovers (part
of) their (secret) structure. Because the heuristics remain valid up to
that moment, they can be used to determine when this will happen.

2.7 Cryptography

2.7.1 Security reductions

In the rest of this section we will present multiple cryptographic con-
structions, such as for encryption and signatures. These construc-
tions come with security notions, often of the form: no probabilistic
polynomial-time attacker A can do X (decrypt, forge a signature). Of
course, there is little hope of directly proving such statements. What
we can do however, is show that if such an attacker exists, then that at-
tacker can also solve some problem Y in polynomial-time. We call this
a security reduction. The security of the (possibly complex) scheme
then relies on the hardness of this problem.

One could argue that we just moved the problem somewhere else.
However such a reduction gives three main advantages:

49

2. Preliminaries

1. It shows that there are no particular weaknesses in the complex
details of the scheme.

2. Cryptanalysis can focus on a (hopefully) simple to state problem.

3. It allows to reuse and standardize security assumptions.

In the early days of cryptography, before security reductions were a
thing, schemes could often be broken by details that were overlooked,
such as statistical leakage. A security reduction often finds these faulty
details, and brings them to the foreground, because they naturally
represent an obstacle in the proof.

Security reductions also allow the reuse of a security assumption:
many different schemes can reduce to the same problem. For example,
within lattice-based cryptography almost all schemes reduce to just a
few problems (but with varying parameters). As a result many crypt-
analysts have focussed on those few problems, and thereby increased
(or decreased) our confidence in them. Such a toolkit of standard and
versatile security assumptions prevents an explosion of ad-hoc assump-
tions with potentially subtle weaknesses. However, care should still
be taken when picking the parameters of such problems. Wandering
off the beaten path too much could lead to unexpected attacks.

2.7.2 Zero-Knowledge Proof of Knowledge

As our first cryptographic concept we consider a Zero-Knowledge Proof
of Knowledge (ZKPoK). The setting is that we know a solution w to
some NP problem x, and we want to convince someone else that we
know a solution without revealing it. Given an NP relation R, we
assume to have a public problem x and two parties, the Prover that
supposedly knows a witness w such that (x,w) ∈ R, and a Verifier
that must be convinced of this. For example, there could be a public
graph x := G, of which the Prover knows an automorphism w := σ.
The Prover then wants to convince some verified that it knows such
an automorphism of G, without revealing any such automorphism.

We assume the Prover and Verifier interact with each-other follow-
ing a sigma protocol, consisting of three phases: commitment, chal-
lenge and a response. As visualized in Figure 2.10, the Prover, with
input the problem x and a (potential) witness w, starts by creating

50

2.7. Cryptography

Prover(x,w) Verifier(x)

Generate commitment u
u−−−−−→

Generate challenge c← C
c←−−−−−

Generate response z
z−−−−−→ Output accept or reject.

Figure 2.10: A Sigma-protocol.

some commitment u. The Verifier, on input of the problem x and the
commitment u, responds with a uniform challenge c from some finite
challenge set C. Finally, the Prover, responds to the challenge with
some response z, which the Verifier accepts or rejects. For a successful
Zero-Knowledge Proof of Knowledge scheme we expect the protocol to
have the following three properties. The first two relate to the Proof of
Knowledge part, while the last one defines the Zero-Knowledge part.

Completeness. If a Prover honestly knows a solution, then the Veri-
fier must be convinced. Formally, if a Prover knows a witness w for
the problem x, then after the protocol the Verifier must accept with
probability 1.

Special Soundness. If the Prover does not know a witness then it
should not be able to convince the Verifier. By guessing the chal-
lenge a priori correctly the Prover can often cheat by constructing
a commitment and response that makes the Verifier accept for this
particular challenge. The initial guess has probability 1/|C| to be cor-
rect, and thus the Prover can cheat with probability 1/|C|, e.g., a half
when |C| = 2. If the Prover can cheat with at most negligible ad-
vantage over 1/|C|, then by repeating the protocol the overall cheat
probability quickly becomes negligible.

To formalize this we must introduce an efficient knowledge extrac-
tor E that given two accepting transcripts (u, c, z) and (u, c′, z′) with
the same commitment but distinct challenges c ̸= c′, recovers a wit-
ness w for the problem x such that (x,w) ∈ R. I.e., if a Prover is

51

2. Preliminaries

able to convince the Verifier on at least two distinct challenges with
non-negligible probability, then it also knows or can produce a witness
with non-negligible probability.

Honest-Verifier Zero-Knowledge (HVZK). The Verifier, if acting hon-
estly, does not learn anything else from the interaction, except that
the Prover knows a witness. With acting honestly we mean that the
challenges are indeed uniform random over the challenge set C. Given
the existence of transformations that remove the need for the Verifier
to generate the challenge, we can safely assume this.

To show that the verifier cannot learn anything from the interac-
tion we must show that we can efficiently create a fake interaction,
following the same distribution as the real one, without any knowl-
edge of a witness. Formally, we need an efficient simulator that given
x, generates accepting transcripts (u, c, z), with a distribution indist-
inghuisable (negligible statistical distance) from accepting transcripts
in the original Sigma-protocol

2.7.3 Encryption and Key Encapsulation
Mechanism

While cryptography is a rich field containing many security primi-
tives, many non-experts might think cryptography is only about the
encryption of data (or cryptocurrencies...). And indeed encryption,
the act of securely transferring data between parties, is a central topic
in cryptography. The area can roughly be split into two: symmetric
and asymmetric cryptography. In symmetric cryptography one as-
sumes that both parties already conversed a shared secret key (or two
related keys), which is then used both for encryption and for decryp-
tion. In asymmetric encryption, also known as public key encryption,
parties do no share any secret information a priori. Usually one party
generates both a secret and a public key, other parties encrypt using
the public key, and the generating party decrypts using the secret key.

Often these two methods of encryption are used in unison, first
public key encryption is used to securely obtain a (small) shared secret
key, also known as a Key Encapsulation Mechanism (KEM), after
which more efficient symmetric encryption is used to transfer (large)
amounts of data using the shared secret key (see [KL20, Theorem

52

2.7. Cryptography

12.12]). Here we will focus ourself on the public key encryption, or
more specifically the KEM.

Definition 58 (Key-Encapsulation Mechanism (KEM) [KL20]).
Let λ ∈ Z>0 be the security parameter. A Key-Encapsulation Mecha-
nism (KEM) K consists of three probabilistic polynomial-time (in λ)
algorithms K := (Gen,Encaps,Decaps) such that:

1. Key-generation: Gen takes a input the security parameter λ,
and outputs a secret and public key (sk, pk).

2. Encapsulation: Encaps takes as input a public key pk, and out-
puts a ciphertext c and a key k ∈ {0, 1}ℓ, where ℓ = Ω(λ) is the
key length. We write (c,k)← Encaps(pk).

3. Decapsulation: Decaps takes as input a private key sk and a
ciphertext c, and outputs a key k or a failure symbol ⊥. We
write k← Decaps(sk, c).

We call a KEM correct if with all but negligible probability over the
randomness of Gen and Encaps, if Encaps(pk) outputs (c,k), then
Decaps(sk, c) also outputs k.

We now introduce a security notion versus Chosen-Plaintext At-
tacks (CPA). These definitions often take the form of a game that
interacts with the adversary.

Definition 59 (CPA-Security [KL20]). Let K = (Gen,Encaps,

Decaps) be a KEM and A any adversary. The KEM CPA indistin-
guishability experiment KEMcpa

A,K(λ) is as follows:

• Gen(λ) is run to obtain a public key pk = P . Then Encaps(pk)
is run to generate (c,k) with k ∈ {0, 1}ℓ of key length ℓ = Ω(λ).

• A uniform bit b ∈ {0, 1} is chosen. If b = 0, set k̂ := k, if b = 1,
choose a uniform k̂ ∈ {0, 1}ℓ.

• Given (pk, c = (c, Z), k̂) the adversary A guesses b. If correct
the experiment returns 1, otherwise it returns 0.

53

2. Preliminaries

The KEM K is CPA-secure if for all probabilistic polynomial-time
adversaries A we have

Pr[KEMcpa
A,K(λ) = 1] ≤ 1

2
+ negl(λ).

One can trivially guess correctly with probability at least 1
2
, and

we call the difference away from 1
2

the advantage. So the goal is to
achieve a non-negligible advantage in distinguishing the real key from
a uniformly random one given the ciphertext and public key.

Recall that usually we want to reduce the CPA-security to some
(hopefully) hard problem. Given the distinguishing nature of the CPA
experiment, these problems are often of a decisional or distinguishing
type, even though for an actual key or message recovery attack one
might need to solve a search variant.

CPA-security can be seen as passive security, i.e., it shows that
the scheme is secure from a passive attacker that can only eavesdrop
on the public channels, but cannot interfere in any way. A stronger
security notion is that of chosen-ciphertext attacks (CCA), where the
adversary can actively interact with the party holding the secret key,
and is even allowed to ask for the decapsulation of ciphertexts (except
for the one given in the experiment). Since we can transform a CPA-
secure KEM into a CCA-secure KEM by a Fujisaki-Okomoto type of
transform [FO99] we restrict our focus to CPA-security.

2.7.4 Signatures

The use of signatures on physical documents or artworks dates back as
far as 3000 BC, and they have since been used to associate an identity
to a physical object. In the digital world signatures are just as impor-
tant to verify that e.g., a digital document or software installer was
created by some known trusted party, and not by some ill-intentioned
adversary. Adding some random scribble to a document is not going
to work in the digital world, as one can perfectly copy a signature
from one file to another. The signature should be tied to the message,
i.e., changing the message should invalidate the signature. We need
cryptography to solve this problem for us.

We want the trusted party, called the sender, to be able to sign
a message, after which anyone, acting as a verifier, should be able to

54

2.7. Cryptography

verify the signature. Again this brings us to the public key cryptog-
raphy setting, the sender uses a secret key to sign, while the public
key can be used to verify the signature. Note that in some sense
the identity of the sender is represented by its public key, which we
assume to be known by all parties. The latter might be seen as a
strong requirement, and it is, as we will still need a reliable way to
distribute the public key. What a signature scheme does however is to
reduce the authentication of many messages to that of authenticating
the public key once. The remaining problem of sharing public keys is
in practice solved by establishing by a Public-Key Infrastructure with
a single trusted root. The public key belonging to the trusted root
can for example be pre-baked into operating systems, which can then
be used to bootstrap the distribution of other public keys. For more
information about this see [KL20, Chapter 13.6].

Definition 60 (Signature Scheme [KL20]). Let λ ∈ Z>0 be the se-
curity parameter. A signature scheme S consists of three probabilis-
tic polynomial-time (in λ) algorithms S := (Gen,Sign,Verify) such
that:

1. Key-generation: Gen takes a input the security parameter λ,
and outputs a secret and public key (sk, pk).

2. Signing: Sign takes as input a private key sk and a message m
from some message spaceM, and outputs signature σ. We write
σ ← Sign(sk,m).

3. Verification: Verify takes as input a public key pk, a message
m, and a signature σ. It outputs a bit b, with b = 1 meaning valid
and b = 0 meaning invalid. We write b← Verify(pk,m, σ).

We call a signature scheme correct if with all but negligible proba-
bility over the randomness of Gen, if Sign(sk,m) outputs σ, then
Verify(pk,m, σ) is valid for every legal message m ∈M.

Given any message and a valid signature we should be convinced
that the message was signed by the sender. A message together with a
valid signature is called a forgery if the message was not signed before
by the sender.

55

2. Preliminaries

Definition 61 (EUF-CMA secure [KL20]). Let S := (Gen,Sign,

Verify) be a signature scheme and A any adversary. The signature
forging experiment Sig-forgeA,K(λ) is as follows:

• Gen(λ) is run to obtain keys (pk, sk).

• The adversary A is given the public key pk and access to an
oracle Sign(sk, ·). The adversary outputs (m,σ) where m was
not queried before to the oracle.

• The output of the experiment is given by Verify(pk,m, σ), and
we say it succeeds if it is 1.

The signature scheme S is existentially unforgeable under an
adaptive chosen-message attack (EUF-CMA) or just secure, if
for all probabilistic polynomial-time adversaries A we have

Pr[Sig-forgeA,K(λ) = 1] ≤ negl(λ).

2.7.5 Randomness extractors

A randomness extractor allows, using a publicly known random seed,
to convert a non-uniform randomness source X with high min-entropy
H∞(X) := − log2(maxx Pr[X = x]) to a near-uniform random vari-
able [HILL99; Bar+11].2

Definition 62 (Extractor). An efficient function E : X × {0, 1}z →
{0, 1}v is an (m, ϵ)-extractor, if, for all random variable X distributed
over X and H∞(X) ≥ m, it holds that

dist
(
(Z, E(X,Z)), (Z, V)

)
≤ ϵ

where the seed Z ← U({0, 1}z) and V ← U({0, 1}v) are drawn uni-
formly at random, and independently of X.

In Chapter 10, we will rely on the existence of an (m, ϵ)-extractor
with parameters m = Θ(v) and ϵ = 2−Θ(m).

2For our application in Chapter 10, we do not need to relax the source to only
have average min-entropy, and therefore work with the simpler worst-case version.

56

2.7. Cryptography

2.7.6 Hash functions and the Random Oracle
Model

Hash functions are an important tool both in cryptography and be-
yond. They take a (possibly) long input and output a short fixed
length ‘fingerprint’.

Definition 63 (Hash Function [KL20]). Let λ ∈ Z>0 be the security
parameter. A hash function H is a pair of probabilistic polynomial-
time algorithms (Gen, H) such that:

• Key-generation: Gen takes as input the security parameter 1λ,
and outputs a key s.

• Hash: H is a deterministic algorithm that takes as input a key s
and a string x ∈ {0, 1}∗ and outputs a string Hs(x) ∈ {0, 1}ℓ(λ)
of fixed length.

An important application for hash functions is inside hash-maps,
where in general a value x is stored at the memory adress H(x) (or
nearby). By using the right hash function, preferably acting somewhat
random, and using the right parameters this allows for a map with
constant time insertion and look-up.

A simple application in cryptography is to combine them with a
signature scheme to obtain a so-called hash-and-sign signature scheme.
Instead of directly signing a long message m, which might be ineffi-
cient, we sign the short hashed message H(m). Note however that any
other message m′ ̸= m with H(m) = H(m′) would give a forgery in
the hash-and-sign scheme. To make sure the resulting scheme is still
secure we require the hash function to be collision resistant.

Definition 64 (Collision Resistance [KL20]). Let H := (Gen, H) be
a hash function and A any adversary. The collision-finding experiment
Hash-collA,K(λ) is as follows:

• Gen(1λ) is run to obtain a key s.

• The adversary A is given the key s, and outputs x, x′.

• The output of the experiment is defined to be 1 if and only if
x ̸= x′ and Hs(x) = Hs(x′). We call this a collision.

57

2. Preliminaries

The hash function H is collision resistant, if for all probabilistic
polynomial-time adversaries A we have

Pr[Hash-collA,K(λ) = 1] ≤ negl(λ).

Note in particular that a collision resistant hash function is hard
to invert, e.g., it is pre-image resistant. Hash functions that are con-
structed with the goal of having such cryptographic properties are
often called cryptographic hash functions. In practice however most
of the efficient cryptographic hash functions in use have no proof of
collision resistance (even under some hardness assumptions), but have
simply resisted the state-of-the-art cryptanalysis. Additionally prov-
ing security of for example a signature scheme often requires that the
hash function ‘behaves like random’, i.e., in the ideal case the hash
function is a completely random function from the space of functions
from the domain to {0, 1}ℓ(λ). Although this is impossible to achieve
(efficiently) in practice, we often heuristically assume this is the case.
Proofs under this heuristic are known as proofs in the Random Oracle
Model (ROM).

In this model there is a public function H : Domain → {0, 1}ℓ(λ),
that on any new input outputs a uniformly random value from {0, 1}ℓ(λ).
Furthermore, the output should stay the same on already requested
values. In the security proof one can ‘reprogram’ the function H on
certain inputs, as long as the output is still (statistically indistinguish-
ably from) uniform, with the argument that from the adversary point
of view the distribution of H is unchanged. This is useful for proofs
that require simulations.

58

