
Lattice cryptography: from cryptanalysis to New
Foundations
Woerden, W.P.J. van

Citation
Woerden, W. P. J. van. (2023, February 23). Lattice cryptography: from
cryptanalysis to New Foundations. Retrieved from
https://hdl.handle.net/1887/3564770
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3564770
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3564770


Part I

Introduction and Preliminaries

1





CHAPTER 1
Introduction

The physical world is inherently noisy. An integer vector x ∈ Zd

transmitted over a channel may only be received as some distorted
vector x+ e ∈ Rd. If the Euclidean norm of the error e is strictly less
than 1

2
, we know that simply rounding the coordinates will recover the

original vector. If the error is larger we cannot be sure that the original
vector is recovered. In two dimensions one can visually interpret this
error correction as the integer sphere packing as shown on the left in
Figure 1.1. The radius of the spheres corresponds to the largest error
from which we can correctly recover the original message. The spheres

Figure 1.1: The integer and hexagonal sphere packings, with on aver-
age one sphere per unit area.

3



1. Introduction

are not allowed to overlap, as that would imply ambiguity on what
the original message was.

More generally, any sphere packing gives a way to recover from
noise, by encoding each distinct message as the center of one of the
spheres. The radius of the spheres then determines the robustness
from noise. The number of spheres per fixed volume determines the
(relative) number of distinct messages that can be encoded by a single
signal, and thereby determines the capacity of the connection. A
denser packing improves the robustness, while maintaining the same
capacity. For example, the densest packing in dimension 2, namely the
hexagonal packing in Figure 1.1, allows to recover from errors that are
7% larger than for the integer packing. The gain in dimension 2 may
seem small, but in larger dimensions d this radius can increase from 1

2

to Θ(
√
d).

The densest sphere packing in dimension 2 follows a repetitive pat-
tern, just as the integer packing. Both are examples of lattice packings,
i.e., packings where the centers of the spheres form a (discrete) addi-
tive group, or a lattice. Such packings can be efficiently described by a
generating set of vectors. This regularity is not unique to dimension 2,
the densest known packings in dimensions up to 9, and in dimension
24, are attained by lattice packings. Also for higher dimensions lat-
tice packings can be very dense. Their efficient description, and often
high density is what makes lattice packings useful for error correcting
purposes.

Having a dense lattice packing however is not enough, one also
needs to be able to efficiently decode the error and recover the original
message, such as the rounding algorithm for the integer lattice. While
in general this is a very hard problem when the dimension grows to
hundreds or even thousands, there do exist dense lattice packings with
enough structure to decode efficiently up to a large radius. These well
decodable dense lattice packings can thus be used for reliable and
efficient communication over noisy channels.

Next to being noisy, the physical world is also inherently unsafe.
Letters may be read, conversations can be overheard and wired or
wireless channels may be tapped by an eavesdropper. To protect such
communication we require cryptography. Cryptography allows to hide,
or encrypt a message, such that no eavesdropper can learn what is
communicated, in such a way that the desired receiver can still recover,

4



or decrypt the original message. Modern cryptography can roughly
be divided into two categories. If the communicating parties know
a common secret key, then there are efficient ways to encrypt and
decrypt the message. This is known as symmetric cryptography. In
case the parties have no common key, we require asymmetric, or public-
key cryptography. In public-key encryption there are two keys, one
secret key, known only to the receiver, and one public key, known to
all and in particular the sender. A message can be encrypted using
the public key, and decrypted using the secret key.

Again, lattice packings and noise can play a central role in building
such public-key cryptography. In this case the noise is added deliber-
ately to a message, and the security relies on the general hardness of
removing such noise. The idea is to have a good and a bad description
of the same lattice, the good one allows to efficiently decode, while the
bad one does not. Naturally the good description forms the secret key,
while the bad description forms the public key. Someone with only
the bad description can ‘hide’ a message encoded as a lattice point
by adding a small error to it, after which the receiver uses the good
description to decode the error and recover the original message. To
make this safe the good description should be hidden from everyone
but the receiver, which for example can be attained by a randomized
procedure that generates a lattice packing along with such a good
description.

The main advantage of lattice-based cryptography is that, in con-
trast to currently used public-key cryptography (variants of RSA and
Diffie-Hellman), it is believed to be hard to break even for quantum
computers. Lattice-based cryptography is currently the main candi-
date to replace such quantum vulnerable cryptography. It is therefore
of fundamental importance to study the (concrete) hardness of these
constructions and underlying problems, and to search for potential
weaknesses. Such research is better known as cryptanalysis, and it is
the main topic of Parts II and III of this thesis.

The state-of-the-art cryptanalysis, to which we also contribute in
this thesis, shows that the hardness is directly related to the geometry
and efficient decoding capability of the lattice packing. The influence
of the decoding capability is intuitive: the more noise we can add to
the message the better it is hidden, and the harder it is to recover by
an eavesdropper. The precise influence of the geometry of the lattice

5



1. Introduction

0 b1

b2

λ1(L)

b1 − 2b2

Figure 1.2: The lattice L with basis [b1,b2] = [(1, 0), (1
2
, 1)] and first

minimum λ1(L) = 1. By adding balls of radius λ1(L)/2 around each
lattice point we obtain a sphere packing.

packing on the security can be much more subtle, and also needs to
be taken into account.

Unfortunately, when we look at the current landscape of lattice-
based cryptography, through the lens of cryptanalysis, we recognise
a fundamental weakness. All currently used lattice packings have a
rather poor density or decoding capability, and this is inherent to the
randomized procedures that are used to generate a lattice packing
along with a good description. In fact, these packings and their de-
coding algorithms geometrically resemble those of the integer lattice.
The error added to hide a message is thus a factor Θ(

√
d) smaller

than optimal, which leads to weaknesses. To compensate for this, one
has to increase the dimension, which in turn hurts the efficiency of
currently used lattice-based cryptography.

We identify a missed opportunity: denser and efficiently decodable
lattice packings are used for error correcting purposes, but not in cryp-
tography. The main obstacle is that the remarkable structure of such
lattice packings is assumed to be known to everyone, and thus at first
may seem impossible to hide. In Part IV of this thesis we introduce
a new foundation, based on lattice isometries, that does allow to hide
the remarkable structure, and therefore does enable the use of such
dense and efficiently decodable lattice packings in cryptography.

6



Lattices

In this thesis we define a lattice as a discrete additive subgroup L ⊂ Rd

of Rd. An example of a lattice is the subgroup Zd ⊂ Rd of in-
teger vectors. More generally, given R-linearly independent vectors
B = [b1, . . . ,bn] ∈ Rn×d the subgroup L(B) := {∑i xibi : xi ∈ Z}
consisting of all integer combinations is a lattice. In fact, every lattice
can be described by such a basis B, and the number n of basis vectors
defines the rank of a lattice. Throughout this introduction we assume
that all lattices have full rank n = d.

The discrete nature of a lattice implies that there is some minimum
distance λ1(L) > 0 between any two distinct lattice points. Due to
the additive structure of the lattice we can always assume that one of
the two points is the origin 0 ∈ L, and thus λ1(L) := min0̸=v∈L ∥v∥
can equivalently be defined as the minimum length of any nonzero
lattice vector. For example, we have λ1(Zn) = 1, which is attained
by any unit vector (0, . . . , 0,±1, 0, . . . , 0) ∈ Zn. Geometrically, we can
place open balls around each lattice point of radius λ1(L)/2 without
overlapping them. This turns any lattice into a sphere packing as
illustrated in Figure 1.2.

Cryptography and the Quantum Threat

A public-key cryptosystem enables an individual, such as Alice, to
securely send a message to another individual, such as Bob, across
an untrusted channel so that only Bob can read the message. Any
eavesdropper, such as Eve, should not be able to learn Alice’s message.

The message Alice wishes to send is encrypted with a public key
pk that Bob previously announced publicly. She then sends Bob the
encrypted message Encpk(message) via the unsafe channel, and Bob
uses his secret key sk to decrypt it and recover the message (see Figure
1.3).

For security it must be computationally hard to derive the secret
key sk from the public key. While decryption only works if the secret
key and public key are somehow related. In particular the secret
key should allow Bob to compute something that no one else can do
efficiently.

7



1. Introduction

Historically, the most famous examples of a public-key cryptosys-
tems are Diffie-Hellman and RSA. Almost all currently used public-
key cryptography is based on (variants) of these systems. For RSA,
the secret key consists of two large primes sk = (p, q), and the pub-
lic key is given by pk = N = p · q. To obtain the secret key from
the public key one needs to factor N , which is assumed to be com-
putationally hard in the bit-length log(N). Consider the function
f(x) := xe mod N for some exponent 1 < e < ϕ(N) such that
gcd(e, ϕ(N)) = 1. Knowledge of the secret key p, q allows one to
compute ϕ(N) and thus d := e−1 mod ϕ(N). One can then efficiently
invert f(x) because f(x)d ≡ x mod N . Without the secret key this is
seemingly hard1. The secret key thus creates a trapdoor function f :
one can encrypt a message m ∈ (Z/NZ)∗ using the public key pk = N
as c = f(m) = me mod N , and the secret key sk = (p, q) allows to
invert f and thus recover the original message.

While classically both the Diffie-Hellman and the RSA cryptosys-
tems are yet unbroken, quantumly they are not. Shor’s algorithm
[Sho94] solves integer factorization and the discrete logarithm problem
(underlying Diffie-Hellman) in polynomial time on a quantum com-
puter. Given the recent advent of larger and more stable quantum-
computers, we need to replace these conventional problems by new
ones that are resistant to quantum attacks, but still allow to create
trapdoor functions.

Hard Lattice Problems

To build a trapdoor function we require hard problems, and for lattices
there are some natural candidates. The most well-known and simplest
to state problem is the Shortest Vector Problem (SVP). As the name
suggests it asks you to compute a shortest nonzero lattice vector v ∈ L
of length ∥v∥ = λ1(L). The input of this problem is any basis of the
lattice. If such a basis already consists a shortest lattice vector then
the problem is trivial, thus in general you can expect to receive a basis
consisting of long vectors.

1Technically, knowing p, q is not a necessary condition for breaking RSA, but
it is a sufficient one. There do exist (inefficient) variants of RSA where the two
are equivalent [Rab79].

8



Alice Bob

Eve

pk, sk

Decsk(c) = message

message

pk

c = Encpk(message)

Figure 1.3: A public-key cryptosystem allows Alice to send a message
to Bob, such that an eavesdropper Eve cannot learn the message.

0

λ1(L)

v

‖v‖ = λ1(L)

0

t

v

‖t− v‖ ≤ ρ < λ1(L)/2

Shortest Vector Problem (SVP) Bounded Distance Decoding (BDD)

Figure 1.4: Two important lattice problems: the Shortest Vector Prob-
lem and Bounded Distance Decoding.

The inhomogeneous variant of SVP is the Closest Vector Problem
(CVP). Recall that the lattice L ⊂ Rn lives in a real space Rn. Given
any target t ∈ Rn the Closest Vector Problem asks you to compute a
lattice vector v ∈ L that minimizes ∥t− v∥. Note that if the distance
of t to a closest lattice vector is strictly less than λ1(L)/2 then the
solution is unique. Moreover, to simplify the problem one could get the
additional promise that the given target lies at distance at most some
ρ < λ1(L)/2 from the lattice — this is known as Bounded Distance
Decoding (BDD). Intuitively, if ρ is very small, i.e., the target lies very
close to some lattice vector, then it is easier to recover that lattice

9



1. Introduction

b1

b2 b1

b2b1

b2 b1

b2

b1

b2 b1

b2

Figure 1.5: Radius for which the basis rounding algorithm solves BDD,
for a good basis (left) versus a bad basis (right).

vector.
In two or even three dimensions the above problems are easy, cer-

tainly when looking at the examples in Figure 1.4. However the hard-
ness of these problems, that is needed for cryptography, comes from
increasing the dimension n to hundreds or even thousands.

Lattice-based Cryptography

Every lattice L(B) of dimension at least 2 can be described by an
infinite number of bases B·U for unimodular U ∈ GLn(Z), i.e., integer
U ∈ Zn×n with det(U) = ±1. We call a basis good if it consists of
short and somewhat orthogonal vectors, and bad if the vectors are
long. The hardness of the Shortest Vector Problem indicates that
given a bad basis it is hard to compute a good basis. We will use the
good and bad bases to create a trapdoor function.

Any basis gives a decoding algorithm. For a target t = By ∈ Rn

we can simply round the coordinate vector y to obtain a lattice vector
v = B · ⌊y⌉ ∈ L(B). Then the error e := t−v lies in the fundamental
parallelepiped P(B) := B · [−1

2
, 1
2
)n of B. For any e ∈ P(B) we have

∥e∥ ≤ ∥B∥ · 1
2

√
n, and thus the shorter the basis, the closer the lattice

vector v lies to t.
Furthermore, let ρ be the largest radius of a ball that is inscribed

10



m

c

m

c

m

c

m′

Encrypt m Decrypt (good basis) Decrypt (bad basis)

Figure 1.6: Encryption of a message m ∈ L by adding a small error
e. Rounding with the good (secret) basis recovers m, while rounding
with the bad (public) basis recovers the wrong message m′ ̸= m.

in P(B). Then any BDD instance t ∈ Rn at distance at most ρ from
the lattice is decoded correctly to its unique closest vector c ∈ L by
the rounding algorithm. For a good basis the decoding radius ρ is
generally large, while for a bad basis it is small, see Figure 1.5.

So a (secret) short basis allows us to efficiently recover from small
errors, while given a (public) long basis this is a hard problem. The
(randomized) trapdoor function now follows naturally. To encrypt a
message m ∈ L (described by the bad basis) we simply add a small
uniform error e of length ∥e∥ = ρ to the message: c := m + e.
The rounding procedure together with the secret good basis allows to
remove the error and recover m. The same rounding procedure with
the bad basis computes a wrong message m′ ̸= m with overwhelming
probability for large n, see Figure 1.6. Without the help of a good
basis inverting the trapdoor function is a BDD instance, which in
general is hard.

The idea behind the good-bad basis encryption scheme is easy to
understand, but we did not specify so far how to obtain such a pair
of bases. We call this part the key generation and this is precisely
where different security assumptions come in. Note that this must be
a randomized procedure, as otherwise someone else could just rerun it
to obtain the same short basis. In fact, the lattice generated must be

11



1. Introduction

v1

v2

Find close vectors v1,v2 ∈ L. Replace v2 ← v1 − v2.

Figure 1.7: Lattice Sieving

random in some sense, as any short basis of the same lattice can be
used to decrypt. Almost all of lattice-based cryptography is currently
based on a few versatile assumptions that allow one to generate some
random lattice along with a (partial) good basis: the Learning With
Errors (LWE) assumption, the Short Integer Solution (SIS) assump-
tion and the NTRU assumption. These assumptions are variants of
the BDD and SVP problems, for some specific distributions of lattices.

Lattice Sieving and Heuristics

Before considering the security of these schemes directly, we first con-
sider the basic task of computing a shortest vector of a lattice. This
will form a building block for later attacks. Lattice sieving algorithms
are currently the best way to compute a shortest vector of a lattice in
terms of time complexity. They run in single exponential time 2O(n)

and space 2O(n). The central idea of sieving algorithms is to start
with a large list of (long) lattice vectors, and to find many sums and
differences of these vectors that are shorter. These shorter combina-
tions are inserted back into the list, possibly replacing longer vectors,
and this process is repeated until the list contains many short vectors,
among which (hopefully) a shortest one of the lattice. One such step
is illustrated in Figure 1.7.

12



The best provable sieving algorithm runs in time 22.456n+o(n) and
space 21.233n+o(n) [HPS11b]. Clearly, these algorithms already become
infeasible in very low dimensions. However, in practice we can do
much better. To understand and analyse these practical sieving algo-
rithms we require the use of heuristics. Such an analysis should be
seen as an average-case analysis that might be false in the worst-case.
Fortunately, in the cryptanalytic setting these sieving algorithms are
executed on lattices that are sufficiently randomized to follow these
average-case heuristics. With such a heuristic average-case analysis
the best sieving algorithm can be shown to run in time 20.292n+o(n)

and space 20.208n+o(n) [BDGL16].
Just as there is a big gap between the complexity of provable and

heuristic algorithms, there is also a large knowledge gap between an
asymptotic complexity such as 20.292n+o(n) and a concrete estimate for
the cost of solving SVP in say dimension 500. For cryptography it
is extremely important to understand these concrete costs, as it will
directly influence the concrete security.

Cryptanalysis and Basis Reduction

To understand the security of lattice-based schemes we have to know
how hard it is to solve the specific lattice problem instances that occur.
We have briefly discussed that for a usual average-case lattice the SVP
instance in rank n requires about 20.292n+o(n) time to solve. However
the lattices that arise from e.g. the LWE, SIS or NTRU assumption
are geometrically non-standard. For example they contain either an
unusually short vector, a dense sublattice, or the efficient decoding
radius ρ is relatively small, see Figure 1.8.

Due to this divergent (secret) structure these instances can be sig-
nificantly easier than the usual average-case. Often, to break these
schemes we only need to find a somewhat short and orthogonal basis.
Basis reduction algorithms use an average-case SVP oracle in some
lower dimension β ≪ n to compute such a basis. The larger the pa-
rameter β, the better reduced the basis gets, but at a cost of solving
SVP in dimension β. For large enough β the (secret) structure unrav-
els and the scheme is broken. We observe, that for almost all lattice
based schemes that work with n-dimensional lattices, basis reduction

13



1. Introduction

0

λ1(L)

0

t

v

Unusually short vector Small decoding distance

Figure 1.8: On the left a lattice with an unusually short vector (or
alternatively a dense rank 1 sublattice), on the right a BDD instance
with small decoding radius ρ.

with β ≤ n/2 + o(n) is sufficient to break them. As a result the lat-
tice dimensions used have to be at least twice as large as what you
would expect from the 20.292n+o(n) complexity to solve SVP, leading to
schemes with suboptimal performance.

It is not always immediately clear what SVP dimension β is needed
to break a scheme. A large task for cryptanalysts is to understand bet-
ter how the basis reduction algorithm precisely discover the hidden
structure. From this understanding we can then derive both asymp-
totic, but more importantly, concrete estimates for β. In particular,
special care should be taken when parameters are taken beyond their
usual range, as this might enable new attacks, or the usual attacks
might perform better than predicted due to unforeseen weaknesses in
the lattice geometry.

The Lattice Isomorphism Problem

Current lattice-based cryptography has several weaknesses that allow
to break a scheme based on an n-dimensional lattice by only solving
SVP in dimension β ≤ n/2 + o(n). This stems either from an unbal-
anced geometry of the lattice (or its dual), from a poor decoding dis-

14



tance, or from giving away a somewhat good basis. With the currently
used techniques of using a trapdoor basis, the decoding distance and
unbalanced geometry of the lattice are inherently related. The only
way to improve the decoding distance is by making the geometry of the
lattice even more unbalanced, and vice versa. The optimal trade-off
still falls victim to a basis reduction attack with β = n/2 + o(n).

In contrast there do exist wonderful lattices that have efficient
decoding algorithms that do not rely on any good basis, but only on
the remarkable structure of the lattice in question. Such lattices can
offer a much better balance between their decoding distance and their
geometry, which might allow to move beyond this β ≤ n/2 + o(n)
barrier.

Now suppose we have such an efficiently decodable lattice with a
balanced geometry. Given that (in general) there is no randomness in
the generation of this lattice we must assume the lattice and its decod-
ing algorithm is public knowledge. Giving away a bad basis publicly
is therefore meaningless, everyone already knows how to decode the
lattice. We need some way to hide the remarkable structure of the lat-
tice, without destroying it (as we need it for decoding purposes). The
only way to not influence the geometry of a lattice at all is by applying
an isometry. This brings us to the lattice isomorphism problem.

Two lattices L,L′ ⊂ Rn are called isomorphic or isometric if there
exists an orthonormal transformation O ∈ On(R) such that L′ =
O · L = {O · v : v ∈ L}. See Figure 1.9 for an example of two
isomorphic lattices. The Lattice Isomorphism Problem (LIP) asks to
compute such a transformation O given the two lattices L,L′. The
best asymptotic and practical algorithms that solve LIP all require
to first compute a shortest vector, even when applied to very simple
lattices such as Zn. LIP therefore gives us a solid foundation for
lattice-based cryptography.

We sketch in Figure 1.10 how one would build an encryption scheme
build on LIP. First let L be a lattice in which we can decode efficiently
up to some radius ρ < λ1(L)/2. We generate some random orthonor-
mal matrix O ∈ On(R) and give away a bad basis of the rotated lattice
O · L. The secret key is the transformation O, while the public key is
(some description of) the lattice O · L. Now to encrypt anyone can
take a message m ∈ O · L, and add a small uniformly random error
∥e∥ = ρ to the message: c := m+e. Without knowing the underlying

15



1. Introduction

L(B) L(B′) = O · L(B)

0 b1

b2

0

b′
1b′

2

O ∈ On(R)

Original lattice Isomorphic Lattice

Figure 1.9: The Lattice Isomorphism Problem.

m
c

m′
c′

m
c

Encrypt m in O · L Move to L and decode Move back to O · L

O−1 Osecret

Figure 1.10: Sketch of an encryption scheme based on the lattice iso-
morphism problem.

16



structure of O · L it is hard to recover the message. However applying
the secret transformation we obtain a target c′ := O−1 · c at distance
ρ from the decodable lattice L. We decode here to obtain a lattice
vector m′ ∈ L and a small error ∥e′∥ ≤ ρ such that c′ = m′+e′, which
we then map back to the public lattice O · L. By the uniqueness of
the decoding we get that m = O ·m′, and thus the original message
is recovered.

Care has to be taken when formalizing the sketched encryption
scheme. Firstly the particular basis chosen to represent the public
lattice O · L should not leak any information about the original lat-
tice L. This can be solved by defining an appropriate average-case
basis distribution, along with a worst-case to average-case reduction.
In short, if one can recover O using the particular average-case de-
scription of O · L, then one can recover O using any description of
O · L. Secondly the orthonormal transformation O ∈ On(R), and the
lattice O · L is defined over the reals and would in practice have to
be approximated, say with floating point numbers, leading to loads
of technical difficulties. This problem can be sidestepped by working
directly with the Gram matrix B⊤B instead of a basis B. Given that
(OB)⊤(OB) = B⊤B the orthonormal transformation moves out of
the picture.

Outline and Contributions

After this introductory chapter, this thesis proceeds with the prelim-
inaries in Chapter 2. Here the basic theory needed in the later parts
is introduced. The remainder of the thesis is split into three parts.

Part II - Short and Close Lattice Vectors

Part II covers the Shortest and Closest Vector Problem. Chapter 3
treats the state-of-the-art on lattice sieving. In Chapter 4 we improve
on this by implementing the current best lattice sieving algorithms
on both CPUs and Graphical Processing Units (GPUs). With these
implementations we improve the TU Darmstadt SVP records by 25
dimensions. This corresponds to a gain of about two orders of mag-
nitude over previous records both in terms of wall-clock time and

17



1. Introduction

energy efficiency. These contributions were published at Eurocrypt
2021 [DSW21].

In Chapter 5 we properly model and analyse the behaviour of the
randomized iterative slicer algorithm. This is a CVP algorithm that
takes as preprocessed input a large list of short lattice vectors. We
present the first tight results on the time-memory trade-off for this
algorithm. In the full work, published at PKC 2020 [DLW20b], we also
show how to significantly reduce the memory usage of this algorithm
when using nearest neighbour techniques.

Part III - Basis Reduction

Part III is all about basis reduction. Chapter 6 gives an overview of the
state-of-the-art basis reduction algorithms, their heuristic behaviour,
and the latest improvements.

Chapter 7 contributes to the state-of-the-art by giving a heuristi-
cally tight and concrete estimate for which parameters the BKZ algo-
rithm solves the NTRU problem, backed by many experiments. This
work, published at Asiacrypt 2021 [DW21], gives the first concrete
and the best asymptotic estimates for the security of NTRU instances
with large moduli, and, contrary to prior works, explains how the par-
ticular structure of the NTRU lattice allows to recover the secret key
in this regime.

Chapter 8 introduces the notion of basis reduction to the world of
binary codes (with the Hamming metric). The notion of orthogonality
in the Euclidean space is ported to a corresponding notion of orthopo-
dality for the Hamming metric. An adaptation of Gram-Schmidt Or-
thogonalisation and the LLL basis reduction algorithm from lattices
to binary codes follows directly. In particular the proofs follow ana-
logues to the lattice case. These contributions were published in IEEE
Transactions of Information Theory in 2022 [DDW22].

Part IV - The Lattice Isomorphism Problem,
Remarkable Lattices and Cryptography

Part IV covers the Lattice Isomorphism Problem (LIP). Chapter 9
starts with an introduction of LIP, explains how the problem is more
naturally stated using quadratic forms, and discusses the best asymp-

18



totic and practical algorithms for solving it. In Section 9.6 a canonical
function for lattice isomorphism is introduced together with an algo-
rithm to compute it. This contribution was published at ANTS XIV
in 2020 [DHVW20]. Subsequently, in Section 9.7 further practical im-
provements to this algorithm are discussed, which found application
in ongoing work on perfect form enumeration, with the eventual goal
of proving what is the densest lattice packing in dimension 9.

The thesis finishes with its main novel contribution in Chapter 10,
where LIP is introduced as a new foundation for lattice-based cryp-
tography. This is motivated by the cryptanalysis in previous parts.
In particular, and contrary to currently used methods, this new foun-
dation allows the use of remarkable lattices with great geometric and
algorithmic properties. The chapter starts by establishing an average-
case version of LIP, along with a worst-case to average-case reduction.
Then, on this solid base, an identification, key encapsulation and sig-
nature scheme is constructed. We continue by discussing cryptanalysis
and instantiations. These contributions were published at Eurocrypt
2022 [DW22].

Section 10.8 contains a short summary of the signature scheme
Hawk, published at Asiacrypt 2022 [DPPW22]. This scheme, based
on the LIP foundation applied to the simple lattice Zn, improves sig-
nificantly on Falcon. The lattice Zn is geometrically similar to the
NTRU lattice used by Falcon. However, the simplicity of Zn allows
to remove the main disadvantage of Falcon: the use of floating point
numbers in signing. Hawk-512 is 4× to 15× faster in signing than
Falcon-512 for the AVX2 and reference implementation respectively,
while maintaining similar security levels and signature and key sizes.

19




