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CHAPTER 1
Introduction

The physical world is inherently noisy. An integer vector x ∈ Zd

transmitted over a channel may only be received as some distorted
vector x+ e ∈ Rd. If the Euclidean norm of the error e is strictly less
than 1

2
, we know that simply rounding the coordinates will recover the

original vector. If the error is larger we cannot be sure that the original
vector is recovered. In two dimensions one can visually interpret this
error correction as the integer sphere packing as shown on the left in
Figure 1.1. The radius of the spheres corresponds to the largest error
from which we can correctly recover the original message. The spheres

Figure 1.1: The integer and hexagonal sphere packings, with on aver-
age one sphere per unit area.
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1. Introduction

are not allowed to overlap, as that would imply ambiguity on what
the original message was.

More generally, any sphere packing gives a way to recover from
noise, by encoding each distinct message as the center of one of the
spheres. The radius of the spheres then determines the robustness
from noise. The number of spheres per fixed volume determines the
(relative) number of distinct messages that can be encoded by a single
signal, and thereby determines the capacity of the connection. A
denser packing improves the robustness, while maintaining the same
capacity. For example, the densest packing in dimension 2, namely the
hexagonal packing in Figure 1.1, allows to recover from errors that are
7% larger than for the integer packing. The gain in dimension 2 may
seem small, but in larger dimensions d this radius can increase from 1

2

to Θ(
√
d).

The densest sphere packing in dimension 2 follows a repetitive pat-
tern, just as the integer packing. Both are examples of lattice packings,
i.e., packings where the centers of the spheres form a (discrete) addi-
tive group, or a lattice. Such packings can be efficiently described by a
generating set of vectors. This regularity is not unique to dimension 2,
the densest known packings in dimensions up to 9, and in dimension
24, are attained by lattice packings. Also for higher dimensions lat-
tice packings can be very dense. Their efficient description, and often
high density is what makes lattice packings useful for error correcting
purposes.

Having a dense lattice packing however is not enough, one also
needs to be able to efficiently decode the error and recover the original
message, such as the rounding algorithm for the integer lattice. While
in general this is a very hard problem when the dimension grows to
hundreds or even thousands, there do exist dense lattice packings with
enough structure to decode efficiently up to a large radius. These well
decodable dense lattice packings can thus be used for reliable and
efficient communication over noisy channels.

Next to being noisy, the physical world is also inherently unsafe.
Letters may be read, conversations can be overheard and wired or
wireless channels may be tapped by an eavesdropper. To protect such
communication we require cryptography. Cryptography allows to hide,
or encrypt a message, such that no eavesdropper can learn what is
communicated, in such a way that the desired receiver can still recover,
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or decrypt the original message. Modern cryptography can roughly
be divided into two categories. If the communicating parties know
a common secret key, then there are efficient ways to encrypt and
decrypt the message. This is known as symmetric cryptography. In
case the parties have no common key, we require asymmetric, or public-
key cryptography. In public-key encryption there are two keys, one
secret key, known only to the receiver, and one public key, known to
all and in particular the sender. A message can be encrypted using
the public key, and decrypted using the secret key.

Again, lattice packings and noise can play a central role in building
such public-key cryptography. In this case the noise is added deliber-
ately to a message, and the security relies on the general hardness of
removing such noise. The idea is to have a good and a bad description
of the same lattice, the good one allows to efficiently decode, while the
bad one does not. Naturally the good description forms the secret key,
while the bad description forms the public key. Someone with only
the bad description can ‘hide’ a message encoded as a lattice point
by adding a small error to it, after which the receiver uses the good
description to decode the error and recover the original message. To
make this safe the good description should be hidden from everyone
but the receiver, which for example can be attained by a randomized
procedure that generates a lattice packing along with such a good
description.

The main advantage of lattice-based cryptography is that, in con-
trast to currently used public-key cryptography (variants of RSA and
Diffie-Hellman), it is believed to be hard to break even for quantum
computers. Lattice-based cryptography is currently the main candi-
date to replace such quantum vulnerable cryptography. It is therefore
of fundamental importance to study the (concrete) hardness of these
constructions and underlying problems, and to search for potential
weaknesses. Such research is better known as cryptanalysis, and it is
the main topic of Parts II and III of this thesis.

The state-of-the-art cryptanalysis, to which we also contribute in
this thesis, shows that the hardness is directly related to the geometry
and efficient decoding capability of the lattice packing. The influence
of the decoding capability is intuitive: the more noise we can add to
the message the better it is hidden, and the harder it is to recover by
an eavesdropper. The precise influence of the geometry of the lattice

5



1. Introduction

0 b1

b2

λ1(L)

b1 − 2b2

Figure 1.2: The lattice L with basis [b1,b2] = [(1, 0), (1
2
, 1)] and first

minimum λ1(L) = 1. By adding balls of radius λ1(L)/2 around each
lattice point we obtain a sphere packing.

packing on the security can be much more subtle, and also needs to
be taken into account.

Unfortunately, when we look at the current landscape of lattice-
based cryptography, through the lens of cryptanalysis, we recognise
a fundamental weakness. All currently used lattice packings have a
rather poor density or decoding capability, and this is inherent to the
randomized procedures that are used to generate a lattice packing
along with a good description. In fact, these packings and their de-
coding algorithms geometrically resemble those of the integer lattice.
The error added to hide a message is thus a factor Θ(

√
d) smaller

than optimal, which leads to weaknesses. To compensate for this, one
has to increase the dimension, which in turn hurts the efficiency of
currently used lattice-based cryptography.

We identify a missed opportunity: denser and efficiently decodable
lattice packings are used for error correcting purposes, but not in cryp-
tography. The main obstacle is that the remarkable structure of such
lattice packings is assumed to be known to everyone, and thus at first
may seem impossible to hide. In Part IV of this thesis we introduce
a new foundation, based on lattice isometries, that does allow to hide
the remarkable structure, and therefore does enable the use of such
dense and efficiently decodable lattice packings in cryptography.
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Lattices

In this thesis we define a lattice as a discrete additive subgroup L ⊂ Rd

of Rd. An example of a lattice is the subgroup Zd ⊂ Rd of in-
teger vectors. More generally, given R-linearly independent vectors
B = [b1, . . . ,bn] ∈ Rn×d the subgroup L(B) := {∑i xibi : xi ∈ Z}
consisting of all integer combinations is a lattice. In fact, every lattice
can be described by such a basis B, and the number n of basis vectors
defines the rank of a lattice. Throughout this introduction we assume
that all lattices have full rank n = d.

The discrete nature of a lattice implies that there is some minimum
distance λ1(L) > 0 between any two distinct lattice points. Due to
the additive structure of the lattice we can always assume that one of
the two points is the origin 0 ∈ L, and thus λ1(L) := min0̸=v∈L ∥v∥
can equivalently be defined as the minimum length of any nonzero
lattice vector. For example, we have λ1(Zn) = 1, which is attained
by any unit vector (0, . . . , 0,±1, 0, . . . , 0) ∈ Zn. Geometrically, we can
place open balls around each lattice point of radius λ1(L)/2 without
overlapping them. This turns any lattice into a sphere packing as
illustrated in Figure 1.2.

Cryptography and the Quantum Threat

A public-key cryptosystem enables an individual, such as Alice, to
securely send a message to another individual, such as Bob, across
an untrusted channel so that only Bob can read the message. Any
eavesdropper, such as Eve, should not be able to learn Alice’s message.

The message Alice wishes to send is encrypted with a public key
pk that Bob previously announced publicly. She then sends Bob the
encrypted message Encpk(message) via the unsafe channel, and Bob
uses his secret key sk to decrypt it and recover the message (see Figure
1.3).

For security it must be computationally hard to derive the secret
key sk from the public key. While decryption only works if the secret
key and public key are somehow related. In particular the secret
key should allow Bob to compute something that no one else can do
efficiently.
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1. Introduction

Historically, the most famous examples of a public-key cryptosys-
tems are Diffie-Hellman and RSA. Almost all currently used public-
key cryptography is based on (variants) of these systems. For RSA,
the secret key consists of two large primes sk = (p, q), and the pub-
lic key is given by pk = N = p · q. To obtain the secret key from
the public key one needs to factor N , which is assumed to be com-
putationally hard in the bit-length log(N). Consider the function
f(x) := xe mod N for some exponent 1 < e < ϕ(N) such that
gcd(e, ϕ(N)) = 1. Knowledge of the secret key p, q allows one to
compute ϕ(N) and thus d := e−1 mod ϕ(N). One can then efficiently
invert f(x) because f(x)d ≡ x mod N . Without the secret key this is
seemingly hard1. The secret key thus creates a trapdoor function f :
one can encrypt a message m ∈ (Z/NZ)∗ using the public key pk = N
as c = f(m) = me mod N , and the secret key sk = (p, q) allows to
invert f and thus recover the original message.

While classically both the Diffie-Hellman and the RSA cryptosys-
tems are yet unbroken, quantumly they are not. Shor’s algorithm
[Sho94] solves integer factorization and the discrete logarithm problem
(underlying Diffie-Hellman) in polynomial time on a quantum com-
puter. Given the recent advent of larger and more stable quantum-
computers, we need to replace these conventional problems by new
ones that are resistant to quantum attacks, but still allow to create
trapdoor functions.

Hard Lattice Problems

To build a trapdoor function we require hard problems, and for lattices
there are some natural candidates. The most well-known and simplest
to state problem is the Shortest Vector Problem (SVP). As the name
suggests it asks you to compute a shortest nonzero lattice vector v ∈ L
of length ∥v∥ = λ1(L). The input of this problem is any basis of the
lattice. If such a basis already consists a shortest lattice vector then
the problem is trivial, thus in general you can expect to receive a basis
consisting of long vectors.

1Technically, knowing p, q is not a necessary condition for breaking RSA, but
it is a sufficient one. There do exist (inefficient) variants of RSA where the two
are equivalent [Rab79].
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Alice Bob

Eve

pk, sk

Decsk(c) = message

message

pk

c = Encpk(message)

Figure 1.3: A public-key cryptosystem allows Alice to send a message
to Bob, such that an eavesdropper Eve cannot learn the message.

0

λ1(L)

v

‖v‖ = λ1(L)

0

t

v

‖t− v‖ ≤ ρ < λ1(L)/2

Shortest Vector Problem (SVP) Bounded Distance Decoding (BDD)

Figure 1.4: Two important lattice problems: the Shortest Vector Prob-
lem and Bounded Distance Decoding.

The inhomogeneous variant of SVP is the Closest Vector Problem
(CVP). Recall that the lattice L ⊂ Rn lives in a real space Rn. Given
any target t ∈ Rn the Closest Vector Problem asks you to compute a
lattice vector v ∈ L that minimizes ∥t− v∥. Note that if the distance
of t to a closest lattice vector is strictly less than λ1(L)/2 then the
solution is unique. Moreover, to simplify the problem one could get the
additional promise that the given target lies at distance at most some
ρ < λ1(L)/2 from the lattice — this is known as Bounded Distance
Decoding (BDD). Intuitively, if ρ is very small, i.e., the target lies very
close to some lattice vector, then it is easier to recover that lattice
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b1

b2 b1

b2b1

b2 b1

b2

b1

b2 b1

b2

Figure 1.5: Radius for which the basis rounding algorithm solves BDD,
for a good basis (left) versus a bad basis (right).

vector.
In two or even three dimensions the above problems are easy, cer-

tainly when looking at the examples in Figure 1.4. However the hard-
ness of these problems, that is needed for cryptography, comes from
increasing the dimension n to hundreds or even thousands.

Lattice-based Cryptography

Every lattice L(B) of dimension at least 2 can be described by an
infinite number of bases B·U for unimodular U ∈ GLn(Z), i.e., integer
U ∈ Zn×n with det(U) = ±1. We call a basis good if it consists of
short and somewhat orthogonal vectors, and bad if the vectors are
long. The hardness of the Shortest Vector Problem indicates that
given a bad basis it is hard to compute a good basis. We will use the
good and bad bases to create a trapdoor function.

Any basis gives a decoding algorithm. For a target t = By ∈ Rn

we can simply round the coordinate vector y to obtain a lattice vector
v = B · ⌊y⌉ ∈ L(B). Then the error e := t−v lies in the fundamental
parallelepiped P(B) := B · [−1

2
, 1
2
)n of B. For any e ∈ P(B) we have

∥e∥ ≤ ∥B∥ · 1
2

√
n, and thus the shorter the basis, the closer the lattice

vector v lies to t.
Furthermore, let ρ be the largest radius of a ball that is inscribed

10



m

c

m

c

m

c

m′

Encrypt m Decrypt (good basis) Decrypt (bad basis)

Figure 1.6: Encryption of a message m ∈ L by adding a small error
e. Rounding with the good (secret) basis recovers m, while rounding
with the bad (public) basis recovers the wrong message m′ ̸= m.

in P(B). Then any BDD instance t ∈ Rn at distance at most ρ from
the lattice is decoded correctly to its unique closest vector c ∈ L by
the rounding algorithm. For a good basis the decoding radius ρ is
generally large, while for a bad basis it is small, see Figure 1.5.

So a (secret) short basis allows us to efficiently recover from small
errors, while given a (public) long basis this is a hard problem. The
(randomized) trapdoor function now follows naturally. To encrypt a
message m ∈ L (described by the bad basis) we simply add a small
uniform error e of length ∥e∥ = ρ to the message: c := m + e.
The rounding procedure together with the secret good basis allows to
remove the error and recover m. The same rounding procedure with
the bad basis computes a wrong message m′ ̸= m with overwhelming
probability for large n, see Figure 1.6. Without the help of a good
basis inverting the trapdoor function is a BDD instance, which in
general is hard.

The idea behind the good-bad basis encryption scheme is easy to
understand, but we did not specify so far how to obtain such a pair
of bases. We call this part the key generation and this is precisely
where different security assumptions come in. Note that this must be
a randomized procedure, as otherwise someone else could just rerun it
to obtain the same short basis. In fact, the lattice generated must be

11
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v1

v2

Find close vectors v1,v2 ∈ L. Replace v2 ← v1 − v2.

Figure 1.7: Lattice Sieving

random in some sense, as any short basis of the same lattice can be
used to decrypt. Almost all of lattice-based cryptography is currently
based on a few versatile assumptions that allow one to generate some
random lattice along with a (partial) good basis: the Learning With
Errors (LWE) assumption, the Short Integer Solution (SIS) assump-
tion and the NTRU assumption. These assumptions are variants of
the BDD and SVP problems, for some specific distributions of lattices.

Lattice Sieving and Heuristics

Before considering the security of these schemes directly, we first con-
sider the basic task of computing a shortest vector of a lattice. This
will form a building block for later attacks. Lattice sieving algorithms
are currently the best way to compute a shortest vector of a lattice in
terms of time complexity. They run in single exponential time 2O(n)

and space 2O(n). The central idea of sieving algorithms is to start
with a large list of (long) lattice vectors, and to find many sums and
differences of these vectors that are shorter. These shorter combina-
tions are inserted back into the list, possibly replacing longer vectors,
and this process is repeated until the list contains many short vectors,
among which (hopefully) a shortest one of the lattice. One such step
is illustrated in Figure 1.7.
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The best provable sieving algorithm runs in time 22.456n+o(n) and
space 21.233n+o(n) [HPS11b]. Clearly, these algorithms already become
infeasible in very low dimensions. However, in practice we can do
much better. To understand and analyse these practical sieving algo-
rithms we require the use of heuristics. Such an analysis should be
seen as an average-case analysis that might be false in the worst-case.
Fortunately, in the cryptanalytic setting these sieving algorithms are
executed on lattices that are sufficiently randomized to follow these
average-case heuristics. With such a heuristic average-case analysis
the best sieving algorithm can be shown to run in time 20.292n+o(n)

and space 20.208n+o(n) [BDGL16].
Just as there is a big gap between the complexity of provable and

heuristic algorithms, there is also a large knowledge gap between an
asymptotic complexity such as 20.292n+o(n) and a concrete estimate for
the cost of solving SVP in say dimension 500. For cryptography it
is extremely important to understand these concrete costs, as it will
directly influence the concrete security.

Cryptanalysis and Basis Reduction

To understand the security of lattice-based schemes we have to know
how hard it is to solve the specific lattice problem instances that occur.
We have briefly discussed that for a usual average-case lattice the SVP
instance in rank n requires about 20.292n+o(n) time to solve. However
the lattices that arise from e.g. the LWE, SIS or NTRU assumption
are geometrically non-standard. For example they contain either an
unusually short vector, a dense sublattice, or the efficient decoding
radius ρ is relatively small, see Figure 1.8.

Due to this divergent (secret) structure these instances can be sig-
nificantly easier than the usual average-case. Often, to break these
schemes we only need to find a somewhat short and orthogonal basis.
Basis reduction algorithms use an average-case SVP oracle in some
lower dimension β ≪ n to compute such a basis. The larger the pa-
rameter β, the better reduced the basis gets, but at a cost of solving
SVP in dimension β. For large enough β the (secret) structure unrav-
els and the scheme is broken. We observe, that for almost all lattice
based schemes that work with n-dimensional lattices, basis reduction

13
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0

λ1(L)

0

t

v

Unusually short vector Small decoding distance

Figure 1.8: On the left a lattice with an unusually short vector (or
alternatively a dense rank 1 sublattice), on the right a BDD instance
with small decoding radius ρ.

with β ≤ n/2 + o(n) is sufficient to break them. As a result the lat-
tice dimensions used have to be at least twice as large as what you
would expect from the 20.292n+o(n) complexity to solve SVP, leading to
schemes with suboptimal performance.

It is not always immediately clear what SVP dimension β is needed
to break a scheme. A large task for cryptanalysts is to understand bet-
ter how the basis reduction algorithm precisely discover the hidden
structure. From this understanding we can then derive both asymp-
totic, but more importantly, concrete estimates for β. In particular,
special care should be taken when parameters are taken beyond their
usual range, as this might enable new attacks, or the usual attacks
might perform better than predicted due to unforeseen weaknesses in
the lattice geometry.

The Lattice Isomorphism Problem

Current lattice-based cryptography has several weaknesses that allow
to break a scheme based on an n-dimensional lattice by only solving
SVP in dimension β ≤ n/2 + o(n). This stems either from an unbal-
anced geometry of the lattice (or its dual), from a poor decoding dis-
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tance, or from giving away a somewhat good basis. With the currently
used techniques of using a trapdoor basis, the decoding distance and
unbalanced geometry of the lattice are inherently related. The only
way to improve the decoding distance is by making the geometry of the
lattice even more unbalanced, and vice versa. The optimal trade-off
still falls victim to a basis reduction attack with β = n/2 + o(n).

In contrast there do exist wonderful lattices that have efficient
decoding algorithms that do not rely on any good basis, but only on
the remarkable structure of the lattice in question. Such lattices can
offer a much better balance between their decoding distance and their
geometry, which might allow to move beyond this β ≤ n/2 + o(n)
barrier.

Now suppose we have such an efficiently decodable lattice with a
balanced geometry. Given that (in general) there is no randomness in
the generation of this lattice we must assume the lattice and its decod-
ing algorithm is public knowledge. Giving away a bad basis publicly
is therefore meaningless, everyone already knows how to decode the
lattice. We need some way to hide the remarkable structure of the lat-
tice, without destroying it (as we need it for decoding purposes). The
only way to not influence the geometry of a lattice at all is by applying
an isometry. This brings us to the lattice isomorphism problem.

Two lattices L,L′ ⊂ Rn are called isomorphic or isometric if there
exists an orthonormal transformation O ∈ On(R) such that L′ =
O · L = {O · v : v ∈ L}. See Figure 1.9 for an example of two
isomorphic lattices. The Lattice Isomorphism Problem (LIP) asks to
compute such a transformation O given the two lattices L,L′. The
best asymptotic and practical algorithms that solve LIP all require
to first compute a shortest vector, even when applied to very simple
lattices such as Zn. LIP therefore gives us a solid foundation for
lattice-based cryptography.

We sketch in Figure 1.10 how one would build an encryption scheme
build on LIP. First let L be a lattice in which we can decode efficiently
up to some radius ρ < λ1(L)/2. We generate some random orthonor-
mal matrix O ∈ On(R) and give away a bad basis of the rotated lattice
O · L. The secret key is the transformation O, while the public key is
(some description of) the lattice O · L. Now to encrypt anyone can
take a message m ∈ O · L, and add a small uniformly random error
∥e∥ = ρ to the message: c := m+e. Without knowing the underlying
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L(B) L(B′) = O · L(B)

0 b1

b2

0

b′
1b′

2

O ∈ On(R)

Original lattice Isomorphic Lattice

Figure 1.9: The Lattice Isomorphism Problem.

m
c

m′
c′

m
c

Encrypt m in O · L Move to L and decode Move back to O · L

O−1 Osecret

Figure 1.10: Sketch of an encryption scheme based on the lattice iso-
morphism problem.
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structure of O · L it is hard to recover the message. However applying
the secret transformation we obtain a target c′ := O−1 · c at distance
ρ from the decodable lattice L. We decode here to obtain a lattice
vector m′ ∈ L and a small error ∥e′∥ ≤ ρ such that c′ = m′+e′, which
we then map back to the public lattice O · L. By the uniqueness of
the decoding we get that m = O ·m′, and thus the original message
is recovered.

Care has to be taken when formalizing the sketched encryption
scheme. Firstly the particular basis chosen to represent the public
lattice O · L should not leak any information about the original lat-
tice L. This can be solved by defining an appropriate average-case
basis distribution, along with a worst-case to average-case reduction.
In short, if one can recover O using the particular average-case de-
scription of O · L, then one can recover O using any description of
O · L. Secondly the orthonormal transformation O ∈ On(R), and the
lattice O · L is defined over the reals and would in practice have to
be approximated, say with floating point numbers, leading to loads
of technical difficulties. This problem can be sidestepped by working
directly with the Gram matrix B⊤B instead of a basis B. Given that
(OB)⊤(OB) = B⊤B the orthonormal transformation moves out of
the picture.

Outline and Contributions

After this introductory chapter, this thesis proceeds with the prelim-
inaries in Chapter 2. Here the basic theory needed in the later parts
is introduced. The remainder of the thesis is split into three parts.

Part II - Short and Close Lattice Vectors

Part II covers the Shortest and Closest Vector Problem. Chapter 3
treats the state-of-the-art on lattice sieving. In Chapter 4 we improve
on this by implementing the current best lattice sieving algorithms
on both CPUs and Graphical Processing Units (GPUs). With these
implementations we improve the TU Darmstadt SVP records by 25
dimensions. This corresponds to a gain of about two orders of mag-
nitude over previous records both in terms of wall-clock time and
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energy efficiency. These contributions were published at Eurocrypt
2021 [DSW21].

In Chapter 5 we properly model and analyse the behaviour of the
randomized iterative slicer algorithm. This is a CVP algorithm that
takes as preprocessed input a large list of short lattice vectors. We
present the first tight results on the time-memory trade-off for this
algorithm. In the full work, published at PKC 2020 [DLW20b], we also
show how to significantly reduce the memory usage of this algorithm
when using nearest neighbour techniques.

Part III - Basis Reduction

Part III is all about basis reduction. Chapter 6 gives an overview of the
state-of-the-art basis reduction algorithms, their heuristic behaviour,
and the latest improvements.

Chapter 7 contributes to the state-of-the-art by giving a heuristi-
cally tight and concrete estimate for which parameters the BKZ algo-
rithm solves the NTRU problem, backed by many experiments. This
work, published at Asiacrypt 2021 [DW21], gives the first concrete
and the best asymptotic estimates for the security of NTRU instances
with large moduli, and, contrary to prior works, explains how the par-
ticular structure of the NTRU lattice allows to recover the secret key
in this regime.

Chapter 8 introduces the notion of basis reduction to the world of
binary codes (with the Hamming metric). The notion of orthogonality
in the Euclidean space is ported to a corresponding notion of orthopo-
dality for the Hamming metric. An adaptation of Gram-Schmidt Or-
thogonalisation and the LLL basis reduction algorithm from lattices
to binary codes follows directly. In particular the proofs follow ana-
logues to the lattice case. These contributions were published in IEEE
Transactions of Information Theory in 2022 [DDW22].

Part IV - The Lattice Isomorphism Problem,
Remarkable Lattices and Cryptography

Part IV covers the Lattice Isomorphism Problem (LIP). Chapter 9
starts with an introduction of LIP, explains how the problem is more
naturally stated using quadratic forms, and discusses the best asymp-
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totic and practical algorithms for solving it. In Section 9.6 a canonical
function for lattice isomorphism is introduced together with an algo-
rithm to compute it. This contribution was published at ANTS XIV
in 2020 [DHVW20]. Subsequently, in Section 9.7 further practical im-
provements to this algorithm are discussed, which found application
in ongoing work on perfect form enumeration, with the eventual goal
of proving what is the densest lattice packing in dimension 9.

The thesis finishes with its main novel contribution in Chapter 10,
where LIP is introduced as a new foundation for lattice-based cryp-
tography. This is motivated by the cryptanalysis in previous parts.
In particular, and contrary to currently used methods, this new foun-
dation allows the use of remarkable lattices with great geometric and
algorithmic properties. The chapter starts by establishing an average-
case version of LIP, along with a worst-case to average-case reduction.
Then, on this solid base, an identification, key encapsulation and sig-
nature scheme is constructed. We continue by discussing cryptanalysis
and instantiations. These contributions were published at Eurocrypt
2022 [DW22].

Section 10.8 contains a short summary of the signature scheme
Hawk, published at Asiacrypt 2022 [DPPW22]. This scheme, based
on the LIP foundation applied to the simple lattice Zn, improves sig-
nificantly on Falcon. The lattice Zn is geometrically similar to the
NTRU lattice used by Falcon. However, the simplicity of Zn allows
to remove the main disadvantage of Falcon: the use of floating point
numbers in signing. Hawk-512 is 4× to 15× faster in signing than
Falcon-512 for the AVX2 and reference implementation respectively,
while maintaining similar security levels and signature and key sizes.
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CHAPTER 2
Preliminaries

2.1 Notation

The notation x := y means that x is defined to be equal to y. The
set of all integer, rational and real numbers is denoted by Z,Q and
R respectively. For a real number x ∈ R we write ⌊x⌉ for the unique
integer such that x − ⌊x⌉ ∈ [−1

2
, 1
2
). All vectors x,y and matrices

A,B are denoted by bold lower and upper case letters respectively.
All vectors are column-vectors and we write B = [b1, . . . ,bn] for a
matrix where the i-th column vector is bi. For matrices A,B, we

denote the horizontally stacked matrix
(
A
B

)
, by [A;B].

We denote the standard Euclidean inner product of two vectors
v = (v1, . . . , vd),w = (w1, . . . , wd) ∈ Rd by ⟨v,w⟩ := ∑d

i=1 viwi, and
the norm of a vector v by ∥v∥ :=

√
⟨v,v⟩. For a non-empty discrete

set S ⊂ Rd and a target t ∈ Rd we denote the distance of t to the
set by dist(S, t) := minx∈S∥t− x∥. We write Sd ⊂ Rd+1 and Bd ⊂ Rd

for the Euclidean d-sphere and d-ball of radius 1 respectively. For
a and b integers with a ≤ b, we denote by Ja, bK the set of integers
{a, a+1, . . . , b}. For a finite set E , we will denote by |E| its cardinality.
We denote the n-dimensional volume of a measurable n-dimensional
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2. Preliminaries

body S ⊂ Rd by voln(S). If the supposed dimension is clear from the
context we just denote vol(S). For a function f : A→ B, and a subset
S ⊂ A we denote f(S) :=

∑
x∈S f(x).

2.2 Lattices and their properties

2.2.1 Lattice

Definition 1 (Lattice). A lattice L ⊂ Rd is a discrete subgroup of
the vector space Rd; i.e., L ⊂ Rd is non-empty and

• is an additive group: for all v,w ∈ L we have v ±w ∈ L; and

• is discrete: the exists some positive radius r > 0 such that all
pairs v,w ∈ L of distinct lattice vectors we have ∥v −w∥ ≥ r.

A simple example of a lattice is the orthogonal lattice Zd, or any
subgroup L ⊂ Zd of it.

Definition 2 (Lattice Basis). Let b0, . . . ,bn−1 ∈ Rd be R-linearly
independent vectors, we call the matrix B = [b0, . . . ,bn−1] a (lattice)
basis1, and we define the lattice L(B) generated by the Z-span of B as

L(B) := B · Zn =

{
n−1∑
i=0

xibi : xi ∈ Zn

}
.

Lemma 3. For every B = [b0, . . . ,bn−1], the Z-span L(B) of B is
a lattice. Conversely, every lattice has a basis.

Definition 4 (Rank). The rank rk(L) of a lattice L is defined as the
R-rank of its R-span rk(L) := rk(spanL).

The rank of a lattice coincides exactly with the number of vectors
in any basis of it. Unless stated otherwise any lattice mentioned in
the remainder of this thesis is assumed to be of rank at least 1. We
call a lattice L ⊂ Rd full rank if its rank equals the dimension d of
the vector space Rd. Given a basis B of a lattice of rank n, all the
other bases are of the form B ·U for a unimodular U ∈ GLn(Z), i.e.,

1We start counting at 0 for notational purposes later.
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2.2. Lattices and their properties

an integer matrix U ∈ Zn×n with det(U) = ±1. For rank n ≥ 2 each
lattice has an infinite number of distinct bases.

Definition 5 (Primitive). For a rank n lattice L ⊂ Rd, we call a set
of vectors v0, . . . ,vk ∈ L primitive if they can be extended to a full
basis [v0, . . . ,vk,bk+1, . . . ,bn−1] of L.

A single vector v ∈ L is primitive if it cannot be scaled down to
another lattice vector, i.e. if there exists no λ > 1 such that v/λ ∈ L.

Another way to capture the geometry of a lattice is by a Gram
matrix.

Definition 6 (Gram). For a lattice basis B of rank n, we define its
Gram matrix G ∈ Rn×n as the (positive definite) matrix consisting of
all pairwise inner products

G := B⊤B = (⟨bi,bj⟩)0≤i,j<n.

We denote ⟨x,y⟩G := x⊤Gy, and ∥x∥G :=
√
⟨x,x⟩G.

For any basis B, its gram matrix G = B⊤B, and any two vectors
v = Bx,w = By ∈ span(L), we have

⟨v,w⟩ = ⟨Bx,By⟩ = x⊤(B⊤B)y = x⊤Gy = ⟨x,y⟩G.

The Gram matrix stores all geometric information, but not the par-
ticular embedding of the lattice into Rd, e.g., for any orthonormal
transformation O ∈ Od(R), the bases B and OB have the same Gram
matrix.

2.2.2 Properties

We discuss some important properties of a lattice. Because a lattice
L is a normal subgroup of span(L), we can consider their quotient
group.

Definition 7 (Lattice Torus). For a lattice L we define its lattice
torus T(L) as

T(L) := (spanL)/L.
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b1

b2 b1

b2

Figure 2.1: The fundamental domain P(B) for two different bases.
They both have the same volume vol(L) and tile the space.

One can view T(L) as the span span(L) up to the translation
by lattice vectors. We call a set P ⊂ span(L), that represent each
element of T(L) precisely once, a fundamental domain of the lattice
L. Geometrically, translated copies v + P for v ∈ L give a tiling of
span(L).

For any basis B of a rank n lattice L, the map x 7→ Bx gives an
isomorphism from Rn/Zn to T(L), so T(L) can be viewed as a n-torus.
Since [−1

2
, 1
2
)n is a fundamental domain of Zn ⊂ Rn, the parallelepiped

B · [−1
2
, 1
2
)n is a fundamental domain of L.

Definition 8. For a basis B of a rank n lattice L ⊂ Rd we define
the fundamental parallelepiped P(B) as

P(B) = B · [−1
2
, 1
2
)n =

{
n−1∑
i=0

xibi : xi ∈ [−1
2
, 1
2
)

}
,

which is a fundamental domain of L, i.e., a set of representatives of
the quotient group T(L).

The volume vol(P(B) = vol(T(L)) of such a fundamental domain
does not depend on the basis B of L, and is called the (co)volume of
a lattice.
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2.2. Lattices and their properties

Definition 9 ((Co)volume). The (co)volume vol(L) of a lattice L is
defined as

vol(L) := vol((spanL)/L) = det(B⊤B)1/2,

which is independent of the basis B of L.

The discreteness of a lattice implies that all distinct lattice vectors
have at least some minimum distance λ1(L) between them. Equiva-
lently, by the additivity, we only have to look at the minimum distance
between the origin and any nonzero lattice vector.

Definition 10 (First Minimum). The first minimum λ1(L) ∈ R>0 of
a lattice L is defined as the minimal norm of a nonzero lattice vector

λ1(L) := min
v∈L\{0}

∥v∥ .

We introduced the volume of a lattice and its first minimum.
Minkowski proved, already in 1889, that these two properties are re-
lated in the following way.

Theorem 11 (Minkowski’s Theorem). For a lattice L of rank n we
have the following bound on the first minimum

λ1(L) ≤ 2 · vol(L)1/n
(volBn)1/n

≤ √n · vol(L)1/n.

Proof. Let us assume without loss of generality that the lattice is full
rank, i.e., span(L) = Rn. We will give a rather visual proof for the
first inequality, following Figure 2.2. For this consider the Voronoi
domain V(L), which contains all vectors in the span of the lattice for
which 0 is a closest lattice vector, namely

V(L) := {v ∈ Rn : ∥v∥ = dist(L,v)}.

See the grey box in Figure 2.2 as an example. Because every vector
t ∈ Rn has at least one closest lattice vector, we obtain a covering
V(L)+L of Rn. Furthermore, the intersection (v1+V(L))∩(v2+V(L))
for distinct lattice vectors v1 ̸= v2, is by definition contained in the
rank n− 1 hyperplane of vectors that are equidistant to both v1 and
v2. In particular, their overlap has trivial n-dimensional volume. So
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1
2λ1(L)

vol(L)

vol(12λ1(L) · Bn)

Figure 2.2: Visual proof of Minkowski’s Theorem.

the translated Voronoi domains L+ V(L) form an essentially disjoint
tiling of Rn. We can conclude that vol(V(L)) = vol(L).

Since the ball 1
2
λ1(L) ·Bn of radius 1

2
λ1(L) is by definition included

in V(L), we have

1
2
λ1(L) · vol(Bn)1/n = vol(1

2
λ1(L) · Bn)1/n ≤ vol(V(L)) = vol(L),

and the first part of the theorem follows. The second inequality follows
by lower bounding the volume volBn.

By the Minkowski’s Theorem we can also ask for each rank n what
the largest possible ratio is for λ1(L)/ vol(L)1/n. The lattice attain-
ing the maximal ratio corresponds to the best n dimensional lattice
packing.

Definition 12 (Hermite’s constant). The Hermite constant γn is de-
fined as the maximal ratio

γn := max
L:rk(L)=n

λ1(L)2
vol(L)2/n ,

over all rank n lattices.
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2.2. Lattices and their properties

We have γ2 = 4
3

and the maximum is attained by the hexagonal
lattice in Figure 2.2. More generally, we can define the n successive
minima λ1(L), . . . , λn(L) of a rank n lattice.

Definition 13 (Successive Minima). For 1 ≤ i ≤ n the i-th mini-
mum λi(L) of an n-dimensional lattice L is defined as

λi(L) := min{λ > 0 : dim(Bn
λ ∩ L) ≥ i}.

2.2.3 Dual lattice

Any lattice L has a corresponding dual lattice.

Definition 14 (Dual Lattice). For a lattice L we define the dual lat-
tice, denoted by L∗, as

L∗ := {w ∈ span(L) : ⟨v,w⟩ ∈ Z for all v ∈ L}.

Given any basis B of L, the dual lattice L∗ has a unique dual basis
D of B such that D⊤B = In. Explicitly we have D = (B⊤)−1 for a
full rank lattice, and D = B(B⊤B)−1 for the general case. The dual
of a dual lattice is again the primal lattice (L∗)∗ = L. The volumes of
a lattice and its dual are also related.

Lemma 15 (Dual Volume). vol(L∗) = 1/ vol(L)

Next to their volume, a lattice and its dual have more subtle geo-
metric connections, known as transference relations. We consider one
of them by Banaszczyk [Ban93].

Theorem 16 (Transference bound [Ban93]). For a lattice L of rank
n and its dual L∗ we have

1 ≤ λ1(L) · λn(L∗) ≤ n.

Note that from applying Minkowski’s Theorem 11 both to the pri-
mal and the dual lattice, and by using Lemma 15, we can already
obtain λ1(L) · λ1(L∗) ≤ n. Theorem 16 is a strengthening of this
result.
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0

λ1(L)

v

‖v‖ = λ1(L)

0

t

v

‖t− v‖ ≤ ρ < λ1(L)/2

Shortest Vector Problem (SVP) Bounded Distance Decoding (BDD)

Figure 2.3: The Shortest Vector Problem and Bounded Distance De-
coding.

2.3 Lattice problems

2.3.1 Short and close vectors

Cryptography relies on hard problems. For lattices the most famous
of them all is the Shortest Vector Problem (SVP).

Definition 17 (Shortest Vector Problem (SVP)). Given as input a
basis B of a lattice L, compute a nonzero vector v ∈ L of length
∥v∥ = λ1(L).

The Closest Vector Problem could be interpreted as the inhomo-
geneous version of SVP.

Definition 18 (Closest Vector Problem (CVP)). Given as input a
basis B of a lattice L, and a target vector t ∈ span(L), compute a
lattice vector c ∈ L closest to t, i.e., ∥t− c∥ = dist(L, t).

We denote oracles solving SVP and CVP by v = SVP(L), and
c = CVP(L, t).
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2.3. Lattice problems

2.3.2 Approximate variants

Instead of the exact versions of the lattice problems, it is often enough
to solve an approximate version to break lattice-based schemes.

Definition 19 (Approximate Shortest Vector Problem (γ-SVP)).
Given as input a basis B of a lattice L, and an approximation factor
γ ≥ 1, compute a nonzero vector v ∈ L of length ∥v∥ ≤ γ · λ1(L).

Definition 20 (Approximate Closest Vector Problem (γ-CVP)).
Given as input a basis B of a lattice L, a target vector t ∈ Rd and
an approximation factor γ ≥ 1, compute a vector v ∈ L such that
∥t− v∥ ≤ γ · dist(L, t).

The above problems can be hard to verify as λ1(L) and dist(L, t)
might be unknown. A common way to state the above problems such
that they become efficiently verifiable is as follows.

Definition 21 (Hermite SVP (γ-HermiteSVP)). Given as input a
basis B of a rank n lattice L, an approximation factor γ > 0, compute
a nonzero vector v ∈ L of length ∥v∥ ≤ γ · det(L)1/n.

For small values of γ it is possible that no solution exists. By
Minkowski’s Theorem 11 there does exist a solution to γ-HermiteSVP
when γ ≥ √n.

Definition 22 (Hermite CVP (γ-HermiteCVP)). Given a basis B of
a lattice L, a target vector t ∈ Rd and an approximation factor γ > 0,
compute a vector v ∈ L such that ∥t− v∥ ≤ γ · det(L)1/n.

2.3.3 Unique variants

The approximate variants above can have none or multiple solutions
for certain inputs. Here we discuss some variants that are promised
to always have precisely one unique solution (up to sign).

Definition 23 (Unique SVP (γ-uniqSVP)). Given as input a factor
γ > 1 and a basis B of a lattice L satisfying λ2(L) ≥ γ ·λ1(L), compute
the (unique up to sign) nonzero vector v ∈ L of length ∥v∥ = λ1(L).
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The Bounded Distance Decoding (BDD) problem is a variant of
CVP. To make the solution unique the target is promised to lie at
a distance less than 1

2
λ1(L) from the lattice. Two distinct solutions

v,w ∈ L would give a nonzero lattice vector of length ∥v −w∥ ≤
∥v − t∥+ ∥t−w∥ < λ1(L), which gives a contradiction.

Definition 24 (Bounded Distance Decoding (δ-BDD)). Given as
input a basis B of a lattice L, a distance promise δ ∈ [0, 1

2
), and a

target vector t ∈ span(L) satisfying dist(L, t) ≤ δ ·λ1(L), compute the
(unique) closest lattice vector c ∈ L to t, i.e., ∥t− c∥ = dist(L, t).

These two problems are very much related. For any γ > 1, there
is a polynomial time reduction from ( 1

2γ
)-BDD to γ-uniqSVP, and

for any polynomially bounded γ there is a polynomial time reduction
from γ-uniqSVP to (1/γ)-BDD [LM09]. Essentially, (up to a small
approximation factor 2), these problems are equivalent. Note that γ-
uniqSVP becomes easier for large γ, while δ-BDD becomes easier for
small δ.

2.4 Projecting
Projections are a fundamental tool in lattice theory and lattice algo-
rithms. They naturally reduce high-dimensional (lattice) problems to
lower-dimensional ones.

Definition 25 (Projection). Let V ⊂ Rd be a linear subspace. Any
element x ∈ Rd can uniquely be written as x = xV +xV ⊥ where xV ∈ V
and xV ⊥ ∈ V ⊥. We define the (orthogonal) projection πV : Rd → Rd

onto V as the linear map

πV : x 7→ xV for all v ∈ Rd,

and the orthogonal projection πV ⊥ : Rd → Rd away from V as the
linear map

πV ⊥ : x 7→ xV ⊥ for all v ∈ Rd.

Note that it is only meaningful to use a projection once, i.e., for any
v ∈ Rd we have that π2(v) = π(v). Projections are useful because they
not only decrease the dimensionality, but also the length of elements.
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2.4. Projecting

Lemma 26. For any orthogonal projection π : Rd → Rd, and any
v ∈ Rd we have

∥π(v)∥ ≤ ∥v∥.

2.4.1 Lattice projections

When projecting lattices we do want the discrete lattice structure to
be preserved, which is not in general the case. This only happens if the
projection is properly aligned with the lattice. One such a properly
aligned example is a projection away from a lattice vector.

Lemma 27. Let L ⊂ Rd be a lattice. For any vector v ∈ L, let πv⊥

be the projection away from v, then πv⊥(L) is again a lattice (possibly
of rank 0).

Proof. Suppose L is of rank n ≥ 1, and assume without loss of gener-
ality that v is scaled such that it is a primitive lattice vector. We can
extend v to a basis [v,b1, . . . ,bn−1] of L. Every element w ∈ L can
thus be uniquely written as

w = x0 · v +
n−1∑
i=1

xibi,

with xi ∈ Z. After projecting we have

πv⊥(w) =
n−1∑
i=1

xiπv⊥(bi).

The vectors πv⊥(b1), . . . , πv⊥(bn−1) are R-linearly independent, be-
cause v,b1, . . . ,bn−1 are, and thus they form a basis B′. We can
conclude that πv⊥(L) = {∑n−1

i=1 xiπv⊥(bi) : xi ∈ Z} = L(B′) is a
lattice.

Lemma 27 shows that we can project away from a lattice vector,
and keep the discrete lattice structure. In the proof we use the fact
that L has a basis starting with (a primitive multiple of) v. In other
words, we only have to consider the case where we project away from
the first basis vector. Similarly, for the more general case, we only have
to consider the case where we project away from the first i basis vec-
tors. A useful object to consider in this setting is the Gram-Schmidt
Orthogonalisation (GSO) of a basis.
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Definition 28 (Gram-Schmidt Orthogonalisation (GSO)). Let B =

[b0, . . . ,bn−1] be a basis. The Gram-Schmidt Orthogonalisation of B,
denoted by B̃ = [b̃0, . . . , b̃n−1], is defined as

b̃0 = b0

b̃i = bi − πspan(b0,...,bi−1)(bi) = πi(bi),

where πi := πspan(b0,...,bi−1)⊥.

The GSO B̃ of a basis B is in general not a basis of the same lattice,
but it is a basis of the R-span span(L(B)). The GSO has a connection
with the QR factorization of the basis B, where Q is orthonormal
and R is upper triangular, namely the diagonal of R then consists of
∥b̃0∥, . . . , ∥b̃n−1∥. The same is true for the upper triangular matrix C
in the Cholesky decomposition G = C⊤C of the Gram matrix G of
B. In later chapters the GSO norms (∥b̃0∥, . . . , ∥b̃n−1∥) will play an
important role, and we call them the profile of a basis.

Lemma 29. Let L be a lattice with basis B = [b0, . . . ,bn−1], then
πi(L) is a lattice for 0 ≤ i < n, with basis [πi(bi), . . . , πi(bn−1)] and
GSO [b̃i, . . . , b̃n−1].

Proof. We prove this by induction on i = 0, . . . , n−1. For i = 0, π0 is
the identity, and the result is trivially true. For 0 < i = j+1 ≤ n− 1,
we assume by the induction hypothesis that L′ = πj(L) is a lattice,
with basis [πj(bj), . . . , πj(bn−1)], and GSO [b̃j, . . . , b̃n−1]. The first
basis vector of L′ is πj(bj) = b̃j. Note that πj+1 = πb̃⊥

j
◦ πj. In

particular
πj+1(L) = πb̃⊥

j
(πj(L)) = πb̃⊥

j
(L′),

which is a lattice by Lemma 27. Furthermore, from the proof of
Lemma 27 it follows that πb̃⊥

j
(L′) has basis

[πb̃⊥
j
(πj(bj+1)), . . . , πb̃⊥

j
(πj(bn−1))] = [πj+1(bi), . . . , πj+1(bn−1)].

The GSO is clear from its definition. We can conclude by induction.

For any rank n lattice L, for which the basis B = [b0, . . . ,bn−1]
is clear from the context, we denote the rank n − l projected lattice
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πl(L(B)) by L[l:n). We refer to [l : n) as the context in which we work,
and we call [0 : n) the full context. Similarly, we denote the rank
0 < r ≤ n sublattice L([b0, . . . ,br−1]) ⊂ L(B), by L[0:r), and the cor-
responding context by [0 : r). Projections and sublattices can be com-
bined, we denote for 0 ≤ l < r ≤ n the basis [πl(bl), . . . , πl(br−1)] by
B[l:r). We call the rank r− l lattice generated by this basis a projected
sublattice L[l:r) := L(B[l:r)) of L, and refer to the context as [l : r).
Furthermore, if the GSO of the full basis B is B̃ := [b̃0, . . . , b̃n−1],
then the GSO of B[l:r) is given by B̃[l:r) := [b̃i, . . . , b̃j−1].

Projecting
[l1 : r)→ [l2 : r)

0 r nl2l1

Sublattice
[l : r1)→ [l : r2)

0 nlr2 r1

Figure 2.4: Moving to a smaller context by projecting (left), or by
going to a sublattice (right).

Projections can be viewed as a way to move from a context [l1 : r),
to a smaller context [l2 : r) for l1 < l2 ≤ r, while taking a sublattice
can be viewed as a way to move from a context [l, r1), to a smaller
context [l : r2) for l ≤ r2 < r1. See Figure 2.4 for an illustration.

2.4.2 Lifting

So far we have considered the technique of moving from a large con-
text to a smaller context by projecting or going to a sublattice. Now
suppose we have done such a move, but we want to revert it, i.e., we
want to move back to a larger context. Moving a lattice vector from
L′ to a superlattice L ⊃ L′ is trivial, since for any vector v ∈ L′ we
have by definition that v ∈ L.

For projections this is not so simple. To move from a context
[l2 : r), back to [l1 : r) for l1 < l2 ≤ r, we have to undo the pro-
jection π(b̃l1

,...,b̃l2−1)⊥
away from span(L[l1:l2))

⊥. Concretely, given a
vector w′ ∈ L[l2:r) we have to find a preimage w ∈ L[l1:r), such that
π(b̃l1

,...,b̃l2−1)⊥
(w) = w′. We call this process lifting, and w a lift of w′

from the context [l2 : r) to [l1 : r).
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Lifting

w ∈ L[l1:r) ← w′ ∈ L[l2:r)

0 r nl2l1

∈ L[l1:r)t w′

c = CVP(L[l1:l2), t) ∈ L[l1:l2)

t− c w′ ∈ L[l1:r)

−

Figure 2.5: Undoing the projection from the context [l2 : r) to [l1 : r)
for l1 < l2 ≤ r gives some target t in the context [l2 : r). To obtain a
small lift we need to find a close vector c ∈ L[l1:l2) to t and subtract
it.

Computing some lift is not hard, since B[l2:r) is a basis of L[l2:r) we
can write

w′ =
r−1∑
i=l2

xi · πl2(bi),

with xi ∈ Z. A lift of w′ is then given by w =
∑r−1

i=l2
xi·πl1(bi) ∈ L[l1:r).

However, such a lift is not unique, and the default lift above can be
very long. Preferably, we want some control over the length of the lift.
Computing the shortest lift reduces to CVP in the lattice L[l1:l2), see
Figure 2.5.

Lemma 30. Let L ⊂ Rd be a lattice, with basis [b0, . . . ,bn−1]. For
l1 < l2 ≤ r, consider the vector w′ ∈ L[l2:r). Given any lift w =
t + w′ ∈ L[l1:r) of w′, satisfying πl2(w) = w′, and t ∈ spanL[l1:l2), a
shortest lift of w′ is given by

(t− c) +w′,

where c = CVP(L[l1:l2), t) is a closest vector to t.

Proof. Given the lift w of w′, the full set of lifts is given by w− c for
c ∈ L[l1:l2) ⊂ L[l1:r), since we require that πl2(c) = 0. For any such
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c ∈ L[l1:l2), the squared norm of the lift w − c is given by

∥w − c∥2 = ∥t− c+w′∥2 = ∥t− c∥2 + ∥w′∥2.

To minimize the above we have to minimize ∥t−c∥ for c ∈ L[l1:l2). This
is exactly a CVP instance in the lattice L[l1:l2) with target t. A closest
vector c ∈ L[l1:l2) to t will thus give a shortest lift (t− c) +w′.

In general solving CVP instances is hard, and thus we cannot al-
ways obtain an optimal lift. In dimension 1, however, CVP is as simple
as rounding.

Corollary 31. Let L ⊂ Rd be a lattice, with basis [b0, . . . ,bn−1], and
let w′ =

∑r−1
i=l+1 xiπl+1(bi) ∈ L[l+1:r), with xi ∈ Z, be a projected lattice

vector. A shortest lift w of w′ from [l + 1 : r) to [l : r) is given by

w =

(
r−1∑

i=l+1

xiπl(bi)

)
−
⌊

r−1∑
i=l+1

xi ·
⟨b̃l,bi⟩
⟨b̃l, b̃l⟩

⌉
· b̃l.

In particular the squared norm of w′ to w increases by at most 1
4
∥b̃l∥2.

Proof. One lift of w′ is w =
∑r−1

i=l+1 xiπl(bi) ∈ L[l:r). We obtain the

orthogonal sum w = t + w′ ∈ L[l:r) for t =
(∑r−1

i=l+1 xi · ⟨b̃l,bi⟩
⟨b̃l,b̃l⟩

)
· b̃l,

where we also use that ⟨b̃l, πl(bi)⟩ = ⟨b̃l,bi⟩. By Lemma 30 a shortest
lift (t − c) + w′ now follows from computing a closest vector c ∈
L[l:l+1) = b̃l · Z to t. For t = λ · b̃l with λ ∈ R, a closest vector is
simply given by c = ⌊λ⌉ · b̃l.

2.4.3 Babai’s Nearest Plane Algorithm

Computing the optimal shortest lift reduces to a CVP instance. So
optimally lifting a lattice vector from a context of [l : r) to [0 : r),
is hard for large l. However, by Corollary 31, lifting from [l : r) to
[l − 1 : r) is as simple as rounding, and the squared norm increases by
at most 1

4
∥b̃l−1∥2. If we repeat this l times, we arrive at [0 : r), with

an increase of at most 1
4

∑l−1
i=0∥b̃i∥2.

Let us take this idea and build a general approximate CVP algo-
rithm from it. First we extract an important property from Corol-
lary 31.
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0 b̃0 = b0

b1b̃1

0

b̃0 = b0

b1

b̃1

Figure 2.6: Babai’s fundamental domain and Babai’s nearest plane
algorithm for two different bases of the same lattice.

Definition 32 (Size-reduction). We call a vector t ∈ Rd size-reduced
w.r.t. a vector v ∈ Rd if ⟨t,v⟩ ∈ [−1

2
, 1
2
) · ∥v∥2. We call a vector

t ∈ Rd size-reduced w.r.t. a basis B = [b0, . . . ,bn−1] if t is size-reduced
w.r.t. b̃i for all 0 ≤ i < n.

Rephrased, any target t ∈ spanL(B) that is size-reduced w.r.t. the
basis B lies in Babai’s fundamental domain.

Definition 33 (Babai’s fundamental domain). For a basis B with
GSO B̃ = [b̃0, . . . , b̃n−1], we define Babai’s fundamental domain as

P(B̃) := B̃ · [−1
2
, 1
2
)n =

{
n−1∑
i=0

λib̃i : λi ∈ [−1
2
, 1
2
) for all 0 ≤ i < n

}
.

Babai’s nearest plane algorithm (see Algorithm 1) computes for
any target t ∈ P(B̃) a coset representative e ∈ t+ L(B) that is size-
reduced w.r.t. the basis, i.e. such that e ∈ P(B̃). In other words
it computes a close vector c = t − e ∈ L(B) to t. It does so by
size-reducing one step at a time, from i = n− 1 to i = 0.

Lemma 34. For any lattice L with basis B, Babai’s fundamental do-
main P(B̃) is a fundamental domain of the lattice. Let t ∈ span(L) be
any target and (c, e)← Babai(B, t) the output of Algorithm 1. Then
e := t− c ∈ P(B̃), i.e. Babai’s nearest plane algorithms computes the
unique close vector with error in P(B̃).
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2.4. Projecting

Proof. After iteration i in Algorithm 1, we have by construction that
⟨e, b̃i⟩ ∈ [−1

2
, 1
2
) · ∥b̃i∥2. In later iterations j < i we only add integer

multiples of bj to e, and because bj ⊥ b̃i the above inner product stays
unchanged. So after all iterations of Algorithm 1 we have e ∈ P(B̃).
Because at the start e = t, and we only added lattice vectors to e we
have that t− e = c ∈ L. So Algorithm 1 is correct.

From this correctness it follows that P(B̃) represents each coset
t + L for t ∈ span(L) at least once. For uniqueness let e, e′ ∈ P(B̃)
with e+ L = e′ + L. Then their difference v = e− e′ ∈ L is a lattice
vector. We can write

v =
n−1∑
i=0

xibi,

with xi ∈ Z. Suppose that v ̸= 0, and let j = argmaxi{xi ̸= 0}. Since
e, e′ ∈ P(B̃), and |xj| ≥ 1, we get the following contradiction

∥b̃j∥2 > |⟨e, b̃j⟩ − ⟨e′, b̃j⟩| = |⟨v, b̃j⟩| = |⟨
j∑

i=0

xibi, b̃j⟩|

= |xj · ⟨bj, b̃j⟩| ≥ ∥b̃j∥2.

So v = 0, and e = e′.

Algorithm 1: Babai’s nearest plane algorithm Babai(B, t)

Input : A basis B = [b0, . . . ,bn−1] of a lattice L with
Gram-Schmidt orthogonalization
B̃ = [b̃0, . . . , b̃n−1], and a target t ∈ span(L).

Output: (c, e) such that c+ e = t, with c ∈ L and e ∈ P(B̃).
1 e := t, c := 0
2 for i = n− 1 down to 0 do
3 k :=

⌈
⟨e,b̃i⟩
∥b̃i∥2

⌋
4 e := e− kbi

5 c := c+ kbi

6 end
7 return (c, e)
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The shape of Babai’s fundamental domain, and thus the usefulness
of Babai’s nearest plane algorithm, depends on the norms of the GSO
vectors.

Corollary 35. For any lattice L with basis B = [b0, . . . ,bn−1], and
target t ∈ span(L), let (c, e)← Babai(L, t). Then

∥t− c∥2 ≤ 1

4

n−1∑
i=0

∥b̃i∥2 ≤
1

4

n−1∑
i=0

∥bi∥2.

Furthermore, if dist(L, t) < 1
2
mini∥b̃i∥, then c is the unique closest

lattice vector to t.

For a uniformly random target t ∈ T(L) Babai’s nearest plane
algorithm recovers a uniform error in P(B̃). The expected squared
distance is thus 1

12

∑n−1
i=0 ∥b̃i∥2, a factor 3 better than the worst-case.

Since P(B̃) is a fundamental domain of L, it has volume vol(L).
As a result we obtain the following invariant.

Corollary 36. For a rank n lattice with basis B and GSO B̃, we
have

vol(P(B̃)) =
n−1∏
i=0

∥b̃i∥ = vol(L).

More generally we have that vol(L[l:r)) =
∏r−1

i=l ∥b̃i∥. Due to the
invariant

∏n−1
i=0 ∥b̃i∥ = vol(L), the relevant quantities

∑n−1
i=0 ∥b̃i∥2 and

mini∥b̃i∥, for the performance of Babai’s nearest plane algorithm, are
optimal when ∥b̃0∥ = . . . = ∥b̃n−1∥ = vol(L)1/n, i.e. when the GSO
norms are perfectly balanced. In Chapter 6 we will see that balancing
these GSO norms is the main objective of basis reduction algorithms.

It is more than natural to size-reduce a basis B w.r.t. itself.

Definition 37 (Size-reduced basis). A basis B = [b0, . . . ,bn−1] is
called size-reduced if bj is size-reduced with respect to the preceding
basis vectors [b0, . . . ,bj−1] for all 1 ≤ j < n. In particular, we have

|⟨b̃i,bj⟩| ≤
1

2
∥b̃i∥2 for all 0 ≤ i < j < n.
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2.4. Projecting

To size-reduce a basis we can simply apply Babai’s nearest plane
algorithm several times (in the order b1, . . . ,bn−1). Size-reduction
relates the basis norms (∥bi∥)i to the GSO norms (∥bi∥)i.

Lemma 38 (Relations). For a size-reduced basis B we have

∥b̃j∥2 ≤ ∥bj∥2 ≤ ∥b̃j∥2 +
1

4

∑
i<j

∥b̃i∥2.

2.4.4 Dual basis

Recall that for a lattice L and its dual L∗ we have the volumet-
ric relation vol(L∗) = 1/ vol(L). More generally, there also exists
a relation between the GSO norms of a basis and the GSO norms
of the corresponding dual basis, after some changes to the order-
ing. Let us consider a basis B = [b0, . . . ,bn−1] with dual basis
D = [d0, . . . ,dn−1]. Note that dn−1 is by definition orthogonal to
b0, . . . ,bn−2, and thus dn−1 lies in the span of b̃n−1. Furthermore we
know that ⟨dn−1,bn−1⟩ = 1, which gives us the following relation

∥dn−1∥ · ∥b̃n−1∥ = ⟨dn−1, b̃n−1⟩ = ⟨dn−1,bn−1⟩ = 1.

Increasing the last GSO norm ∥b̃n−1∥ thus corresponds to decreasing
the length of the last dual basis vector dn−1. If we apply the GSO
process in the reversed order, then we obtain relations like this for
every GSO norm.

Lemma 39. Let B = [b0, . . . ,bn−1] be a basis with dual basis D =
[d0, . . . ,dn−1]. Let D−1 = [dn−1, . . . ,d0] be the reversed dual basis
with GSO [d̃n−1, . . . , d̃0], then [d̃i] is a (reversed) dual basis of [b̃i],
i.e.,

span(d̃i) = span(b̃i), and ∥d̃i∥ · ∥b̃i∥ = 1.

In the rest of this thesis, we will refer to (∥d̃n−1∥, . . . , ∥d̃0∥) =
(∥b̃n−1∥−1, . . . , ∥b̃0∥−1) as the profile of the dual basis, i.e., we will
implicitly refer to the GSO norms of the reversed dual basis.
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2.5 Volumes & distributions

2.5.1 Volumes

We will discuss some higher dimensional geometric objects and their
volumes, which play an important role in the analysis of lattice algo-
rithms.

Definition 40 (Sphere and Ball). For n ≥ 1 we define the (n − 1)-
sphere Sn−1

r ⊂ Rn and the n-ball Bn
r ⊂ Rn of radius r > 0 by

Sn−1
r := {x ∈ Rn : ∥x∥ = r}, and Bn

r := {x ∈ Rn : ∥x∥ ≤ r},

and we denote Sn−1 and Bn for the sphere and ball of radius 1.

Their volumes are given by

voln(Bn
r ) = rn · Vn,

voln−1(Sn−1
r ) = rn−1 · Vn · n,

where Vn := voln(Bn) = πn/2/Γ(n/2+1), with Γ the gamma function.

Definition 41 (Half-space). For any v ∈ Rn and a ∈ R we define
the half-space Hv,a by

Hv,a := {x ∈ Rn : ⟨v,x⟩ ≥ a}.

The cap in direction v of a sphere consists of all spherical vectors
that are somewhat close to v, or equivalently that have a small angle
with v.

Definition 42 (Cap). For any v ∈ Sn−1 and a ∈ [0, 1] we define the
(spherical) cap Cn−1

v,a by the intersection

Cn−1
v,a := Sn−1 ∩Hv,a,

and we denote its relative (n− 1)-dimensional volume, which is inde-
pendent of v, by Cn−1(a) := voln−1(Cn−1

v,a )/ voln−1(Sn−1).

The intersection of two caps is called a wedge.
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Definition 43 (Wedge). For any v,w ∈ Sn−1, and a ∈ Rn, we de-
fine the (spherical) wedge Wn−1

v,w,a by the intersection

Wn−1
v,w,a := Cn−1

v,a ∩ Cn−1
w,a ,

and for c ∈ [−1, 1] and any v,w ∈ Sn−1 such that ⟨v,w⟩ = c,
we denote its relative (n − 1)-dimensional volume by Wn−1(a, c) :=
voln−1(Wn−1

v,w,a)/ voln−1(Sn−1).

In Chapter 3 we will see that these volumes play an important role
in the complexity analysis of lattice sieving algorithms. To compute
the exact volume of caps and wedges we rely on the (regularized)
incomplete beta function.

Definition 44. For constants a, b ∈ Rn we define the incomplete beta
function B(x; a, b) by

B(x; a, b) =

∫ x

0

ta−1(1− t)b−1dt,

and the regularized incomplete beta function by

Ix(a, b) :=
B(x; a, b)

B(a, b)
.

The beta distribution Beta(a, b) with a, b > 0, is the distribution with
support [0, 1] and CDF x 7→ Ix(a, b).

The regularized incomplete beta function allows us to give an ex-
plicit formula for the relative cap volume.

Lemma 45. For any a ∈ [0, 1], the relative volume Cn−1(a) of a
spherical cap equals

Cn−1(a) =
1

2
Ia2

(
1

2
,
n− 1

2

)
.

From this we can also compute wedge volumes by explicit inte-
gration. Computing the exact volumes will be useful when deriving
concrete complexity estimates, but for the asymptotic complexity re-
sults we have simpler formulas.
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w′v′

v a

Figure 2.7: Illustration of a spherical cap Cv,a (in green) and a spherical
wedge Cv,w,a′ = Cv,a′ ∩Cw,a′ (in purple). The spherical variant consists
of just the border, while the ball variant covers the filled in areas.

Lemma 46 (Volumes [MV10; BDGL16]). For constants a ∈ [0, 1],
c ∈ [2a2 − 1, 1], and growing n, we have

Cn−1(a) = (1− a2)n/2 · nO(1), and

Wn−1(a, c) =

(
1− 2a2

1 + c

)n/2

· nO(1).

We see that for fixed constants a, c the volumes scale single expo-
nentially as 2Cn+o(n) for some constant C = C(a, c).

Caps and wedges can similarly be defined for balls, but as for large
dimensions n most of the volume is located close to the edge, they
are asymptotically similar (in particular Lemma 46 also applies to the
ball variant).

2.5.2 Distributions

Now that we have introduced caps we can have a better understand-
ing of the properties of uniform samples from a sphere or ball. To
better understand the spherical and ball distributions we show how to
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sample from them using nothing more than a (continuous) Gaussian
distribution.

Definition 47. We define a (continuous) Gaussian distribution χµ,σ2

with mean µ ∈ R, and standard deviation σ > 0 on R by the probability
density function

f(x) =
1

σ
√
2π
· e− 1

2(
x−µ
σ )

2

.

Unless otherwise stated µ = 0, and we simply denote χσ2 := χ0,σ2.

As implied we have mean E[χµ,σ2 ] = µ and variation V[χµ,σ2 ] = σ2.
We can now directly construct a uniform sample over the sphere Sn−1

by sampling n Gaussian coefficients and renormalizing the vector.

Lemma 48. Let X1, . . . , Xn ∼ χσ2 for any σ > 0 be independent
Gaussian variables, then

(X1, . . . , Xn)√
X2

1 + . . .+X2
n

∼ U(Sn−1)

Note that for σ = 1 and large n the denominator
√
X2

1 + . . .+X2
n

is highly concentrated around
√
n, which implies that each individual

spherical coordinate is distributed close to Gaussian with standard
deviation 1/

√
n. Using the cap volume formulas we can give an exact

description of the coefficient distribution.

Lemma 49. Let (u1, . . . , un) ∼ U(Sn−1), then u2i ∼ Beta(1
2
, n−1

2
) on

[0, 1] which has CDF x 7→ 2Cn−1(
√
x) = Ix(

1
2
, n−1

2
).

The uniform distribution over a ball is similar to that of a sphere,
but in addition to the direction we now also have to sample a length.

Lemma 50 (Ball-sphere relation). Let U be uniform over [0, 1], and
S uniform over Sn−1, then

U1/n · S ∼ U(Bn).

This also directly implies that the expectation of ∥x∥2 for x ∼
U(Bn) is given by E[U1/n] = n

n+1
, i.e., for growing n a sample from the

unit ball Bn comes arbitrarily close to the boundary in expectation.
Indeed up to a small difference in dimension the coefficients behave
exactly the same as a spherical sample due to the following Lemma.
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Figure 2.8: Visualisation of the norm of 10000 vectors sampled uni-
formly over B30, represented by vectors in B2 with the same norm and
a uniform direction. Almost all volume of a high-dimensional ball lies
near its border.

Lemma 51. If (u1, . . . , un+2) ∼ U(Sn+1) is spherically distributed,
then (u1, . . . , un) ∼ U(Bn) is uniform over the ball.

Corollary 52. Let (u1, . . . , un) ∼ U(Bn), then u2i ∼ Beta(1
2
, n+1

2
)

with CDF x 7→ Ix(
1
2
, n+1

2
).

We write the chi-square distribution with k degrees of freedom as
χ2
k,σ2 :=

∑k
i=1X

2
i , where X1, . . . , Xk are independently distributed as

χσ2 . The chi-square distribution has expectation kσ2, and the follow-
ing log-expectation.

Lemma 53. Let X be distributed as χ2
k,σ2, then

E [log (X)] = log(2σ2) + ψ(k/2),

where ψ(x) := Γ′(x)/Γ(x) is the digamma function.

We will also define the discrete Gaussian distribution over Z.

Definition 54. We define the Gaussian function on Z with param-
eter s > 0 as ρs(x) = exp(−πx2/s2). Then the discrete (centered)
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Gaussian distribution DZ,σ2 on Z with parameter s is defined by

Pr
X∼DZ,σ2

[X = x] =
ρs(x)

ρs(Z)
=

ρs(x)∑
y∈Z ρs(y)

.

For large enough s, say s ≥ 3, the variance of DZ,σ2 is very close to
s2/(2π). The discrete Gaussian distribution can easily be generalized
to any rank n lattice, but we will do this in Chapter 10 in the quadratic
form setting.

2.6 Heuristics
For cryptanalysis it does not matter if your algorithm cannot solve a
particular worst-case instance, as long as it can solve the instance that
results in breaking the cryptosystem. Problem instances from most
cryptosystems, and in particular those in lattice-based cryptography,
rely heavily on randomness to hide secret information.

Often these systems are not perfectly random, but have some hid-
den secret structure. However, before finding this secret structure (and
possibly breaking the scheme), these instances ‘behave’ like random
instances. For cryptanalysis, we are thus interested in the behaviour
of our algorithms on those random average-case instances.

Analysing how algorithms behave on average-case instances is of-
ten hard. In particular, such an analysis may involve many complex
distributions with many dependencies between them. As a result there
is a big gap between provable and practical algorithms for lattice prob-
lems. Heuristics allow to bridge this gap, and as such, they play an
important role in this thesis. For example the best provable SVP al-
gorithm runs in time 2n+o(n), while the best practical algorithm runs
heuristically in time 20.292n+o(n). We can heuristically assume that
some distributions are simpler (and less dependent) then they actu-
ally are, and do our analysis with those. Heuristics are not necessarily
true in a mathematical sense, it is often easy to give counterexamples.
However, if they give estimates that match the practical behaviour of
algorithms, then they are still very useful.

One should not blindly follow heuristics. Heuristics should de-
scribe practical behaviour, and thus it is important to validate them
experimentally. Experiments of feasible size can validate heuristics,
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S

Gaussian Heuristic

|S ∩ L| ≈ Vol(S)
Vol(P(B))

Figure 2.9: Gaussian Heuristic

and those heuristics can then be used to analyse how the algorithm
would behave on instances of cryptographic size.

2.6.1 Gaussian Heuristic

The most commonly used, and heavily verified heuristic for lattice
algorithms is the so-called Gaussian Heuristic. Heuristics are often
inspired by provable average-case statements, and for the Gaussian
Heuristic one could give the following origin.

Lemma 55. For a rank n lattice L, a measurable set S ⊂ span(L)
and a uniform target t ∈ T(L) = span(L)/L we have

Et∼U(T(L)) |(t+ L) ∩ S| =
voln(S)

vol(L) .

Lemma 55 essentially says that for a volume S, the number of
lattice vectors in L∩S is vol(S)/ vol(L) in expectation if we translate
S around. Here 1/ vol(L) should be interpreted as the density of the
lattice inside its span, e.g. we expect about 1 lattice vector per volume
of size vol(L). The Gaussian Heuristic builds from this interpretation.
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Heuristic 56 (Gaussian Heuristic). For a rank n lattice L and a
measurable set S ⊂ span(L) the Gaussian Heuristic states that

|L ∩ S| ≈ voln(S)

vol(L) .

Furthermore, the lattice vectors in L∩S are uniformly distributed over
S.

In some sense the Gaussian Heuristic completely forgets about the
lattice structure, and treats the lattice L as some kind of uniform cloud
of vectors with density 1/ vol(L). In a reasonable set S ⊂ span(L),
we then naturally expect about vol(S)/ vol(L) lattice vectors. The
set S is often chosen as a (linear transformations of a) hypercube or
ball. E.g., if we apply the Gaussian Heuristic to a ball we obtain an
estimate for the first minimum of a lattice.

Heuristic claim 57. Let L be a rank n lattice with volume vol(L).
The expectation gh(L) of the first minimum λ1(L) under the Gaussian
Heuristic is given by

gh(L) := vol(L)1/n
vol(Bn

1 )
1/n
≈
√
n/(2πe) · vol(L)1/n.

We also denote gh(n) := vol(Bn
1 )

−1/n ≈
√
n/(2πe) for the expected

first minimum of a rank n lattice with volume 1.

Justification. Assume without loss of generality that the lattice is of
full rank n = d. We apply the Gaussian Heuristic to the ball S =
Bn
λ ⊂ Rn of radius λ > 0. According to the Gaussian Heuristic the

number |L ∩ Bn
λ | of lattice vectors in the ball is about (λ/ gh(L))n.

E.g. for λ < gh(L) we expect (for large n), no lattice vectors in the
ball (except 0), while for λ > gh(L) we expect many lattice vectors in
the ball. We can conclude that λ1(L) ≈ gh(L). △

The above estimate for λ1(L) works particularly well in dimen-
sions n ≥ 50. The expected minimum gh(L) is precisely a factor 2
smaller than the upper bound on λ1(L) by Minkowski’s Theorem 11.
So Minkowski’s Theorem is rather tight, but a factor 2 can still be
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significant if we want to consider the concrete performance of algo-
rithms.

Under the Gaussian Heuristic one could say that average-case exact
SVP is equal to γ-HermiteSVP with γ ≈

√
n/(2πe). Under the same

reasoning, a random target t ∈ (spanL)/L lies at distance about
gh(L) from the lattice. In particular, a random target lies at distance
δ · gh(L) from the lattice with exponentially small probability ≈ δn

for a constant 0 < δ < 1.
Sometimes the Gaussian Heuristic is a stronger heuristic than what

is actually necessary. Therefore there exists many (often weaker) vari-
ants of it. For example, sometimes it is enough to only assume that
the direction x/∥x∥ of some lattice vector is uniform (over the sphere).

To avoid confusion we restrict the use of “Theorem”, “Lemma”, and
“Corollary” to formal claims, and refer to “Heuristic claims” for claims
that are based on heuristics.

2.6.2 Random lattices

We finish with a short remark on what we mean by average-case in-
stances. For lattice problems the randomness can be in several places,
but in particular we discuss here the randomness of the input lat-
tice(s). Formally the set of full rank n lattices can be identified with
the quotient group GLn(R)/GLn(Z). By rescaling the set of all lat-
tices L with unit (co)volume vol(L) = 1, can be identified with the
group SLn(R)/SLn(Z). Siegel [Sie45] showed that the Haar measure
on SLn(R) induces a natural finite measure µn on SLn(R)/SLn(Z).
We can thus speak of a uniform distribution over the set of full rank
n lattice of unit (co)volume.

This gives a proper definition of what a ‘random’ lattice is, but
such lattices do not naturally appear in cryptography. For example,
we often restrict to integer, q-ary or other classes of lattices. Still it
can be useful to see how certain lattice properties behave over this
distribution. E.g., for a lattice taken uniform w.r.t. µn, the first min-
imum can be shown to have expectation gh(L) and also to be heavily
concentrated around gh(L) for increasing n. Similarly there exist ex-
pectation and concentration results for statements like Lemma 55,
see [AEN19] for a survey. These essentially say: almost all lattices
follow the Gaussian Heuristic.
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Goldstein-Mayer introduced a way to sample integer lattices that
in the limit (after rescaling) is statistically close to uniform w.r.t. µn.
Such lattices are often used to test the average-case behaviour of
algorithms. For example the TU Darmstadt SVP challenges give a
Goldstein-Mayer random lattice and require you to compute a short
vector of length at most 1.05 · gh(L).

Throughout this thesis we will be a bit more lenient with the term
random lattice. We might even turn things around and informally
call a lattice random if it follows the expected average-case behaviour.
E.g. if it follows the Gaussian Heuristic in the general sense, or if at
least λ1(L) ≈ gh(L). To motivate this further: from a cryptanalytic
perspective, the average-case is often the hardest for lattice problems.
If a lattice does not behave like the average-case, then it leaks some
structure or bias that an attacker could exploit. Assuming random-
ness therefore does not make the problem easier, but does make it
easier to analyse. Furthermore, in cryptanalysis these heuristics are
often applied to sufficiently randomised (projected sub)lattices, which
makes their analysis tight. A common rule of thumb is thus: lat-
tices behave like the average-case, precisely until one recovers (part
of) their (secret) structure. Because the heuristics remain valid up to
that moment, they can be used to determine when this will happen.

2.7 Cryptography

2.7.1 Security reductions

In the rest of this section we will present multiple cryptographic con-
structions, such as for encryption and signatures. These construc-
tions come with security notions, often of the form: no probabilistic
polynomial-time attacker A can do X (decrypt, forge a signature). Of
course, there is little hope of directly proving such statements. What
we can do however, is show that if such an attacker exists, then that at-
tacker can also solve some problem Y in polynomial-time. We call this
a security reduction. The security of the (possibly complex) scheme
then relies on the hardness of this problem.

One could argue that we just moved the problem somewhere else.
However such a reduction gives three main advantages:
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1. It shows that there are no particular weaknesses in the complex
details of the scheme.

2. Cryptanalysis can focus on a (hopefully) simple to state problem.

3. It allows to reuse and standardize security assumptions.

In the early days of cryptography, before security reductions were a
thing, schemes could often be broken by details that were overlooked,
such as statistical leakage. A security reduction often finds these faulty
details, and brings them to the foreground, because they naturally
represent an obstacle in the proof.

Security reductions also allow the reuse of a security assumption:
many different schemes can reduce to the same problem. For example,
within lattice-based cryptography almost all schemes reduce to just a
few problems (but with varying parameters). As a result many crypt-
analysts have focussed on those few problems, and thereby increased
(or decreased) our confidence in them. Such a toolkit of standard and
versatile security assumptions prevents an explosion of ad-hoc assump-
tions with potentially subtle weaknesses. However, care should still
be taken when picking the parameters of such problems. Wandering
off the beaten path too much could lead to unexpected attacks.

2.7.2 Zero-Knowledge Proof of Knowledge

As our first cryptographic concept we consider a Zero-Knowledge Proof
of Knowledge (ZKPoK). The setting is that we know a solution w to
some NP problem x, and we want to convince someone else that we
know a solution without revealing it. Given an NP relation R, we
assume to have a public problem x and two parties, the Prover that
supposedly knows a witness w such that (x,w) ∈ R, and a Verifier
that must be convinced of this. For example, there could be a public
graph x := G, of which the Prover knows an automorphism w := σ.
The Prover then wants to convince some verified that it knows such
an automorphism of G, without revealing any such automorphism.

We assume the Prover and Verifier interact with each-other follow-
ing a sigma protocol, consisting of three phases: commitment, chal-
lenge and a response. As visualized in Figure 2.10, the Prover, with
input the problem x and a (potential) witness w, starts by creating
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Prover(x,w) Verifier(x)

Generate commitment u
u−−−−−→

Generate challenge c← C
c←−−−−−

Generate response z
z−−−−−→ Output accept or reject.

Figure 2.10: A Sigma-protocol.

some commitment u. The Verifier, on input of the problem x and the
commitment u, responds with a uniform challenge c from some finite
challenge set C. Finally, the Prover, responds to the challenge with
some response z, which the Verifier accepts or rejects. For a successful
Zero-Knowledge Proof of Knowledge scheme we expect the protocol to
have the following three properties. The first two relate to the Proof of
Knowledge part, while the last one defines the Zero-Knowledge part.

Completeness. If a Prover honestly knows a solution, then the Veri-
fier must be convinced. Formally, if a Prover knows a witness w for
the problem x, then after the protocol the Verifier must accept with
probability 1.

Special Soundness. If the Prover does not know a witness then it
should not be able to convince the Verifier. By guessing the chal-
lenge a priori correctly the Prover can often cheat by constructing
a commitment and response that makes the Verifier accept for this
particular challenge. The initial guess has probability 1/|C| to be cor-
rect, and thus the Prover can cheat with probability 1/|C|, e.g., a half
when |C| = 2. If the Prover can cheat with at most negligible ad-
vantage over 1/|C|, then by repeating the protocol the overall cheat
probability quickly becomes negligible.

To formalize this we must introduce an efficient knowledge extrac-
tor E that given two accepting transcripts (u, c, z) and (u, c′, z′) with
the same commitment but distinct challenges c ̸= c′, recovers a wit-
ness w for the problem x such that (x,w) ∈ R. I.e., if a Prover is
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able to convince the Verifier on at least two distinct challenges with
non-negligible probability, then it also knows or can produce a witness
with non-negligible probability.

Honest-Verifier Zero-Knowledge (HVZK). The Verifier, if acting hon-
estly, does not learn anything else from the interaction, except that
the Prover knows a witness. With acting honestly we mean that the
challenges are indeed uniform random over the challenge set C. Given
the existence of transformations that remove the need for the Verifier
to generate the challenge, we can safely assume this.

To show that the verifier cannot learn anything from the interac-
tion we must show that we can efficiently create a fake interaction,
following the same distribution as the real one, without any knowl-
edge of a witness. Formally, we need an efficient simulator that given
x, generates accepting transcripts (u, c, z), with a distribution indist-
inghuisable (negligible statistical distance) from accepting transcripts
in the original Sigma-protocol

2.7.3 Encryption and Key Encapsulation
Mechanism

While cryptography is a rich field containing many security primi-
tives, many non-experts might think cryptography is only about the
encryption of data (or cryptocurrencies...). And indeed encryption,
the act of securely transferring data between parties, is a central topic
in cryptography. The area can roughly be split into two: symmetric
and asymmetric cryptography. In symmetric cryptography one as-
sumes that both parties already conversed a shared secret key (or two
related keys), which is then used both for encryption and for decryp-
tion. In asymmetric encryption, also known as public key encryption,
parties do no share any secret information a priori. Usually one party
generates both a secret and a public key, other parties encrypt using
the public key, and the generating party decrypts using the secret key.

Often these two methods of encryption are used in unison, first
public key encryption is used to securely obtain a (small) shared secret
key, also known as a Key Encapsulation Mechanism (KEM), after
which more efficient symmetric encryption is used to transfer (large)
amounts of data using the shared secret key (see [KL20, Theorem
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12.12]). Here we will focus ourself on the public key encryption, or
more specifically the KEM.

Definition 58 (Key-Encapsulation Mechanism (KEM) [KL20]).
Let λ ∈ Z>0 be the security parameter. A Key-Encapsulation Mecha-
nism (KEM) K consists of three probabilistic polynomial-time (in λ)
algorithms K := (Gen,Encaps,Decaps) such that:

1. Key-generation: Gen takes a input the security parameter λ,
and outputs a secret and public key (sk, pk).

2. Encapsulation: Encaps takes as input a public key pk, and out-
puts a ciphertext c and a key k ∈ {0, 1}ℓ, where ℓ = Ω(λ) is the
key length. We write (c,k)← Encaps(pk).

3. Decapsulation: Decaps takes as input a private key sk and a
ciphertext c, and outputs a key k or a failure symbol ⊥. We
write k← Decaps(sk, c).

We call a KEM correct if with all but negligible probability over the
randomness of Gen and Encaps, if Encaps(pk) outputs (c,k), then
Decaps(sk, c) also outputs k.

We now introduce a security notion versus Chosen-Plaintext At-
tacks (CPA). These definitions often take the form of a game that
interacts with the adversary.

Definition 59 (CPA-Security [KL20]). Let K = (Gen,Encaps,

Decaps) be a KEM and A any adversary. The KEM CPA indistin-
guishability experiment KEMcpa

A,K(λ) is as follows:

• Gen(λ) is run to obtain a public key pk = P . Then Encaps(pk)
is run to generate (c,k) with k ∈ {0, 1}ℓ of key length ℓ = Ω(λ).

• A uniform bit b ∈ {0, 1} is chosen. If b = 0, set k̂ := k, if b = 1,
choose a uniform k̂ ∈ {0, 1}ℓ.

• Given (pk, c = (c, Z), k̂) the adversary A guesses b. If correct
the experiment returns 1, otherwise it returns 0.
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The KEM K is CPA-secure if for all probabilistic polynomial-time
adversaries A we have

Pr[KEMcpa
A,K(λ) = 1] ≤ 1

2
+ negl(λ).

One can trivially guess correctly with probability at least 1
2
, and

we call the difference away from 1
2

the advantage. So the goal is to
achieve a non-negligible advantage in distinguishing the real key from
a uniformly random one given the ciphertext and public key.

Recall that usually we want to reduce the CPA-security to some
(hopefully) hard problem. Given the distinguishing nature of the CPA
experiment, these problems are often of a decisional or distinguishing
type, even though for an actual key or message recovery attack one
might need to solve a search variant.

CPA-security can be seen as passive security, i.e., it shows that
the scheme is secure from a passive attacker that can only eavesdrop
on the public channels, but cannot interfere in any way. A stronger
security notion is that of chosen-ciphertext attacks (CCA), where the
adversary can actively interact with the party holding the secret key,
and is even allowed to ask for the decapsulation of ciphertexts (except
for the one given in the experiment). Since we can transform a CPA-
secure KEM into a CCA-secure KEM by a Fujisaki-Okomoto type of
transform [FO99] we restrict our focus to CPA-security.

2.7.4 Signatures

The use of signatures on physical documents or artworks dates back as
far as 3000 BC, and they have since been used to associate an identity
to a physical object. In the digital world signatures are just as impor-
tant to verify that e.g., a digital document or software installer was
created by some known trusted party, and not by some ill-intentioned
adversary. Adding some random scribble to a document is not going
to work in the digital world, as one can perfectly copy a signature
from one file to another. The signature should be tied to the message,
i.e., changing the message should invalidate the signature. We need
cryptography to solve this problem for us.

We want the trusted party, called the sender, to be able to sign
a message, after which anyone, acting as a verifier, should be able to
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verify the signature. Again this brings us to the public key cryptog-
raphy setting, the sender uses a secret key to sign, while the public
key can be used to verify the signature. Note that in some sense
the identity of the sender is represented by its public key, which we
assume to be known by all parties. The latter might be seen as a
strong requirement, and it is, as we will still need a reliable way to
distribute the public key. What a signature scheme does however is to
reduce the authentication of many messages to that of authenticating
the public key once. The remaining problem of sharing public keys is
in practice solved by establishing by a Public-Key Infrastructure with
a single trusted root. The public key belonging to the trusted root
can for example be pre-baked into operating systems, which can then
be used to bootstrap the distribution of other public keys. For more
information about this see [KL20, Chapter 13.6].

Definition 60 (Signature Scheme [KL20]). Let λ ∈ Z>0 be the se-
curity parameter. A signature scheme S consists of three probabilis-
tic polynomial-time (in λ) algorithms S := (Gen,Sign,Verify) such
that:

1. Key-generation: Gen takes a input the security parameter λ,
and outputs a secret and public key (sk, pk).

2. Signing: Sign takes as input a private key sk and a message m
from some message spaceM, and outputs signature σ. We write
σ ← Sign(sk,m).

3. Verification: Verify takes as input a public key pk, a message
m, and a signature σ. It outputs a bit b, with b = 1 meaning valid
and b = 0 meaning invalid. We write b← Verify(pk,m, σ).

We call a signature scheme correct if with all but negligible proba-
bility over the randomness of Gen, if Sign(sk,m) outputs σ, then
Verify(pk,m, σ) is valid for every legal message m ∈M.

Given any message and a valid signature we should be convinced
that the message was signed by the sender. A message together with a
valid signature is called a forgery if the message was not signed before
by the sender.
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Definition 61 (EUF-CMA secure [KL20]). Let S := (Gen,Sign,

Verify) be a signature scheme and A any adversary. The signature
forging experiment Sig-forgeA,K(λ) is as follows:

• Gen(λ) is run to obtain keys (pk, sk).

• The adversary A is given the public key pk and access to an
oracle Sign(sk, ·). The adversary outputs (m,σ) where m was
not queried before to the oracle.

• The output of the experiment is given by Verify(pk,m, σ), and
we say it succeeds if it is 1.

The signature scheme S is existentially unforgeable under an
adaptive chosen-message attack (EUF-CMA) or just secure, if
for all probabilistic polynomial-time adversaries A we have

Pr[Sig-forgeA,K(λ) = 1] ≤ negl(λ).

2.7.5 Randomness extractors

A randomness extractor allows, using a publicly known random seed,
to convert a non-uniform randomness source X with high min-entropy
H∞(X) := − log2(maxx Pr[X = x]) to a near-uniform random vari-
able [HILL99; Bar+11].2

Definition 62 (Extractor). An efficient function E : X × {0, 1}z →
{0, 1}v is an (m, ϵ)-extractor, if, for all random variable X distributed
over X and H∞(X) ≥ m, it holds that

dist
(
(Z, E(X,Z)), (Z, V )

)
≤ ϵ

where the seed Z ← U({0, 1}z) and V ← U({0, 1}v) are drawn uni-
formly at random, and independently of X.

In Chapter 10, we will rely on the existence of an (m, ϵ)-extractor
with parameters m = Θ(v) and ϵ = 2−Θ(m).

2For our application in Chapter 10, we do not need to relax the source to only
have average min-entropy, and therefore work with the simpler worst-case version.
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2.7.6 Hash functions and the Random Oracle
Model

Hash functions are an important tool both in cryptography and be-
yond. They take a (possibly) long input and output a short fixed
length ‘fingerprint’.

Definition 63 (Hash Function [KL20]). Let λ ∈ Z>0 be the security
parameter. A hash function H is a pair of probabilistic polynomial-
time algorithms (Gen, H) such that:

• Key-generation: Gen takes as input the security parameter 1λ,
and outputs a key s.

• Hash: H is a deterministic algorithm that takes as input a key s
and a string x ∈ {0, 1}∗ and outputs a string Hs(x) ∈ {0, 1}ℓ(λ)
of fixed length.

An important application for hash functions is inside hash-maps,
where in general a value x is stored at the memory adress H(x) (or
nearby). By using the right hash function, preferably acting somewhat
random, and using the right parameters this allows for a map with
constant time insertion and look-up.

A simple application in cryptography is to combine them with a
signature scheme to obtain a so-called hash-and-sign signature scheme.
Instead of directly signing a long message m, which might be ineffi-
cient, we sign the short hashed message H(m). Note however that any
other message m′ ̸= m with H(m) = H(m′) would give a forgery in
the hash-and-sign scheme. To make sure the resulting scheme is still
secure we require the hash function to be collision resistant.

Definition 64 (Collision Resistance [KL20]). Let H := (Gen, H) be
a hash function and A any adversary. The collision-finding experiment
Hash-collA,K(λ) is as follows:

• Gen(1λ) is run to obtain a key s.

• The adversary A is given the key s, and outputs x, x′.

• The output of the experiment is defined to be 1 if and only if
x ̸= x′ and Hs(x) = Hs(x′). We call this a collision.
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The hash function H is collision resistant, if for all probabilistic
polynomial-time adversaries A we have

Pr[Hash-collA,K(λ) = 1] ≤ negl(λ).

Note in particular that a collision resistant hash function is hard
to invert, e.g., it is pre-image resistant. Hash functions that are con-
structed with the goal of having such cryptographic properties are
often called cryptographic hash functions. In practice however most
of the efficient cryptographic hash functions in use have no proof of
collision resistance (even under some hardness assumptions), but have
simply resisted the state-of-the-art cryptanalysis. Additionally prov-
ing security of for example a signature scheme often requires that the
hash function ‘behaves like random’, i.e., in the ideal case the hash
function is a completely random function from the space of functions
from the domain to {0, 1}ℓ(λ). Although this is impossible to achieve
(efficiently) in practice, we often heuristically assume this is the case.
Proofs under this heuristic are known as proofs in the Random Oracle
Model (ROM).

In this model there is a public function H : Domain → {0, 1}ℓ(λ),
that on any new input outputs a uniformly random value from {0, 1}ℓ(λ).
Furthermore, the output should stay the same on already requested
values. In the security proof one can ‘reprogram’ the function H on
certain inputs, as long as the output is still (statistically indistinguish-
ably from) uniform, with the argument that from the adversary point
of view the distribution of H is unchanged. This is useful for proofs
that require simulations.
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Short and Close Lattice
Vectors
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CHAPTER 3
Theory of Lattice Sieving

This chapter gives an introduction to the state-of-the-art of lat-
tice sieving.

3.1 Introduction
The hardness of the Shortest Vector Problem (SVP) is fundamental
to the security of lattice-based cryptography; an efficient algorithm
for SVP would break almost all lattice-based schemes. More precisely,
the best asymptotic and concrete attacks on many schemes boil down
to solving SVP in some (possibly lower dimensional) lattice, and thus
parameters for lattice-based schemes are directly influenced by the
complexity of solving SVP.

Lattice sieving algorithms solve SVP in single exponential time,
making them asymptotically superior to enumeration techniques run-
ning in super-exponential time, at the cost of also using single expo-
nential space. The central idea of sieving algorithms is to start with a
large list of (long) lattice vectors, and to find many sums and differ-
ences of these vectors that are shorter. These shorter combinations are
inserted back into the list, possibly replacing longer vectors, and this
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v1

v2

Find close vectors v1,v2 ∈ L. Replace v2 ← v1 − v2.

Figure 3.1: Lattice Sieving

process is repeated until the list contains many short vectors, among
which (hopefully) a shortest one of the lattice. See Figure 3.1 for one
such iteration.

The first lattice sieving algorithm [AKS01] was proposed in 2001
by Ajtai, Kumar, and Sivakumar (AKS), giving the first provable al-
gorithm that solved SVP in single exponential time 2O(n) for a rank n
lattice. By choosing the AKS parameters carefully, Nguyen et al. later
showed that the AKS sieve can provably solve SVP in time 25.9n+o(n)

and space 22.95n+o(n). In a further line of work [PS09; MV10; HPS11a]
algorithmic and analytic improvements brought the constants down to
time 22.456n+o(n) and space 21.233n+o(n). Provably solving (worst-case)
SVP with lattice sieving leads to many technical problems, such as
showing that we can actually find enough short combinations and in
particular that they are new, i.e., they are not present in our list yet;
unfortunately, side-stepping these technicalities leads to the mentioned
high time and memory complexities.

In contrast, for cryptanalysis we are interested in the average-case
behaviour of lattice sieving algorithms. Instead of provable results
these algorithms are based on heuristics, which are often verified ex-
perimentally, or which can only be proven (partially) for average-case
instances. The first and simplest of these practical sieving algorithms
by Nguyen and Vidick uses a list of N = (4/3)n/2+o(n) = 20.2075n+o(n)

vectors and runs in time N2+o(1) = 20.415n+o(d) by repeatedly checking
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all pairs v ± w [NV08]. The list size of (4/3)n/2+o(n) is the mini-
mal number of vectors that is needed in order to keep finding enough
shorter pairs.

In a line of works [Laa15; BGJ15; BL16; BDGL16] the time com-
plexity was gradually improved to 20.292n+o(n) by nearest neighbour
searching techniques to find close pairs more efficiently [IM98]. In-
stead of checking all pairs they first apply some bucketing strategy
in which close vectors are more likely to fall into the same bucket.
By only considering the somewhat-close pairs inside each bucket, the
total number of checked pairs can be decreased.

To lower the space cost below N = 20.2075+o(n) one has to look
beyond sums and differences of pairs, and consider triples u± v ±w
or more generally k-tuples [BLS16; HK17; HKL18]. The current best
triple sieve [HKL18] has a space complexity of 20.1887n+o(n), but comes
with a higher time complexity of 20.3588n+o(n).

3.1.1 Organisation

In Section 3.2 we introduce the basics of lattice sieving algorithms and
their heuristic analysis. Section 3.3 introduces some Nearest Neigh-
bour Search techniques to obtain asymptotically faster sieving algo-
rithms. In Section 3.4 we introduce more advanced practical sieving
techniques that give significant polynomial and even subexponential
speed-ups. In Section 3.5 we give an overview of the General Sieve
Kernel (G6K), the current state-of-the-art framework and implemen-
tation for (lattice reduction via) lattice sieving.

3.2 Heuristic lattice sieving
In this section we introduce a very basic lattice sieving algorithm in-
spired by the first practical sieving algorithm [NV08], and explain
heuristically why it works. Lattice sieving algorithms start with a
large list L0 ⊂ L consisting of N long lattice vectors. Given any ba-
sis one can always produce long lattice vectors by discrete Gaussian
sampling, or simply by taking small random combinations of the basis
vectors. Note that due to the additive structure of the lattice, for
any two lattice vectors x,y ∈ L0, the difference x− y is still a lattice
vector. And, in particular the difference might be a shorter lattice
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vector. The idea behind lattice sieving is to compute the difference
x − y for all lattice vectors x,y ∈ L0 and store those that are short
enough in a new list L1. We call such pairs (x,y) a reduction.

Definition 65 (Reduction). Let R > 0 be some length bound (clear
from the context), and let x,y ∈ Rn be (lattice) vectors, we call (x,y)
a reduction or a reducing pair if

∥x− y∥ ≤ R.

With the appropriate length bound the new list L1 contains shorter
vectors than the original list L0, and this process is repeated with
more lists L2, L3, . . . and decreasing bounds R2 ≥ R3 ≥ . . . until some
saturation condition is met (which will be discussed later). This basic
sieving algorithm is summarized in Algorithm 2. Given the algorithm
as stated it might as well happen that such reductions do not exist, or
at least not enough of them, such that after some iterations we have
Li = {0}. Clearly if we add more vectors to the initial list L0, then
more pairs are considered, and thus we expect to find more reductions.

Algorithm 2: Lattice sieving algorithm.
Input : A basis B of a lattice L, list size N , a saturation

radius R and a progress factor 2/3 < γ < 1.
Output: A list L of short vectors saturating the ball of radius

R.
1 Sample a list L0 ⊂ L of size N .
2 i← 0.
3 while Li does not saturate the ball of radius R do
4 Ri+1 ← γ ·maxv∈Li

∥v∥
5 Li+1 = ∅.
6 for every pair v,w ∈ Li do
7 if v −w /∈ Li+1 and ∥v −w∥ ≤ Ri+1 then
8 Li+1 ← Li+1 ∪ {v −w}
9 end

10 end
11 i← i+ 1

12 end
13 return Li
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3.2. Heuristic lattice sieving

So how large does the initial list N = |L0| need to be to find enough
reductions?

Reduction probability

Let’s first dive deeper into sufficient conditions for lattice vectors to
give a reduction. Pairs (x,y) give a reduction if their difference is small
enough, i.e., if they are somewhat close to each-other. Alternatively
this means that the vectors x and y have a small angle to each-other.
This can be made rigorous in terms of the inner product.

Lemma 66. Let x,y ∈ Rn be (lattice) vectors, then (x,y) is a re-
duction for some length bound R > 0 if and only if

⟨x,y⟩ ≥ ∥x∥
2 + ∥y∥2 −R2

2
.

in particular if ∥x∥ = ∥y∥ = R then (x,y) is a reduction if and only
if

⟨x/ ∥x∥ ,y/ ∥y∥⟩ ≥ 1

2
.

A normalized inner product of at least 1
2

corresponds to the vectors
having an angle less than π/3 between each-other. Independent of the
length of the vectors x,y, if R ≥ max{∥x∥ , ∥y∥} then the condition
that the angle is less than π/3 is sufficient. Note that in some sense
this is the worst-case scenario, the angle condition is only necessary
when the vectors have the same length.

In order to say something about the probability that a pair (x,y) ∈
Li × Li gives a reduction we have to assume that these vectors follow
some distribution. This is where the heuristics come in. Recall that
the Gaussian Heuristic indicates that given some ball R · Bn of radius
R, there are approximately |R · Bn ∩ L| = (R/ gh(L))n lattice vectors
in it, and those lattice vectors are uniformly distributed over the ball.
In addition, for most use cases, any dependencies between the lattice
vectors is ignored. Vectors that are uniformly distributed over a ball
are in particular uniformly distributed over the sphere after normal-
ization. Given the sufficient condition on the angle we can thus work
with the following weaker heuristic.
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3. Theory of Lattice Sieving

Heuristic 67. For nonzero list vectors v ∈ Li \ {0}, the directions
v/ ∥v∥ are independently uniformly distributed over the sphere Sn−1.

This heuristic matches what we observe in practice, and one could
argue that this is in fact the worst-case distribution when ones goal
is to find pairs that have a small angle1, i.e., if the distribution is less
uniform and biased into a certain direction then one would expect to
find more pairs with a small angle.

As a technical motivation, ignoring dependency issues, note that if
we sample the initial list from a discrete Gaussian with large enough
parameter, then their directions are indeed close to uniform. Now if
vectors x,y have uniform directions, then their difference x − y also
has a uniform direction. Furthermore heuristically there is no direct
relation between the direction of x − y and its shortness, so the new
list also contains vectors with uniform directions.

Given this heuristic we can compute a lower bound on the proba-
bility that any two vectors give a reduction. Note that for this only
one of the two vectors has to follow the heuristic.

Lemma 68. For any x ∈ Rn \ {0}, let y ∈ Rn \ {0} be such that
y/ ∥y∥ is uniform over Sn−1, and let R ≥ max{∥x∥ , ∥y∥} be a length
bound, then the probability that (x,y) is a reduction is at least

Pr[∥x− y∥ ≤ R] ≥ (3/4)n/2+o(n),

with equality if R = ∥x∥ = ∥y∥.
Proof. Let x̃ = x/ ∥x∥ , ỹ = y/ ∥y∥, the condition ⟨x̃, ỹ⟩ ≥ 1

2
implies

that (x,y) is a reduction with the length bound R ≥ max{∥x∥ , ∥y∥}.
The condition is necessary only when R = ∥x∥ = ∥y∥. For any
x̃ ∈ Sn−1 the probability

Pr
ỹ∼Sn−1

[
⟨x̃, ỹ⟩ ≥ 1

2

]
=

vol
(
Cn−1
x̃, 1

2

)
vol(Sn−1)

= Cn−1(1/2) = (3/4)n/2 · nO(1),

is given by the relative volume Cn−1(1/2) of the spherical cap, whose
asymptotic formula is given by Lemma 46.

1Technically, the existence of a very good non-lattice kissing number configu-
rations would imply a counter-example to this statement, but it is not clear that
such a configuration exists, and in particular such a distribution does not occur
naturally in practice.
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3.2. Heuristic lattice sieving

Following Lemma 68 we have to consider about (4/3)n/2+o(n) pairs
to find at least a single reduction. Given a list Li of length N and
a length bound of R = maxv∈Li

∥v∥ we can consider about ≈ 1
2
N2

pairs, and the total number of reductions will heuristically be at least
N2 ·(3/4)n/2+o(n). These reductions form the new list Li+1 which again
has to be of size close to N . Solving the list balancing equation

N = N2 · (3/4)n/2+o(n),

we thus need a list of size N = (4/3)n/2+o(n) to make sure that the
lists do not decrease in size (ignoring duplicates).

In Algorithm 2 the length bound is set slightly smaller at R =
γ · maxv∈Li

∥v∥ for some progress factor γ < 1. Depending on the
specific factor one would have to increase the list size slightly; but by
setting e.g., γ = 1 − 1

n
an asymptotic list size of N = (4/3)n/2+o(n)

is again sufficient, while still obtaining an exponential decrease in the
length bounds Ri.

Duplicates

In the above analysis we are assuming that each of the found reduc-
tions x − y is distinct. This cannot stay true as otherwise we would
eventually find nonzero vectors shorter than λ1(L) under Heuristic 67.
Suppose the lattice is normalized to gh(L) = 1, i.e., such that the
Gaussian Heuristic indicates that λ1(L) ≈ 1. Asymptotically, for large
n almost all of the reductions in the new list have length close to the
length bound R (say between 0.99R and R), and given Heuristic 67 it
is natural to assume that these reductions give vectors close to uniform
among the lattice vectors in that thin layer. By the Gaussian Heuristic
there exist about Rn+o(n) such lattice vectors. Given (4/3)n/2+o(n) uni-
form samples from this set we only expect a significant Θ(1) fraction
of duplicates when R ≤

√
4/3 + o(1). A natural saturation condition

is thus to stop whenever Li contains a significant fraction of the lattice
vectors of length at most

√
4/3 · gh(L), and before this happens the

relative number of duplicates is expected to be insignificant.

Definition 69 (Saturation). For a rank n lattice L, we say that a
list L ⊂ L of lattice vectors is saturating (a ball) with radius R if

|L ·R · Bn| ≥ 1
2
· (R/ gh(L))n
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3. Theory of Lattice Sieving

The saturation condition is usually applied with radius R =
√

4/3·
gh(L). The constant 1

2
is somewhat arbitrary and can be tweaked in

practice. A lower constant makes it easier to reach saturation but
results in less short vectors in the final list. A larger constant (of at
most 1) makes saturation harder to reach and increases the occurrence
of duplicates, but results in more short vectors in the final list.

Heuristic runtime analysis

Again we consider a lattice L that is normalized such that gh(L) = 1.
Suppose we set γ = 1 − 1

n
, then a list size of N = (4/3)n/2+o(n) is

enough, and there are N2 = (4/3)n+o(n) reductions to check every
iteration, each at the cost of O(n) arithmetic operations to compute
an inner product. Checking for duplicates can be done in O(logN) or
amortized O(1) vector operations per vector by keeping the list sorted
or by a hash-set.

By first LLL reducing the basis and then sampling vectors by tak-
ing small random combinations (or by Gaussian sampling) we can con-
struct an initial list L0 of vectors such that R1 = maxv∈L0 ∥v∥ = 2O(n).
Given that γk = (1− 1

n
)k decreases like (1/e)k/n we obtain Ri ≈

√
4/3

after at most a polynomial number of k = O(n2) iterations, and fol-
lowing the previous discussion the saturation condition will (have)
trigger(ed).

In total the complexity is thus dominated by the poly(n) · N2 =
(4/3)n+o(n) time cost of checking all pairs and the poly(n) · N =
(4/3)n/2+o(n) memory cost of storing the lists.

A single list

Algorithm 2 uses multiple lists L1, L2, . . . to clarify the steps in the
heuristic analysis. In practice it is common to use a single list, where
new reduced vectors x − y either replace the longest of x or y, or
replace just the longest element in the list. The list and length bound
are then continuously updated and the vectors are getting shorter and
shorter until saturation is achieved. This has the added benefit of
explicitly reusing all the short enough vectors found so far (although
this was implicitly done in Algorithm 2 by forcing 0 to be part of each
list).
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3.2. Heuristic lattice sieving

One could pick random pairs to reduce, which might result in a
loss of performance due to rechecking the same pair. The approach of
the Gauss Sieve [MV10] is to split the list into two parts: the queue
part Q and the list part L. At the start of the sieve all vectors are in
the queue part, and the list part is empty. If the queue part becomes
too small before saturation is achieved we sample more vectors into
it.

A queue vector v ∈ Q is only inserted in the list part if it does not
form a reduction with any of the list vectors (withR = max{∥v∥ , ∥w∥}
for w ∈ L). This is achieved by explicitly checking for reductions be-
tween v and all list vectors, where any reduction (v,w) replaces the
longest of the two vectors, and is inserted back into the queue part
(if it was not in the database yet). By following this strategy any
pair of vectors is only checked for a reduction once (except if a vec-
tor disappears and later reappears in the database), preventing most
of the duplicate checks, and giving a significant speed-up in lowish
dimensions.

Another improvement is to not store both the vector x and its
negation −x, which saves a factor 2 in memory. Additionally we can
check if either ±(x−y) or ±(x+y) is short by looking at the absolute
inner product |⟨x,y⟩|, which saves a factor 4 in the number of inner
products we have to compute.

Triple sieve

In Section 3.3 we will explain how to decrease the time complex-
ity below N2 = (4/3)n+o(n), by making reductions easier to find.
However all such methods do no improve the memory usage below
N = (4/3)n/2+o(n), as we still require the same number of reductions.

To improve the memory cost we have to go beyond pairs and
consider triples (x,y, z) such that x ± y ± z is short or even k-
tuples (x1, . . . ,xk) [BLS16; HK17; HKL18]. The probability that a
triple uniformly sampled from the sphere gives a reduction is about
(16/27)n/2+o(n), which is much smaller than for a pair. But at the
same time there are about N3 triples to consider, leading to the list
balancing equation

N = (16/27)n/2+o(n) ·N3,
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3. Theory of Lattice Sieving

with solution N = (27/16)n/4+o(n) = 20.1887n+o(n) compared to a list
size of (4/3)n/2+o(n) = 20.2075n+o(n) for the sieve based on pairs. This
comes at the cost of a higher time, as we now need to check N3 =
20.5662n+o(n) triples. Considering tuples of k ≥ 4 vectors further de-
creases the memory cost, but with a large impact on the runtime.

Provable sieves

In the literature on lattice sieving there is a large gap between the
heuristic (and real-world average-case) performance of lattice sieving
algorithms and the provable sieving algorithms. Heuristically we need
a list size of about (4/3)n/2+o(n) to keep finding enough reduction,
and this seems realistic in practice. However in the worst-case we
could construct such a list that has no reduction at all. For a naive
provable result on finding enough reductions one would have to at least
square the list size to (4/3)n+o(n) = 20.415n+o(n). The exact number that
is needed is directly related to the non-lattice variant of the kissing
number, which bound can be improved to 20.401n+o(n).

Still the problem remains that many of the found reductions might
collide, and this is where most of the technical difficulties in provable
sieving algorithms stem from. One technical solution is to add extra
random errors to the lattice point in order to somehow ‘hide the lattice
structure’ from the sieving algorithm, which allows one to prove re-
sults about the distribution of the list and the probability of obtaining
duplicates, but this comes at the cost of significantly increasing the
asymptotic complexity. When allowing for a constant approximation
factor, e.g., that the algorithm returns provably only a vector of size
µ · λ1(L) for some constant µ > 1, this increase in complexity can
be prevented, leading to a 20.802n+o(n) time and 20.401n+o(n) space al-
gorithm [AUV19; EV22; RV22], surprisingly not only in the standard
Euclidean norm, but for any p-norm.

3.3 Bucketing and sieving variants
Recall from Section 3.2 that for a (pair-)sieve we need a list of N =
(4/3)n/2+o(n) lattice vectors, and we need to find all the reductions
among the N2 pairs. Naturally the naive algorithm that checks all
pairs takes a time complexity on the order of N2.
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3.3. Bucketing and sieving variants

Create a bucket B ⊂ L. Search reducing pairs in B.

Figure 3.2: Lattice sieving with bucketing.

This can be improved by bucketing methods. The idea is to first
group vectors together that point somewhat in the same direction.
Then within each group each pair is more likely to give a reduction;
and this is where we improve the time complexity. To find all reduc-
tions we might have to repeat the bucketing process (after randomiz-
ing) for multiple iterations. See Algorithm 3.

Suppose that in each iteration we have m buckets B1, . . . , Bm.
Each of the N vectors is added to on average M buckets, depending on
some bucket condition, at a cost of Tb per vector. For convenience we
will for now assume that M ≈ 1, such that assuming that the buckets
are well balanced, they are of size |Bi| ≈ N/m.

We assume that any pair of vectors that lies in the same bucket
has (at least) some conditional probability p to give a reduction. To
find N reductions we thus have to check in total about N/p bucketed
pairs, and when p≫ N−1 this is less than in the naive algorithm.

This is only helpful if the cost of the bucketing process is less or
equal to Õ(N/p). Per iteration we have m buckets and we find on the
order of p · (N/m)2 reductions per bucket. To find N reductions we
thus have to repeat r = m

N ·p many iterations. At each iteration we
have to find an appropriate bucket for each of the N vectors at a cost
of Tb per vector, the total cost of bucketing is thus given by

r ·N · Tb =
n

N · p ·N · Tb =
m

p
· Tb.
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3. Theory of Lattice Sieving

As an alternative explanation of the bucketing cost note that each
vector has after bucketing an expected number of |Bi| · p = N

m
· p

reductions, to achieve a total of N reductions we thus have to bucket
N/(N

m
· p) = m/p vectors with a total cost of m

p
· Tb.

The total time complexity of bucketing and checking pairs for re-
ductions is thus given by

T = Õ

(
m · Tb
p

+
N

p

)
.

Investing more time in bucketing often allows for more and higher
quality buckets, which results in a larger reduction probability p and
thus in a lower reduction cost. Investing less time in bucketing in
general leads to a higher reduction cost. For a fixed bucketing algo-
rithm the optimal parameters are (often) such that the above terms
are balanced, which means that m · Tb ≈ N .

Algorithm 3: Bucketed lattice sieving algorithm.
Input : A basis B of a lattice L, list size N , and a

saturation radius R.
Output: A list L of short vectors saturating the ball of radius

R.
1 Sample a list L ⊂ L of size N .
2 while L does not saturate the ball of radius R do
3 B1, . . . , Bm ← Bucket(L,m).
4 for every bucket Bi do
5 for every pair v,w ∈ Bi do
6 if v −w /∈ L and ∥v −w∥ < maxu∈L ∥u∥ then
7 Replace longest vector in L by v −w.
8 end
9 end

10 end
11 end
12 return L

We now discuss two different bucketing algorithms, and their opti-
mal time complexity. The first is relatively simple and very practical,
while the second is somewhat more complicated but reaches the best
known asymptotic time complexity.
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BJG1 sieve

We start with the simple 1 layer variant of [BGJ15], better known
as the BGJ1 sieve. Recall that the idea of bucketing is to subdivide
our large list into groups of vectors pointing somewhat in the same
direction. We can take this quite literal and pick b1, . . . ,bm ∈ Sn−1

bucket directions uniformly at random, and put a vector v in bucket i if
it points mostly in the direction of bi, i.e., if ⟨bi/∥bi∥,v/∥v∥⟩ ≥ α for
some parameter α > 0. For a vector v we can compute the above inner
product for each of the m buckets, and thus we obtain a bucketing cost
of Tb = O(m · n) per vector.

Geometrically each bucket presents a spherical cap Cn−1
bi,α

in some
random direction. The probability that a (normalized) lattice vector
lies in such a cap is given by its relative volume Cn−1(α) = (1 −
α2)n/2+o(n), and thus we need m = (1 − α2)−n/2+o(n) such buckets to
make sure each vector is on average part of M ≈ 1 bucket. I.e.,
geometrically we need about (1 − α2)−n/2+o(n) such spherical caps to
cover each point on the sphere (in expectation).

Now what about the improved probability p, that a pair inside a
bucket gives a reduction. Recall that before bucketing this probability
is about (3/4)n/2+o(n). For a pair inside a spherical cap with parameter
α the probability is, as expected, better.

Lemma 70. Let b ∈ Sn−1 be a direction, and let v,w ∼ Sn−1. Then
for any parameter

√
1/2 > α > 0 we have

Pr

[
⟨v,w⟩ ≥ 1

2

∣∣∣∣ ⟨v,b⟩ ≥ α and ⟨w,b⟩ ≥ α

]
=

( 3
4
− α2

(1− α2)2

)n/2+o(n)

.

Proof. Let A be the event that ⟨v,w⟩ ≥ 1
2
, and let B be the event that

⟨v,b⟩ ≥ α and ⟨w,b⟩ ≥ α. Note that Pr[A] = Cn−1(1/2), and Pr[B] =
Cn−1(α)2. For γ ∈ [1

2
, 1] the probability density function for the event

⟨v,w⟩ = γ is asymptotically proportional to Cn−1(γ) = (1 − γ2)n/2.
Furthermore the probability Pr[B|⟨v,w⟩ = γ] can geometrically be
interpreted as the wedge Wn−1

v,w,α := Cn−1
v,α ∩ Cn−1

w,α with relative volume
Wn−1(α, γ). We have

Wn−1(α, γ) · Cn−1(γ) = ((1 + γ − 2α2)(1− γ))n/2+o(n),

and for 0 < α <
√

1/2 the constant (1 + γ − 2α2)(1 − γ) is strictly
maximized for γ = 1

2
. Asymptotically, we thus have Pr[B|A] =
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Pr[B|⟨v,w⟩ ≥ 1
2
] = 2o(n) · Pr[B|⟨v,w⟩ = 1

2
] = (1 − 4

3
α2)n/2+o(n). Now

by Bayes’ theorem we have

Pr[A|B] =
Pr[B|A] · Pr[A]

Pr[B]
=

(1− 4
3
α2)n/2+o(n) · Cn−1(1/2)

Cn−1(α)2

=

( 3
4
− α2

(1− α2)2

)n/2+o(n)

.

To summarize we have m = (1 − α2)−n/2+o(n), Tb = Õ(m), and
p = (3

4
− α2/((1 − α2)2))n/2+o(n). Now let us pick α such that the

total time complexity is minimized. From N = m · Tb = Õ(m2)
we obtain (1 − α2)−n/2+o(n) = m ≈ N1/2 = (4/3)n/4+o(n) and thus

α =
√
1−

√
4/3+ o(1) ≈ 0.366. This gives p = (

√
4/3− 1

3
)n/2+o(n) =

2−0.142n+o(n), and a total time complexity of N/p = 20.349n+o(n).
When applying the same bucketing strategy recursively the time

complexity can be further reduced to 20.311n+o(n) [BGJ15]. However,
the recursion comes with large overheads, and therefore it is unclear
how practical this version is.

BDGL sieve

The asymptotically optimal bucketing method from [BDGL16] is sim-
ilar to BGJ1 as in that it is based on spherical caps. The difference
is that in contrast to BGJ1 the bucket centers are not arbitrary but
structured, allowing to find the correct bucket without having to com-
pute the inner product with each individual bucket center. This allows
us to reduce the bucketing cost below Tb = Õ(m) per vector.

Following [BDGL16], such a bucketing strategy looks as follows.
First we split the dimension n into k smaller blocks of similar dimen-
sions n1, . . . , nk that sum up to n. In order to randomize this splitting
over different iterations one first applies a random orthonormal trans-
formation Q to each input vector. Then the set C of bucket centers
is constructed as a direct product of random local bucket centers, i.e.,
C = ±C1 ×±C2 · · · × ±Ck with Cb ⊂ Rnb . A (normalised) list vector
v is then similarly split into parts v1, . . . ,vk, and we have to find the
bucket centers (c1, . . . , ck) ∈ C such that

∑
i⟨ci,vi⟩ ≥ α. Note that to

74



3.3. Bucketing and sieving variants

Bucketing Tb |Bi| ctime

None 0 Õ(N) 0.415

BGJ1 Õ(m) Õ(N1/2) 0.349

BDGL (k = 1) Õ(m) Õ(N1/2) 0.349

BDGL (k = 2) Õ(m1/2) Õ(N1/3) 0.329

BDGL (k = 3) Õ(m1/3) Õ(N1/4) 0.320

BDGL (k = Θ(log(n))) Õ(m1/k) Õ(N1/(k+1)) 0.292

Table 3.1: Bucketing cost Tb per vector, optimal bucket size |Bi| and
the resulting time complexity 2ctimen+o(n) for the discussed bucketing
algorithms with a space complexity of N = 20.2075n+o(n).

find the closest global bucket center to v, we only have to pick the clos-
est local bucket centers ci to vi, implicitly considering m = 2k

∏
b |Cb|

global bucket centers at the cost of only Tb =
∑

b |Cb| ≈ O(m1/k) lo-
cal inner products. By sorting the local inner products we can also
efficiently find all bucket centers within a certain angle. For a fixed
number of buckets m we can expect some performance loss compared
to BGJ1 as the bucket centers are not perfectly random, but this does
not influence the asymptotics. I.e., the analysis of [BDGL16, Theorem
5.1] shows this leads to at most a subexponential loss if k = O(log(n)),
and the experimental analysis of [Duc22] shows that it is also reason-
able small in practice.

To optimize the parameters we again balance the cost of bucket-
ing and reducing. Note that for k = 1 we essentially obtain BGJ1
with buckets of size Õ(N1/2) and a time complexity of 20.349n+o(n). For
k = 2 or k = 3 the optimal buckets become smaller of size Õ(N1/3) and
Õ(N1/4) respectively and of higher quality, leading to a time complex-
ity of 20.3294n+o(n) and 20.3198n+o(n) respectively. By letting k slowly
grow, e.g., k = Θ(log(n)) there will only be a subexponential 2o(n)
number of vectors in each bucket, leading to the best known time
complexity of 20.292n+o(n). Note however that a lot of subexponential
factors might be hidden inside this o(n), and thus for practical di-
mensions a rather small value of k = 2, 3, 4 might give best results.
See Table 3.1 for an overview of the time complexity of the discussed
bucketing algorithms.
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3.4 Advanced lattice sieving
In this section we discuss some more advanced techniques used in
lattice sieving. The ideas and implementation tricks in this section
only give subexponential, polynomial or even only constant speed-
ups, and do not improve the asymptotic time complexity, however
they do give significant practical speed-ups. These ideas have largely
contributed to pushing the cross-over between enumeration and sieving
techniques as low as dimension 70.

3.4.1 XOR Popcount SimHash

The main operation in lattice sieving algorithms is the computation of
many pairwise inner products ⟨vi,vj⟩ given a list v1, . . . ,vm ∈ Rn of
vectors (or alternatively pairwise between two lists), with the goal of
finding those pairs (vi,vj) that are relatively close. The cost of such
an inner product computation is 2n floating point operations, or n
so-called Fused multiply-add (FMA) instructions on say 16 or 32-bit
floats. Such floating point operations are complex and require many
logical gates to function.

The SimHash filter, better known as the ‘XOR popcount trick’
[Cha02; Fit+14; Duc18; Alb+19; AGPS20], is a cheaper computation,
that already throws out most of the candidates that are far away from
each-other, so that the full inner product only has to be computed on
the more likely candidates. The idea is that given two normalized close
pairs v,w ∈ Sn−1 (with e.g., ⟨v,w⟩ ≥ 1

2
), and a random direction

y ∼ U(Sn−1), the inner products ⟨v,y⟩ and ⟨w,y⟩ are correlated,
in particular their signs are more likely to coincide. For a list of
random (but fixed) directions y1, . . . ,yh ∈ Sn−1 we can thus define
the SimHash SH : Sn−1 → {0, 1}h by

SH : v 7→
({

0, if ⟨v,yi⟩ ≤ 0,

1, if ⟨v,yi⟩ > 0.

)
i

.

If v,w are uniformly random, then SH(v) and SH(w) have on expec-
tation h/2 bits in common. Now if v and w or v and −w are close,
then SH(v) and SH(w) are expected to have significantly more or sig-
nificantly less than h/2 bits in common respectively. Assuming that
the SimHashes are pre-computed (which takes negligible time when

76



3.4. Advanced lattice sieving

amortized over many pairs), we can compute the number of bits (not)
in common by doing an h-bit XOR, followed by a population count
instruction (which counts the number of ones), which can be much
cheaper than the 2n floating point operations. The number of direc-
tions h and the filter threshold can be balanced for filter strength and
computation cost, for theory on this matter look at [AGPS20]. In
practice the SimHash with h = 256 has been successfully used up to
dimension 128, saving about a factor 10 on computation time [Fit+14;
Alb+19].

3.4.2 Progressive sieving

Due to the exponential time complexity sieving quickly becomes more
costly in higher dimensions, especially when the starting list also con-
sists of very long vectors. Relatively, the cost of sieving in slightly
lower dimensions becomes almost negligible. The idea of Progressive
Sieving is to first sieve in a lower dimensional projected sublattice,
and to slowly increment the dimension and list size, while also lifting
the list along the way. As a result, the list vectors are already quite
short when the highest dimension is reached, and thus we have to
run less high dimensional sieving iterations, at the cost of (more) low
dimensional sieving iterations.

Recall that for a lattice L with basis B = (b0, . . . ,bd−1) we denote
the projected sublattice L(πl(bl), . . . , πl(br−1)) by L[l:r). There are
two main directions to implement this idea (although a combination
is also possible) [Duc18; LM18; Alb+19]. Either we form a chain of
sublattices

L[0:r) ⊊ L[0:r+1) ⊊ . . . ⊊ L[0:d) = L,
for some 1 ≤ r < d or a chain of projections

L[l:d)
πl←− L[l−1:d)

πl−1←−− · · · π1←− L[0:d) = L,

for some 1 ≤ l < d. Both ways give significant speed-ups compared to
directly sieving in the full dimension, but they both come with their
own pros and cons.

For the sublattice approach, after extending, we do not have to
lift the short vectors we have in any way, they are by definition part
of the super-lattice. With a normal descending basis profile we have
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L[0:r) → L[0:r+1)

0 dr

L[l:d) → L[l−1:d)

0 dl

Figure 3.3: Progressive step via a chain of sublattices (on the left)
versus a chain of projections (on the right).

gh(L[0:r)) > gh(L[0:r+1)), so after extending the vectors are somewhat
longer relative to the local Gaussian Heuristic, but only by a bit. The
main disadvantage of the sublattice approach is that after extending,
all the short vectors still lie in the same lower rank sublattice, and one
has to be careful with sampling new vectors, and in the further sieving
process, to also obtain short vectors in L[0:r+1) \L[0:r). Without taking
explicit care one might implicitly get stuck in a lower rank sublattice,
which makes the sublattice approach tricky to work with.

For the projection approach, after extending, the vectors have to
be lifted to undo the projection. Undoing e.g., a single projection
πi efficiently, while limiting the increase in size, can be done using
Babai’s nearest plane algorithm. The main disadvantage is that the
squared length of a vector can still increase by 1

4
∥b̃i∥2, which can be

significant. At the same time the Gaussian Heuristic predicts that the
first minimum of the extended lattice is larger and thus the relative
increment in length is somewhat damped by this. The current state-of-
the-art sieving implementations use this method, because it is reliable
and combines well with the Dimensions for Free technique.

3.4.3 Dimensions for free

When a lattice sieving algorithm finishes it does not only recover the
shortest vector, but a significant proportion of all lattice vectors up to
some radius R. For a pair-sieve with a list size of N = (4/3)n/2+o(n) we
naturally have this for R ≈

√
4/3+ o(1). The idea of the ‘dimensions

for free’ technique [Duc18], is to sieve in a projected sublattice L[l:d)

for some l > 0, and to lift all the short vectors to the full context.
If l is not too large, then with high probability one of them lifts to a
shortest vector of the full lattice.
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0 L[l:d) dl

To simplify the analysis we simply assume that the sieve in the
projected sublattice L[l:d) computes a list L of all vectors of length up
to
√
4/3·gh(L[l:d)). The projection πl(v) of a shortest vector v ∈ L[0:d)

is thus part of the list πl(v) ∈ L if ∥πl(v)∥ ≤
√

4/3 ·gh(L[l:d)). For not
too large l, Babai’s algorithm then successfully recovers v back from
πl(v).

The maximum value for l for which the above is true depends on
the basis profile (∥b̃0∥, . . . , ∥b̃d−1|∥). For a well-reduced basis (more
on this in Part III) we obtain about l = O(log(d)/d) ‘dimensions
for free’, and thus we only have to sieve in a lattice of dimension
n = d−O(log(d)/d), leading to a subexponential speed-up.

Note that with the progressive sieve based on a chain of projections
we do not have to pick the parameter l a priori. We can increase the
chain step by step (decreasing l), while at every step we lift the list
to the full context. At every step we are increasing the probability
that the projection πl(v) is part of the list, and we recover it at the
appropriate l without having to specify it beforehand.

Looking from another perspective, every short vector in a projected
sublattice L[l:d) has some probability to lift to a (close to) shortest
vector of the full lattice. Therefore to increase the the dimensions for
free we could lift any short enough vector that we see on the fly: for
example any new vector inserted in the sieving list, or even vectors
that are short, but not short enough to be inserted.

We can expect about l = 20 (for d = 100) to l = 40 (for d = 450)
dimensions for free, and even more when enabling on the fly lifting,
making this an extremely important technique that we explicitly have
to take into account for concrete hardness estimates.

3.5 The General Sieve Kernel
The General Sieve Kernel (G6K) [Alb+19] is a lattice reduction frame-
work based on sieving algorithms that is designed to be ‘stateful’ in-
stead of treating sieving as a black-box SVP oracle. In short it allows
to easily move between different contexts L[l:r), while maintaining a
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database L of short vectors. This encompasses advanced techniques
like progressive sieving and dimensions for free. It includes an open-
source implementation of the framework that broke several new TU
Darmstadt SVP Challenges [SG10] up to dimension 155. This im-
plementation is multi-threaded and low-level optimized, and includes
many of the implementation tricks from the advanced lattice sieving
literature and some more. In this section we recall the state, instruc-
tions, global strategies and some implementation details of G6K.

3.5.1 State

Naturally, the state includes a lattice basis B ∈ Zd×d and its corre-
sponding Gram-Schmidt basis B̃. The current state keeps track of a
sieving context L[l:r) and a lifting context L[κ:r) for 0 ≤ κ ≤ l ≤ r ≤ d.
The sieving dimension will often be denoted by n := r − l. There
is a database L containing N lattice vectors from the sieving context
L[l:r). To conclude G6K also keeps track of good insertion candidates
iκ, . . . , il for the corresponding positions in the current lattice basis.

3.5.2 Instructions

We begin with several instructions that change the sieving context,
and we explain how the database is updated such that it does not get
invalidated.

• Extend Left: The extend left operation moves the sieving
context from L[l:r) to L[l−k:r) for some 0 < k ≤ l. The database
vectors are lifted from L[l:r) to L[l−k:r) using Babai’s nearest plane
algorithm in the context L[l−k:l).

• Shrink Left: The shrink left operation moves the sieving con-
text from L[l:r) to L[l+k:r) for some 0 < k ≤ r− l. Each database
vector v ∈ L ⊂ L[l:r) is projected to πl+k(v) ∈ L[l+k:r), and
duplicates are removed.

• Extend Right: The extend right operation moves the sieving
context from L[l:r) to the super-lattice L[l:r+k) for some 0 < k ≤
d− r. The database can remain unchanged.
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• Insertion: The insertion operation inserts one of the insertion
candidates ik (often a short vector) back into the basis, at some
position κ ≤ k ≤ l. I.e., assuming the vector ik is primitive we
choose some local (basis) transformation on the context L[k:r)

such that ik becomes the new basis vector at position k, and
the Gram-Schmidt basis B̃ is updated accordingly. If k = l the
database vectors still live in the context L[l:r) after the basis
change, and so we do not have to do anything. Typically how-
ever, we will have k < l, which makes it less trivial. By carefully
choosing the local transformation and by moving to a slightly
smaller sieving context L[l+1:r) we can however still recycle most
of the database after an insertion. For prevent confusion we
assume that after an insertion operation the sieving context is
always moved to L[l+1:r).

These instruction were focused on moving between different contexts
and maintaining the database along the way. We now consider some
instructions that act on the database.

• Sieve: The sieve operation applies a lattice sieving algorithm
to the database vectors in order to decrease their size. The end
result is an updated database that is saturated in the sieving
context L[l:r) according to some saturation condition. During
the sieving process any short enough vector is lifted to the lifting
context L[κ:r), and, if short enough, replaces one of the insertion
candidates iκ, . . . , il.

• Grow: The grow operation increases the size of the database
by sampling new vectors. This might be needed to have enough
vectors to run a sieving algorithm, for example after increasing
the dimension of the sieving context. The sampling procedure is
not fixed, but preferably generates shortish vectors (by using the
known some-what reduced basis, or short vectors in the current
database).

• Shrink: The shrink operation decreases the size of the database
by throwing away the longest vectors.
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3.5.3 Global strategies

The implementation of G6K consists of a high level Python layer and
a low-level C++ layer. The earlier mentioned instructions can be called
and parametrized from the Python layer, while the core implementa-
tion consists of highly optimized C++ code. This allows one to quickly
experiment with different global strategies.

For example, the leftwards progressive sieving technique explained
in Section 3.4.2, can be described as follows: start in a small context
of say L[d−40:d) and alternate the Extend Left, Grow and Sieve
instructions. The authors of G6K call such an alternation of extend-
ing and sieving a pump up, up to some final context L[l:d), and recall
that it is much more efficient than running a single Grow and Sieve
instruction in the final context L[l:d). A full pump consists of a pump
up followed by a pump down: repeat the Insertion instruction to im-
prove the basis while making the context smaller again, and optionally
combine this with the Sieve instruction to find better insertion can-
didates. To solve SVP-instances among other things G6K combines
such pumps in a workout, which is a sequence of longer and longer
pumps, until a short enough vector is found in the full context by lift-
ing. Each pump improves the quality of the basis, which as a result
lowers the expected length increase from lifting, making consequent
pumps faster and simultaneously improving the probability to find a
short vector in the full context.

3.5.4 Sieve implementations

The current open-source implementation of G6K contains multiple
sieving algorithms that implement the Sieve instruction. There are
single-threaded implementations of the Nguyen–Vidick (nv) [NV08]
and Gauss sieve (gauss) [MV10], mostly for low dimensions and test-
ing purposes. Furthermore G6K includes a fully multi-threaded and
low-level optimized version of the Becker–Gama–Joux (BGJ) sieve
with a single bucketing layer (bgj1) [BGJ15]. The filtering tech-
niques from bgj1 were also extended and used in a triple sieve im-
plementation (hk3) [BLS16; HK17]. This implementation considers
both pairs and triples and its behaviour automatically adjusts based
on the database size, allowing for a continuous time-memory trade-
off between the (pair) sieve bgj1 and a full triple sieve with minimal
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memory. Note that the asymptotically best sieve algorithm, which
we will refer to as BDGL [BDGL16], has been implemented before
[MLB17], but not inside of G6K. In Chapter 4 we discuss an opti-
mized implementation of the BDGL sieve inside G6K, which has since
been merged into the open-source implementation of G6K.

3.5.5 Data representation

Given that lattice sieving uses an exponential number of vectors, it
is of practical importance how much data is stored per vector in the
database. G6K stores for each lattice vector v = Bx ∈ Rn the (16-
bit integer) coordinates x ∈ Zn as well as the (32-bit floating-point)
Gram-Schmidt representation y = (⟨v, b̃i⟩/∥b̃i∥)i ∈ Rn normalized
by the Gaussian Heuristic of the current sieving context. The latter
representation is used to quickly compute inner products between any
two lattice vectors in the database, and to change between contexts.
On top of that other preprocessed information is stored for each vec-
tor, like the corresponding lift target t in span(L[κ:l)), the squared
length ∥v∥2, a 256-bit SimHash (see Section 3.4.1) and a 64-bit hash
as identifier. In order to sort the database on length, without having
to move the entries around, there is also a lightweight database that
only stores for each vector the length, a SimHash and the correspond-
ing database index. A hash table keeps track of all hash identifiers,
which are derived from the x-coordinates, in order to quickly check
for duplicates. All of this adds up to a total of ≈ 210 bytes per vector
in a sieving dimension of n = 128.

83





CHAPTER 4
Advanced Lattice Sieving on

GPUs, with Tensor Cores

This chapter is an extended version of the joint work ‘Advanced
lattice sieving on GPUs, with tensor cores’, with Léo Ducas and
Marc Stevens, published at Eurocrypt 2021.

4.1 Introduction
Lattice sieving algorithms [AKS01; NV08; MV10; HPS11a] are asymp-
totically superior to enumeration techniques [FP85; Kan83; SE94;
GNR10], but this has only recently been shown in practice. Progress
on sieving, both on its theoretical [Laa15; BGJ15; BDGL16; HKL18]
and practical performances [Fit+14; Duc18; LM18; Alb+19], brought
the cross-over point with enumeration as low as dimension 80. Prac-
tical performance is often measured by solving TU Darmstadt SVP
Challenges, given a random challenge lattice, one has to find a lattice
vector of length 1.05·gh(L), i.e. a factor 1.05 above the expected length
of the shortest vector. The work of M. R. Albrecht et al. at Eurocrypt
2019 [Alb+19], named the General Sieve Kernel (G6K), set new TU
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Darmstadt SVP-records [SG10] on a single machine up to dimension
155, while before the highest record was at 152 using enumeration
techniques on a large cluster with multiple orders of magnitude more
computational resources. They achieved this with an asymptotically
non-optimal sieving algorithm based on [BGJ15; HK17], which with
sufficient memory runs in time 20.349n+o(n).

While it is now clear that, in terms of time, sieving beats enu-
meration not only asymptotically, but also in practice, there are still
two big open questions in the development of practical lattice sieving
algorithms.

Firstly, can the asymptotically optimal sieve [BDGL16], running
in time 20.292n+o(n), be made practical and improve on the current
record-holding sieve in feasible dimensions? While concrete parame-
ters for lattice-based cryptography schemes are based on the asymp-
totic complexity of this sieve, there has to date been no practically (or
even asymptotically) efficient implementation of it. The asymptotic
analysis of the algorithm hides some potentially large polynomial and
subexponential factors, which are poorly understood from a concrete
perspective. Additionally, a naive implementation leads to subexpo-
nential time, or even exponential space overhead factors, that make
the algorithm uncompetitive [MLB17] in feasible dimensions. Another
interesting question is how the properties of this sieve interact with
parallelization efforts that are necessary for large scale attacks.

This brings us to the second open question: can these advanced
sieving algorithms scale efficiently beyond a shared-memory architec-
ture, e.g., to a large cluster of computers? The large number of lattice
vectors and their interactions makes lattice sieving algorithms non-
trivial to parallelize. Before scaling up to a cluster of computers, a
natural intermediate step is to port cryptanalytic algorithms to Graph-
ical Processing Units (GPUs); not only are GPUs far more efficient for
certain parallel tasks, but their bandwidth and computation capacity
ratio are already more representative of the difficulties to expect when
scaling up beyond a single computational server. This step can there-
fore already teach us a great deal about how a cryptanalytic algorithm
should scale in practice.
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4.1.1 Related work

We give here a short survey of past efforts on the parallelization of
lattice sieving algorithms.

In 2011, Milde and Schneider [MS11] gave the first parallel im-
plementation of the Gauss Sieve. The global list is distributed over
several independent Gauss Sieve instances that are connected in a cy-
cle. A vector is passed along and reduced with each local list and vice
versa, before being inserted. As a result the vectors in the distributed
list are nearly pairwise reduced; nearly because the lists could have
changed in the meantime. This method scales almost linearly up to
about 5 threads, but the efficiency quickly degrades above that due to
the many non pairwise reduced vectors in the distributed list.

This problem was tackled by Ishiguro et al. [IKMT14] in 2014: by
storing a full copy of the list in shared-memory on each node, they
make sure that all vectors in the distributed list are pairwise reduced.
The resulting implementation scales well to hundreds of threads and,
by also abusing the ideal structure, was used to solve a TU Darmstadt
Ideal SVP challenge in dimension 128. However, because each node
has to store the full list, the maximum list size, and thus the largest
achievable dimension, is limited by the smallest node.

Also in 2014, Mariano et al. [MDB14] implemented a parallel ver-
sion of the List Sieve algorithm, with super-linear scalability at least
up to 32 threads. The claimed super-linear speed-up is possible due
to relaxations to the List Sieve properties made by the parallel vari-
ant. Around the same time Mariano et al. [MTB14] proposed a fine-
grained parallel shared-memory implementation of the Gauss Sieve
that achieves almost linear speed-up at least up to 64 cores, and
achieves similar run times as Ishiguro et al.

Later that year Bos et al. [BNP17] presented another distributed
implementation of the Gauss Sieve similar to the works of Milde et al.,
and Ishiguro et al., solving the scalability problems of the former in a
different way, while maintaining the use of fully distributed lists.

In 2017, both Ishiguro et al.’ and Bos et al.’ parallel Gauss Sieve
implementations were adapted to a (multi-)GPU setting by Yang et
al. [YKYC17], solving a TU Darmstadt Ideal SVP challenge in dimen-
sion 130 on 8 GPUs in 824 hours.

The first parallel implementations for more advanced and asymp-
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totically faster bucketed sieves such as the Hash Sieve [Laa15] and
BDGL Sieve [BDGL16] were introduced by Mariano et al. in 2015
[MBL15] and 2017 [MLB17] respectively. Both implementations use a
queued model similar to the Gauss Sieve, which in combination with
the bucketing techniques leads, both asymptotically and in practice, to
a much higher memory usage, making them infeasible for dimensions
above 100.

In 2019, a large combined effort of Albrecht, Ducas, Herold, Kir-
shanova, Postlethwaite, and Stevens [Alb+19] introduced the open-
source General Sieve Kernel (G6K), which combined many of the
state-of-the art advanced techniques such as Progressive Sieving and
Dimensions for Free into a single implementation. G6K assumes a sin-
gle node shared-memory model, and contains several sieving variants,
from simple List and Gauss Sieves to parallel variants of [BGJ15] and
[HK17]. The authors also set a new TU Darmstadt SVP challenge
record at dimension 155 in about 14 days using 72 CPU cores. For
more information about G6K see Section 3.5.

4.1.2 Contributions

The main contribution of this work is to answer the two open questions
(partially). We show that lattice sieving, including the more advanced
algorithmic improvements, can effectively be accelerated by GPUs. In
particular, we show that the NVIDIA Tensor cores, only supporting
specific low-precision computations, can be used efficiently for lattice
sieving. We exhibit how the most computationally intensive parts of
complex sieving algorithms can be executed in low-precision even in
large dimensions.

We show and demonstrate by an implementation that the use of
Tensor cores results in large efficiency gains for cryptanalytic attacks,
both in hardware and energy costs. We present several new compu-
tational records, reaching dimension 180 for the TU Darmstadt SVP
challenge record with only a single high-end machine with 4 GPUs
and 1.5TB RAM in 51.6 days. Not only did we break SVP-records
significant faster, but also with < 4% of the energy cost compared to
a CPU only attack. For instance, we solved dimension 176 using less
time and with less than 2 times the overall energy cost compared to
the previous record of dimension 155. Furthermore by re-computing
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data at appropriate points in our algorithms we reduced the memory
usage per vector by 60% compared to the base G6K implementation
with minimal computational overhead.
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Figure 4.1: Solved TU Darmstadt lattice challenges measured in wall-
clock time1, as reported on the challenge website [SG10]. Details on
the used hardware are also reported there. In short, the enumeration
records used large clusters of computers, while the sieving records used
a single (large) server.

Secondly, we introduce the first practical implementation of the
asymptotically best BDGL Sieve from [BDGL16] inside the G6K frame-
work, both for CPU-only (multi-threaded and AVX2-optimized) and
with GPU acceleration. In contrast to [MLB17] our implementation
does not use significant extra memory, and can therefore be used in
much higher dimensions. We use this to shed some light on the prac-
ticality of this algorithm. In particular we show that our CPU-only
BDGL Sieve variant already improves over the previous record-holding
sieve in sieving dimensions as low as 90, with a 5× speed-up around
dimension 120. Furthermore, we show that this cross-over point lies
much higher for our GPU accelerated sieve due to memory-bottleneck
constraints.

1Comparing wall-clock times between distinct hardware is in general not a
good practice, but the different nature of CPUs and GPUs makes it hard to fairly
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One key feature of G6K is to also consider lifts of pairs even if
such a pair is not necessarily reducible, so as to check whether such
lifts are short; the more such pairs are lifted, the more dimensions for
free one can hope for [Duc18; Alb+19]. Yet, Babai lifting of a vector
has quadratic running time which makes it too expensive to apply to
each pair. We introduce a filter based on dual vectors that detects
whether pairs are worth lifting. With adequate pre-computation on
each vector, filtering a pair for lifting can be made linear-time, fully
parallelizable, and very suitable to implement on GPUs.

Open source code

The CPU implementation of the BDGL Sieve has been integrated in
G6K, with further improvements, and we aim for long term mainte-
nance.2. The GPU implementations has also been made public, but
with lower expectation of quality, documentation and maintenance.3

4.1.3 Prerequisites

The reader of this chapter is assumed to be familiar with the con-
tents of Chapter 3, in particular lattice sieving, bucketing techniques,
Dimensions for Free and G6K.

4.2 GPU architecture and sieve design

In this section we explain the architecture of a GPU, the global design
of our new sieve implementations and how we reduce memory usage
and movement.

4.2.1 GPU device architecture

We give a short summary of the NVIDIA Turing GPU architecture
on which our implementations and experiments are based. Since this

compare them on other metrics. As further motivation the estimated energy usage
of our server was only a factor 2 higher than the one used for the G6K records.

2https://github.com/fplll/g6k/pull/61
3https://github.com/WvanWoerden/G6K-GPU-Tensor
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work was done a new generation named Ampere was launched, dou-
bling many of the performance metrics mentioned here.

CUDA cores and memory

An NVIDIA GPU can have up to thousands of so-called CUDA cores
organized into several execution units called Streaming Multiproces-
sors (SM ). These SM use their many CUDA cores (e.g. 64) to service
many more resident threads (e.g. 1024), in order to hide latencies of
computation and memory operations. Threads are bundled per 32 in
a warp, that follow the single-instruction multiple-data paradigm.

The execution of a GPU program, also called a kernel, consists
out of multiple blocks, each consisting of some warps. Each individual
block is executed on any available single SM. The GPU RAM, also
called global memory, can be accessed by all cores, but is relatively
slow. Global memory operations always pass through a GPU-wide
L2 cache. In addition, each SM benefits from an individual L1 cache
and offers a fast addressable shared memory that can only be used by
threads in that block. The fastest type of memory are the registers,
which are local to each thread, and which act as the input and output
of computational operations.

To implement GPU kernel functions for an NVIDIA GPU one can
use CUDA [NBGS08; NVF20] which is an extension of the C/C++ and
FORTRAN programming languages. A kernel is executed by a specified
number of threads grouped into blocks, all with the same code and in-
put parameters. During execution each thread learns that it is thread
t inside block b and one needs to use this information to distribute the
work. For example when loading data from global memory we can let
thread t read the t-th integer at an offset computed from b, because
the requested memory inside each block is contiguous such a mem-
ory request can be executed very efficiently; such memory request are
known as coalescing reads or writes and they are extremely important
to obtain an efficient kernel.

Tensor cores

Driven by the machine learning domain there have been tremendous
efforts in the past few years to speed up low-precision matrix multipli-
cations. This lead to the so-called Tensor cores, that are now standard
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Figure 4.2: Device architecture of the NVIDIA RTX 2080 Ti and the
system used in this work.

in high-end NVIDIA GPUs. Tensor cores are optimized for 4× 4 ma-
trix multiplication and also allow a trade-off between performance and
precision. In particular we are interested in the 16-bit floating point
format fp16 with a 5-bit exponent and a 10-bit mantissa, for which
the tensor cores obtain an 8× speed-up over regular 32-bit operations
on CUDA cores.

RTX2080 Ti details. In this work we used the NVIDIA RTX2080 Ti
with 68 Streaming Multiprocessors, whose architecture is depicted in
Figure 4.2. There are 64 cores in each SM, that can service up to
1024 resident threads. There is a large register file of 65536 × 32-bit
registers, where up to 256 registers can be assigned to a thread. Each
SM has a dedicated 96KiB memory that is split into a private L1
cache and shared memory (either 32-64 KiB or 64-32 KiB split). The
Turing architecture is the 2nd NVIDIA GPU generation to feature
special Tensor units, eight per SM.

While a high-end CPU with many cores can reach a performance in
the order of a few tera floating point operations per second (TFLOPS),
the RTX2080 Ti can achieve 13 TFLOPS for 32-bit floating point
operations on its regular CUDA cores. The specialized Tensor cores
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enable the RTX2080 Ti to theoretically reach in the order of 107 fp16-
TFLOPS, improving by two orders of magnitude on a single high-end
CPU.

Efficiency

For cryptanalytic purposes it is not only important how many opera-
tions are needed to solve a problem instance, but also how cost effective
these operations can be executed in hardware. The massively-parallel
design of GPUs with many relatively simple cores results in large ef-
ficiency gains per FLOP compared to CPU designs with a few rather
complex cores; both in initial hardware cost as in power efficiency.
Showing that these simple cores can be used effectively also shortens
the gap to design low-cost and highly efficient customized hardware
for lattice sieving.

As anecdotal evidence we compare the acquisition cost, energy us-
age and theoretical peak performance of the CPU and GPU in the
new server we used for our experiments: the Intel Xeon Gold 6248
launched in 2019 and the NVIDIA RTX2080 Ti launched in 2018 re-
spectively. The CPU had a price of about e2500 and has a TDP of
150 Watt, while the GPU was priced at about e1000 and has a TDP
of 260 Watt. For 32-bit floating point operations the theoretical peak
performance is given by 3.2 TFLOPS4 and 13.45 TFLOPS for the
CPU and GPU respectively, making the GPU a factor 2.4 better per
Watt and 10.5 better per Euro spend on acquisition. For general 16-
bit floating point operations these number double for the GPU, while
the CPU obtains no extra speed-up (one actually has to convert the
data back to 32-bit). When considering the specialized Tensor cores
with 16-bit precision the GPU has a theoretical peak performance of
107.6 TFLOPS, improving by a factor 19.4 per Watt and a factor 84
per Euro spend on acquisition compared to the CPU.

4.2.2 Sieve design

The great efficiency of the GPU is only of use if the state-of-the-art al-
gorithms are compatible with the massively-parallel architecture and

4With 64 FLOP per core per cycle using two AVX-512 FMA units and a maximal
clock frequency of 2500MHz when using AVX-512 on all 20 cores.
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Bucketing Reducing Insertion

Database

Loop until target saturation achieved

Figure 4.3: High level diagram of the implemented Sieving process.

the specific low-precision operations of the Tensor cores. To show this
we extended the lattice sieving implementation of G6K. We will focus
our main discussion on the sieving part, as the other G6K instruc-
tions are asymptotically irrelevant and relatively straightforward to
accelerate on a GPU (which we also did).

All of our CPU multi-threaded and GPU-powered sieve implemen-
tations follow a similar design (cf. Fig. 4.3) consisting out of three
sequential phases: bucketing, reducing and result insertion. We call
the execution of this triplet an iteration and these iterations are re-
peated until the desired saturation is achieved. Note that our sieves
are not ‘queued’ sieves such as the Gauss-Sieve of [MV10] and the
previous record setting bgj1 and hk3 sieves; this relaxation aligns
with the batched nature of GPU processing and allows to implement
an asymptotically optimal BDGL-like sieve [BDGL16], without major
memory overhead.

Bucketing

During the bucketing phase, the database is subdivided in several
buckets B1, . . . , Bm ⊂ L, each containing relatively close vectors. How
the subdivision is done is precisely where sieving variants differ, and
how different (asymptotic) time complexities are achieved. We do not
necessarily bucket our full database, as some vectors might be too
large to be interesting for the reduction phase in the first few itera-
tions. For each bucket we collect the database indices of the included
vectors. For the sieves we consider, these buckets can geometrically
be interpreted as spherical caps or cones with for each bucket Bk an
explicit or implicit bucket center ck ∈ Rn indicating its direction. For
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each included vector v ∈ Bk, we also store the inner product ⟨ck,v⟩
with the bucket center, which is obtained freely from the bucketing
process. Note that a vector may be included in several buckets, some-
thing which we precisely control by the multi-bucket parameter, whose
value we will denote by M . The optimal amount of buckets m and
the expected number of vectors in a bucket differs for each of our
bucketing implementations. In Section 4.3, we further exhibit our dif-
ferent bucketing implementations and compare their performance and
quality.

Reducing

During the reduction phase, we try to find all close pairs of lattice
vectors inside each bucket, i.e., at distance at most some length bound
ℓ. Using negation, we orient the vectors inside a bucket into the direc-
tion of the bucket center based on the earlier computed inner product
⟨ck,vi⟩. In case the bucketing center ck is itself a lattice vector (as
can be the case for BGJ-like sieves, but not for BDGL), it is also in-
teresting to check if ck − vi − vj is a short lattice vector, leading to a
triple reduction [HK17].

For each bucket Bk, we compute all pairwise inner products ⟨vi,vj⟩
for vi,vj ∈ Bk. Together with the already computed lengths ∥vi∥, ∥vj∥,
∥ck∥ and inner products ⟨ck,vi⟩, ⟨ck,bj⟩ we can then efficiently decide
if vi − vj or ck − vi − vj is short. Note that we compute the length
of both the pair and the triple essentially from a single inner product
computation. We return the indices of pairs and triplets that result
in a vector of length at most the length bound ℓ, together with the
length of the new vector. In Section 4.4 we further discuss the reduc-
tion phase and implementation details of our reduction kernel on the
GPU using low-precision Tensor cores.

The number of inner products we have to compute per bucket
grows quadraticly in the bucket size |Bk|, while the number of buckets
only decreases linearly in the bucket size. Therefore, one would in
principle want many buckets that are rather small and of high quality,
improving the probability that a checked pair actually gives a reduc-
tion. For a fixed bucketing algorithm more buckets generally increase
the cost of the bucketing phase, while decreasing the cost of the re-
duction phase due to smaller bucket sizes. We try to balance the cost
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of these phases to obtain optimal performance.
Next to finding short vectors in the sieving context we also want

to find pairs that lift to short vectors in the larger lifting context.
Unfortunately it is too costly to just lift all pairs as this has a cost of
at least Θ((l−κ)2) per pair. In Section 4.5 we introduce a filter based
on dual vectors that can be computed efficiently for each pair given a
bit of pre-computed data per vector. The few pairs that survive this
filter are more likely to lift to a short vector and we only lift those
pairs.

Result insertion

After the sieving part we have a list of tuples with indices and the cor-
responding length of the new vector they represent. The hash identifier
of the new vector can efficiently be recomputed by linearity of the hash
function and we check for duplicates in our current database. For all
non-duplicate vectors we then compute their x-representation. After
all new entries are created they are inserted back in the database,
replacing entries of greater length.

4.2.3 Data storage and movement

Recall from Section 3.5 that G6K stores quite some data per vector
such as the coefficients x in terms of the basis, a Gram-Schmidt rep-
resentation y, the lift target t, a SimHash, and more. Theoretically
we could remove all data except the x-representation and compute
all other information on-the-fly. However, as most of this other infor-
mation has a cost of Θ(n2) to compute from the x-representation this
would mean a significant computational overhead, for example increas-
ing the cost of an inner product from Θ(n) to Θ(n2). Also given the
limited amount of performance a CPU has compared to a GPU we cer-
tainly want to minimize the amount of such overhead for the CPU. By
recomputing at some well chosen points on the GPU, our accelerated
sieves minimize this overhead, while only storing the x-representation,
length and a hash identifier per vector, leading to an approximately
60% reduction in storage compared to the base G6K implementation.
As a result we can sieve in significantly larger dimensions with the
same amount of system RAM.
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While GPUs have an enormous amount of computational power,
the memory bandwidth between the database in system RAM and the
GPU’s RAM is severely limited. These are so imbalanced that one can
only reach theoretical peak performance with Tensor cores if every byte
that is transferred to the GPU is used in at least 213 computations. A
direct result is that reducing in small buckets is (up to some threshold)
bandwidth limited. Growing the bucket size in this regime would not
increase the wall-clock time of the reduction phase, while one does
consider more pairs. So larger buckets are preferred, in our hardware
for a single active GPU the threshold seems to be around a bucket
size of 214, matching the 213 computations per byte ratio. Because in
our hardware each pair of GPUs share their connection to the CPU,
halving the bandwidth for each, the threshold grows to around 215

when using all GPUs simultaneously.

The incidental benefit of large buckets is that the conversion from
the x-representation to the y-representation, which can be done di-
rectly on the GPU, is negligible compared to computing the many
pairwise inner products. To further limit the movement of data we
only return indices instead of a full vector; if we find a short pair
vi − vj on the GPU we only return i, j and ∥vi − vj∥2. The new
x-representation and hash identifier can efficiently (in O(n)) be com-
puted on the CPU directly from the database.

4.3 Bucketing

The difference between different lattice sieve algorithms mainly lies
in their bucketing method. These methods differ in their time com-
plexity and their performance in catching close pairs. In this sec-
tion we exhibit a Tensor-GPU accelerated bucketing implementation
triple_gpu similar to bgj1 and hk3 inspired by [BGJ15; HK17],
and two optimized implementations of the asymptotically best known
bucketing algorithm [BDGL16], one for CPU making use of AVX2
(bdgl) and one for GPU (bdgl_gpu). After this we show the practical
performance difference between these bucketing methods.
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4.3.1 BGJ-like bucketing (triple_gpu)

Recall from Section 3.3 that the bucketing method used in bgj1 and
hk3 is based on spherical caps, directed by explicit bucket centers that
are also lattice points. Inspired by this we start the bucketing phase
by first choosing some bucket centers b1, . . . ,bm from the database;
preferably the directions of these vectors are somewhat uniformly dis-
tributed over the sphere. Then we associate each vector v ∈ L in our
database to the bucket Bkv where

kv = argmax
1≤k′≤m

∣∣∣∣〈 bk′

∥bk′∥
,v

〉∣∣∣∣ .
In this we differ from the original versions of bgj1 and hk3 [BGJ15;
HK17; Alb+19] in that they use a fixed filtering threshold on the
angle |⟨bk/∥bk∥,v/∥v∥⟩|. We further relax this condition somewhat
by the multi bucket parameter M , to associate a vector to the best M
buckets. As a result our buckets do not exactly match spherical caps,
but they should still resemble them; in particular such a change does
only affect the asymptotic analysis up to subexponential factors. We
chose for this alternation as this fixes the amount of buckets associated
to each vector, which reduced some communication overhead in our
highly parallel GPU implementations.

In each iteration the new bucket centers are chosen, normalized
and stored once on each GPU. Then we stream our whole database
v1, . . . ,vN through the GPUs and try to return for each vector the
indices of the M closest normalized bucket vectors and their corre-
sponding inner products ⟨vi,bk⟩. For efficiency reasons the bucket
centers are distributed over 16 threads and each thread stores only the
best encountered bucket for each vector. Then we return the buckets
from the best M ≤ 16 threads, which are not necessarily the best
M buckets overall. The main computational part of computing the
pairwise inner products is similar to the Tensor-GPU implementation
for reducing, and we refer to Section 4.4.1 for further implementation
details.

The cost of bucketing is O(N · n) per bucket. Assuming that the
buckets are of similar size |Bk| ≈ M · N/m the cost to reduce is
O(M ·N

m
· n) per bucket. To balance these costs for an optimal run-

time one should choose m ∼ M ·
√
N buckets per iteration. For

98



4.3. Bucketing

the regular 2-sieve strategy with an asymptotic memory usage of
N = (4/3)n/2+o(n) = 20.208n+o(n) this leads to a total complexity of
20.349n+o(n) using as little as 20.037n+o(n) iterations. Note that in low
dimensions we might prefer a lower number of buckets to achieve the
minimum required bucket size to reach peak efficiency during the re-
duction phase.

4.3.2 BDGL-like bucketing (bdgl and bdgl_gpu)

Recall from Section 3.3 that the asymptotically optimal bucketing
method from [BDGL16] improves over the bgj1 and hk3 sieves by
using structured bucket centers. One splits the dimension n into k
smaller blocks of similar dimensions n1, . . . , nk that sum up to n, and
(after some orthonormal transformation) the set C of bucket centers is
a direct product C = C1×±C2 · · ·×±Ck of local bucket centers. For a
vector v we only have to pick the closest local bucket centers to find the
closest global bucket center, implicitly considering m = 2k−1

∏
b |Cb|

bucket centers at the cost of only
∑

b |Cb| ≈ O(m1/k) inner products.
To optimize the parameters we again balance the cost of bucket-

ing and reducing. Note that for k = 1 we essentially obtain bgj1
with buckets of size Õ(N1/2) and a time complexity of 20.349n+o(n). For
k = 2 or k = 3 the optimal buckets become smaller of size Õ(N1/3) and
Õ(N1/4) respectively and of higher quality, leading to a time complex-
ity of 20.3294n+o(n) and 20.3198n+o(n) respectively. By letting k slowly
grow, e.g., k = Θ(log(n)) there will only be a subexponential 2o(n)
number of vectors in each bucket, leading to the best known time
complexity of 20.292n+o(n).

We will take several liberties with the above strategy to address
practical efficiency consideration and fine-tune the algorithm. For ex-
ample, for a pure CPU implementation we may prefer to make the
average bucket size somewhat larger than the ≈ N1/(k+1) vectors that
the theory prescribes; this will improve cache re-use when searching for
reducible pairs inside buckets. In our GPU implementation, we make
this average bucket size even larger, to prevent memory bottlenecks
in the reduction phase.

Furthermore, we optimize the construction of the local bucket cen-
ters c ∈ Ci to allow for a fast computation of the local inner products
⟨c,v⟩. While [BDGL16] choose the local bucket centers Ci uniformly
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at random, we apply some extra structure to compute each inner prod-
uct with a vector v in time O(log(ni)) instead of O(ni). The main
idea is to use the (Fast) Hadamard Transform H on say 32 ≤ ni co-
efficients of v. Note that this computes the inner product between v
and 32 orthogonal ternary vectors, which implicitly form the bucket
centers, using only 32 log2(32) additions or subtractions. To obtain
more than 32 different buckets we permute and negate coefficients of
v in a pseudo-random way before applying H again. This strategy can
be heavily optimized both for CPU using the vectorized AVX2 instruc-
tion set (bdgl) and for GPU by using special warp-wide instructions
(bdgl_gpu). In particular this allows a CPU core to compute an inner
product every 1.3 to 1.6 cycles for 17 ≤ ni ≤ 128. We first explain im-
plementation details specifically targeted for the AVX2 CPU instruction
set, and then we discuss how to similarly implement it for the GPU.

Bucketing on AVX2 CPU cores

For the sake of this discussion, let us fix the dimension of the local
blocks to n

k
= 48. We represent the input vector v ∈ R48 using 16-bits

fixed-point precision; so that we can fit v within 3 AVX2 registers. We
then construct on-the-fly a pseudo-random sequence of m′′ = m′/32
permutations πi acting over the 48 coordinates of v. For brevity these
permutations also include pseudo-random negations. The permutation
are constructed by sequential updates as πi = τi ◦ πi−1.

The pseudo-randomness is obtained simply by iterating a single
round of AES-NI using the seed both for fixed key material and initial
value; each round produces 128 pseudo-random bits used for a permu-
tation update (the choice for AES is due to hardware-acceleration).
The permutation update τi is constructed from this pseudo-random
bits by combining AVX2 bytewise shuffle instructions within each
AVX2 registers (chosen pseudo-randomly among a few predefined shuf-
fles), and controlled swaps between pairs of AVX2 registers (directly
constructed from the pseudo-randomness using bitwise operations).

Finally, we also rely on the Fast Hadamard transform H : R48 →
R32 over the first 32 coordinates of a permuted vector w = π(v) ∈ R48.
We note that each output of H(π(v)) for a random permutation im-
plicitly corresponds to an inner product ⟨v, c⟩ for some ternary vector
c ∈ {−1, 0, 1}48 of hamming weight 32. Because the output of the
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Hadamard transform H is also in the form of AVX2 registers, extract-
ing (the index of) argmaxc∈S⟨c,v⟩ can also be done in a vectorized
and on-the-fly manner.

For large m′, we can bucket a vector v in less than 1.6 ·m′ many
CPU cycles. Another advantage is that this whole procedure fits
within register memory: there is no need to access the vectors c ∈ S
from memory. This therefore leaves all the memory bandwidth and
cache storage to concurrent processes working on other tasks.

The CPU implementation of bdgl has been integrated in G6K.5 As
it may be of independent interest, the AVX2 bucketer is also provided
as a stand-alone program.6

Bucketing on GPU cores

We also created a GPU accelerated version bdgl_gpu based on the
ideas from the CPU implementation. We describe some implementa-
tion details of the local bucketing step.

Recall that 32 threads are grouped in a warp, following the single-
instruction multiple-data paradigm. One could interpret instructions
executed by a warp as AVX2 instructions on very wide (1024 bit) reg-
isters. We let each warp process multiple vectors at the same time
and each vector v = (v1, . . . , vn/k) is distributed over the 32 threads
by storing vi in thread i (mod 32) ∈ {1, . . . , 32}. Processing multiple
vectors at the same time allows to amortize the cost of generating the
appropriate randomness and to hide data latencies.

Depending on the dimension we use a Hadamard transform over
the first 32 or 64 coefficients, extracting 32 or 64 implicit inner prod-
ucts at a time respectively. Similar to AVX2 we have the __shfl_sync
instruction to move data between threads in a warp. For example
the __shfl_xor_sync instruction exchanges data between all threads
i and XOR (i, c) for some value c. We used this to implement the Fast
Hadamard Transform with a logarithmic number of such exchanges in
a straightforward way.

The pseudo-randomness is obtained from the cuRAND library.
The total permutation consists out of three parts. First we try to
fully permute the coefficients inside the Hadamard region by doing

5https://github.com/fplll/g6k/pull/61
6https://github.com/lducas/AVX2-BDGL-bucketer
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random swaps using the __shfl_xor_sync instruction and a coin-flip
over several rounds. Note that exchanging threads also need to do
a shared coin-flip, but only once per round for all vectors that are
processed at the same time. The second step consists out of random
sign flips of coefficients inside the Hadamard region. Lastly coeffi-
cients from outside the Hadamard region are randomly swapped with
coefficients inside the region, this happens locally on each thread.

To prevent many branches and a high overhead each thread only
stores the best encountered bucket for each vector it processes. So
thread i ∈ [1, . . . , 32] stores the best of the buckets i, i+ 32, i+ 64, . . .
for each vector. Of these 32 results we then take the best M buckets.
This is a performance trade-off and as a result we do not necessarily
obtain the best M buckets overall. We will see in Section 4.3.3 that
for small values of M this does not influence the bucketing quality
that much.

4.3.3 Quality comparison

In this section we compare the practical bucketing quality of the BGJ-
and BDGL-like bucketing methods we implemented. More specifi-
cally, we consider triple_gpu, 1-bdgl_gpu and 2-bdgl_gpu where
the latter two are instances of bdgl_gpu with k = 1 and k = 2 blocks
respectively. Their quality is compared to the idealized theoretical
performance of bgj1 with uniformly distributed bucket centers.7 For
triple_gpu, we follow the Gaussian Heuristic and sample bucket cen-
ters whose directions are uniformly distributed. As a result the quality
difference between triple_gpu and the idealized version highlights the
quality loss resulting from our implementation decisions. Recall that
compared to bgj1 the main difference is that for every vector we re-
turn the M closest bucket centers instead of using a fixed threshold
for each bucket. Also these are not exactly the M closest bucket cen-
ters, as we first distribute the buckets over 16 threads and only store a
single close bucket per thread. For our bdgl_gpu implementation the
buckets are distributed over 32 threads and we add to this that the
bucket centers are not random but somewhat structured by the direct

7Volumes of caps and wedges for predicting the idealized behavior where ex-
tracted from [AGPS20], and more specifically https://github.com/jschanck/
eprint-2019-1161/blob/main/probabilities.py.
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product and Hadamard construction. In particular the product con-
struction has an inherent subexponential quality loss, which is further
analysed in [Duc22].

To compare the geometric quality of bucketing implementations,
we measure how uniform vectors are distributed over the buckets and
how many close pairs end up in at least one common bucket. The first
measure is important as the reduction cost does not depend on the
square of the average bucket size

(
1
m

∑m
k=1 |Bk|

)2, which is fixed, but
on the average of the squared bucket size 1

m

∑m
k=1 |Bk|2, which is only

minimal if the vectors are equally distributed over the buckets. For all
our experiments we observed at most an overhead of 0.2% compared
to perfectly equal bucket sizes and thus we will further ignore this part
of the quality assessment. To measure the second part efficiently we
sample 220 close unit pairs (x,y) ∈ Sn×Sn uniformly at random such
that ⟨x,y⟩ = ±1

2
. Then we count the number of pairs that have at

least 1 bucket in common, possibly over multiple iterations. We run
these experiments with parameters that are representative for practical
runs. In particular we consider (sieving) dimensions up to n = 144 and
a database size of N = 3.2 · 20.2075n to compute the number of buckets
given the desired average bucket size and the multi-bucket parameter
M . Note that we specifically consider the geometric quality of these
bucketing implementations for equivalent parameters and not the cost
of the bucketing itself.

To compare the bucketing quality between the different methods
and the idealized case we first consider the experimental results in
graphs a. and b. of Figure 4.4. Note that the bucketing methods
triple_gpu and 1-bdgl_gpu obtain extremely similar results overall,
showing that the structured Hadamard construction is competitive
with fully random bucket centers. We see a slight degradation of
5% to 20% for triple_gpu with respect to the idealized case as a
result of not using a fixed threshold. We do however see this gap
decreasing when M grows to 4 or 8, indicating that these two methods
of assigning the buckets become more similar for a larger multi-bucket
parameter. At M = 16 we see a sudden degradation for triple_gpu
which exactly coincides with the fact that the buckets are distributed
over 16 threads and we only store the closest bucket per thread. The
quality loss of 2-bdgl_gpu seems to be between 15% and 36% in the
relevant dimensions, which is quite significant but reasonable given a
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Figure 4.4: Bucketing Quality Comparison. We sampled 220 pairs
v,w of unit vectors such that |⟨v,w⟩| = 0.5 and we measured how
many fell into at least 1 common bucket. The number of buckets is
computed based on the desired average bucket size |Bk|, the multi-
bucket parameter M , and a representative database size of N = 3.2 ·
20.2075n. The found pairs in a. and b. are normalized w.r.t. idealized
theoretical performance of bgj1 (perfectly random spherical caps).
For c. the number of applied iterations is varied such that the total
reduction cost is fixed.

loss potentially as large as subexponential [BDGL16, Theorem 5.1].
Now we focus our attention on graph c. of Figure 4.4 to consider

the influence of the average bucket size on the quality. We observe
that increasing the average bucket size reduces the bucketing quality;
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many small buckets have a better quality than a few large ones. This
is unsurprising as the asymptotically optimal BDGL sieve aims for
high quality buckets of small size. Although our k-bdgl_gpu buck-
eting method has no problem with efficiently generating many small
buckets, the reduction phase cannot efficiently process small buckets
due to memory bottlenecks. This is the main trade-off of (our imple-
mentation of) GPU acceleration, requiring a bucket size of 215 versus
e.g., 210 leads to a potential loss factor of 7 to 8 as shown by this graph.
For triple_gpu this gives no major problems as for the relevant di-
mensions n ≥ 130 the optimal bucket sizes are large enough. However
2-bdgl_gpu should become faster than bgj1 exactly by considering
many smaller buckets of size N1/3 instead of N1/2, and a minimum
bucket size of 215 shifts the practical cross-over point above dimension
130, and potentially much higher.

4.4 Reducing

Together with bucketing, the most computationally intensive part of
sieving algorithms is that of finding reducing pairs or triples inside
a bucket. We consider a bucket of s vectors v1, . . . ,vs ∈ Rn with
bucket center c. Only the x-representations are sent to the GPU and
there they are converted to the 16-bit Gram-Schmidt representations
y1, . . . ,ys and yc that are necessary to quickly compute inner prod-
ucts. Together with the pre-computed squared lengths ∥y1∥2, . . . ,
∥ys∥2 and inner products ⟨yc,y1⟩, . . . , ⟨yc,ys⟩, the goal is to find all
pairs yi − yj or triples yc − yi − yj of length at most some bound ℓ.
A simple derivation shows that this is the case if and only if

for pairs:

⟨yi,yj⟩ ≥
∥yi∥2 + ∥yj∥2 − ℓ2

2
, or

for triples:

⟨yi,yj⟩ ≤ −
∥yc∥2 + ∥yi∥2 + ∥yj∥2 − ℓ2 − 2⟨yc,yi⟩ − 2⟨yc,yj⟩

2
.

And thus we need to compute all pairwise inner products ⟨yi,yj⟩. If
we consider the matrix Y := [y1, . . . ,ys] ∈ Rn×s then computing all
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pairwise inner products is essentially the same as computing one half
of the matrix product YtY.

Many decades have been spend optimizing (parallel) matrix multi-
plication for CPUs, and this has also been a prime optimization target
for GPUs. As a result we now have heavily parallelized and low-level
optimized BLAS (Basic Linear Algebra Subprograms) libraries for ma-
trix multiplication (among other things). For NVIDIA GPUs close
to optimal performance can often be obtained using the proprietary
cuBLAS library [NVI], or the open-source, but slightly less optimal
CUTLASS library [Ker+22]. Nevertheless the BLAS functionality is
not perfectly adapted to our goal. Computing and storing the matrix
YtY would require multiple gigabytes of space. Streaming the result
YtY to global memory takes more time than the computation itself.
Indeed computing YtY using cuBLAS does not exceed 47 TFLOPS
for n ≤ 160, and this will be even lower when also filtering the results.

For high performance, in our implementation we combined the ma-
trix multiplication with result filtering. We made sure to only return
the few indices of pairs that give an actual reduction to global mem-
ory; filtering the results locally while the computed inner products are
still in registers. Nevertheless the data-movement design, e.g., how we
efficiently stream the vectors yi into the registers of the SMs, is heav-
ily inspired by CUTLASS and cuBLAS. To maximize memory read
throughput, we had to go around the dedicated CUDA tensor API
and reverse engineer the internal representation to obtain double the
read throughput.

4.4.1 Reduction kernel

In this section we discuss some implementation details of our Tensor-
GPU kernel to find reductions. For bucketing methods as triple_gpu
the implementation is similar. For performance results see Figure
4.6. We consider a bucket of s vectors Y := [y1, . . . ,ys] ∈ Rn×s and
we need to filter pairs based on their inner product. Note that we
essentially want to compute one half of the matrix YtY.
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Fragments

When working with Tensor cores a fundamental building block is a
fragment: a 16× 16 fp16 matrix that is distributed over a warp, each
thread storing 8 of the 256 values. CUDA allows a matrix multiply
and accumulate operation C = C +AB with fragments A,B,C ac-
celerated by the Tensor cores.

Note that the accumulation fragments that contain the resulting
inner products are distributed over the threads in a black-box man-
ner which is not specified by NVIDIA; each thread knows some inner
product values but not to which pairs they belong. The official solu-
tion is to first store the results back to shared memory using a special
CUDA instruction, but this severely degrades performance. We re-
verse engineered the distribution so we can immediately process the
inner products while they are still stored in registers, something which
might break in future hardware or CUDA versions. Additionally we
also used this to improve the loading of fragments from global mem-
ory. Before starting the expensive reduction kernel in which every SM
loads fragments of Y from global memory we first reorder the storage
of Y such that all 8 fp16 coefficients that are stored on a single thread
are stored in a consecutive 128 bits range, allowing to load it with a
single coalescing instruction directly into the correct local registers,
instead of 4 different non-coalescing 32-bit load instructions without
this reordering.

Data movement

Optimizing a GPU kernel is all about data movement. Given the mem-
ory hierarchy (see Figure 4.2) with different capacities, bandwidths
and latencies the main challenge is to get the data into the registers
in time to run the appropriate computations. By reusing data locally
as much as possible we can improve the ratio of computations versus
memory that is moved.

Each block computes a row of YtY of 128 vectors wide, using 8
warps, i.e., 256 threads in total. As a result each coefficient that is
loaded from Y is used for 128 multiply and add operations, enough to
prevent a significant memory bottleneck between global memory and
each SM. Inside each row we process a matrix block of 128× 256 at a
time, where each warp takes care of 4× 4 = 16 fragments in a 64× 64
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Figure 4.5: Example of the computation on a 64× 64 sub-block done
by a single warp. Each cell is a 16 × 16 matrix fragment. The full
128× 256 block is processed by 8 warps in parallel.

matrix sub-block (see Figure 4.5). After processing a matrix block we
shift to the next one, until we exceed the diagonal; we only want to
compute half of the symmetric result matrix.

When loading a row of fragments of Y from global memory all 8
warps in a block work together to only fetch each element once, the
values are temporarily stored in what we call cache registers. From
here these elements are stored in shared memory after which all warps
are synced such that we can be sure the shared memory contains the
correct elements. Then each warp separately loads the 4 vertical and
4 horizontal fragments that it needs to compute its 64 × 64 matrix
sub-block from shared memory to what we call the compute registers.

Loading data from shared and global memory involves significant
latencies from tens to hundreds of cycles. During this time we need
to make sure our kernel is still computing with data that is already in
registers. For example while data is being loaded from global memory
we can do computations with the data in our shared memory (with a
much lower latency). A well know technique to further hide latencies is
double buffering in which we double the amount of registers and shared
memory we mentioned before. While one half of the compute registers
is used for computation the other half is obtaining new data from
the shared memory; continuously alternating their roles to hide the
shared memory latency. Note that all these techniques are limited by
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the amount of registers and shared memory we have, so they require a
careful balancing. The double buffering technique is also used between
the CPU and GPU to simultaneously transfer new bucket vectors and
old results during kernel executions.

Processing the results

While computing the inner products is the computational intensive
part of the reduction kernel filtering out the results also involves some
overhead. Especially since this has to happen using regular CUDA
cores, which are relatively slow compared to Tensor cores. Also fil-
tering results involves branches, something which can heavily degrade
performance when threads in a warp diverge in which branch they
take.

For the filtering of pairs we have to compare the value of the com-
puted inner product with (∥yi∥2 + ∥yj∥2 − ℓ2)/2. To avoid having
to compute this value completely we pre-compute for each vector the
value 1

2
∥yi∥2− 1

4
ℓ2 such that for each pair the comparison value can be

computed by a single addition. Similarly when checking for triples we
pre-compute the value 1

4
ℓ2 − 1

4
∥b∥2 − ∥yi∥2 + ⟨b,yi⟩ for each vector.

Note that after this pre-computation we do not even have to pass the
length bound ℓ to the kernel as this is already incorporated in the
pre-computed values.

No SimHash filter

We quickly discuss why for our Tensor-GPU implementation we did
not choose to make use of the so-called SimHash filter (see [Cha02;
Fit+14; Duc18]) based on fast binary operations that has been used
successfully to speed-up sieve implementations for the CPU. We do
note that the Tensor cores have support for the necessary binary com-
putations. Our reasons are as follows. Firstly the speed-up from using
a SimHash filter is less with respect to the 16-bit GPU computations
than with respect to the 32-bit CPU computations. Secondly post-
processing the passing pairs and triplets on the GPU (recomputing
their lengths) has to happen in higher precision on relatively slow
CUDA cores, something which can quickly become a bottleneck with
a low fidelity filter such as the SimHash. And lastly to compensate for
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Figure 4.6: Efficiency of the reduction GPU kernel for different bucket
sizes on a RTX 2080 Ti, only counting the 2n FLOPS per inner prod-
uct. The overhead includes obtaining the vectors from the database,
sending them to the GPU, conversions, recomputing length at higher
precision, and retrieving the results from the GPU in a pipelined man-
ner.

false negatives of the SimHash the database size needs to be a larger,
which hinders our focus on minimizing RAM usage.

Efficiency

To measure the efficiency of our Tensor-accelerated GPU kernel we
did two experiments: the first experiment runs only the kernel with
all (converted) data already present in global memory on the GPU,
while the second experiment emulates the practical efficiency by in-
cluding all overhead. This overhead consists of obtaining the vectors
from the database, sending them to the GPU, converting them to the
appropriate representation, running the reduction kernel, recomput-
ing the length of the resulting close pairs, and retrieving the results
from the GPU. Each experiment processed a total of 228 vectors of
dimension 160 in a pipelined manner on a single NVIDIA RTX 2080
Ti GPU and with a representative number of 10 CPU threads. We
only counted the 2n 16-bit floating point operations per inner product
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and not any of the operations necessary to transfer data or to filter
and process the results. The theoretical limit for this GPU when only
using Tensor cores and continuously running at boost clock speeds is
107 TFLOPS, something which is unrealistic in practice.

The results of these experiments are displayed in Figure 4.6. We
see that the kernel itself reaches around 65 TFLOPS starting at a
bucket size of at least 212. When including the overhead we see that
the performance is significantly limited below a bucket size of 213 which
can fully be explained by CPU-GPU memory-bottlenecks. For bucket
sizes of at least 214 we see that the overhead becomes reasonably small.
We observed that this threshold moves to 215 when using multiple
GPUs, because in our hardware the CPU-GPU bandwidth is shared
per pair of GPUs.

4.4.2 Tensor cores and precision

The main drawback of the high performance of the tensor cores is
that the operations are at low precision. Because the runtime of siev-
ing algorithms is dominated by computing pairwise inner products
to find reductions or for bucketing (in case of triple_gpu) we focus
our attention on this part. Other operations like converting between
representations are computationally insignificant and can easily be ex-
ecuted by regular CUDA cores at higher precision.

As the GPU is used as a filter to find (extremely) likely candidates
for reduction, we can tolerate some relative error, say up to 2−7 in the
computed inner product, at the loss of more false positives or missed
candidates. Furthermore it is acceptable for our purposes if say 1% of
the close vectors are missed because of even larger errors. We consider
the case that the vectors are represented using the fp16 format. In
addition we also assume that the inner product is accumulated in 16-
bit precision8.

By first normalizing the vectors we can assume for analysis that
they are unit vectors (a normalization close to unit length is actually
done in our implementation). Computing the inner product of two
vectors using Tensor cores leads to errors in two places, first there

8Although the Tensor cores have an option to use 32-bit accumulate, which
severely increases the precision, this is capped at half speed in some of the consumer
GPUs.
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is some representation error when representing the vectors in 16-bit
precision, and secondly some computation error accumulates during
the inner product computation.

Representation error

First we show that the representation error between a unit vector y =
(y1, . . . , yn) ∈ Rn of unit length and its closest 16-bit representative ŷ
is small. With a 5 bit exponent and 10 bit mantissa we have |yi− ŷi| ≤
max{|yi| ·2−11, 2−25}. For the full unit vector this gives an error bound
of

∥y − ŷ∥ ≤ max{2−11, 2−25 · √n}. (4.1)

Note that for the scope of lattice sieving the dimension n is at most
a few hundred, and thus we can safely assume a fixed error bound of
2−11 independent of the dimension. By the Cauchy-Schwarz inequality
the representation error contributes at most max{2−10, 2−24 · √n} to
the eventual pairwise inner product between unit vectors and is thus
small enough compared to the tolerated error of 2−7.

Computation error

Next we have to consider the computation of the inner product. For
each combined multiplication and addition there can be some small
error at most µ; we have µ ≤ 2−12 in the [−1, 1] range. The main
problem is that these errors can accumulate resulting in a worst case
error of the form µ · n, which could already be problematic for say
n ≥ 32. For Tensor cores n can be replaced by n/4 because the
Tensor cores act on 4× 4 blocks and the internal computation is at a
higher precision [Bla+20], but this still gives a worst-case bound that
is too large for our regime.

These worst-case bounds assume that the error at each operation
is both maximal and of the same sign, something that is not observed
in practice. A common heuristic for an average-case analysis is the
assumption that the error is equally likely to be positive as negative,
which improves the accumulated error from µ ·n to O(µ

√
n) with high

probability. See [HM19] for probabilistic bounds under such error
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Figure 4.7: Computation error |S − Ŝ| observed in dimension n over
16384 sampled pairs of unit vectors y,y′ that satisfy S := ⟨y,y′⟩ ≈
0.5.

models. We see in Figure 4.7 that this heuristic randomized analy-
sis closely matches the experimentally observed growth Θ(

√
n) of the

computation error.
We conclude that when accepting some inaccuracy in a small ra-

tio of inner products the 16-bit Tensor cores contribute effectively in
dimensions as large as 211.

4.5 A dual hash for BDD

Let us recall the principle of the ‘dimensions for free’ trick [Duc18]; by
lifting many short vectors from the sieving context L[l:r) of dimension
n := r − l we can recover a short(est) vector in some larger context
L[l−k:r) for k > 0. The sieving implementation G6K [Alb+19] puts
extra emphasis on this by lifting many vectors it encounters while
reducing a bucket, even when these reduced vectors are not short
enough to be added to the database. Recall that for lifting a vector
we have to solve an (approx)-CVP instance w.r.t. the lifting context
L[l−k:l). By applying the appropriate isometry we identify L[l−k:l) in
this section with a full rank lattice in Rk (this coincides with the y-
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representation that G6K already stores). Lifting using Babai’s nearest
plane algorithm has a significant cost of Θ(n · k + k2) per vector, and
thus it would be inefficient to lift all reduction pairs encountered.
Therefore the G6K implementation first filters on their length in the
sieving context, which is already being computed, and only lifts them
when they are short enough. The O(n ·k) part of the cost, to compute
the corresponding target ti − tj ∈ Rk, can be amortized to O(k) over
all pairs by pre-computing t1, . . . , ts, leaving the cost of Θ(k2) for the
Babai nearest plane algorithm w.r.t. B[l−k:l). In theory by pruning and
early aborting the lifting process the cost of Θ(k2) could be reduced
somewhat more.

To minimize the overhead from the lifting process we want it to
be less costly than the reduction part that has a cost of about O(n)
per pair. Thus the filter should have an acceptance rate of at most
O(n/k2). A squared length filter of 1.8 on the sieving length, leads to
an exponentially small acceptance rate in the sieving dimension n =
r− l. However assuming BGJ1 bucketing and input vectors of squared
length 4

3
the acceptance rate would be about 0.9754n+o(n); giving a

concrete acceptance rate of order 10−2 even in sieving dimensions as
large as n = 128.

When using GPUs we have an additional problem that we cannot
run the lifting computation inline in the reduction kernel, as this would
diminish the overall performance by using more registers and shared
memory for storing the targets, and because the remaining threads in
a warp would also have to wait for this. Therefore one would need
to return all the pairs of indices that pass the filter and store them
temporarily in global memory. With an acceptance rate in the order
of 10−2 this would imply tens of millions of results for the usual bucket
sizes, taking more than ten times the storage of the input vectors. This
would become a bottleneck in practice, even ignoring the reduction
kernel overhead of saving those results in the first place.

As an alternative we introduce a stronger filter with an emphasis
on the extra length added by the lifting. Most short vectors will lift
to rather large vectors, as by the Gaussian Heuristic we can expect
an extra length of gh(L[l−k:l)) ≫ gh(L[l−k:r)). For the few lifts that
we are actually interested in we expect an extra length of only δ ·
gh(L[l−k:l)), for some 0 < δ < 1 (say δ ∈ [0.1, 0.5] in practice). This
means that we need to catch those pairs ti − tj that lie exceptionally
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close to the lattice L[l−k:l), also known as δ-BDD instances, and their
share decreases exponentially as δk, assuming the targets are uniform
over span(Lbdd)/Lbdd, where Lbdd := L[l−k:l). E.g., for reasonable
parameters δ = 0.5 and k = 24 this amounts to only 6 · 10−8 of all
pairs.

So we want to filter δ-BDD instances over the k-dimensional lattice
Lbdd. More abstractly we need a filter that quickly checks if pairs
are (exceptionally) close over the torus span(Lbdd)/Lbdd

∼= Rk/Lbdd.
Constructing such a filter directly for this rather complex torus and
our practical parameters seems to require at least quadratic time like
Babai’s nearest plane algorithm. Instead we introduce a dual hash to
move the problem to the much simpler but possibly higher dimensional
torus Rh/Zh ∼=

[
−1

2
, 1
2

)h. More specifically, we will use inner products
with short dual vectors to build a BDD distinguisher in the spirit
of the so-called dual attack on LWE given in [MR09] (the general
idea can be traced back at least to [AR05]). This is however done
in a different regime, where the shortest dual vectors are very easy
to find (given the small dimension k of the considered lattice); we
will also carefully select a subset of those dual vectors to optimize the
fidelity of our filter. Recall that the dual of a lattice Lbdd is defined
as L∗

bdd := {w ∈ span(Lbdd) : ⟨w,v⟩ ∈ Z for all v ∈ Lbdd}.

Definition 71 (Dual hash). For a full rank lattice L ⊂ Rk, dual hash
length h ≥ k and a full (row-rank) matrix D ∈ Rh×k with rows in the
dual L∗, we define the dual hash

HD : Rk/L → Rh/Zh ∼=
[
−1

2
,
1

2

)h

,

t 7→ Dt.

The dual hash relates distances in Rk/L to those in Rh/Zh. Note
that the distance dist(t′,Zh) is well defined for any t′ ∈ Rh/Zh.

Lemma 72. Let L ⊂ Rk be a full rank lattice with some dual hash
HD of length h. Then for any t ∈ Rk we have

dist(HD(t),Zh) ≤ σ1(D) · dist(t,L),

where σ1(D) denotes the largest singular value of D ∈ Rh×k.
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Proof. Let x ∈ L such that ∥x − t∥ = dist(t,L). By definition we
have Dx ∈ Zh and thus HD(t−x) ≡ HD(t) mod Zh. We conclude by
noting that dist(HD(t− x),Zh) ≤ ∥D(t− x)∥ ≤ σ1(D)∥t− x∥.

So if a target t lies very close to the lattice then HD(t) lies very
close to Zh. We can use this to define a filter that passes through
BDD instances.

Definition 73 (Filter). Let L ⊂ Rk be a full rank lattice with some
dual hash HD. For a hash bound H we define the filter function

FD,H : t 7→
{
1, if dist(HD(t),Zh) ≤ H,
0, else.

Note that computing the filter has a cost of O(h ·k) for computing
Dt for D ∈ Rh×k followed by a cost of O(h) for computing dist(Dt,Zh)
using simple coordinate-wise rounding. Given that h ≥ k, computing
the filter is certainly not cheaper than ordinary lifting, which is the
opposite of our goal. However this changes when applying the filter to
all pairs ti−tj with 1 ≤ i < j ≤ h. We can pre-compute Dt1, . . . ,Dts
once, which gives a negligible overhead for large buckets, and then
compute D(ti − tj) by linearity, lowering the total cost to O(h) per
pair.

4.5.1 An average-case analysis of the dual hash

Lemma 72 allows us to choose a dual hash boundH such that our filter
FD,H returns 1 for all δ-BDD instances. Such a worst-case bound is
far from practical behaviour, thereby giving a much looser filter than
needed. In this section we introduce an average-case analysis, both
for which bound to pick and for the positive rate of our filter. We
assume that the targets are uniformly distributed, e.g., uniform over
Rk/Lbdd, more specifically unless otherwise stated we assume without
loss of generality (given that the dual hash filter only depends on
the coset and not the particular representative) that the targets are
uniform over the Voronoi cell V(Lbdd) ⊂ Rk.

The dual hash bound

We discuss what bound H to pick for the dual hash filter FD,H ,
such that we detect those targets t that lie at some close distance
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dist(Lbdd, t) ≤ R := δ · λ1(Lbdd) of the lattice. We consider the
unique decoding regime, i.e., when δ < 1

2
. In this regime we can as-

sume without loss of generality that the normalized targets t/ ∥t∥ are
uniformly distributed over the sphere. Suppose that D⊤D has eigen-
values σ2

1, . . . , σ
2
k with corresponding normalized (orthogonal) eigen-

vectors v1, . . . ,vk. By a change of basis we can equivalently assume
that t =

∑k
i=1 tivi with (t1, . . . , tk)/∥t∥ uniformly distributed over the

sphere. Computing the expectation we see

E[dist(HD(t),Zh)2] ≤ E[∥Dt∥2] = E

[
k∑

i=1

t2i · σ2
i

]

=
k∑

i=1

σ2
i · E[t2i ] = ∥t∥2 ·

1

k

k∑
i=1

σ2
i

So instead of the worst case bounds from Lemma 72, the average-case
expected distance dist(HD(t),Zh) is bounded by

√
1
k

∑k
i=1 σ

2
i · ∥t∥.

Note that if the latter bound is relatively small then we can also expect
that all coordinates of Dt lie in [−1

2
, 1
2
], and thus the first inequality

is tight. If we explicitly assume that dist(HD(t),Zh) = ∥Dt∥ in this
regime we can also compute the variation which equals

Var
[
∥Dt∥2

]
=

∥t∥4
(k/2 + 1)

1

k
·

k∑
i=1

σ4
i −

(
1

k

k∑
i=1

σ2
i

)2
 .

We see that when all eigenvalues σ2
1, . . . , σ

2
k are equal the variance is

0, and more generally the more balanced they are the better. For the
rest of the section we assume that the dual hash bound for targets
at distance R is set to R ·

√
1
k

∑k
i=1 σ

2
i , accepting that we only detect

say half of such targets. Note that the bound is based on targets at
distance exactly R, the targets that lie closer are even more probable
to pass the filter. By adding some multiple of the variance to this
bound one could obtain more quantative values for the false negative
rate using Chebyshev’s inequality. For a random lattice most targets
are still uniquely decodable even for δ somewhat larger than 1

2
, and

thus we can still use the above bound as a good estimate.
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Figure 4.8: Experimental results of the true positive rate of the dual
hash filter FD,H in Lbdd of dimension k = 24 with h = 64 dual vectors.
The 217 targets were sampled uniformly in a ball of radius R := 0.5 ·
gh(Lbdd). With a bound of H2 = E := R · 1

k
Tr(D⊤D) the true

positive rate is 72.8%, and at 1 and 2 standard deviations higher it is
respectively 94.8% and 99.5%.

Positive rate

We try to understand the positive rate ppos of the filter, e.g., the ra-
tio of targets t ∼ Rk/Lbdd for which FD,H(t) = 1. It seems hard to
determine the exact positive rate, as multiple factors play are role.
Still we can get some good estimate by splitting the analysis in two
cases: the preserved and the unpreserved regime. Consider a target
t ∈ Rk and let x be a closest vector in Lbdd to t. We will say that
we are in the preserved regime whenever D(t − x) ∈ [−1

2
, 1
2
]h (i.e.,

Dx remains a closest vector of Dt among Zh), in which case it holds
that ∥D(t− x)∥2 = dist(HD(t),Zh). The unpreserved regime consid-
ers those targets for which there is no equality, i.e., ∥D(t − x)∥2 >
dist(HD(t),Zh).

Preserved Regime. We assumed without loss of generality that the
targets t are uniform over the Voronoi cell V(Lbdd), such that their
closest vector is 0. In the preserved regime we have the equality
dist(HD(t),Zh) = ∥Dt∥2, and thus FD,H(t) = 1 if and only if ∥Dt∥2 ≤

118



4.5. A dual hash for BDD

H. The positive rate ppres is then given by

ppres = Pr
t∼U(V(Lbdd))

[∥Dt∥2 ≤ H] .

We proceed in the same way as earlier by picking applying a basis
transformation using the normalized eigenvectors v1, . . . ,vk of D⊤D.
Let V := [v1; . . . ;vk], then we have

ppres = Pr
t∼V ·U(V(Lbdd))

[
k∑

i=1

t2i · σ2
i ≤ H2

]
=

vol(V · V(Lbdd) ∩ EH,σ2
1 ,...,σ

2
k
)

vol(V · V(Lbdd))
,

where EH,σ2
1 ,...,σ

2
k

is the ellipsoid defined by {t ∈ Rk :
∑k

i=1 t
2
i ·σ2

i ≤ H2}.
We can simply bound the volume in the numerator by that of the
ellipsoid, and note that the volume of the denominator equals the
determinant det(Lbdd). So we conclude that

ppres ≤
vol(EH,σ2

1 ,...,σ
2
k
)

vol(V(Lbdd))
=

vol(Bk) ·Hk

det(Lbdd) ·
∏k

i=1 σi
.

Note that the inequality is only provably tight whenH/σk ≤ 1
2
λ1(Lbdd),

where σ2
k is the smallest eigenvalue, but again for random lattices we

can expect the estimate to also be reasonably close also for larger
bounds.

Unpreserved Regime. In the unpreserved regime dist(HD(t),Zh) is not
really a useful metric, as there will seemingly be no clear relation with
∥D(t − x)∥2. Inspired by practical observations, we analyse these
positives from the heuristic assumption in this regime that every Dt
is uniformly distributed over [−1

2
, 1
2
)h modulo Zh. Then we can ask the

question how probable it is that ∥Dt∥2 = dist(Dt,Zh) ≤ H; i.e., that
the target passes the filter even though it is not close to the lattice.
This is equivalent to the volume of the intersection of an h-dimensional
ball with radius H and the hypercube [−1

2
, 1
2
]h. We can bound this by

just the volume of the ball,

punpr := Pr
v∈U [− 1

2
, 1
2
)h

[
v ∈ H · Bh

]
= Pr

v∈U(H·Bh)

[
v ∈ [−1

2
, 1
2
)h
]
· vol(H · Bh) ≤ Hh · volBh.
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Figure 4.9: Dual hash filter correlation on the context L[14:30) for a
reduced 160-dimensional lattice using 48 dual vectors. The BDD-
bound was computed with a representative squared length bound of
1.44 and the 220 targets are uniformly sampled over the Voronoi cell
around 0.

For a small boundH the probability Prv∈U(H·Bh)

[
v ∈ [−1

2
, 1
2
)h
]

is close
to 1 and thus the bound is rather tight. For somewhat larger values of
H we can estimate Prv∈U(H·Bh)

[
v ∈ [−1

2
, 1
2
)h
]

by heuristically assum-
ing independence between the coordinates. Recall that if v ∼ U(Bh),
then each coefficient v2

i follows a Beta(1
2
, h+1

2
) distribution with CDF

Ix(
1
2
, h+1

2
), leading to the heuristic estimate

punpr ≈ I 1
4H2

(1
2
, h+1

2
)h ·Hh · volBh.

Alternatively one can use Monte-Carlo sampling to estimate punpr.
The number of samples (under a fixed error variance) is inversely pro-
portional to the event probability, and thus directly estimating punpr

for low values ofH is too costly. Luckily for small values ofH the prob-
ability Prv∈U(H·Bh)

[
v ∈ [−1

2
, 1
2
)h
]

is large and thus we can estimate
that probability instead, leading to an efficient Monte-Carlo estimate
both for small and large values of H. To determine in which regime we
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Figure 4.10: The unpreserved positive rate punpr for h = 48.

E1 2 3 4 5
Dual Hash Bound H2

10−15

10−11

10−7

10−3

P
os

it
iv

e
R

at
e

Positive Rate vs Dual Hash Bound H

Pr[FD,H(t) = 1] (Experiment)

punpr (Monte-Carlo)

ppres (Estimate)

punpr ∨ ppres

Sensitivity (δ = 1
2)

are one could use the heuristic estimate for Prv∈U(H·Bh)

[
v ∈ [−1

2
, 1
2
)h
]

presented earlier. Note that punpr only depends on the filter threshold
H and the number of dual vectors h and not on the specific matrix
D. We could thus precompute punpr for relevant parameters instead
of computing it on the fly.

Choosing a dual hash

We will shortly discuss how to pick the dual hash matrix D ∈ Rh×k.
The goal is to obtain a filter with a good correlation, i.e., a good
trade-off between the positive-rate and the sensitivity. We fix the
target distance to some 0 < R ≤ 1

2
λ1(Lbdd), and as the computational

cost mostly depends on the number of dual vectors h we will try to
optimize D for a fixed number of dual vectors h.
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To simplify the overall optimization we set the dual hash bound to
H := R ·

√
1
k

∑k
i=1 σ

2
i , such that the false negative rate is expected to

be reasonable for uniform targets at distance at most R. We can now
focus on minimizing the positive rate.

In the preserved regime the (bound on the) positive rate is propor-
tional toHk/

∏k
i=1 σi. Note that Tr(D⊤D) =

∑k
i=1 σ

2
i and det(D⊤D) =∏k

i=1 σ
2
i , the positive rate in the preserved regime is thus propertional

to

ppres ∼
( 1
k
Tr(D⊤D))k/2√
det(D⊤D)

,

which is a well known conditioning metric for matrices. To optimize
this one can think of picking h dual vectors that are of about the
same length and somewhat orthogonal. For the unpreserved regime
the positive rate is mostly proportional to Hk, which means we want
Tr(D⊤D)k/2 to be small; this can be achieved by working with short
dual vectors.

To summarize we want to find a set of short dual vectors to form
the dual hash such that D is well conditioned. One initial method is to
just pick the h shortest dual vectors (modulo sign). This satisfies the
needs of the unpreserved regime, but the conditioning of the resulting
matrix is often not that great. Given a list of short dual vectors we
can greedily try to improve the conditioning of D by replacing some
of the (row) vectors from the list.

From experiments we can conclude that this greedy method to
improve the filter works really well. For example with the parameters
as in Figure 4.9, picking the 48 shortest dual vectors leads to a positive
rate of 1.3 · 10−4 for a false negative rate of 1%; using the greedy
construction improves the positive rate down to 1.4 ·10−5 for the same
false negative rate. The additional overhead of the greedy method
is negligible in somewhat large dimensions and easily won back from
allowing a lower number of dual vectors h.

4.5.2 Application and results

We shortly discuss how one would use the introduced dual hash tech-
niques in practice for solving SVP challenges more efficiently. Recall
that for such challenges we are given a lattice L of dimension d and we
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4.5. A dual hash for BDD

try to find a short vector of norm at most 1.05 · ghL. We do this by
sieving in some smaller context L[l:d) (for progressively decreasing l),
and by lifting vectors from this context to the full lattice L[0:d) = L,
hoping to encounter a short enough vector. The goal of the dual hash
is to efficiently filter pairs of vectors which difference lies close to the
lattice L[0:l), thereby increasing the number of dimensions for free l.

Choosing the parameters

To use the dual hash in practice as a filter we need to decide on
what context to use it and what the threshold should be. Applying
the dual hash to the full lift context L[0:l) might fail to return short
vectors for positions l′ > 0, which are also needed to improve the
quality of the basis. Therefore we apply the dual hash to the smaller
filter context Lbdd := L[f :l). If a vector is short in the context L[l′:r)

for some l′ < f then we can also expect it to be short in the filter
context, and therefore to be catched by our filter.

We also need to decide on a distance threshold. Let v be a lattice
vector in L[l:r) of length R. We can assume that R ≥ ℓ, where ℓ is
the sieving length bound, as otherwise the vector would already be
inserted (and always lifted) in the sieving database. Suppose that v
lifts to a short vector with length at most ℓl′ in L[l′:r) for κ ≤ l′ ≤ f .
This corresponds to a target t at distance at most

dist(t,L[l′:l))
2 ≤ ℓ2l′ − ℓ2.

from the lattice L[l′:l). Although we cannot know what the length
of t would be in the filter context we can expect this to be close to√

l−f
l−l′
∥t∥ by the Gaussian Heuristic. Therefore setting the filter length

bound to

Fl′ :=

√
l − f
l − l′ (ℓ

2
l′ − ℓ2)

allows a significant part of the short lifts in the context L[l′:r) through
the filter. Note that most of the pairs we lift are much larger on the
sieving part, and thus have to be even shorter in the filter context; def-
initely passing the above filter length bound. We conclude by setting
the filter to aim for a length of at most F := maxκ≤l′≤f{Fl′}.
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4. Advanced Lattice Sieving on GPUs

Given the filter length bound we could immediately apply Lemma
72 to obtain a threshold for the dual hash that guarantees that our
filter has no false negatives. However as usual there is a trade-off
between the number of false negatives and the positive rate of the
filter. For our purposes we set the bound at the expectation plus
3 standard deviations in the preserved regime to prevent most false
negatives. For a more precise bound under a fixed false negative ratio
one could fall back to Monte-Carlo sampling methods as we do not
know of a closed form formula for the distribution. Figure 4.9 shows
the effectiveness of the dual hash filter based on realistic parameters
as encountered during a 130-dimensional pump on a 160-dimensional
lattice. The pre-processing of the basis consisted of a workout with
pumps up to dimension 128.

4.5.3 Implementation details

Given a list of pre-computed Dt1, . . . ,Dtm we want to use the GPU to
efficiently compute dist(D(ti − tj),Zh) for all i < j. As usual the ac-
tual implementation requires some trade-offs to significantly improve
performance. Given that the dimension of the dual hash seems to have
more impact than the precision of the values we choose for an 8-bit
integer representation for the dual hash coordinates in [−1/2, 1/2) by
dividing it in 256 equally sized intervals. The added benefit of this
representation is that the mod Z operations are implicitly handled by
integer overflow. Both CUDA and Tensor cores have special instruc-
tions and very good performance for 8-bit arithmetic, even when using
32 bits to accumulate inner products.

Given a list of pre-computed Dt1, . . . ,Dtm we want to use the
GPU to efficiently compute dist(D(ti − tj),Zh)2 for all i < j, where
the coordinates use an 8-bit integer representation. We focus on the
core computation as for the memory movement one can apply a similar
strategy as for the reduction kernel.

Dual hash for CUDA cores

Although CUDA cores are flexible we have to pack 4 of the 8-bit values
together in a 32-bit register a = a3|a2|a1|a0 and apply special opera-
tions to obtain optimal 8-bit arithmetic performance. First we need
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4.5. A dual hash for BDD

to take the coordinate-wise difference and then take the modulo to get
back in the interval [−1/2, 1/2). By representing these values using
signed integers the modulo is equivalent to integer overflow. CUDA
has an operation to take the coordinate-wise difference, however this
actually decodes into multiple instructions. Therefore as a trade-off we
just take the 32-bit integer different between a and b, ignoring off by
one errors in each coordinate due to a possible carry bit. For comput-
ing the length we can use the relatively new operation __dp4a(a,b,c)
that computes the inner product between the packed a and b and ac-
cumulates this in a 32-bit integer c. So in only two cycles we can
compute the squared distance over 4 coordinates modulo Z4.

Dual hash for Tensor cores

Although Tensor cores can be up to 4 times faster than the CUDA
cores for similar precision they can basically do only a single thing
well: pairwise inner products, i.e., a matrix product. So to use the
Tensor cores effectively we need to convert this computation to that
of a matrix product. We quickly discuss how one could potentially
make such an adjustment.

We could use the fact that dist(x,Z)2 ≈ (1 − cos(x · 2π))/16 for
x ∈ [−1

4
, 1
4
]+Z. For the remaining range the value of (1−cos(x·2π)/16

is somewhat smaller, but in the BDD-regime we are working these
values still seem large enough to reject bad vectors. So using this
similarity we want to compute

dij :=
h∑

l=1

1− cos((D(ti − tj))l · 2π)
16

.

from some pre-computed values depending on Dti and Dtj respec-
tively. Rewriting using trigonometric identities we get:

dij =
m

16
− 1

16

(
m∑
l=1

cos(2πDti) cos(2πDtj) + sin(2πDti) sin(2πDti)

)
.

If we pre-compute that values (cos((Dti)l ·2π))l and (sin((Dti)l ·2π))l
we can compute the above sum by computing two h-dimensional (pair-
wise) inner products which Tensor cores can do efficiently. Again we
can use 8-bit representations and computing the inner product (with
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4. Advanced Lattice Sieving on GPUs

32-bit accumulate) is up to 4 times faster on Tensor cores compared
to CUDA cores. However here we need to compute two h-dimensional
inner products instead of one, but this is compensated by not having
to compute the coordinate-wise difference first. So one could expect
up to 4 times the performance compared to CUDA cores. In the end
we did not implement this adaptation as the pairwise dual hash com-
putations were not a bottleneck, and thus improving it would only
result in a minor overall speed-up.

4.6 New records

4.6.1 Comparison

We compare several of our sieve implementations experimentally. Al-
though our BDGL-like implementations bdgl and bdgl_gpu will even-
tually be faster than the BGJ-like implementations triple by G6K9

and triple_gpu by us, the cross-over point could be outside of prac-
tical dimensions. For the comparison we run a pump up to dimension
120 and 140 for CPU and GPU respectively in a lattice of dimen-
sion 160 that has been pre-processed by a workout up to dimension
118 and 138. In Figure 4.11 we display the wall-clock time taken for
each Sieve operation during the pump up. All our GPU implementa-
tions use a multi-bucket parameter of 4, which should give a balanced
comparison based on Figure 4.4. Any on-the-fly lifting or dual hash
techniques are disabled. For the remaining parameters we refer to the
next Section 4.6.2.

CPU sieves

We observe in Figure 4.11 that our BDGL implementations 2-bdgl
and 3-bdgl are extremely practical. They both improve upon the
record-holding triple sieve from dimension ±85 and onwards. The
speed-up of 2-bdgl and 3-bdgl over triple increases to a factor of
5.3× and 3.1× respectively in dimension 12010. We also see that while

9The triple sieve in G6K is in the meantime renamed to hk3 after [HK17].
10In the original work we reported a speed-up of 2.7× for 3-bdgl. By optimis-

ing the cache locality of the reduction phase this was improved to 3.1×. These
optimisations were much more effective for the larger buckets of 2-bdgl, resulting
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a. (CPU only) b. (CPU and GPU)
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triple (G6K)
20.387n−32.31

2-bdgl (Ours)
20.337n−28.72

3-bdgl (Ours)
20.310n−24.77
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2−3

25

213

221

Sieving dimension (n)

triple_gpu (Ours)
20.362n−36.55

2-bdgl_gpu (Ours)
20.335n−32.39

Figure 4.11: Comparison of different sieve implementations
from [Alb+19] and this work. We ran a single pump up in a well-
reduced 160-dimensional lattice to a sieving dimension of 120 and 140
for CPU only and GPU accelerated respectively. The timings give
the amount of time spend in each sieving dimension. All experiments
used a saturation of 37.5% with a database size of 2.77 · 20.2075n. All
40 CPU cores and 4 GPU’s were used. The fitting is obtained by a
linear least-squares regression on the last 10 dimensions in log-space.

3-bdgl is asymptotically faster than 2-bdgl, this is not concretely the
case below dimension 120. Given the extrapolations we expect the
cross-over around dimension 146.

Given the large speed-up of the 2-bdgl sieve over the record-
holding triple sieve we also tried to resolve the 155-dimensional
Darmstadt 1.05-approxSVP record challenge. We solved the challenge
(with seed 1) with 2-bdgl in 51.7 hours on 40 cpu cores (machine spec-
ifications as in Table 4.1), or about 2069 cpu hours, compared to a
reported 1056 cpu days for the triple sieve. This is more than a fac-
tor 12× speed-up (ignoring cpu core differences). Part of the speed-up
(about a factor 4×) can be explained by a few more dimensions for
free (34 vs 28). It is unclear if we got lucky or if this increase can be
attributed to the algorithm.

in the final 5.3× speed-up.
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GPU sieves

Firstly, we observe that the GPU accelerated sieves are significantly
faster than the CPU-only sieves. In dimension 120 triple_gpu is a
tremendous factor 121× faster than triple. Secondly, we observe a
different behaviour of the asymptotically superior sieve 2-bdgl_gpu
versus triple_gpu. While for the CPU-only version the cross-over
between the two was already in dimensions around 85, for the GPU
version the cross-over lies in a dimension greater than 140. Following
the extrapolations, we only expect them to cross in dimension ±154.
The main reason for this is that the BDGL sieve obtains its speed-up
from having many small buckets, but for the GPU implementation
there is a large minimum bucket size to prevent memory bottlenecks
in the reduction phase. The large minimum bucket size shifts the
cross-over point by more than 70 dimensions. In this light, it did
not appear pertinent to implement 3-bdgl_gpu, which, while being
asymptotically faster, would cross-over even later.

4.6.2 SVP parameter tuning

There are many parameters in our implementation that can be tuned
for optimal performance with respect to memory and time complex-
ity. We will focus on triple_gpu as we have shown it to be the
fastest implementation in practical sieving dimensions n ≤ 150. As
low level parameters, such as minimum bucket sizes for GPUs, are
discussed earlier, here we discuss the higher level parameters to solve
1.05-approxSVP for a lattice of dimension d.

Given the large amount of computational power available with the
4 GPUs, we can potentially solve lattice 1.05-approxSVP up to di-
mension 180 in reasonable time on a single machine. The main limit-
ing factor at that point is the available memory, in our case 1.5 TiB
RAM. We have spent significant efforts aiming to reduce the memory
footprint of our G6K-GPU implementation, such as maintaining only
basis coordinates, length and a hash of each vector in our database.
Many parameters can be safely tweaked in certain regions without sig-
nificantly affecting time complexity, hence we focus more on suitable
values that limit memory usage.

To increase dimensions-for-free, and thus decrease memory usage,
we enabled DownSieve for all workouts for a stronger preprocessing.
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TD4F(n) = ⌊n/ log(n)⌋ MaxSieveDim(n) = n− TD4F(n) + 4
SaturationRatio = .375 DBSizeLimit(n) = DBSize(n− T4DF(n))
SaturationRadius = 4/3 DBSize(d) = 2.77× (4/3)(d/2)

DualHashMinDim = 106 DualHashDim = 24,DualHashVecs = 32
PreferLeftInsert = 1.2 DownSieve = True
MultiBucket = 2 Sieve = triple_gpu

Figure 4.12: Main parameters used for the record runs.

We found that with DownSieve on, a larger PreferLeftInsert is more
benificiary. I.e., prefer to insert even a slightly improved b′i into the
basis over a more significantly improved b′i+1.

Another main parameter affecting memory use is the constant fac-
tor in database size, normally chosen as 3.2 in G6K [Alb+19]. We
opted to reduce this to 2.77, resulting in DBSize(d) = 2.77× (4/3)(d/2)

for sieve dimension d, and compensate by also reducing SaturationRatio
from .5 to .375.

Additionally, we introduced a database size limit by setting an
experimentally-verified target TD4F(n) = ⌊n/ log(n)⌋ for the number
of dimensions-for-free, and limiting the database size to DBSizeLimit(n)
= DBSize(n−T4DF(n)). This means that the database size limit does
not affect sieving up to the target dimensions-for-free. However, for
unlucky cases, we allow G6K workouts of up to 4 dimensions larger
without further increasing the database size. Because triple_gpu
also considers triples we can be certain that saturation will still be
reached.

As discussed before, we use DualHash lifting: starting from a siev-
ing dimension of 106 in the filter context [l − 24, l] using 32 dual
vectors. To reduce memory overhead from storing buckets and results
(before insertion), we set MultiBucket = 2. Our main parameters are
summarized in Figure 4.12.

4.6.3 New SVP records

With the parameters tuned as discussed above, we have solved sev-
eral Darmstadt Lattice 1.05-approxSVP Challenges for lattices with
dimension in the range of 158 till 180 (all with seed=0). Details about
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(T)D4F = target/actual dimensions for free
MSD = maximum sieving dimension
FLOP = # bucketing + reduction core floating point operations

Dimensions Norm Cost

dim TD4F D4F MSD Norm/GH FLOP Walltime Mem GiB

158 31 29 129 1.04329 262.1 9h 16m 89
160 31 33 127 1.02302 261.8 8h 24m 88
162 31 31 131 1.04220 263.2 18h 32m 156
164 32 28 136 1.04368 264,8 2d 01h 179
166 32 30 136 1.03969 264.8 2d 01h 234
168 32 31 137 1.04946 265.3 2d 18h 318
170 33 31 139 1.04594 266.3 5d 11h 364
172 33 35 137 1.04582 265.0 2d 09h 364
174 33 35 139 1.04913 266.3 5d 06h 518
176 34 33 143 1.04412 267.5 12d 11h 806
178 34 32 146 1.02725 268.6 22d 18h 1060
180 34 30 150 1.04003 269.9 51d 14h 1443

Machine specification:
2× Intel Xeon Gold 6248 (20C/40T @ 2.5-3.9GHz)
4× Gigabyte RTX 2080 TI (4352C @ 1.5-1.8GHz)
1.5 TiB RAM (2666 MHz)
Average load: 40 CPU threads @ 93%

4 GPUs @ 79%/1530MHz/242Watt

Table 4.1: Darmstadt Lattice 1.05-approxSVP Challenge results

the effort and results for each challenge are presented in Table 4.1.
With a new top record of the 1.05-approxSVP challenges with di-

mension 180, we improve significantly upon the last record of dimen-
sion 155 by [Alb+19]. Note that this last record was achieved on
a single large machine with 72 CPU cores in 14 days and 16 hours,
where we were able to find an even shorter vector of length 0.9842 · gh
in about 5 hours (68× faster). Also we can improve this record from
155 by no less than 21 dimensions by solving lattice 1.05-approxSVP
for dimension 176 on our 4-GPU machine in less wall-clock time: 12
days and 11 hours. As proof we present our short vector for Darm-
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(68, 33, -261, 11, 101, 354, -48, -398, 196, -84, 217, 319, -137, -157, -29, 304, -14, 312, 28,
-240, -347, -6, -153, -35, -214, 67, -565, 91, 365, 382, -168, 152, 30, 42, -12, -14, -230, 54,
304, 51, 398, 380, 76, -111, 437, 374, -554, -171, -90, -92, 564, 32, 217, 60, -107, 475,

-290, -326, -224, -218, 27, -271, 12, 200, 463, -365, 119, -431, 92, 450, 58, 183, 342, 82,
-144, 77, -95, -62, -245, 171, 169, -106, -330, 236, 194, 41, -84, -297, 567, 58, 553, 279,
260, 140, -141, -30, -183, -448, -112, 45, 135, -260, -261, 1, -105, 507, 105, -414, -161,

-9, -337, -287, 431, 92, -91, 350, -376, -75, 11, -249, 119, -172, -351, 410, 97, -320, -270,
223, -287, 97, 235, 242, 279, -222, 384, -95, 501, 317, 167, -130, -103, 441, 424, 25, 187,
-128, -9, -90, 328, -107, -132, -81, 2, 94, -326, -109, 465, 49, -30, 345, 125, -114, 909, 180,

-5, -112, 190, 182, -65, -291, -83, 445, -68, -318, -18, -732, -241, 246, -34, 299)

Figure 4.13: A solution to the Darmstadt Lattice 1.05-approxSVP
Challenge in dimension 180 with seed 0.

Wattage Total usage

dim time CPU+GPU only system CPU+GPU only system

155 352 h 560 W 720 W 197 kWh 254 kWh
176 229 h 1268 W 1428 W 379 kWh 427 kWh

Table 4.2: Power use comparison for records of dimension 155 (G6K)
and 176 (ours).

stadt Lattice 1.05-approxSVP Challenge dimension 180 with seed 0 in
Figure 4.13.

4.6.4 Remarks

Power use

To compare power efficiency of our new record computation for di-
mension 176 with the previous record computation for dimension 155,
we estimated the power use as shown in Table 4.2 as follows. Their
dimension 155 computation ran for 352 hours on 4 CPUs (Intel Xeon
E7-8860V4) that have a TDP of 140 Watt each. Our dimension 176
computation ran for 299 hours on 2 CPUs (Intel Xeon Gold 6248)
with a TDP of 150 Watt each, and 4 GPUs that typically used 242
Watt as measured through the nvidia-smi tool. For both systems we
approximate other system power usage covering motherboard, RAM
and disk as about 160W.

Note in Table 4.2 that while solving the challenge for dimension
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176 is about two orders of magnitude harder compared to dimension
155, we spent less than a factor 2 more in electricity.

Memory use

From the measured memory usage in Table 4.1, we estimate that our
implementation requires about 416 Bytes per vector including the
amortized overheads, for dimensions higher than 137. Hence, siev-
ing up to dimension 146 could still fit within our 1.5 TiB of available
RAM, which allowed us to solve the lattice challenge of dimension
180.
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CHAPTER 5
The Closest Vector Problem

with Preprocessing

This chapter is based on the joint work ‘The randomized slicer
for CVPP: sharper, faster, smaller, batchier’, with Léo Ducas
and Thijs Laarhoven, published at PKC 2020.

5.1 Introduction
The Closest Vector Problem (CVP) can be viewed as an inhomoge-
neous version of the Shortest Vector Problem (SVP). It asks to com-
pute a closest lattice vector to a given target vector in the real span of
the lattice. This is also sometimes referred to as decoding the target.
These two problems are closely related, and just as for SVP, solving
CVP efficiently would directly break most lattice-based cryptographic
schemes; e.g., decoding an encrypted message, or forging a signature
often essentially boils down to recovering a close(st) lattice point. In
many cases it is sufficient to solve an approximate version γ-CVP,
where one has to compute a lattice vector that lies at most a factor γ
further away than a closest one.
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CVP is no easier than SVP, there exists an efficient reduction from
approx-SVP to approx-CVP that preserves both the lattice dimension
and approximation factor [GMSS99]. In fact most lattice problems
have such a dimension-preserving reduction to CVP [Mic08; BN09;
MV13]. Provable worst-case reductions in the other direction are less
straightforward and tight, and often increase both the dimension and
approximation factors.

Still from an average-case perspective, most algorithms for SVP
can be adapted to work for CVP with about the same (heuristic) com-
plexity. I.e., the current fastest approaches for solving CVP are just
as SVP based on lattice sieving [AKS01; BDGL16; Alb+19; DSW21]
and lattice enumeration [Kan83; FP85; GNR10; AN17; ANS18], where
the former offers a better asymptotic scaling of the time complexity
in terms of the lattice dimension, at the cost of an exponentially large
memory consumption.

In contrast to SVP however, CVP receives as input, next to a
lattice (basis), a target vector. Even though solving a single instance
is as hard as SVP, one could wonder if we can amortize the cost by
decoding many targets over the same lattice.

The closest vector problem with preprocessing (CVPP). The closest
vector problem with preprocessing (CVPP) is a variant of CVP, where
the solver is allowed to perform some preprocessing on the lattice at no
additional cost, before being given the target vector. Closely related
to this is batch-CVP, where many CVP instances on the same lattice
are to be solved; if an efficient global preprocessing procedure can be
performed using only the lattice as input, and that would help reduce
the costs of single CVP instances, then this preprocessing cost can be
amortized over many problem instances to obtain a faster algorithm
for batch-CVP. This problem of batch-CVP most notably appears
in the context of lattice enumeration for solving SVP or CVP, as a
fast batch-CVP algorithm would potentially imply faster SVP and
CVP algorithms based on a hybrid of enumeration and such a CVPP
oracle [GNR10; DLW20a].

Voronoi cells and the iterative slicer. One method for solving CVPP
is the iterative slicer by Sommer–Feder–Shalvi [SFS09]. Preprocess-
ing consists of computing a large list of lattice vectors, and a query is
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Figure 5.1: Query complexities for solving CVPP without nearest
neighbour techniques. The blue curve refers to [Laa19], the red curve
to [DLW19], the green curve to [Laa16], and the black curve is the
result of our refined analysis. The red point indicates the point where
red and black curves merge into one.

processed by “reducing” the target vector t with this list, i.e. repeat-
edly translating the target by some lattice vector until the shortest
representative t′ in the coset of the target vector is found. The clos-
est lattice vector to t is then given by t − t′, which lies at distance
∥t′∥ from t. For this method to provably succeed, the preprocessed
list needs to contain all O(2d) so-called Voronoi relevant vectors of
the lattice, which together define the boundaries of the Voronoi cell of
the lattice. This leads to a 4d+o(d) algorithm by bounding the number
of reduction steps by 2d+o(d) [MV13], which was later improved to an
expected time of 2d+o(d) by randomizing the algorithm such that the
number of expected steps is polynomially bounded [DB15].

Approximate Voronoi cells and the randomized slicer. The large num-
ber of Voronoi relevant vectors of a lattice, needed for the iterative
slicer to be provably successful, makes the straightforward application
of this method impractical and does not result in an improvement over
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the best (heuristic) CVP complexities without preprocessing. There-
fore we fall back on heuristics to analyse the iterative slicer, as they
often better represent the practical complexities of an algorithm than
the proven worst-case bounds. Laarhoven [Laa16] proposed to use
a smaller preprocessed list of size 2d/2+o(d) containing all lattice vec-
tors up to some radius, while heuristically retaining a constant suc-
cess probability of finding the closest vector with the iterative slicer.
Doulgerakis–Laarhoven–De Weger [DLW19] formalized this method
in terms of approximate Voronoi cells, and proposed an improvement
based on rerandomizations. Rather than hoping to find the solution
in one run of the iterative slicer, which would require a preprocessed
list of size at least 2d/2+o(d), the algorithm uses a smaller list and runs
the same reduction procedure many times. Each time starting with
a randomly sampled members from the coset of the target vector.
The success probability of this randomized slicing procedure, which
depends on the size of the list, determines how often it has to be
restarted, and thus plays an important role in the eventual time com-
plexity of the algorithm. Doulgerakis–Laarhoven–De Weger [DLW19]
obtained a heuristic lower bound on the success probability of this ran-
domized slicer, which Laarhoven [Laa19] later improved upon in the
low-memory regime. In particular, these two bounds cross each-other,
which suggests that there should be a better (sharp) global bound.
Thus the question remains open, what is the actual asymptotic success
probability of the randomized slicing procedure, and therefore what is
the actual asymptotic time complexity of the current state-of-the-art
heuristic method for solving CVPP.

5.1.1 Contributions

Success probability asymptotics via random walks

The main contribution of this work is to answer the central open prob-
lem resulting from the approximate Voronoi cells line of work – giving
sharp (heuristic) asymptotics on the success probability of the ran-
domized slicer when using a list of the αd+o(d) shortest lattice vectors.
To find these sharp bounds, in Section 5.3 we show how to model the
flow of the algorithm as a random walk on the coset of the lattice
corresponding to the target vector, and we heuristically characterise
transition probabilities between different states in this infinite graph.
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0
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List L:

α
t′
γ
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Figure 5.2: The iterative slicer as a random walk over the coset t+L
using the list of lattice vectors L = L ∩ B(⃗0, α).

We show that the transition probabilities only depend on the norm of
coset representatives and therefore the graph can be simplified to an
interval (0,∞) representing the norm. The aforementioned problem of
finding the success probability of the slicer then translates to: what is
the probability in this graph of starting from a given initial norm and
ending at any target norm of at most γ? From [DLW19] we know that
we almost always reach a state of norm at most some β = f(α) ≥ γ –
reaching this state occurs with probability at least 1/ poly(d). How-
ever, reaching a state β′ < β occurs only with exponentially small
probability 2−Θ(d). Now, whereas the analysis of [DLW19] can be in-
terpreted as lower-bounding the success probability by attempting to
reach the target norm in a single step after reaching radius β, we are
interested in the arbitrary-step transition probabilities from β to at
most γ, so as to obtain sharp bounds.

As every path in our graph from β to γ has an exponentially small
probability in d, the total success probability is dominated by that
of the highest probable path for large d; which after an appropriate
log-transform boils down to a shortest path in a graph. Therefore
obtaining the success probability of the randomized slicer is reduced
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to determining a shortest path in this infinite graph. We show in
Section 5.4 how we can approximately compute this shortest path
numerically, using a suitably dense discretization of the search space
or using convex optimization. In Section 5.5 we go a step further by
proving an exact analytic expression of the shortest path, which results
in sharp asymptotics on the success probability of the randomized
slicer for the general case of approx-CVP.

Heuristic claim 74 (Success probability of the randomized slicer).
Given a list L of the αd+o(d) shortest lattice vectors as input, the success
probability pα2,γ2 of one iteration of the randomized slicer for γ-CVPP
equals:

pα2,γ2 =
n∏

i=1

(
α2 − (α2 + xi−1 − xi)2

2xi−1

)d/2+o(d)

with n defined by equation (5.1) on page 154, and xi as in Definition 81
depending only on α and γ.

Running the randomized slicer for O(p−1
α2,γ2) iterations, we expect

to solve γ-CVPP with constant probability. Together with a (naive)
linear search over the preprocessed list, this directly leads to explicit
time and space complexities for a plain version of the randomized slicer
for solving CVPP, described in Figure 5.1. When using a large list of
size at least 20.1436d+o(d) from the preprocessing phase of CVPP, we
derive that one step is optimal, thus obtaining the same asymptotic
complexity as [DLW19]. When using less than 20.1436d+o(d) memory we
gradually see an increase in the optimal number of steps in the short-
est path, resulting in ever-increasing improvements in the resulting
asymptotic complexities for CVPP as compared to [DLW19].

Extensions in full work

In the full version1 of this work we exhibit the versatility of the random
walk model. For example we show how to adapt the graph slightly
to analyse the success probability of the iterative slicer for the BDD-
variant of CVP, where the target lies unusually close to the lattice.
In addition, by using a similar random walk model, we derive a tight

1Full version: https://eprint.iacr.org/2020/120.pdf
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probability analysis of graph-based Nearest Neighbour Search tech-
niques, and the resulting time-memory trade-off when applied to siev-
ing algorithms, improving on previous upper bounds.

Next to the versatility we also further improve the time-memory
trade-off by using the asymptotic best bucketing technique [BDGL16]
as explained in Section 3.3. While in previous works [Laa16; Laa19]
these bucketing techniques came at the cost of large memory over-
heads, we show how this can be achieved efficiently with only a small
memory overhead for CVPP, and no overhead for batch-CVPP.

5.1.2 Working heuristics

The first heuristic which we use is the commonly used Gaussian heuris-
tic, which predicts the number of lattice vectors and their density
within certain regions based on the lattice volume. Its use for analysing
sieve-type algorithms is well established [NV08; BGJ15; BDGL16;
Laa16] and seems consistent with various experiments conducted in
the past.

The second heuristic assumption we use is also central in previous
work on the randomized iterative slicer [DLW19; Laa19], and consists
of assuming that the input target can be randomized, yielding essen-
tially independent experiments each time we randomize the input over
the coset of the target vector. Practical experiments from [DLW19]
seem to support this assumption.

5.2 The randomized iterative slicer
The iterative slicer (Algorithm 4) is a simple but effective algorithm
that aims to solve the closest vector problem or variants thereof. It
starts with a preprocessing stage that only depends on the input lat-
tice, after which it can solve multiple problem instances over this fixed
lattice, amortizing the cost of preprocessing.

5.2.1 The algorithm

The preprocessing consists of finding and storing a list L ⊂ L of lattice
vectors. Then given a target point t ∈ Rd the iterative slicer tries
to reduce the target t by the list L to some smaller representative
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Algorithm 4: The iterative slicer of [SFS09]
Input: A target vector t ∈ Rd, a list L ⊂ L.
Output: A close vector v ∈ L to t.

1 Function IterativeSlicer(L, t):
2 t0 ← t;
3 for i← 0, 1, 2, . . . do
4 ti+1 ← min

v∈L∪{0}
{ti − v};

5 if ti+1 = ti then return t0 − ti ;
6 end

t′ ∈ t + L in the same coset of the lattice. This is repeated until
the reduction fails or until the algorithm succeeds, i.e., when ∥t′∥ ≤
γ ·dist(L, t). We then obtain the lattice point t−t′ that lies at distance
at most γ ·dist(L, t) to t. Observe that t′ is a shortest vector in t+L
if and only if v = t− t′ ∈ L is a closest lattice vector to t.

To provably guarantee that the closest vector is found we need
the preprocessed list L to contain all the Voronoi-relevant vectors;
the vectors that define the Voronoi cell of the lattice. However most
lattices have O(2d) relevant vectors, which is too much to be practi-
cally viable. Under the Gaussian heuristic, Laarhoven [Laa16] showed
that 2d/2+o(d) short vectors commonly suffice for the iterative slicer to
succeed with high probability, but this number of vectors is still too
large for any practical algorithm. The randomized slicer (Algorithm
5) of Doulgerakis–Laarhoven–De Weger [DLW19] attempts to over-
come this large list requirement by using a smaller preprocessed list
together with rerandomizations to obtain a reasonable probability of
finding a close vector – the success probability of one run of the iter-
ative slicer might be small, but repeating the algorithm many times
using randomized inputs from t+L, the algorithm then succeeds with
high probability, without requiring a larger preprocessed list.

Because we can only use a list of limited size, one can ask the
question which lattice vectors to include in this list L. Later in the
analysis it will become clear that short vectors are more useful to
reduce a random target, so it is natural to let L consist of all short
vectors up to some radius. Let α > λ1(L) be this radius and denote
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Algorithm 5: The randomized iterative slicer of [DLW19]
Input: A target vector t ∈ Rd, a list L ⊂ L, a target distance

γ ∈ R.
Output: A close vector v ∈ L, s.t. ∥t− v∥ ≤ γ.

1 Function RandomizedSlicer(L, t, γ):
2 repeat
3 t′ ← Sample(t+ L);
4 v← IterativeSlicer(L, t′);
5 until ∥t′ − v∥ ≤ γ;
6 return v + (t− t′);

its square by a := α2. The preprocessed list then becomes

La := {x ∈ L : ∥x∥2 ≤ a}.

Throughout this work let us assume that the lattice L is normalized
such that λ1(L) ≈ gh(L) = 1. Then under the Gaussian heuristic
the list consists of |La| = αd+o(d) lattice points, which determines (ig-
noring nearest neighbour data structures) the space complexity of the
algorithm and also determines the time complexity of each iteration.

5.2.2 Average-case CVPP

Recall from Section 2.3 that the approximate γ-CVP problem for
γ ≥ 1 asks you, given any target t, to find a lattice point at distance
at most γ ·dist(L, t) from the lattice. Throughout this chapter we will
write c := γ2 for the squared approximation factor, where c = 1 corre-
sponds to exact CVPP. We will only consider the average-case version
of this problem, where the lattice follows the Gaussian Heuristic and
the target (coset) is uniformly random t + L ∼ U(Rd/L). Under the
Gaussian Heuristic this implies that dist(L, t)→ gh(L) = 1 as d→∞,
and to simplify the analysis we will simply assume that dist(L, t) = 1.

The preprocessing variant γ-CVPP additionally allows to do any
kind of preprocessing given only a description of the lattice L (and
not the target t). The size of the final preprocessing advice is counted
in the eventual space complexity of the CVPP algorithm.

141



5. CVP with Preprocessing

5.2.3 Success probability

The iterative slicer is not guaranteed to succeed as the list does not
contain all relevant vectors. However, suppose that the iterative slicer
has a success probability of pa,c given a random target. It is clear that
having a larger preprocessed list increases the success probability, but
in general it is hard to concretely analyse the success probability for
a certain list. Heuristically however, we can do such an analysis.

Under the Gaussian heuristic we can derive bounds on pa,c, as was
first done by [DLW19]. They obtained the following two regimes for
the success probability as d→∞:

• For a ≥ 2c− 2
√
c2 − c we have pa,c → 1.

• For a < 2c − 2
√
c2 − c we have pa,c = exp(−C · d + o(d)) for a

constant C = C(a, c) > 0 depending on a, c.

The second case above illustrates that for a small list size the algo-
rithm needs to be repeated a large number of times with fresh targets
to guarantee a high success probability. This gives us the random-
ized slicer algorithm. To obtain a fresh target the idea is to sample
randomly a not too large element from the coset t + L, and assume
that the reduction of this new target is independent from the initial
one. Experiments from [DLW19] suggest that this is a valid assump-
tion to make, and given a success probability pa,c ≪ 1 it is enough to
repeat the algorithm Θ(1/pa,c) times to find the closest lattice point.
However this success probability in the case a < 2c− 2

√
c2 − c is not

yet fully understood. Two heuristic lower bounds [DLW19; Laa19]
are known and are shown in Figure 5.3. None of these lower bounds
fully dominates the other, which implies that neither of the bounds is
sharp. In the remainder of this work we consider this case where we
have a small success probability.

5.3 The random walk model
To interpret the iterative slicer algorithm as a random walk we first
look at the probability that a target t is reduced by a random lattice
point from the preprocessed list La. By the Gaussian heuristic this
lattice point is distributed uniformly over the ball of radius

√
a. To
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reduce the squared norm ∥t∥2 from x to at most y ∈ [(
√
x−√a)2, x]

by some v with ∥v∥2 = a, the inner product between t and v must
satisfy:

⟨t,v⟩ ≤ −(a+ x− y)/2.

Using the asymtotic formulas in Lemma 46 for the volume of a spher-
ical cap we then deduce the following probability:

Pr
v∈√a·Bd

(
∥t+ v∥2 ≤ y

∣∣∣ ∥t∥2 = x
)
=

(
1− (a+ x− y)2

4ax

)d/2+o(d)

.

Clearly any reduction of t from a squared norm of x to a squared norm
strictly less than (

√
x − √a)2 is unreachable by a vector in

√
a · Bd.

The probability that the target norm is successfully reduced to a value
less than ∥t∥2 decreases in a and thus we prefer to have short vectors
in our list. As the list La does not contain just one, but ad/2 lattice
vectors we obtain the following heuristic reduction probability for a
single iteration of the iterative slicer:

Pr
(
∃v ∈ La : ∥t+ v∥2 ≤ y

∣∣∣ ∥t∥2 = x
)2/d

→ min

{
1, a ·

(
1− (a+ x− y)2

4ax

)}
as d→∞. The reduction probability takes the form exp(−Cd+o(d))
for some constant C ≥ 0 that only depends on a, x and y. As we are
interested in the limit behaviour as d→∞ we focus our attention to
this base exp(−C), which we call the base-probability of this reduc-
tion and denote it by pa(x, y). Although these transition probabilities
represent a reduction to any square norm ≤ y, they should asymptot-
ically be interpreted as a reduction to ≈ y, as for any fixed ε > 0 we
have that pa(x, y − ϵ)d/pa(x, y)d = 2−Θ(d) → 0 as d→∞. If ∥t∥2 = x
is large enough we can almost certainly find a lattice point in La that
reduces this norm successfully. In fact a simple computation shows
that this is the case for any x > b := a2/(4a − 4) as d → ∞. So
in our analysis we can assume that our target is already reduced to
square norm b, and the interesting part is how probable the remaining
reduction from b to c is.
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∥t∥2
0 1 ≤ c y x b

pa(x, y)

Definition 75 (Transition base-probability). Let a, b ∈ R be such
that 1 < a < 2 and b = a2/(4a − 4). The transition base-probability
pa(x, y) to reduce ∥t∥2 from x to y is given by

pa : Sa → (0, 1],

(x, y) 7→
(
a− (a+ x− y)2

4x

)1/2

,

with Sa = {(x, y) ∈ [1, b]2 : b ≥ x ≥ y and (
√
x − √a)2 < y} the

allowed transitions.

Proof. We have to show that indeed pa(x, y) ∈ (0, 1] for (x, y) ∈ Sa,
and the given constraints on a and b. For the lower bound note that
expanding (

√
x−√a)2 < y, and rewriting gives a+ x− y < 2

√
a
√
x.

Because y ≥ x, and a > 1, both sides are positive and thus squaring
gives (a+ x− y)2 < 4ax, and in particular

a− (a+ x− y)2
4x

=
4ax− (a+ x− y)2

4x
> 0.

For the upper bound we use that x ≤ b = a2/(4a− 4), and x− y ≥ 0
to show that

4ax− 4x ≤ a2 ≤ (a+ x− y)2,
from which it follows that

4ax− (a+ x− y)2
4x

≤ 4x

4x
= 1.

Using the above reduction probabilities we model the iterative
slicer as a random walk over an infinite graph where the nodes are
given by the interval [1, b] such that each node xi ∈ [1, b] is associated
with the squared norm ∥ti∥2 of the partly reduced target. Note that
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each possible random walk b = x0 → x1 → · · · → xn = c has a cer-
tain success probability. Assuming the different steps are independent
this success probability is just the product of the individual reduction
probabilities. For an n-step path we could split our list La in n parts,
one for each step, to obtain this independence without changing the
asymptotic size of these lists. Again this success probability is of the
form exp(−Cd+ o(d)) for some constant C ≥ 0 that only depends on
x0, . . . , xn and a.

Definition 76 (Path). Let a, b, c ∈ R be such that 1 < a < 2 and
b = a2/(4a − 4) > c ≥ 1. Let n ≥ 1 be an integer. We denote an n-
step path on the interval [1, b] by x0 → x1 → · · · → xn for xi ∈ [1, b].
We define the set of all n-step paths with positive probability from b to
c by:

Sa[b
n→ c] := {(b = x0, x1, . . . , xn = c) ∈ Rn+1 : ∀i (xi−1, xi) ∈ Sa}.

The transition base-probability of such a path is given by

Pa[b
n→ c] : Sa[b

n→ c]→ (0, 1],

x 7→
n∏

i=1

pa(xi−1, xi).

The success probability of reaching c from b is determined by the
total probability of all successful paths. Note that all these paths have
some probability of the form exp(−Cd+o(d)) and thus the probability
for the path with the smallest C ≥ 0 will dominate all other paths
for large d. As a result, almost all successful walks will go via the
highest probable path, i.e., the one with the highest base-probability.
After applying a log-transform this becomes equivalent to finding the
shortest path in a weighted graph.

Definition 77 (Transition graph). Let a, b ∈ R be such that 1 < a <

2 and b = a2/(4a − 4). Let V = [1, b] and E = [1, b]2 be an infinite
graph G = (V,E) with weight function w : E → R≥0 ∪ {∞} given by:

w(x, y) =

{
− log pa(x, y), if (x, y) ∈ Sa;

∞, otherwise.
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One can associate n-step paths in this graph from b to c ∈ [1, b) with
the space Sa[b

n→ c]. The length of a path x ∈ Sa[b
n→ c] is denoted by

ℓa[b
n→ c](x) and the shortest path length by

ℓa,opt[b→ c] = inf
n∈Z≥1

inf
x∈Sa[b

n→c]

ℓa[b
n→ c](x).

Obtaining the success probability in this model therefore becomes
equivalent to obtaining the length of the shortest path ℓa,opt[b→ c] as
we have Pa[b

n→ c](x) = exp(−ℓa[b n→ c](x)).

5.4 Numerical approximations

We reduced the problem of obtaining the success probability of the
iterative slicer to the search of a shortest path in a specially con-
structed weighted infinite graph. We might not always be able to find
an exact solution in the input variables to the length of the shortest
path. However for fixed parameters we can always try to numerically
approximate the success probability, by approximating the shortest
path in our infinite graph. We present two fairly standard methods
for doing so. The first method first discretizes the infinite graph and
then determines the shortest path using standard algorithms such as
Dijkstra’s algorithm [Dij59]. The second method uses the fact that
the weight function wa : Sa → R≥0 is convex. A fact that we will later
use to derive an explicit solution.

5.4.1 Discretization

A natural way to approximate the shortest path in an infinite graph
is to first discretize to a finite subgraph with k vertices. Then one can
determine the shortest path in this subgraph using standard meth-
ods to obtain a short path in the infinite graph. The details of this
approach are shown in Algorithm 6.

Using any optimized Dijkstra implementation the time and space
complexity of Algorithm 6 is O(|Ed| + |Vd| log |Vd|) = O(k2). In gen-
eral this method gives a lower bound on the success probability for
any fixed a and c. Because the weight function wa : Sa → R≥0 is con-
tinuous Algorithm 6 converges to the optimal path length as k →∞.
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Algorithm 6: A discretized shortest path algorithm
Input: Parameters 1 < a < 2, b = a2/(4a− 4) and c ∈ [1, b)

describing the graph, and a discretization value k.
Output: A shortest path on the discretized graph from b to c.

1 Function DiscretizedDijkstra(a, b, c, k):
2 Compute Vd = {c+ i·(b−c)

k
: i = 0, . . . , k};

3 Compute Ed = {(x, y) ∈ V 2
d ∩ Sa} and the weights

wa(x, y);
4 Compute shortest path on Gd = (Vd, Ed) from b to c

using [Dij59].

The C++ implementation of this method used for the experiments is
made available on Github2.

For this method to converge to the shortest path in the full graph
we only need a continuous weight function. Furthermore the number
of steps does not have to be specified a priori. The high memory usage
of O(k2) could limit the fineness of our discretization. To circumvent
this we can generate the edges (and their weight) on the fly when
needed, which reduces the memory consumption to O(k).

5.4.2 Convex optimization

Where the first method only needed wa : Sa → R≥0 to be continuous,
the second method makes use of the convexity of this function.

Lemma 78 (Convexity of Sa and wa). Let 1 < a < 2, the set of al-
lowed transitions Sa is convex and the weight function wa is strictly
convex on Sa.

Proof. The convexity of Sa = {(x, y) ∈ [1, b]2 : b ≥ x ≥ y and (
√
x −√

a)2 < y} follows immediately from the convexity of the function
f(x) = (

√
x−√a)2 on [0,∞). Remember that for (x, y) ∈ Sa

wa(x, y) = − log pa(x, y) = −
1

2
log

(
a− (a+ x− y)2

4x

)
,

2Implementation: https://github.com/WvanWoerden/randomized-slicer
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and thus we have

d2

dx2
wa(x, y) =

8xpa(x, y)
2 + (4a− 2(a+ x− y))2 − 16pa(x, y)

4

32x2pa(x, y)4
,

d

dy

d

dx
wa(x, y) =

−8xpa(x, y)2 + (4a− 2(a+ x− y)) · 2(a+ x− y)
32x2pa(x, y)4

,

d2

dy2
wa(x, y) =

8xpa(x, y)
2 + 4(a+ x− y)2

32x2pa(x, y)4
.

As pa(x, y) > 0 and a + x − y ≥ a > 0 for (x, y) ∈ Sa we have
d2

dy2
wa(x, y) > 0. We consider the Hessian H of wa. Computing the

determinant gives:

det(H) =
2(a+ x− y)4 · (4ax− (a+ x− y)2)

1024x6pa(x, y)8

and we can conclude that det(H) > 0 from the fact that 4ax − (a +
x − y)2 > 0 and (a + x − y)4 > 0 for (x, y) ∈ Sa. So H is positive
definite, which makes wa strictly convex on Sa.

Corollary 79 (Convexity of Sa[b
n→ c] and ℓa[b

n→ c]). Let a, b, c ∈ R
be such that 1 < a < 2 and b = a2/(4a − 4) > c ≥ 1. For any (fixed)
integer n ≥ 1, the space of n-step paths Sa[b

n→ c] is convex and the
length function ℓa[b

n→ c] is strictly convex on Sa[b
n→ c].

Proof. The convexity of Sa[b
n→ c] follows immediately from that of

Sa. Note that ℓa[b
n→ c](x) =

∑n
i=1wa(xi−1, xi) and thus it is convex

as a sum of convex functions. Furthermore, for each variable at least
one of these functions is strictly convex and thus the sum is strictly
convex.

So for any fixed n ≥ 1 we can use convex optimization to numer-
ically determine the optimal path of n steps. In fact, because of the
strict convexity, we know that this optimal path of n steps (if it exists)
is unique. However the question remains what the optimal number of
steps is, i.e., for which n we should run the convex optimization algo-
rithm. We might miss the optimal path if we do not guess the optimal
number of steps correctly. Luckily because wa(b, b) = 0 by definition,
we can increase n without being afraid to skip some optimal path.
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Lemma 80 (Longer paths are not worse). Let a, b, c ∈ R be such that

1 < a < 2 and b = a2/(4a − 4) > c ≥ 1. If ℓa[b
n→ c] and ℓa[b

n+k→ c]
for n, k ≥ 0 both attain a minimum, then

min
x∈Sa[b

n→c]

ℓa[b
n→ c](x) ≥ min

x∈Sa[b
n+k→ c]

ℓa[b
n+k→ c](x).

Proof. Suppose ℓa[b
n→ c] attains its minimum at y = (b = y0, y1, . . . ,

yn = c) ∈ Sa[b
n→ c]. Using that wa(b, b) = 0 we get that:

min
x∈Sa[b

n+k→ c]

ℓa[b
n+k→ c](x) ≤ ℓa[b

n+k→ c](b, . . . , b = y0, . . . , yn = c)

= k · wa(b, b) + ℓa[b
n→ c](y)

= ℓa[b
n→ c](y).

This completes the proof.

So increasing n can only improve the optimal result. When run-
ning a numerical convex optimization algorithm one could start with
a somewhat small n and increase it (e.g., double it) until the result
does not improve any more.

5.4.3 Numerical results

We ran both numerical algorithms and got similar results. Running
the convex optimization algorithm gave better results for small a =
1+ε as the fineness of the discretization is not enough to represent the
almost shortest paths in this regime. This is easily explained as b ≈ 1

4ε

and thus for fixed c the distance between b and c, i.e., the interval to
be covered by the discretization quickly grows as ε→ 0.

The new lower bound that we obtained numerically for exact CVPP
(c = 1) is shown in Figure 5.3. For α ≤ 1.1047 we observe that the
new lower bound is strictly better than the two previous lower bounds.
For α > 1.1047 the new lower bound is identical to the lower bound
from [DLW19]. Taking a closer look at the short paths we obtained
numerically we see that α ≈ 1.1047 is exactly the moment where this
path switches from a single step to at least 2 steps. This makes sense
as in our model the lower bound from [DLW19] can be interpreted as
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Figure 5.3: Lower bounds on success probability of the iterative slicer
for CVPP (c = 1) computed with a discretization parameter of k =
5000.

a ’single step’ analysis. This also explains the asymptote for this lower
bound as for α ≤ 1.0340 it is not possible to walk from b to c = 1 in
a single step.

When inspecting these short paths b = x0 → x1 → · · · → xn = c
further we observed an almost perfect fit with a quadratic formula
xi = u · i2 + v · i + b for some constants u, v. In the next section
we show how we use this to obtain an exact analytic solution for the
shortest path.

5.5 An exact solution

In order to determine an exact solution of the shortest path, and thus
an exact solution of the success probability of the iterative slicer we
use some observations from the numerical results. Due to Corollary 79
we know that for any fixed n ≥ 1 our minimization problem is strictly
convex. As a result there can be at most one local minimum which, if
it exists, is immediately also the unique global minimum.
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5.5. An exact solution

What remains is to explicitly construct such a local minimum,
after which we only have to optimize over n. We recall from Section
5.4.3 that the optimal path x0 → · · · → xn seems to take the shape
xi = u · i2 + v · i + b with xn = c. So for our construction we assume
this shape, which reduces the problem to determining the constants
u, v. Furthermore, as we are trying to construct a local minimum, we
assume that all partial derivatives in the non-constant variables are
equal to 0. This gives enough restrictions to obtain a verbose, but
explicit solution.

Definition 81 (Explicit construction). Let a, b, c ∈ R be such that
1 < a < 2 and b = a2/(4a − 4) > c ≥ 1, and let n ≥ 1 be an integer.
We define

xi := ua[b
n→ c] · i2 + va[b

n→ c] · i+ b,

with ua[b
1→ c] := 0, va[b

1→ c] := c− b and for n ≥ 2:

ua[b
n→ c] :=

(b+ c− a)n−
√

(an2 − (b+ c))2 + 4bc(n2 − 1)

n3 − n ,

va[b
n→ c] :=

(a− 2b)n2 + (b− c) +
√

(an2 − (b+ c))2 + 4bc(n2 − 1)n

n3 − n .

Lemma 82. Let a, b, c, n and xi be as in Definition 81. By construc-
tion we have xn = c and

∂

∂xi

n∑
j=1

− log pa(xj−1, xj) = 0

for all i ∈ {1, . . . , n− 1}.

Proof. Note that the partial derivative constraints can be reduced to
the single constraint ∂

∂xi
(− log pa(xi−1, xi)− log pa(xi, xi+1)) = 0 for a

symbolic i. Together with the constraint xn = c one can solve for u, v
in xi = u · i2 + v · i+ b. For a symbolic verification see the Sage script
in Appendix A of the full version3.

What remains is to show that the explicit construction indeed gives
a valid path, i.e., one that is in the domain Sa[b

n→ c]. An example of
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Figure 5.4: Some examples of the constructed paths in Definition 81
for a = 1.02, c = 1.

how these constructed paths look are given in Figure 5.4. We observe
that if n becomes too large these constructed paths are invalid as they
walk outside the interval [c, b]. This is an artefact of our simplification
that wa(x, y) = − log pa(x, y) which does not hold for (x, y) ̸∈ Sa.
We can still ask the question for which n this construction is actually
valid.

Lemma 83 (Valid constructions). Let a, b, c be as in Definition 81.

Let n ≥ 1 be an integer such that b−c
a
≤ n < 1

2
+

√
(4b−a)2−8(2b−a)c

2 a
and

xi = ua[b
n→ c] · i2 + va[b

n→ c] · i+ b.

Then x = (x0, . . . , xn) ∈ Sa[b
n→ c] and x is the unique minimum of

ℓa[b
n→ c].

Proof. We have to check that x satisfies the two conditions

xi−1 ≥ xi and (
√
xi−1 −

√
a)2 < xi,

3Full version: https://eprint.iacr.org/2020/120.pdf
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5.5. An exact solution

for all i ∈ {1, . . . , n}. Note that for n = 0 we must have b = c and
the statement becomes trivial. For n = 1 we have x = (b, c) and the
conditions follows from 0 ≤ b − c ≤ na ≤ a. So we can assume that
n ≥ 2. First we rewrite ua[b

n→ c] to:

ua[b
n→ c]

=
(b+ c− a)n−

√
((b+ c− a)n)2 + (a2n2 − (b− c)2)(n2 − 1)

n3 − n ,

which makes it clear that ua[b
n→ c] ≤ 0 when an ≥ b− c. As a result

the differences

xi−1 − xi = (1− 2i) · ua[b n→ c]− va[b n→ c],

are increasing in i ∈ {1, . . . , n}. Therefore for the first condition it is
enough to check that

x0 − x1 =
(b− c) + (2b− a)n−

√
(an2 − (b+ c))2 + 4bc(n2 − 1)

n2 + n
≥ 0.

In fact a solution with x0 = x1 = b is not so interesting, so solving for
x0 − x1 > 0 gives for n ≥ 2 the sufficient condition

n <
1

2
+

√
(4b− a)2 − 8(2b− a)c

2 a
.

For the second condition we first show the stronger property that
xi−1 − xi ≤ a, and again by the increasing differences it is enough
to show that xn−1 − xn ≤ a; rewriting gives the following sufficient
statement for n ≥ 2:

−an+ b− c ≤ 0.

Now we prove that √xi−1 −
√
xi <

√
a. If xi−1 = xi the condition

holds trivially, else xi−1 > xi and we get

(
√
xi−1 −

√
xi)

2 < (
√
xi−1 −

√
xi)(
√
xi−1 +

√
xi) = xi−1 − xi ≤ a.

Note that if √xi−1 −
√
a ≥ 0, then we can rewrite √xi−1 −

√
xi <

√
a

and square to obtain the condition (
√
xi−1−

√
a)2 < xi. Alternatively,

if √xi−1 −
√
a < 0, then due to a < 2 we obtain (

√
xi−1 −

√
a)2 <

(1−
√
2)2 < 1 ≤ xi.

We conclude that x ∈ Sa[b
n→ c], and because we have the equality

ℓa[b
n→ c](x) =

∑n
i=1− log pa(xi−1, xi) on Sa[b

n→ c], the claim that this
is a global minimum follows from Definition 81 and Lemma 79.
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So by Lemma 81 there exists some s ∈ N such that for all (b −
c)/a ≤ n ≤ s we have an explicit construction for the optimal n-step
path. By Lemma 80 we know that of these paths the one with n = s
steps must be the shortest. However for n > s our construction did not
work and thus we do not know if any shorter path exists. Inspired by
Lemma 80 and numerical results we obtain the following alternative
exact solution for n > s.

Theorem 84 (Optimal arbitrary-step paths). Let a, b, c ∈ R be such
that 1 < a < 2 and b = a2/(4a− 4) > c ≥ 1. Let n satisfy

n =

⌈
−1

2
+

1

2a

√
(4b− a)2 − 8(2b− a)c

⌉
. (5.1)

For k ≥ n the unique global minimum of ℓa[b
k→ c] is given by

x = (b, . . . , b, b = y0, . . . , yn = c) ∈ Sa[b
k→ c]

with yi = ua[b
n→ c] · i2 + va[b

n→ c] · i + b and the length is equal to
ℓa[b

n→ c](y).

Proof. By Corollary 79 it is enough to show that x is a local minimum,
therefore we check the partial derivatives. For i > k − n we have
∂
∂xi
ℓa[b

k→ c](x) = ∂
∂xi
ℓa[b

n→ c](y) = 0 by construction. For i < k − n
we have xi−1 = xi = xi+1 = b, which results in ∂

∂xi
ℓa[b

k→ c](x) =

−a−1
2b

< 0. For the most interesting case i = k − n we need that

n ≥ −1
2
+

√
(4b−a)2−8(2b−a)c

2 a
. Because as a result we get y0− y1 ≤ a2

2b−a
,

which together with y0 − y1 ≤ b − c ≤ b − 1 is precisely enough to
show that ∂

∂xk−n
ℓa[b

k→ c](x) ≤ 0.
To conclude let z ̸= x ∈ Sa[b

n→ c], then by Corollary 79 and using
that zi − xi = zi − b ≤ 0 for all 0 ≤ i ≤ k − n we have:

ℓa[b
k→ c](z) > ℓa[b

k→ c](x) + ⟨y − x,∇ℓa[b k→ c](x)⟩

= ℓa[b
k→ c](x) +

∑
i≤k−n

(zi − xi) ·
∂

∂xi
ℓa[b

k→ c](x)

≥ ℓa[b
k→ c](x).

and thus x is the unique global minimum of ℓa[b
k→ c].
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5.5. An exact solution

Corollary 85 (Optimal minimum-step paths). Let a, b, c ∈ R be such
that 1 < a < 2 and b = a2/(4a − 4) > c ≥ 1. The optimal path in
the transition graph in Definition 77 from b to c consists of n steps,
with n defined by equation (5.1). The optimal path is of the form
b = x0 → x1 → · · · → xn = c with xi = ua[b

n→ c] · i2+ va[b n→ c] · i+ b.

Heuristic claim 86. Given the optimal path b = x0 → · · · → xn = c
from Corollary 85, the success probability of the iterative slice algo-
rithm with list size an/2+o(n) for

√
c-CVPP is given by

exp

(
−

n∑
i=1

wa(xi−1, xi)d+ o(d)

)
.

As we have an exact formula for the optimal number of steps, and
the lower bound from [DLW19] uses a ‘single-step’ analysis we know
exactly in which regime Corollary 85 improves on theirs. Namely for
those a > 1 and c ≥ 1 such that for n defined by equation (5.1) we have
n > 1. For exact CVPP we obtain improvements for a < 1.22033, i.e.,
when using less than 20.1436d+o(d) memory, as can be seen in Figure 5.1.
This improvement can also be visualized through Figure 5.5, which
plots the optimal number of steps against the size of the preprocessed
list. Whenever the optimal strategy involves taking more than one
step, we improve upon [DLW19]. For the crossover points where the
number of optimal steps changes we have a more succinct formula for
the shortest path and the success probability.

Lemma 87 (Success probability for integral n). Let a, b, c ∈ R be
such that 1 < a < 2 and b = a2/(4a − 4) > c ≥ 1. If n defined
similar to equation (5.1), but without rounding up, is integral, then
the optimal path from b to c has probability((

a

2− a

)n

·
(
1− 2n(a− 1)

2− a

))d/2+o(d)

.

Proof. For such n we obtain the expression xi = b − (i + 1) · i · a2−a
2−a

.
The result follows from simplifying the remaining expression.
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CVPP = 1-CVPP2-CVPP5-CVPP

Optimal number of steps

for (approximate) CVPP
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Figure 5.5: Optimal number of steps n against the list size |L| =
αd+o(d) = ad/2+o(d). We improve upon [DLW19] whenever n > 1. For
large list sizes the optimal number of steps of cost exp(−Cd + o(d))
drops to 0, as then the success probability of the iterative slicer equals
2−o(d).
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CHAPTER 6
Background on Basis

Reduction

This chapter gives an introduction to different types of basis re-
duction algorithms, and the state-of-the-art of modelling their
behaviour.

6.1 Introduction
Every R-linear subspace V ⊂ Rn has an orthogonal basis, and many
efficient algorithms in linear algebra rely on such a basis. Similarly,
an orthogonal basis B of a lattice would make many problems effi-
ciently solvable, e.g., solving CVP for t = Bx would be as simple as
rounding the coefficients c = B⌊x⌉. Any rank n lattice L = L(B) has
(for n > 1) an infinite number of other bases B ·U for U ∈ GLn(Z),
but for most lattices none of those are orthogonal. Still most lattices
have close to orthogonal bases, which still allows us to do some algo-
rithmic tasks efficiently. We call such a basis well-reduced or simply
good. Basis reduction is the act of turning a (bad) basis into a good
basis. A common way to measure the orthogonality of a basis is by
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0 b̃0 = b0

b1b̃1

0

b̃0 = b0

b1

b̃1

Figure 6.1: Babai’s fundamental domain for a good basis (left) versus
a bad (right) basis.

its orthogonality defect δ(B) :=
∏

i∥bi∥∏
i∥b̃i∥

, where b̃i is the i-th Gram-
Schmidt vector. We have δ(B) ≥ 1 with equality if and only if the
basis is orthogonal. Since we can rewrite δ(B) =

∏
i∥bi∥

vol(L(B))
, we see

that to minimize the orthogonality defect a good basis must consist of
short vectors. For a lattice basis orthogonality and shortness are thus
directly connected.

To break most lattice based schemes we do not have to compute a
basis with the lowest orthogonality defect, or consisting of the short-
est vectors; a somewhat orthogonal basis is often sufficient. Once a
certain orthogonality is reached we can use the good basis to decrypt
a message, recover a secret key, or forge a signature. In part II of
this thesis we have shown how to solve exact versions of the shortest
and closest vector problem, in moderate dimensions. Running these
algorithms on the high dimensional lattices common in cryptography
is far beyond feasible, and would also find much shorter vectors than
needed to break the scheme. In this chapter we show how to boot-
strap these exact algorithms in moderate dimensions, to reduce a large
dimensional basis. In particular this allows to compute approximate
shortest vectors from lower dimensional exact SVP oracles.
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0 n0

Bad Profile

Good Profile
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i∥

Area = log vol(L)

Figure 6.2: A good versus a bad basis log-profile.

6.1.1 Basis profile

It turns out that algorithmically, the profile of a basis, i.e., its GSO
norms (∥b̃i∥)i are much more interesting than the norms of the basis
vectors themself. They are directly related, i.e., by Lemma 38 a size-
reduced basis consists of short vectors if and only if the GSO norms
are short. Still, most cryptanalytic algorithms actually rely on the
profile, and not the basis norms.

One such example is Babai’s nearest plane algorithm. Recall from
Section 2.4.3 that given a basis B of L, Babai’s nearest plane algorithm
decodes any target t ∈ span(L) to a close vector c ∈ L such that
t− c ∈ P(B̃). As a result Babai’s algorithm perfectly decodes targets
up to distance 1

2
mini∥b̃i∥ from the lattice, and has worst-case and

average-case squared decoding distance proportional to
∑

i∥b̃i∥2.
Due to the invariant

∏
i∥b̃i∥ = vol(L), both mini∥b̃i∥ and

∑
i∥b̃i∥2

are optimal (maximized and minimized respectively) when ∥b̃0∥ =
. . . = ∥b̃n−1∥ = vol(L)1/n, i.e. when the GSO profile is perfectly bal-
anced. Such a basis with a perfectly balanced profile might not exist,
e.g. by the Gaussian Heuristic we already have ∥b̃0∥ ≥ λ1(L) ≈√
n/(2πe) vol(L)1/n ≫ vol(L)1/n. A typical reduced basis profile

starts high and decreases quickly (see Figure 6.2). We could (infor-
mally) speak of the slope of a profile.

For a not so orthogonal bad basis the slope is steep, and the first
GSO norm ∥b̃0∥ is very large, leading to a poor decoding error propor-
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tional to
∑

i∥b̃i∥2 ≥ ∥b̃0∥2. Similarly, the last GSO norm ∥b̃n−1∥ is
very small, leading to a poor bounded distance decoding performance.
In contrast, a close to orthogonal good basis has a gradual declining
and much more balanced slope, and therefore achieves much better
decoding performances.

In the following Sections we consider three ways of obtaining a good
basis. The exponential time HKZ algorithm, which achieves a very
good slope by minimizing ∥b̃0∥, then ∥b̃1∥, and so on. The polynomial-
time LLL algorithm, which achieves a mildly good slope, by improving
the slope locally. And lastly the BKZ algorithm that combines these
ideas and offers a tunable time-quality trade-off between the two.

6.2 HKZ reduction
One approach to balance the typically decreasing basis profile (∥b̃0∥,
. . . , ∥b̃n−1∥), is by minimizing the first norm ∥b̃0∥, then the second
∥b̃1∥, and so on. The first GSO vector b̃0 is just the first basis vector
b0, so by definition it is minimized when ∥b0∥ = λ1(L). For a fixed
b0, the second GSO vector b̃1 is exactly the first basis vector in L[1:n),
and is thus minimized when ∥b̃1∥ = λ1(L[1:n)). We can continue this
greedy process until the end. The resulting basis is said to be Hermite-
Korkine-Zolotarev reduced.

Definition 88 (Hermite-Korkine-Zolotarev reduced). A basis B =

[b0, . . . ,bn−1] is called Hermite-Korkine-Zolotarev (HKZ) reduced if
it is size-reduced and

∥b̃κ∥ = λ1(L[κ:n)) for all κ = 0, . . . , n− 1.

That such a basis exists follows from the fact that any shortest
vector of L[κ:n) is primitive in L[κ:n).

An alternative recursive definition would be as follows: a size-
reduced basis [b0, . . . ,bn−1] is HKZ reduced if ∥b0∥ = λ1(L), and
B[1:n) is HKZ reduced (or equals {0}). From this Algorithm 7 to
obtain an HKZ reduced basis is straightforward. Compute a shortest
vector, project away from it, and repeat on the projected lattice.

HKZ reduction is very strong, and could be interpreted as (close
to) optimal for many purposes. In particular, an HKZ reduction oracle
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Algorithm 7: The HKZ algorithm.
Data: A rank n lattice L (represented by any basis).

1 for κ = 0, . . . , n− 1 do
2 πκ := π(b0,...,bκ−1)⊥ ;
3 w← a shortest vector in πκ(L);
4 Lift w to a lattice vector bκ ∈ L such that πκ(bκ) = w;
5 Size-reduce bκ w.r.t. [b0, . . . ,bκ−1];
6 end
7 return B = [b0, . . . ,bn−1];

would break almost all lattice-based cryptography. However, this good
reduction quality comes at a cost. Since one has to solve an exact SVP
instance in dimension n, computing an HKZ reduced basis quickly
becomes unfeasible.

6.3 The LLL algorithm

The LLL algorithm by Lenstra, Lenstra and Lovász [LLL82] is a basis
reduction algorithm that runs in polynomial time and which reaches
approximation factors exponential in the dimension. It was the first
polynomial time basis reduction algorithm, and it has found countless
applications. Furthermore, it is a fundamental building block in more
complex basis reduction algorithms.

The general idea of the LLL algorithm is to improve the basis
slope, by making sure that consecutive GSO norms ∥b̃κ∥, ∥b̃κ+1∥ do
not decrease too quickly. This is achieved by locally reducing all the
rank two projected sublattices L[κ:κ+2) = L([πκ(bκ), πκ(bκ+1)]) for κ =
0, . . . , n− 2.

6.3.1 Lagrange reduction

So let us first focus on the rank two case L = L([b0,b1]). We want two
basis vectors to be as short and as orthogonal as possible. Following
the HKZ reduction algorithm it is natural to let the first basis vector
be a shortest vector of the lattice. In this way we obtain a good GSO
profile, and by size-reduction a close to orthogonal basis. The resulting
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b0

b1

Figure 6.3: Illustration of the Wristwatch Lemma 89. There always
exists a basis [b0,b1] with b0 a shortest vector, and b1 in the green
strap of width 1

2
∥b0∥ (in the direction orthogonal to b0).

basis is called Lagrange reduced, and visually looks like a ’Wristwatch’
basis (see Figure 6.3).

Lemma 89 (Wristwatch Lemma). Let L ⊂ Rd be a lattice of rank 2,
then there exists a B = [b0,b1] of L that satisfies

1. ∥b0∥ ≤ ∥b1∥, and

2. |⟨b0,b1⟩| ≤ 1
2
∥b0∥2 (size-reduction).

In particular this implies that ∥b0∥ = λ1(L) and ∥b̃0∥ ≤
√

4/3 · ∥b̃1∥.
We call such a basis Lagrange reduced.

There is an efficient algorithm to obtain such a basis.

Lemma 90. On input a basis of a rank 2 lattice L, Algorithm 8
terminates and returns a Lagrange reduced basis [b0,b1] of L, i.e. a
basis satisfying the condition in Lemma 89.

Proof. Swapping basis vectors, and subtracting integer multiples of
other basis vectors, are all unimodular operations. Therefore the re-
turned basis is still a basis of the input lattice. This also implies that
b0,b1 are nonzero throughout the algorithm.

The algorithm terminates in a finite number of steps given that
the norm of ∥b0∥ strictly decreases in each iteration, and because by
a packing argument there are only a finite number of lattice points in

164



6.3. The LLL algorithm

Algorithm 8: Lagrange reduction
Input : A rank 2 basis [b0,b1].
Input : A Lagrange reduced basis of the input lattice.

1 repeat
2 swap b0 ↔ b1

3 k ←
⌊
⟨b0,b1⟩
⟨b0,b0⟩

⌉
4 b1 ← b1 − k · b0 // size-reduction
5 until ∥b0∥ ≤ ∥b1∥
6 return [b0,b1]

L of norm at most some bound. A closer inspection shows that the
number of iterations is of order at most O(log(∥b0∥)).

Now let us consider the two conditions of Lemma 89. The second
condition ∥b0∥ ≤ ∥b1∥ is true by the termination condition of the
repeat loop. The size-reduction operation just before that makes sure
that the first condition |⟨b0,b1⟩| ≤ 1

2
∥b0∥2 is also true.

Proof Lemma 89. The existance of such a basis follows directly from
Lemma 90. Let [b0,b1] be a Lagrange reduced basis. Consider any
nonzero lattice vector v = xb0 + yb1 ∈ L with (0, 0) ̸= (x, y) ∈ Z2.
We want to show that ∥v∥ ≥ ∥b0∥. When y = 0 this is trivial, and
when x = 0 it follows from ∥b1∥ ≥ ∥b0∥. For the case x ̸= 0 and y ̸= 0
we have

∥v∥2 = x2 · ∥b0∥2 + y2 · ∥b1∥2 + 2xy⟨b0,b1⟩
≥ (x2 + y2 − |xy|)∥b0∥2 ≥ min{x2, y2} · ∥b0∥2 ≥ ∥b0∥2,

and thus ∥b0∥ = λ1(L). For the GSO norms ∥b̃0∥, ∥b̃1∥ we have

∥b0∥2 ≤ ∥b1∥2 = ∥b̃1∥2 + |⟨b0,b1⟩|2/∥b0∥2 ≤ ∥b̃1∥2 +
1

4
∥b0∥2,

and thus ∥b̃0∥ = ∥b0∥ ≤
√

4/3 · ∥b̃1∥.

6.3.2 LLL

If all the projected sublattice bases B[i:i+2) are Lagrange reduced, then
we obtain ∥b̃i+1∥ ≥

√
3/4∥b̃i∥ for all i = 0, . . . , n − 2. In other

165



6. Background on Basis Reduction

words, the profile cannot decrease too quickly. Simply stated the
LLL algorithm proceeds as follows: if any local basis B[i:i+2) is not
Lagrange reduced, then reduce it. Clearly if the algorithm terminates
all local bases are Lagrange reduced. To show that it terminates in
a polynomial number of iterations we need to slightly relax the local
Lagrange condition ∥πi(bi)∥ ≤ ∥πi(bi+1)∥.

Definition 91 (LLL reduced). A lattice basis B = [b0, . . . ,bd−1] is
called δ-LLL reduced, for δ ∈ (1

4
, 1], if

1. The Lovász Condition δ∥πi(bi)∥2 ≤ ∥πi(bi+1)∥2
holds for all 0 ≤ i < n− 1, and

2. it is size-reduced.

We call δ ∈ (1
4
, 1] the reduction parameter. Note that δ = 1

represents exact Lagrange reduction, but for this value we cannot show
that the algorithm terminates in polynomial time. A δ-LLL reduced
bases does not decrease too steeply, i.e. combining the two conditions
we obtain

∥b̃κ+1∥ ≥
√
δ − 1

4
∥b̃κ∥,

for all κ = 0, . . . , n − 2. This directly has implications for the length
of the basis vectors.

Corollary 92 (LLL results). Let δ ∈ (1
4
, 1]. For a δ-LLL reduced

basis B = [b0, . . . ,bn−1] of the lattice L, we have

∥b0∥ ≤ (δ − 1
4
)−(n−1)/2 · λ1(L)

∥b0∥ ≤ (δ − 1
4
)−(n−1)/4 · vol(L)1/n

Proof. Let γ :=
√

1/(δ − 1
4
). By combining the LLL conditions we

have
∥b0∥ = ∥b̃0∥ ≤ γ · ∥b̃1∥ ≤ . . . γn−1 · ∥b̃n−1∥.

In particular we have ∥b0∥ ≤ γn−1 ·mini∥b̃i∥, and the first statement
follows from the fact that mini∥b̃i∥ ≤ λ1(L). For the second statement
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we have

det(L)1/n =

(
n−1∏
i=0

∥b̃i∥
)1/n

≥
(

n−1∏
i=0

∥b̃0∥ · γi
)1/n

= ∥b0∥ · γ(n−1)/2.

For δ = 1 we have ∥b0∥ ≤ (4/3)(n−1)/2 · vol(L)1/n. Recall that
Hermite’s bound says precisely that such a vector exists, i.e., λ1(L) ≤
(4/3)(n−1)/2 · vol(L)1/n. As such, the LLL algorithm can be seen as an
algorithmic instantiation of Hermite’s bound: it does not just show
existence, it actually computes a vector of (almost) that length.

6.3.3 LLL algorithm

We will now discuss why the LLL algorithm terminates in a polyno-
mial number of iterations. To show that the LLL algorithm runs in
polynomial-time one would additionally have to show that the oper-
ations, like computing the GSO (using rationals), run in polynomial-
time. We will not cover this, but this is precisely where the global
size-reduction of the basis comes into play.

Algorithm 9: LLL reduction
Input : A basis B = [b0, , . . . ,bn−1] of a lattice L and a

reduction parameter δ ∈ (1
4
, 1].

Output: A δ-LLL reduced basis of the input lattice.
1 Size-reduce B
2 while ∃index i that does not satisfy Lovász’ condition do
3 Let U ∈ GL2(Z) be s.t. B[i:i+2) ·U is Lagrange reduced

// Using Algorithm 8
4 [bi,bi+1]← [bi,bi+1] ·U // Update B
5 Size-reduce B

6 end
7 return B

To argue that the number of iterations is polynomially bounded in
the input size we use a potential argument.
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Definition 93 (Potential). For a basis B, we define the potential DB

as

DB =
n∏

i=1

vol(L0:i) =
n−1∏
i=0

∥b̃i∥n−i.

Lemma 94. For any integer basis B ∈ Zm×n and reduction parame-
ter δ ∈ (1

4
, 1), Algorithm 9 is correct and terminates after at most

O(n2 log(max
i
∥bi∥))

iterations.

Proof. The correctness is clear from the loop condition.
To show that the number of iterations is polynomially bounded we

first argue that the potential decreases significantly during each loop.
First note that size-reducing a basis does not change the GSO norms,
and thus the size-reduction operations do not change the potential.
Now let us consider a loop, where 0 ≤ i ≤ n− 2 is the index at which
Lovász’ condition is not satisfied. At the start of the loop we thus
have

δ∥πi(bi)∥2 > ∥πi(bi+1)∥2.
Let [ci, ci+1] = [bi,bi+1] · U be the new basis vectors, c̃i, c̃i+1 the
new GSO vectors, and let DB and DB′ be the old and new potential
respectively. The lattice L[i:i+2) stays the same (and thus its span), so
all GSO norms ∥b̃j∥ for j ̸∈ {i, i+ 1} remain unchanged in this loop.
Furthermore we have the invariant

∥c̃i∥ · ∥c̃i+1∥ = vol(L[i:i+2)) = ∥b̃i∥ · ∥b̃i+1∥.

By Lagrange reduction, the vector c̃i is a shortest vector in L[i:i+2),
and in particular ∥c̃i∥ ≤ ∥πi(bi+1)∥. To summarize we have

∥c̃i∥2 ≤ ∥πi(bi+1)∥2 < δ · ∥b̃i∥2,

and together with the invariant this gives

∥c̃i∥n−i · ∥c̃i+1∥n−(i+1) <
√
δ · ∥b̃i∥n−i · ∥b̃i+1∥n−(i+1),

and thus DB′ <
√
δ · DB. So the potential decreases by a constant

factor 1
2
<
√
δ < 1 each iteration.
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6.3. The LLL algorithm

To conclude we now have to upper and lower bound the potential.
For the lower bound note that for any integer basis B we have DB ≥ 1.
For the upper bound we have

DB ≤
n−1∏
i=0

∥bi∥n−i ≤ B
1
2
n(n+1),

where B := maxi∥bi∥. By the constant factor decrease each iteration,

and a lower and upper bound of 1 and B
1
2
n(n+1), there can be at most

O(n2 logB) iterations.

We obtained the lower bound DB ≥ 1 by restricting to integer
bases. This is not necessary, alternatively by Hermite’s inequality or
Minkowski’s Theorem we could lower bound each volume vol(L0:i) in
terms of λ1(L0:i) ≥ λ1(L), which only depends on the lattice.

The LLL algorithm does not even need a basis, it can also be
modified to work directly on the Gram matrix. The upper triangular
Cholesky matrix C from the decomposition G = C⊤C of a Gram
matrix plays the role of (basis and) GSO. The Gram matrix is modified
by the unimodular transformations as G′ = U⊤GU.

A small modification to the LLL algorithm by Pohst [Poh87] al-
lows to remove the requirement that the input vectors are linearly
independent. After this modification the input can consists of any
number of vectors, and the output will consists of an LLL reduced
basis of the lattice generated by the input vectors. In the next section
we will use this property to ‘insert’ short vectors in a basis. Given
a basis B = [b0, . . . ,bn−1] and a short vector v ∈ L(B), we can run
the modified LLL reduction algorithm on [v,b0, . . . ,bn−1]. Because
the first GSO norm can never increase during the LLL reduction algo-
rithm we end up with an LLL reduced basis B′ = [b′

0, . . . ,b
′
n−1] with

∥b′
0∥ ≤ min{∥b0∥, ∥v∥}.
A nice property of the LLL algorithm is that it is self-dual: to be

more precise, if a basis B is δ-LLL reduced, then the reversed dual
basis D of B is after size-reducing also δ-LLL reduced. This means
that e.g. Corollary 92 can also be implied to the reverse dual basis
[dn−1, . . . ,d0], and thus give a lower bound on ∥b̃n−1∥ = 1/∥dn−1∥.
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6. Background on Basis Reduction

6.4 BKZ reduction
We have seen the two extreme cases of basis reduction, the HKZ al-
gorithm delivers close to optimal reduction at the cost of solving SVP
in the full lattice, and the LLL algorithm that gives exponential ap-
proximation factors but runs in polynomial time. We will now discuss
a generalisation, that delivers a trade-off between these two extremes.

So how to generalize the LLL and HKZ algorithms? The common
theme is that they both rely on an SVP oracle for projected sublattices
L[κ:κ+β), which we call a block.

The difference being that HKZ works on blocks L[κ:n) of rank at
most n, while the LLL works on blocks L[κ:κ+2) of rank 2 (Lagrange
reduction). From this perspective the natural generalisation is to work
on blocks L[κ:κ+β) of rank at most β. This is precisely what Block-
Korkine-Zolotarev [Sch87] reduction does, and we call the parameter
β the blocksize.

Definition 95 (BKZ). A basis B = [b0, . . . ,bn−1] is called BKZ-β
reduced if it is size-reduced and

∥b̃κ∥ = λ1(L[κ:min (κ+β,n))) for all κ = 0, . . . , n− 1.

For β = 2 we recover the definition of 1-LLL, and for β = n we
recover the definition of HKZ. The condition on ∥b̃κ∥ is often relaxed
by a factor 1+ ϵ for some ϵ > 0 close to 0, both to allow for numerical
imprecisions and potential arguments like LLL. This is similar to the
relaxation of the Lovász Condition in LLL. In what follows we will
ignore this factor.

Similar to LLL a BKZ reduced basis contains a short basis vector.

Lemma 96 (BKZ approximation [Sch94]). For a BKZ-δ reduced ba-
sis B = [b0, . . . ,bn−1] of the lattice L, with 2 ≤ β ≤ n, we have

∥b0∥ ≤ γ
n−1
β−1
β · vol(L)1/n,

where γβ is Hermite’s constant of rank β.

In addition a Hermite factor bound ∥b0∥ ≤ √γβ
n−1
β−1

+1 · vol(L)1/n
is claimed without proof in [GN08b]. Because γβ ≤ O(β) the bound
decreases as the blocksize β increases; a larger blocksize gives a better
reduced basis.
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6.4. BKZ reduction

6.4.1 BKZ algorithm

The BKZ algorithm (see Algorithm 10) computes a BKZ reduced ba-
sis from any other basis. The algorithm greedily attempts to satisfy
the BKZ condition at each position by computing a shortest vector
in each block L[κ:min (κ+β,n)), and replacing the basis vector bκ accord-
ingly. This makes the basis BKZ-β reduced at position κ, but might
invalidate the condition at other positions. Applying this once to all
positions κ = 0, . . . , n − 2 is called a tour. The BKZ algorithm re-
peats such tours until the basis remains unchanged and is thus BKZ
reduced.
Algorithm 10: The BKZ algorithm.
Input : A lattice basis B, blocksize β.
Output: A BKZ-β reduced basis of the input lattice.

1 LLL reduce B
2 while B is not BKZ-β reduced do
3 for κ = 0, . . . , n− 2 do // A single BKZ-β tour
4 b← min{β, n− κ}
5 w← a shortest vector in L[κ:κ+b)

6 Lift w to a full vector v ∈ L[0:κ+b) s.t. πκ(v) = w
7 Insert v in B at position κ using LLL
8 LLL reduce B[0:κ+b)

9 end
10 end
11 return B

The BKZ algorithm as stated is not known to terminate in a poly-
nomial number of tours. Terminating variants exist that succeed after
about O(n2 log(n)/β2) tours [HPS11b; LN20], but the resulting bases
are not precisely BKZ-β reduced, and the resulting worst-case bounds
on ∥b0∥ are a polynomial factor worse than Lemma 96.

The troubles of proving a polynomial bound on the number of
tours, with a potential argument like LLL, seems to be related to the
fact that the BKZ algorithm is not self-dual like LLL. There do exists
variants of BKZ, like SDBKZ [MW16], that are self-dual, and that
have easier provable runtime and quality bounds.

In practice however, not much improvement to the basis profile is
attained after say a few dozen tours. The cost of BKZ is thus mainly
dominated by the exponential (in β) cost of finding a shortest vector
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Figure 6.4: The BKZ algorithm: inserting a shortest vector in the
projected sublattice L[κ:κ+β).

in a β-dimensional lattice. Throughout this thesis we will therefore
ignore the lattice rank and the number of iterations and cost the BKZ
algorithm in terms of the blocksize β.

6.4.2 Progressive BKZ

The cost of a BKZ-β tour quickly grows when increasing β. We thus
want to limit the number of tours we have to run at the maximal
blocksize β. The better the basis is already reduced, the less tours
are needed to reach a (close to) BKZ-β reduced basis. If we first re-
duce the basis with a lower blocksize β′ < β, then afterwards only
a few expensive tours are needed. Beyond the number of expensive
tours needed this also has benefits for the underlying SVP subroutine.
When using (extreme) enumeration a better basis lowers the cost sig-
nificantly, and when using sieving a better basis improves both the
number of dimensions for free and the number of sieving iterations
needed during progressive sieving. The idea of progressive BKZ (Al-
gorithm 11) is to apply this idea recursively: run only a few tours (say
1 or 2) for increasing β′ = 2, 3, . . . , β.
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6.5. Behaviour of reduction algorithms

Algorithm 11: Progressive BKZ.
Input : A lattice basis B, blocksize β, tours T > 0.

1 for β′ = 2, 3, . . . , β do
2 Run T BKZ-β′ tours.
3 end
4 return B

6.4.3 Slide reduction

An alternative generalisation of LLL is the slide reduction algorithm.
It uses SVP oracles both on primal blocks L[κ:κ+β), and on dual blocks
L∗

[κ:κ:β). This gives more control over the profile and makes slide re-
duction easier to (provably) analyse than BKZ. For n ≥ 2β this also
leads to slightly better asymptotic bounds on the norm ∥b0∥ of the
first basis vector.

Unfortunately, in practice the performance of BKZ seems to be
better than slide reduction, and as a result most (concrete) cryptanal-
ysis has been based on the BKZ algorithm. Also, the BKZ algorithm
reduces the full bases, which is important for solving certain variants
of SVP that are common in cryptography. In contrast, slide reduc-
tion focusses mostly on decreasing the norm ∥b0∥ of the first basis
vector, e.g. solving approx-SVP. Indeed, recently it was hinted that
slide reduction can be competitive with BKZ for approx-SVP [MW16;
Wal21]. While it would be interesting to see how the slide reduction
algorithm behaves on the lattice problems in this thesis, we keep our
focus on the BKZ algorithm which is much better understood from a
concrete perspective.

6.5 Behaviour of reduction algorithms

For cryptanalysis it is important to understand the practical behaviour
of lattice reduction algorithms. In particular in cryptographic dimen-
sions, in which it is infeasible to obtain experimental evidence. In this
section we explain the heuristic models behind the behaviour of HKZ,
LLL and BKZ. These models are often build on the Gaussian Heuristic
and based on extensive experimental evidence in feasible dimensions.
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Figure 6.5: A typical HKZ reduced basis of a rank 100 lattice versus
the HKZ shape of Definition 97, with and without adjustments for the
tail part.

6.5.1 HKZ shape

In Figure 6.5 we see that the typical log-profile of a HKZ reduced
random lattice basis is somewhat concave. This shape is correctly
predicted by applying the Gaussian Heuristic to the HKZ definition.

Definition 97. We define the HKZ shape (ℓ0, . . . , ℓn−1) of rank n by
the following sequence

ℓ0 := gh(n), ℓi = gh(n− i) ·
(∏

j<i

ℓj

)−1/(n−i)

.

The above profile shape is for a lattice with volume 1. In general
for a HKZ reduced basis B of rank n the Gaussian Heuristic says that
log∥b̃i∥ ≈ log ℓi +

1
n
log(detL). This estimate is accurate for i ≪ n,

say when i ≤ n− 50, as can be seen in Figure 6.5.
The tail part of the estimate is inaccurate, because the Gaussian

Heuristic gives false predictions in such low dimensions. One way to
solve this is to experimentally observe a HKZ profile for a lattice of
rank 50, and use that for the last part of the estimate. This adjusted
estimate, as shown in Figure 6.5, closely predicts the actual HKZ
profile.
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Figure 6.6: Illustration of the Geometric Series Assumption for 100
dimensional LLL and BKZ-40 reduced bases.

6.5.2 Geometric Series Assumption

In Figure 6.6 we see that the typical log-profile of an LLL or BKZ-β
reduced basis for β ≪ n is close to a straight line, i.e. ∥b̃i+1∥/∥b̃i∥ = α
for some constant α > 1. We can predict the constant by the Gaussian
Heuristic, which gives us the Geometric Series Assumption (GSA).

Heuristic 98 (Geometric Series Assumption (GSA)). Let B be a ba-
sis of rank n that is BKZ-β reduced, then its profile satisfies

log(∥b̃i∥) =
n− 1− 2i

2
· log(αβ) +

log(det(B))

n
,

where αβ = gh(β)2/(β−1).

Justification. Let us zoom in on a BKZ block L′ = L[κ:κ+β). By the
Gaussian Heuristic we have λ = λ1(L′) = gh(β) ·vol(L′)1/β. Under the
assumption that the GSO norms decrease exponentially by some factor
αβ > 1 we have ∥b̃κ+i∥ = λ/αi, and thus vol(L′)1/β = λ/α

(β−1)/2
β . To

conclude the constant αβ > 1 must satisfy

λ = gh(β) · vol(L′) = gh(β) · λ/α(β−1)/2
β ,
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from which it follows that αβ = gh(β)2/(β−1). △

The GSA is reasonably precise for say β ≥ 50 and a not too large
blocksize β ≪ n compared to the lattice rank. For small blocksizes β
one can determine the value of αβ experimentally to still get accurate
predictions.

However, one should be careful when using the GSA to estimate
the start (head) and the end (tail) of the profile. Firstly by definition
the last BKZ block L[n−β:n) is HKZ reduced and thus the tail of the
profile is slightly concave. Secondly, the Gaussian Heuristic is only
an average-case statement, and during BKZ reduction vectors slightly
shorter than the prediction can be found. By their shortness the BKZ
algorithm is biased towards keeping those vectors and pushing them
to the front of the basis. As a result the head of the profile can be a
bit lower than predicted by the GSA.

6.5.3 Simulators

While the Geometric Series Assumption gives a good first order esti-
mate of the basis profile after BKZ-reduction, it is known to be inaccu-
rate in small dimensions or when the dimension is only a small multiple
of the blocksize due to the head and tail behaviour. Additionally it
does not account for the slower convergence when running progres-
sive BKZ with only a few tours. To resolve these problems [CN11]
introduced a BKZ simulator based on the Gaussian Heuristic.

This simulator keeps track of the profile ℓ = (∥b̃0∥, . . . , ∥b̃n−1∥),
and runs BKZ tours where instead of computing a shortest vector it
just updates

ℓκ = min

ℓκ, gh(b) ·
(

κ+b−1∏
i=κ

ℓi

)1/b
 ,

for b = min{β, n − κ} (or experimental values of gh(b) for b < 50),
and adjusts the remaining norms ℓκ, . . . , ℓκ+b−1 accordingly. Such a
simulator predicts correctly both the center (body) and tail part of
the profile. This simulator was later refined by a probabilistic variant
of the Gaussian Heuristic that can return slightly short vectors with a
small probability [YD17; BSW18]. Due to this addition the head be-
haviour is also captured. In short, these simulators allow for accurate
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and efficient predictions of the profile shape for random lattices, even
for progressive BKZ with a limited number of tours.
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CHAPTER 7
Overstretched NTRU

This chapter is based on the joint work ‘NTRU Fatigue: How
Stretched is Overstretched’, with Léo Ducas, published at Asi-
acrypt 2021.

7.1 Introduction
One could view lattice reduction, or more specifically the BKZ algo-
rithm, as a way to solve the approximate Shortest Vector Problem,
or to create a good basis. However, in practice BKZ goes beyond
that and can also recover (hidden) geometric structures of a lattice.
For example if a rank d lattice contains an unusually short vector,
much shorter than the Gaussian Heuristic prescribes, then the BKZ
algorithm recovers this shortest vector with a much smaller blocksize
β ≪ d.

Heuristically, this behaviour can be fully explained, and after a
line of works [GN08b; AFG13; ADPS16; DDGR20; PV21] we can
predict accurately for which blocksize β an unusual short vector is
recovered. For most lattice-based cryptosystems, key recovery or de-
cryption can be reduced to finding such an unusually short vector, and
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thus these predictions directly give an upper bound on the security of
such schemes. In fact, for most schemes and common parameters this
is (close to) the best known attack.

One such cryptosystems is the NTRU cryptosystem of Hoffstein,
Pipher and Silverman [HPS98; Che+20]. The NTRU secret key con-
sists of polynomials f ,g ∈ Z[X]/(Xn − 1) with n prime, and with
small, e.g., ternary, coefficients, and the public key is given by h := g/f
mod q for some modulus q. The public key and the modulus q allow
one to define an ‘NTRU lattice’ of dimension d = 2n, which con-
tains an unusually short vector related to the secret key. Recovery
of this vector immediately leads to full key-recovery, and thus the
estimated security, for example that of the NIST 3rd round finalist
NTRU [Che+20], is directly based on the predictions of how the BKZ
algorithms recovers this unusually short vector in the NTRU lattice.

However, only recently, it was discovered that the security of NTRU
is in fact more subtle than the problem of finding a single unusually
short vector in a lattice; the NTRU lattice contains more structure.
The first dent in this status quo came in 2016, from two concurrent
works of Albrecht et al., and Cheon et al. [ABD16; CJL16], which
exploit the specific algebraic structure of the NTRU lattice to im-
prove upon pure lattice reduction attacks1. This approach was shown
to be applicable when the modulus q is large enough (say, super-
polynomial), a regime coined “overstretched”.

Shortly thereafter Kirchner and Fouque [KF17] showed that this
improved complexity does not require any algebraic structure, and is
instead rooted in the purely geometrical fact that the NTRU lattice
contains an unusually dense sublattice of large rank, i.e. a sublattice
of small determinant.2 Due to this dense sublattice lattice reduction
attacks perform much better than initially expected. They also go fur-
ther in their analysis, and conclude that moduli q as small as n2.783+o(1)

already belong to the overstretched regime —for random ternary se-
crets. In particular, for q larger than this bound, the security of NTRU
is significantly less than that of Learning With Errors [Reg04] and of

1Though the idea had been inconclusively considered already in 2002 by Gen-
try, Jonsson, Nguyen Stern and Szydlo as reported in [GS02, Sec. 6].

2Note that one may associate a short vector to a dense sublattice of dimension
1.
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Fatigue Point?

Figure 7.1: A sketch of the regular versus the overstretched regime,
and the unknown fatigue point in between.

its Ring variant [SSTX09; LPR13] using similar parameters.3

However, it is not so clear from the analysis of Kirchner and Fouque
whether this asymptotic quantity n2.783+o(1) is an estimate or merely
an upper bound on the fatigue point, that is the value of q separating
the standard regime from the overstretched regime. Their analysis is
based on a lemma of Pataki and Tural [PT08], that constraints the
shape of lattice basis in terms of the volume of their sublattices. While
it allows to conclude that the dense sublattice must be discovered after
reducing the lattice basis beyond these constraints, it does not really
explain how lattice reduction ends up discovering the dense sublattice,
nor does it exclude that the discovery could happen earlier.

So far, it has been generally considered that only advanced schemes
—requiring very large q— such as NTRU-based Homomorphic En-
cryption [BLLN13] or cryptographic multi-linear maps [GGH13] could
be affected by this overstretched regime. Yet, because the analysis of
Kirchner and Fouque is only asymptotic, and because it may only pro-
vide an upper bound on the fatigue point, there is at the moment little
documented evidence that the overstretched regime may not in fact
extend further down, maybe down to the NTRU encryption scheme
itself [HPS98; Che+20]! Admittedly, this seems like a far fetched con-
cern: asymptotically this scheme chooses q = O(n), with a hidden
constant between 4 and 5 in practice. However, this scheme being
now a finalist of the NIST standardisation process for post-quantum
cryptography, it appears rather imperious to refine our understanding
of the phenomenon, and to finally close this pending question.

3In fact, the presence of n rotations of the secret key already implies a
minor security degradation compared to (Ring)-LWE already in the standard
regime [MS01; DDGR20].
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Figure 7.2: Progressive BKZ with 8 tours per blocksize on matrix
NTRU instances with parameters n = 127, σ2 = 2

3
for several moduli

q. Left: the first blocksize β at which Progressive BKZ detects the
Secret Key Recovery (SKRκ) or Dense Sublattice Discovery (DSDκ)
event. We did 10 runs per modulus q. For the 2016-estimates, we
use the geometric series assumption (GSA) for the shape of the basis
and a probabilistic model for the discovery of the secret vector (see
Section 7.2.3). Right: the positions κ at which a secret key or dense
sublattice vector are detected over 80 runs per modulus.

We found further motivation to go down this rabbit hole by mea-
suring the concrete value of the fatigue point experimentally. Until
now, all documented experiments on the overstretched regime [ABD16;
KF17; LW20] have focused on rather large values of q, and only used
weak lattice reduction (LLL [LLL82], BKZ with blocksize 20): their
goal was to demonstrate the claimed general behaviour when parame-
ters are far in the overstretched regime. On the contrary, we focus the
attention to the fatigue point for this preliminary experiment. That
is, we ran strong reduction (progressive-BKZ [Sch87; AWHT16] up to
blocksize 60) until a vector related to the secret key appeared for a
range of moduli q. We distinguished the standard regime from the
overstretched regime by classifying according to which event occurs
first

• Secret Key Recovery (SKRκ): a vector as short as a secret key
vector is inserted in the basis at any given position κ.

• Dense Sublattice Discovery (DSDκ): a vector strictly longer than
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the secret key but belonging to the dense sublattice generated
by the secret key is inserted in the basis at any given position κ.

The result (Fig. 7.2) is rather striking: for n = 127, we start seeing
a deviation from the standard regime for q as small as 700, while a
naive interpretation of the prediction by Kirchner and Fouque [KF17]
would suggest a fatigue point at q ≈ n2.783 ≈ 700 000. We can conclude
either that the asymptotic bound is not tight, or that the hidden
asymptotic term (the o(1) in n2.783+o(1)) is significantly negative in
practice. In any case, the bound of Kirchner and Fouque does not
seem to provide accurate concrete predictions.

Remark

At this point, we should clarify why the DSD event should essentially
be considered a successful attack. First, for q not too much larger
than the fatigue point, an SKR event typically quickly follows after
the DSD event; what happens is that DSD events cascade, until the
full dense sublattice has been extracted: the first half of the reduced
basis precisely generates the dense sublattice. Lattice reduction will
happen independently on each half of the basis, meaning that the
dimension of the search space for the secret key has effectively been
halved, and therefore making the problem much easier.

However, as q increases, DSD becomes easier and easier, to the
point that it becomes even easier than secret key recovery within the
dense sublattice. In other terms, there is a superstretched regime for
larger q, where DSD does not directly lead to SKR.

Nevertheless, we argue —essentially rephrasing [ABD16]— that
the DSD event is typically sufficient for an attack. First, the dense
sublattice vector discovered is of length significantly lower than q;
in an FHE scheme such as [BLLN13] it is sufficient to decrypt fresh
ciphertexts.4 Secondly, in the case of cyclotomic or circulant NTRU, it
is possible to recover the secret key from the dense sublattice by other
means than pure lattice reduction; in particular the recent line of work
on the principal ideal-SVP [EHKS14; CDPR16; Bia+17] showed that
this can be done classically in subexponential time exp(Õ(

√
n)) and

quantumly in polynomial time.
4The secret key being shorter is only required to deal with ciphertexts obtained

by homomorphic computation.

183



7. Overstretched NTRU

7.1.1 Contributions

Having identified precisely what event distinguishes the standard
regime of NTRU from its overstretched regime, we may now proceed
to a refined analysis, and determine precisely both the fatigue point
and the precise cost5 of attacks in the overstretched regime. The
refined analysis in this work diverges from the one of Kirchner and
Fouque [KF17] on the following points:

1. we exploit the fact that BKZ runs SVP on large blocks (β ≥ 2)
not only to deduce the shape of the basis, but also to actually
discover dense sublattice vectors,

2. we do not solely focus on the behaviour at position κ = n−β+1
out of d = 2n dimensions, but instead predict the most relevant
position,

3. we propose an average-case analysis of volumes of the relevant
lattices and sublattices, leading to a concrete prediction rather
than a worst-case bound,

4. we also validate the intermediate and final predictions quantita-
tively with extensive experiments.

We note that contributions 1 and 2 alone already give us an im-
portant asymptotic result: the fatigue point of NTRU is indeed lower
than predicted by Kirchner and Fouque, namely, it should happen at
q = n2.484+o(1) instead of n2.783+o(1).

Furthermore, for the concrete average case analysis we differenti-
ates between the circulant version of NTRU [HPS98] and its matrix
version [CG05; Gen+19]. We note minor deviations in the concrete
analysis of volumes of relevant sublattices, that on average slightly
favours the attacker in the matrix case, but also shows a larger vari-
ance in the concrete hardness of the circulant case. The concrete anal-
ysis in this work is versatile, as one only has to estimate the volume
of the dense sublattice to analyse a different variant.

5In this work, we only measure cost of lattice reduction in terms of the re-
quired BKZ blocksize; the computational cost of BKZ is essentially an orthogonal
question.
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In summary: we achieve an explicative and predictive model for
the fatigue of NTRU, with concrete predictions confirmed in practice.
In particular, the fatigue point is estimated to be at q ≈ 0.004 · n2.484

for n > 100 and ternary errors. All artefacts for experiments and pre-
dictions are open-source6, and are based on the FPLLL and FPyLLL
libraries [tea21a; tea21b].

Impact

We wish to clarify that this work does not contradict the concrete
security of the NTRU candidate to the NIST competition [Che+20];
on the contrary, we close a pending question regarding a potential
vulnerability.

Limitation: the lucky-lifts

During the experiments, we also noted rare occurrence of DSD events
that qualitatively differ from what we expected. Namely, the vector
from the dense sublattice was found at positions κ quite larger than
what was predicted by the model, as shown in Fig. 7.11 (a). More
remarkable, these vectors were extremely unbalanced: their 2n − κ
last (Gram-Schmidt) coordinates were much smaller than the κ first
coordinates (Fig. 7.11 (b)). We call these DSD events lucky-lifts (DSD-
LL), while the one we model and mostly observe are called after the
Pataki-Tural Lemma (DSD-PT). Despite those two phenomena being
very distinct, they nevertheless occured for the same BKZ blocksizes
β, at least in the range of parameters we could experiment with.

It could very well be that these rare DSD-LL events are just arte-
facts of the modest parameters of the experiments and that these
events vanish as the dimension grows. Yet, as they seem of a very dif-
ferent nature, a definitive conclusion would require a dedicated study.

7.1.2 Organisation

We introduce some preliminaries, the NTRU lattice, and the state-of-
the-art estimates in Section 7.2. In Section 7.3 we introduce the new
DSD-PT estimate and give an asymptotic analysis. In Section 7.4 we

6Available at: https://github.com/WvanWoerden/NTRUFatigue
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give an average-case analysis to construct a concrete estimator. In the
final Section 7.5 we compare the estimate with experiments.

7.2 The NTRU lattice and estimates

7.2.1 NTRU and lattice attacks

We start with the historical definition of NTRU.

Definition 99 (NTRU). Let n be prime, q a positive integer and let
f ,g ∈ (Z/qZ)[X] be polynomials of degree n with small coefficients
sampled from some distribution χ under the condition that f is invert-
ible in Rq := (Z/qZ)[X]/(Xn − 1). The pair (f ,g) forms the secret
key, and the public key is defined as h := g/f mod q. The NTRU
problem is to recover any rotation (X i · f , X i ·g) of the secret key from
h.

For NTRUencrypt [HPS98; Che+20] f and g have ternary coeffi-
cients, with a fixed number of about n/3 of each value in {−1, 0, 1}.
For the analysis we consider the case where each coefficient is sampled
from a discrete Gaussian over Z with some variance σ2 > 0. For sim-
plicity the ternary case is treated as a discrete Gaussian with variance
σ2 = 2

3
.

More generally we consider a matrix description of NTRU where
the polynomials are replaced by matrices F,G,H ∈ Zn×n such that
H := G ·F−1 mod q [CG05; Gen+19]. Variants of NTRU, e.g., based
on different algebraic rings [Ber+20], can be encoded in the structure
of the matrices. For example, the original problem can be encoded
by setting Fi,j := f(i+j mod n) where f =

∑n−1
i=0 fiX

i, for each poly-
nomial respectively. We call the original variant circulant NTRU,
based on the resulting shape of the matrices F,G, and we treat f ,g
as n-dimensional vectors. We also consider the variant, called ma-
trix NTRU, where the matrices F,G have no extra structure and the
coefficients are independently sampled from a discrete Gaussian.

To reduce the NTRU problem to a lattice problem we define the
NTRU lattice, which contains a particularly dense sublattice generated
by the secret key.
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7.2. The NTRU lattice and estimates

Definition 100. Let (n, q,F,G,H) be an NTRU instance. We de-
fine the NTRU lattice as

LH,q :=

(
qIn H
0 In

)
· Z2n,

and its (secret) dense sublattice of rank n by:

LGF := BGF · Zn ⊂ LH,q,where BGF :=

(
G
F

)
.

Solving the NTRU problem is equivalent to recovering the dense
sublattice basis BGF = [G;F] up to some permutation of the columns.
For uniformity of notation we will denote such a column by (g; f).
These column vectors have a length of about ∥(g; f)∥ ≈

√
2nσ2, which

for common parameters is much shorter than the expected minimal
length gh(LH,q) ≈

√
nq/(πe) of the full lattice LH,q for a truly uniform

random H ∈ (Z/qZ)n×n. To recover the secret key we thus have to
find these exceptionally short vectors in the full lattice LH,q.

In [CS97] Coppersmith and Shamir showed that we can slightly
relax the problem as any small vector from the dense sublattice LGF

is enough to decode a message. We therefore focus the analysis on the
recovery of elements from LGF, and not (directly) on the full secret
basis BGF. To recover short vectors we resort to lattice reduction.

7.2.2 Lattice reduction on q-ary lattices

While by now the behaviour of BKZ on random lattices is reasonably
understood, this is less the case for q-ary lattices (for certain param-
eters) such as the NTRU lattice LH,q.

Definition 101 (q-ary lattices). A lattice L of dimension d is said
to be q-ary if for some q > 0 we have

qZd ⊂ L ⊂ Zd.

Note that the first n basis vectors of LH,q are orthogonal q-vectors
(q, 0, . . . , 0), (0, q, 0, . . . , 0), . . ., and so the initial basis profile starts
with ∥b̃0∥ = · · · = ∥b̃n−1∥ = q. Additionally after projecting away
from these q-vectors, the remaining basis vectors are again orthogonal
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Figure 7.3: The Z-shape of an NTRU-lattice basis with parameters
q = 1031, n = 127 before and after LLL reduction, versus the ZGSA.

with length 1, and thus we have ∥b̃n∥ = · · · = ∥b̃d−1∥ = 1. Note that
in the BKZ algorithm the length of b0 can not increase, and is thus
always at most q. Also b1 can not increase in length if b0 remains
unchanged, and so on. For dual-BKZ or the self-dual LLL the profile
lengths can not drop below 1 anywhere by the same reasoning. Still
LLL and BKZ guarantee that the profile slope in the middle is not
too steep. So after LLL reduction the profile must be flat at the
start and end, and have a sloped part in the middle, we call this a Z-
shape [AD21; AL22]. Because BKZ is not self-dual we do not have any
guarantee that the last profile elements do not drop below 1, however
we could for example run BKZ only on an appropriate middle context
L[n−m:n+m) to force this behaviour. With this description one would
expect the middle part to follow the GSA, leading to an alternative
heuristic for q-ary lattices.

Heuristic 102 (Z-shape Geometric Series Assumption (ZGSA)).
Let B be a basis of a 2n-dimensional q-ary lattice L with n q-vectors.
After BKZ-β reduction the profile has the following shape:

∥b̃i∥ =


q if i ≤ n−m,
√
q · α

2n−1−2i
2

β , if n−m < i < n+m− 1,
1, if i ≥ n+m− 1,
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where αβ = gh(β)2/(β−1), and m = 1
2
+ log(q)

2 log(αβ)
.

Similar to the regular GSA this gives us a good first order estimate,
as can be observed in Figure 7.3. Asymptotically setting β = B · n
and q = nQ, we obtain log(αβ) =

log(n)
B·n +O (n−1), and m = 1

2
QB · n+

O
(

n
log(n)

)
.

7.2.3 Estimates

The main question of this work is to better understand how BKZ
recovers the dense sublattice LGF from an NTRU lattice LH,q. Sev-
eral works exist that give estimates on the blocksize β for which BKZ
successfully recovers the secret key (g, f), or more generally a vec-
tor from the dense sublattice. We discuss the state-of-the-art esti-
mates, one known as the 2016 Estimate [ADPS16] with further refine-
ments [DDGR20; PV21], and one by Kirchner and Fouque [KF17].

While the 2016 Estimate already gives a clear explanation how
BKZ recovers a suitable vector, the Kirchner and Fouque estimate is
only based on an impossibility result. To be more precise about what
we mean with recovery we define the following two events.

Definition 103 (BKZ Events). For a BKZ run on an NTRU lattice
L with dense sublattice LGF we define two events:

1. Secret Key Recovery (SKR): The first time one the secret
keys (g; f) is inserted.

2. Dense Sublattice Discovery (DSD): The first time a dense
lattice vector v ∈ LGF strictly longer than the secret key(s) is
inserted.

We further specify SKRκ and DSDκ when the insertion takes place at
position κ in the basis.

2016 Estimate [ADPS16] for SKR

The 2016 Estimate is aimed at the more general problem of detecting
an unusually short vector in a lattice. To obtain an estimate for the
NTRU problem, and more specifically the SKR event, we apply it to
the unusually short vector (g; f) ∈ LH,q.
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7. Overstretched NTRU

Heuristic claim 104 (SKR – 2016 Estimate). Let L be a lattice of
dimension d and let v ∈ L be a unusually short vector ∥v∥ ≪ gh(L).
Then under the Geometric Series Assumption BKZ recovers v if√

β/d · ∥v∥ < √αβ
2β−d−1 · vol(L)1/d,

where αβ = gh(β)2/(β−1).

Justification. The left hand side of the inequality is an estimate for
∥πd−β(v)∥, while the right hand size is the expected norm of b̃d−β

under the GSA. When the inequality is satisfied we expect that the
shortest vector in L[d−β:d) is in fact (a projection of) the unusually
short vector, and thus it is inserted by BKZ at position d − β. See
Figure 7.4 for an illustration.

Except for very small blocksizes β, the unusually short vector v
is recovered from its projection πd−β(v) with high probability, either
directly by Babai’s nearest plane algorithm, or by later BKZ tours
on the blocks L[d−2β+1:d−β+1),L[d−3β+2:d−2β+2), . . . ; lifting the vector
block by block. △

For q-ary lattices we can easily change the estimate to make use
of the ZGSA instead, although for successful blocksizes b̃d−β will not
lie on the flat tail-part, and thus this will not change anything. Addi-
tionally for q-ary lattices it can be beneficial to apply the estimate not
to the full lattice but on some projected sublattice L[i:d) for i ≤ n; the
left hand side of the equation is expected to remain unchanged, while
the right hand side might increase as vol(L) loses only a factor qi and
the dimension decreases by i. Note that we do not necessarily have
to explicitly let BKZ act on this projected sublattice, as BKZ already
does this naturally.

Asymptotics. Consider the NTRU lattice LH,q and suppose that q =
Θ(nQ), ∥v∥ = ∥(g; f)∥ = Θ(nS) and β = (B + o(1))n. Applying
the 2016 Estimate the right hand side of the inequality is minimised
when only keeping k = min

(
(
√
2BQ− 1)n, n

)
of the q-vectors, so by

applying the estimate to the projected sublattice LH,q
[n−k:2n). For S ≥ 1

we have k = n, and solving the equation gives B = 2
Q+2−2S . For S < 1

we have k = (
√
2BQ − 1)n, and solving gives B = 2Q

(Q+1−S)2 . Note in
particular that in terms of q we require a blocksize of β = Θ̃ (n/ log(q)).
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Figure 7.4: Illustration of the 2016 Estimate on a 100-dimensional lat-
tice with an unusually short vector v. Around β = 40 the projection
π100−β(v) is expected to be the shortest vector in the projected sub-
lattice L[d−β:d), which is thus recovered by the SVP call on this block
inside BKZ-β.

Refinements. The 2016 Estimate gives a clear explanation on how and
where the secret vector is recovered, namely its projection is found in
the last BKZ block. This also allows to further refine the estimate
and give concrete predictions. For example by using a BKZ-simulator
instead of the GSA, and by accounting for the probability that after
the projection ∥πd−β(v)∥ has been found, it is successfully lifted to the
full vector v. Also instead of working with the expected length of the
projection, we can directly model the probability distribution under
the assumption that v is distributed as a Gaussian vector. Such refine-
ments were applied in [DDGR20; PV21], and the resulting concrete
predictions match with experiments to recover an unusually short vec-
tor. Current simulators for the behaviour of the BKZ algorithm do
not account correctly for the Z-shape [AD21]. Therefore, in this work,
we will rely on the (Z)GSA for the basis shape, and we adjust the
slope to account for the speed of convergence using experimentally
determined values. We also use the advanced probabilistic model for
the detection and lifting of the short vector.

For NTRU there is not just a single unusually short vector, but
there are n = d/2 of them, which makes it more likely that at least one
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Figure 7.5: Illustration of both sides of the equation when applying
Lemma 105 to D = LGF ⊂ LH,q and J = {n, . . . , d − 1}. Following
the Pataki and Tural Lemma, the striped area can be at most as large
as the solid area. For larger blocksize β, the BKZ-β ZGSA contradicts
this, and thus the basis must have deviated from it (and thereby have
revealed some information).

of them is recovered. Because the refined concrete estimator already
works with a probability distribution, we can easily take multiple vec-
tors into account. The resulting predictions for the SKR event match
the experiments reasonably well for smallish q as can be seen in Fig-
ure 7.2. For large q, the so-called overstretched regime, the estimate
is however too pessimistic.

Kirchner–Fouque estimate [KF17] for DSD

In 2016 Albrecht, Bai and Ducas [ABD16] showed that for very large
values of q one can mount an algebraic subfield attack on the cyclo-
tomic NTRU problem with subexponential or even polynomial com-
plexity. This allowed them to break several homomorphic encryption
schemes that relied on NTRU in the overstretched regime.

However soon after, Kirchner–Fouque [KF17] showed that this
elaborate algebraic attack was unnecessary: (dual-)BKZ already be-
haves much better in this regime than the 2016 Estimate predicts,
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leading to the same asymptotic improvements. The key idea behind
their analysis is that in the overstretched regime the NTRU lattice
LH,q contains an exceptionally dense sublattice LGF of low volume.
This gives a constraint on the basis profile via the following lemma by
Pataki and Tural.

Lemma 105 (Pataki and Tural [PT08]). Let L be a d-dimensional
lattice with basis b0, . . . ,bd−1. For any k-dimensional sublattice L′ ⊂
L we have

vol(L′) ≥ min
J

∏
j∈J
∥b̃j∥,

where J ranges over the k-size subsets of {0, . . . , d− 1}.

Applying Lemma 105 to the n-dimensional sublattice LGF ⊂ LH,q,
and assuming a non-increasing profile, we obtain an upper bound on
the volume of LH,q

[n:2n). See Figure 7.5 for an illustration of these vol-
umes. Assuming the ZGSA the latter volume increases when running
BKZ-β for increasing blocksizes, eventually contradicting the upper
bound. This allows us to detect if a q-ary lattice is in fact an NTRU
lattice, but additionally Kirchner–Fouque argue that BKZ must some-
how have detected the dense sublattice after this point. Based on this
impossibility argument they introduced the following estimate.

Heuristic claim 106 (DSD – Kirchner–Fouque Estimate). Let
LH,q be an NTRU lattice of dimension 2n, with dense sublattice
LGF ⊂ LH,q. Under the Z-shape Geometric Series Assumption
BKZ-β triggers the DSD event if

vol(LGF) < q
m−1

2 · α− 1
2
(m−1)2

β ,

where αβ = gh(β)2/(β−1), and m = 1
2
+ log(q)

2 log(αβ)
.

To apply this estimate we can bound vol(LGF) using the Hadamard
inequality by ∥(g; f)∥n. As a first approximation this is reasonably
tight because the secret basis BGF is close to orthogonal.
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Asymptotics. Consider the NTRU lattice LH,q and suppose that q =
Θ(nQ), ∥(g; f)∥ = Θ(nS) and β = (B+o(1))n. We apply the Kirchner–
Fouque Estimate using that m ≈ BQ

2
n and αβ ≈ (Bn)1/(Bn).The left

hand side of the inequality is bounded by nnS+o(n) and the right hand
side equals n

BQ2

8
n+o(n); solving gives B ≥ 8S

Q2 . Note that in terms of n
and q we require a blocksize of β = Θ̃

(
n/ log2(q)

)
, improving upon the

2016 Estimate by a factor log(q). So for large enough q the Kirchner–
Fouque Estimate predicts a lower successful blocksize than the 2016
Estimate. We call the value of q for which BKZ starts to behave
better than predicted by the 2016 Estimate the fatigue point. For the
common situation that S = 1

2
, e.g., when each secret coefficient has

standard deviation σ = Θ(1), the Kirchner–Fouque Estimate predicts
that the fatigue point lies at some q ≤ n2.783+o(1).

7.3 A new dense sublattice discovery
estimate

7.3.1 Preliminary experiments

Both the 2016 Estimate and the Kirchner–Fouque Estimate analyse
an event that leads to successful recovery of a vector of the dense
NTRU sublattice. This only gives an upper bound on the hardness;
a different event leading to the recovery might happen at a lower
blocksize. Additionally the Kirchner–Fouque Estimate is only based
on an impossibility result and gives no explanation as to how BKZ
actually recovers a vector from the dense sublattice. In order to derive
a tight estimate we first run experiments to track down at which point
a dense sublattice vector is actually found during the BKZ tours, i.e.,
when the DSDκ event is triggered and at what position. Then we
model this event in order to hopefully derive a tight estimate.

We run progressive BKZ on NTRU lattices LH,q for fixed param-
eters n = 127, σ2 = 2

3
, and several moduli q. For each BKZ insertion

at position κ we check if the inserted vector belongs to the dense sub-
lattice LGF, and thereby if the SKRκ or DSDκ event takes place, after
which we stop.

The results are shown in Figure 7.2. We take a closer look at the
observed SKRκ and DSDκ events and where they are triggered. We
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can group the observations in three typical circumstances.

• SKR-2016. The SKRκ event is mostly triggered for small val-
ues of q, and this mostly happens at the position κ = 2n− β, so
in the last block [2n− β : 2n), or slightly earlier. This coincides
exactly with the SKR2n−β event as predicted by the 2016 Esti-
mate [ADPS16] with further refinements [AGVW17; DDGR20;
PV21].

• DSD-PT. The DSDκ event is mostly triggered at positions κ =
n + k − β for 0 < k ≪ n. The inserted dense vector v is
often significantly longer than the secret key but still shorter
than the q-vectors. On closer inspection the projected length
∥πn+k−β(v)∥ is close to the expected length

√
β

n+k
∥v∥ for all

instances, more specifically the length of v is well balanced over
the Gram-Schmidt directions b̃0, . . . , b̃n+k−1. We name these
events after the Pataki–Tural Lemma (DSD-PT).

• DSD-LL. For a few instances the DSDκ event is triggered at
large positions κ, up to 2n − β. The inserted dense vector v
is again significantly longer than the secret key, but it has an
unexpectedly short projection πκ(v) on the BKZ block [κ : κ +
β). We call these events lucky-lifts (DSD-LL).

The DSD-LL event could potentially be explained by the relatively
large amount of shortish vectors in the close to orthogonal dense sub-
lattice LGF compared to what one would expect based on the Gaussian
Heuristic. These many vectors might compensate for the low proba-
bility event that: (1) such a long vector has such a short projection,
and (2) the projected vector is correctly lifted by Babai’s nearest plane
algorithm (thus a lucky lift). The DSD-LL event remains rare for all
parameters we used in the experiments, and the successful blocksizes
do not seem to deviate from the DSD-PT events. Although we think
this circumstance deserves further analysis we therefore base the esti-
mate on the more common DSD-PT event.

For the DSD-PT event the projected length ∥πn+k−β(v)∥ is close to√
β

n+k
∥v∥, and thus the inserted dense vector v must in fact be (close

to) a shortest vector of the intersected sublattice LH,q
[0:n+k)∩LGF. If not,
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the shortest vector would typically have an even smaller projection
and would thus be inserted instead. For ease of analysis we therefore
assume that v is a shortest vector of LH,q

[0:n+k) ∩LGF. In short the new
estimate can be described as follows.

Heuristic claim 107 (DSD-PT estimate). A tour of BKZ-β trig-
gers the DSD event if

πn+k−β(v) < ∥b̃n+k−β∥,

where v is a shortest nonzero vector of LH,q
[0:n+k) ∩ LGF for some 0 <

k ≤ n.

7.3.2 Asymptotic analysis

For 0 ≤ r ≤ 2n denote the (possibly trivial) intersected sublattice by
LGF

∩[0:r) := LH,q
[0:r) ∩ LGF. To directly apply Claim 107 we are interested

in the length of v, and thus the value of λ1
(
LGF

∩[0:n+k)

)
. We break down

the analysis into several steps. In order to obtain a bound on the first
minimum we first compute a bound on the volume of the intersection
LGF

∩[0:n+k) in terms of the basis profile and the volume of LGF. Together
with the ZGSA and a simple bound for vol(LGF) we can then apply
Minkowski’s bound on the first minimum. By optimising κ = n+k−β
we obtain a new asymptotic estimate.

Intersection.

To understand the behaviour of the volume of the intersected lattice
we first need a small technical Lemma.

Lemma 108 ([DDGR20]). Given a lattice L with volume vol(L),
and a primitive dual vector v ∈ L∗. Let v⊥ denote the subspace or-
thogonal to v. Then L ∩ v⊥ is a (possibly trivial) lattice with volume
vol(L ∩ v⊥) = ∥v∥ · vol(L).

Recall that we defined vol({0}) = 1 for the trivial lattice. The
following Lemma generalises the Pataki–Tural Lemma on which the
estimate of Kirchner–Fouque is based. More specifically the Pataki–
Tural Lemma only considers the case where the intersection is always
trivial (s = 0).
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Lemma 109 (Generalisation of [PT08]). Let L be a d-dimensional
lattice with basis b0, . . . ,bd−1, and consider the (possibly trivial) sub-
lattice L[0:s) for 0 ≤ s ≤ 2n. For any n-dimensional sublattice L′ ⊂ L
we have

vol(L[0:s) ∩ L′) ≤ vol(L′) ·
(
min
J

∏
j∈J
∥b̃j∥

)−1

,

where k := dim(L[0:s) ∩L′) and J ranges over the (n− k)-size subsets
of {s, . . . , d− 1}.

Proof. We write L′
∩[0:r) := L[0:r) ∩ L′. For j = k, . . . , n we define

sj ∈ {s, . . . , d} as the maximal index such that dim
(
L′

∩[0:sj)

)
= j,

i.e., we obtain the following strict chain of sublattices:

L′
∩[0:s) = L′

∩[0:sk) ⊊ L
′
∩[0:sk+1)

⊊ · · · ⊊ L′
∩[0:sn) = L′.

Fix j ∈ {k, . . . , n − 1}. Because the basis vectors b0, . . . ,bd−1 are
linearly independent we have that L′

∩[0:s(j+1))
= L′

∩[0:sj+1). This allows
us to focus on the volume decrease from index sj + 1 to sj, for which
we know that

L′
∩[0:sj) = L′

∩[0:sj+1) ∩ (b̃sj)
⊥,

where (b̃sj)
⊥ denotes the subspace orthogonal to b̃sj . The correspond-

ing dual basis of b0, . . . ,bsj contains a dual vector d ∈ L∗
[0:sj+1) of

length
∥∥b̃sj

∥∥−1 with span(d) = span(b̃sj). Let π be the orthogonal
projection onto span

(
L′

∩[0:sj+1)

)
, then π(d) ∈

(
L′

∩[0:sj+1)

)∗, and

L′
∩[0:sj) = L′

∩[0:sj+1) ∩ d⊥ = L′
∩[0:sj+1) ∩ π(d)⊥.

Let m ∈ Z≥1 be such that π(d)/m is primitive w.r.t.
(
L′

∩[0:sj+1)

)∗,
then by Lemma 108 we obtain:

vol
(
L′

∩[0:sj)

)
= vol

(
L′

∩[0:sj+1)

)
· ∥π(d)/m∥

≤ vol
(
L′

∩[0:sj+1)

)
· ∥b̃sj∥−1.

We conclude by chaining the above inequality for j = k, . . . , n−1.
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7. Overstretched NTRU

Before recovering a dense lattice vector we heuristically assume
that there is no special relation between the current lattice basis and
the dense sublattice. More specific we can consider that the span
of b0, . . . ,bn−1 and that of LGF behave like random n-dimensional
subspaces, and thus they have a trivial intersection with high proba-
bility in the 2n-dimensional space. As a direct result we expect that
dim

(
LGF

∩[0:n+k)

)
= k for k = 0, . . . , n. Applying this to Lemma 109 we

obtain the following corollary.

Corollary 110. Let LH,q be an NTRU lattice with dense sublattice

LGF of dimension n, if dim
(
LGF

∩[0:n+k)

)
= k for some k ≥ 0, then

vol
(
LGF

∩[0:n+k)

)
≤ vol

(
LGF

)
·
(

d−1∏
j=n+k

∥b̃j∥
)−1

.

Note that Corollary 110 already shows that the new estimate can
not be worse than the Kirchner–Fouque Estimate. Namely if the
Kirchner–Fouque Estimate is triggered, then for intersection dimen-
sion k = 1 the right hand side is smaller than ∥b̃n∥. Assuming a
non-decreasing profile we then have λ1

(
LGF

∩[0:n+1)

)
= vol

(
LGF

∩[0:n+1)

)
≤

∥b̃n∥ ≤
∥∥b̃n+1−β

∥∥, which implies that BKZ-β would find a dense sub-
lattice vector in the block L[n+1−β:n+1) (or earlier).

Volume dense sublattice.

To use Corollary 110 we also need to bound the volume of the dense
sublattice LGF. Because the secret basis is close to orthogonal the
Hadamard Inequality vol(LGF) ≤ ∥(g; f)∥n is sufficient as a first order
approximation.

Conclusion.

To obtain a heuristic asymptotic estimate we will assume that before
finding a dense lattice vector the basis follows the ZGSA shape.

Heuristic claim 111. The BKZ algorithm with blocksize β = Bn
applied to an NTRU instance with parameters q = Θ(nQ), ∥(g; f)∥ =
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7.3. A new dense sublattice discovery estimate

O(nS) triggers the DSD event if

B =
8S
Q2 + 1

+ o(1).

Justification. By the Hadamard Inequality we have log(vol(LGF)) ≤
Sn log(n) + O(n). Let k := Kn > 0 for some constant 0 < K ≤ 1.
Heuristically we expect that dim(LH,q

[0:n+k) ∩ LGF) = k, and thus by
Corollary 110 and by assuming the ZGSA we obtain a bound on the
volume of the intersected sublattice:

log(vol(LH,q
[0:n+k) ∩ LGF))

≤ Sn log(n)− 1

2

n+m−1∑
i=n+k

(
Q+

2n− 1− 2i

Bn

)
log(n) +O(n)

= Sn log(n)− (BQ− 2K)2
8B n log (n) +O(n).

By Minkowski’s bound we bound the first minimum using the above
volume

log(λ1(LH,q
[0:n+k) ∩ LGF)) ≤ 1

2
log(Kn)

+
log(vol(LH,q

[0:n+k) ∩ LGF))

Kn +O(1)

≤
(
−(BQ− 2K)2

8BK +
S
K +

1

2

)
log (n) +O(1).

After projecting onto the block [n + k − β : n + k) the above short
vector does not increase in length.7 BKZ detects the projected dense
lattice vector in this block if the length is less than

∥∥b̃n+k−β

∥∥ =
(
1
2
Q+

B−K
B
)
log(n) +O(1). Solving for B shows that this is the case when

B ≥ 2
√
(2S − K)2 +K2Q2 + 2(2S − K)

Q2
+ o(1).

7One may also be concerned that the short vector would collapse to the zero
vector 0 after projection onto the block [n + k − β : n + k), but this becomes
increasingly unlikely as the dimension β of the block grows.
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Figure 7.6: Comparison of asymptotic estimates and new fatigue point
for n → ∞ when the secret key coefficients have standard deviation
σ = Θ(1).

When K = 4S
Q2+1

the right hand side is minimised and we obtain
that BKZ detects the projected dense lattice vector when B ≥ 8S

Q2+1
,

which concludes the claim. This routine computation can be verified
symbolically via the sage notebook claim3_5.ipynb8. △

The new estimate gives an asymptotic improvement over the es-
timate by Kirchner and Fouque ( 8S

Q2 ). Asymptotically the optimal
position is at κ = n + k − β ≈ n − 1

2
β. Interestingly, if we do not

optimize k and only consider k = O(1) we obtain the same asymp-
totic estimate as Kirchner and Fouque, which again emphasizes that
we generalised their analysis.

For the fatigue point we compare the relative blocksize of 8S
Q2+1

to
that of the 2016 Estimate given by 2Q

(Q+1−S)2 for S < 1 and by 2
Q+2−2S

for S ≥ 1. For ternary secrets (S = 1
2
) this narrows down the fatigue

point from q ≤ n2.783+o(1) to q = n2.484+o(1) compared to the Kirchner–
Fouque Estimate. This is still far above the (sub)linear parameters
used for NTRU encryption schemes, and thus asymptotically we can
close the pending question if these parameters fall in the weaker over-
stretched regime or not. In practice however we do observe fatigue
points that are significantly lower than the naive value of q = n2.484,
which motivates a concrete analysis with concrete predictions.

8Available at: https://github.com/WvanWoerden/NTRUfatigue

200

https://github.com/WvanWoerden/NTRUfatigue


7.4. A concrete average-case analysis

7.4 A concrete average-case analysis

In this section we consider a concrete analysis of the new DSD-PT
estimate, based on simple heuristics, to better predict the behaviour
in practice, and to show that the analysis matches experiments and is
thus likely to be tight. The first order asymptotics shown in Section
7.3.2 will remain unchanged, but the differences are significant for
practical parameters. Again we split the analysis into several steps,
but now derive heuristic expectations instead of loose upper bounds.

We assume that lattice vectors we encounter follow the Gaussian
heuristic, and thus in particular that vectors are spherically distributed
after normalisation. When projecting such vectors to a lower dimen-
sion they become shorter. The following Lemma shows how much
shorter we expect them to become.

Lemma 112. Let x ∈ Sd−1 follow a spherical distribution, and let
πV : Rd → V be a projection to some subspace V ⊂ Rd of rank k > 0,
then

E[log(∥πV (x)∥)] =
1

2
(ψ(k/2)− ψ(d/2)),

where ψ is the digamma function.

Proof. Let X0, . . . , Xd−1 be standard normal random variables, then

the vector x = (x0, . . . , xd−1), with xj = Xj/
√∑d−1

i=0 X
2
i , is spherically

distributed. Without loss of generality we can assume that πV projects
onto the first k-coordinates. Then we conclude by Lemma 53 that

E[log(∥πV (x)∥)] =
1

2
E

[
log

(∑k−1
i=0 X

2
i∑d−1

i=0 X
2
i

)]

=
1

2
E

[
log

(
k−1∑
i=0

X2
i

)]
− 1

2
E

[
log

(
d−1∑
i=0

X2
i

)]
=

1

2
(ψ(k/2)− ψ(d/2)).
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7. Overstretched NTRU

7.4.1 Intersection

We start by giving a concrete average-case estimate for the intersection
volumes. Assuming that projections behave as random we obtain the
following concrete estimate.

Heuristic claim 113. Let L be a 2n-dimensional NTRU lattice with
dense sublattice LGF, before the DSD event is triggered we have for
k = 1, . . . , n that dim

(
LGF

∩[0:n+k)

)
= k, and

E[log vol(LGF
∩[0:n+k))] = log vol(LGF)−

(
2n−1∑
j=n+k

log∥b̃j∥
)

+
n∑

l=k+1

ψ

(
l

2

)
− ψ

(
n+ l

2

)
+
ζ ′(l)

ζ(l)
,

where ζ(l) :=
∑∞

m=1
1
ml is the Riemann zeta function and ζ ′(l) :=∑∞

m=1
log(m)
ml its derivative.

Justification. We follow the proof of Lemma 109. It is tight except
for the length decrease from ∥d∥ to the projected and primitive vec-
tor ∥π(d)∥/m. Note that when obtaining log vol

(
LGF

∩[0:n+l−1)

)
from

log vol
(
LGF

∩[0:n+l)

)
for some l = k + 1, . . . , n, the dual vector d lives in

a (n+ l)-dimensional space and is projected to an l-dimensional space.
Heuristically we assume that the normalisation of d is spherically dis-
tributed (or that π projects to a random l-dimensional subspace). By
Lemma 112 the log-expected decrease in length from this projection
then equals

E [log(π(∥d∥))− log(∥d∥)] = ψ

(
l

2

)
− ψ

(
n+ l

2

)
.

To conclude we also have to include the primitivity of π(d) and thus
the log-expectation of m ≥ 1 such that π(d)/m is primitive. For
any basis d0, . . . ,dl−1 and π(d) =

∑l−1
i=0 xidi, the scaling is given by

m = gcd(x0, . . . , xl−1). Heuristically we assume that the absolute co-
efficients |x0|, . . . , |xl−1| are random integers in the interval {1, . . . , B}
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7.4. A concrete average-case analysis

Figure 7.7: Experimental values of log vol
(
LGF

∩[0:n+k)

)
versus Claim

113 for circulant and matrix NTRU respectively. For each variant we
used 256 LLL reduced NTRU lattices with parameters q = 257, n =
79, σ2 = 2

3
and computed the intersection for each k.

and we let B →∞. For l ≥ 2 we have (see e.g., [DE+04])

Px∈{1,...,B}l [gcd(x0, . . . , xl−1) = m] =
1

ζ(l)
· 1

ml
+O(log(B)/(Bml−1)),

where the Riemann zeta function ζ(l) =
∑∞

m=1
1
ml is just the normal-

isation factor. From this we conclude that

lim
B→∞

Ex∈{1,...,B}l [log gcd(x0, . . . , xl−1)]

= lim
B→∞

1

ζ(l)

B∑
m=1

[
log(m)

ml
+O

(
log(m) log(B)

Bml−1

)]
= −ζ

′(l)

ζ(l)

for l ≥ k + 1 ≥ 2. △
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7. Overstretched NTRU

Validation.

To validate Claim 113 we computed the actual intersection volumes
vol
(
LGF

∩[0:n+k)

)
for LLL reduced NTRU instances. We observed here,

and also in further experiments, that the assumption on the dimension
dim

(
LGF

∩[0:n+k)

)
= k holds before we get close to triggering the DSD

event. Figure 7.7 shows that the prediction perfectly matches the ex-
periments for matrix NTRU. For circulant NTRU we see both that
the expectation is slightly off and that the variance is much higher.
The higher variance can be explained from the fact that the projec-
tions are very much dependent due to the circulant structure; in fact
a closer inspection shows that for k close to n the differences with the
prediction are highly correlated. We were not able to explain the error
in the predicted expectation, but it seems to be caused by the circu-
lant structure in combination with the Z-shape: the error decreased
and eventually disappeared for large values of q and σ, for which the
Z-shape disappeared (and before the DSD event was triggered). A
maximal log-error of 2.5 is reached at k = 1. Note that a log-error
of ϵ on vol

(
LGF

∩[0:n+k)

)
translate into a factor of eϵ/k on the predicted

length for the shortest vector. Except for very small k, this error
appears benign.

7.4.2 Dense sublattice

In this section we give a concrete estimate for the expected volume
of the dense NTRU sublatice LGF. Directly from the construction
we obtain a basis [G;F] of LGF, with F invertible. We consider two
cases, that of regular NTRU, where F and G are circulant matrices,
and that of matrix NTRU, where all entries are independently sam-
pled. For both constructions the entries are sampled from independent
discrete Gaussians over Z, with some standard deviation σ > 0. As
the only heuristic we assume that the individual entries in fact follow
a continuous Gaussian instead of the discrete one.

Matrix NTRU.

We start with matrix NTRU, where we heuristically assume that all
2n × n coefficients of the basis [G;F] are sampled according to inde-
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7.4. A concrete average-case analysis

pendent continuous Gaussians with standard deviation σ. Under this
heuristic we can derive an exact expression for the expected log-volume
of the dense sublattice.

Lemma 114. Let [G;F] be a basis of the lattice LGF where all sam-
pled entries are i.i.d. continous Gaussians with standard deviation
σ > 0, then

E[log(vol(LGF))] =
1

2
n
(
log(2σ2)− ψ(n)

)
+

n−1∑
i=0

ψ

(
2n− i

2

)
.

Proof. By Lemma 53 the log-expectation of the norm of each basis
element equals (ln(2σ2) + ψ(n))/2. Note that the i-th Gram-Schmidt
vector b̃i is obtained after projecting the i-th basis vector orthogo-
nally away from an i-dimensional subspace, and thus onto a 2n − i
dimensional subspace. However after normalisation the basis vectors
follow a spherical distribution and thus by Lemma 112 we have

E[log∥b̃i∥] = (ln(2σ2) + ψ(n))/2 + ψ

(
2n− i

2

)
− ψ(n)

= (ln(2σ2)− ψ(n))/2 + ψ

(
2n− i

2

)
.

We conclude by noting that E[log(vol(LGF))] =
∑n−1

i=0 E[log∥b̃i∥].

Circulant NTRU.

For circulant NTRU both G and F in the basis [G;F] are circulant
matrices. Again we replace discrete with continuous Gaussians. The
eigenvalues and eigenvectors of a circulant matrix are well known and
we use this to obtain an exact expression for the expected volume of
the dense sublattice.

Lemma 115. Let [G;F] be a basis of the lattice LGF where G,F are
circulant and all sampled entries are i.i.d. continous Gaussians with
with standard deviation σ > 0, then

E[log(vol(LGF))] =
1

2
n
(
log(2nσ2) + ψ(1)

)
+

1

2
(n− 1)(1− log(2)).
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7. Overstretched NTRU

Figure 7.8: Experimental values of log(vol(LGF)) versus Lemma 114
for matrix NTRU with discrete Gaussians and variance σ2 = 2

3
. For

each parameter n we generated 512 instances.

Proof. For n×n circulant matrices G,F the eigenvectors are identical
and given by vj := (1, ωj, ω2j, ω(n−1)j) for j = 0, . . . , n − 1, where
ω := e2πi/n ∈ C is a primitive n-th root of unity. Suppose that the
circulant matrix G is generated by the vector c = (c0, . . . , cn−1), then
the corresponding eigenvalues are given by the DFT coefficients of c,
namely λj := c0+cn−1ω

j+ . . .+c1ω
(n−1)j. We have that λ0 =

∑n−1
j=0 cj,

and thus λ0 follows a Gaussian distribution with variance nσ2, and in
particular λ20 ∼ χ2

1,nσ2 . Additionally for j = 1, . . . , n− 1 we can write
λj = X + i · Y ∈ C where X, Y ∈ R are both linear combinations
of the ci’s and thus (X, Y ) follows a jointly Gaussion distribution. A
simple computation shows thatX and Y both have variance nσ2/2 and
that they are uncorrelated, which for Gaussians implies that they are
independent [PP02, p. 212]. So |λj|2 = X2 + Y 2 ∼ χ2

2,nσ2/2. Note that
all circulant matrices have the same eigenvectors and thus the squared
singular values of the concatenation of two circulant matrices are the
sum of the squared absolute eigenvalues. So [G;F] has one squared
singular value s20 distributed as χ2

1,nσ2 + χ2
1,nσ2 = χ2

2,nσ2 , and n − 1
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7.4. A concrete average-case analysis

Figure 7.9: Experimental values of log(vol(LGF)) versus Lemma 115
for circulant NTRU with discrete Gaussians and variance σ2 = 2

3
. For

each parameter n we generated 512 instances.

squared singular values s21, . . . , s2n−1 distributed as χ2
2,nσ2/2+χ

2
2,nσ2/2 =

χ2
4,nσ2/2. By Lemma 53 they have a log-expectation of

E[log s20] = log(2nσ2) + ψ(1), and E[log s2j ] = log(nσ2) + ψ(2)

for j = 1, . . . , n− 1. We conclude by noting that

E[log(vol(LGF))] =
1

2

n−1∑
i=0

log(s2i ).

Validation.

To validate the concrete estimate for vol(LGF) we generated the
NTRU sublattice for several dimensions and computed its volume. We
sample the secret coefficients following a discrete Gaussian with vari-
ance σ2 = 2

3
and ran experiments for both matrix NTRU and circulant
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7. Overstretched NTRU

NTRU. In Figures 7.8 and 7.9 we see that the predictions from Lem-
mas 114 and 115 perfectly fit the observed volumes in all dimensions.
We do note that the variance is quite significant for the circulant case,
but it can be fully explained by the computed eigenvalue distributions
in the proof of Lemma 115. We will later see that this high variance
has a large influence on the successful BKZ blocksize (Section 7.5.1,
Figure 7.11).

7.4.3 Further refinements

We discuss some further refinements, some of which were already suc-
cessfully applied to the 2016 Estimate [AGVW17; DDGR20; PV21].

Gaussian Heuristic. For the asymptotic analysis we used Minkowski’s
bound to estimate the length λ1

(
LGF

∩[0:n+k)

)
in terms of the volume

vol
(
LGF

∩[0:n+k)

)
. A natural way to obtain a concrete estimate for the

expected minimal length is by assuming that the intersection LGF
∩[0:n+k)

follows the Gaussian Heuristic and thus for the prediction we assume
that

λ1
(
LGF

∩[0:n+k)

)
= gh(LGF

∩[0:n+k)) ≈
√
k/(2πe) · vol

(
LGF

∩[0:n+k)

)1/k
.

We should however be careful with this assumption, as in fact it is false
for k = n. E.g., the above predicts that λ1(LGF) ≈

√
n/(2πe)·

√
2nσ2,

while we know that λ1(LGF) = ∥(g; f)∥ ≈
√
2nσ2, a factor Θ(

√
n)

shorter than predicted. The reason for this is that the dense sublattice
is up to rotation and scaling very similar to the orthogonal lattice
Zn, precisely the lattice for which it is well known that the Gaussian
Heuristic is false. For small k ≪ n we do observe that the intersected
lattice LGF

∩[0:s) follows the Gaussian Heuristic; the orthogonal structure
seems to be broken by the intersection. However we do not have
a clear idea how large k can become before the orthogonal structure
returns and the minimal length stops following the prediction from the
Gaussian Heuristic. We think this behaviour deserves some further
investigation, e.g., if the transition is very sudden or not, and we
leave it as an open problem. This near-orthogonality of LGF

∩[0:s) may be
critical to model the DSD-LL events.
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7.4. A concrete average-case analysis

Probabilities. So far we have only considered expectations of volumes
and projections. While this is enough to give a rough concrete estimate
we want to be more precise. Success probabilities can accumulate up
over multiple BKZ blocks and (progressive) tours, possibly leading to
success at much lower blocksizes than the rough estimate. We continue
using the expected values for the volume of the dense sublattice and
the intersection volumes to obtain the expected length λ1

(
LGF

∩[0:s)
)

of
the dense sublattice vector via the Gaussian Heuristic. However we
then model the short dense sublattice vector v ∈ LGF

∩[0:s) as an s-
dimensional Gaussian vector with the same expected length; allowing
us to compute the exact probability that

∥∥πs−β(v)
∥∥ ≤ ∥∥b̃s−β∥ using

the CDF of the chi-square distribution with β degrees of freedom.
Up to now we have ignored the probability that after πs−β(v) is

inserted, it is also correctly lifted to the full vector v by later BKZ
tours. While this almost always happens for higher blocksizes, it is
not so likely for lower blocksizes, and ignoring this leads to overly
optimistic predictions. For BKZ-β to successfully lift or eventually pull
the vector v to the front it should also satisfy ∥πi(v)∥ ≤ ∥b̃i∥ for all i =
s−2β+1, s−3β+2, . . .. These conditions are not independent which
makes them hard to compute exactly. We simplify the computation
by only considering the dependence for consecutive positions i, i −
β + 1 as done in [DDGR20]. We iteratively run the estimator for
progressive β = 2, 3, . . . and take account of all probabilities assuming
that all tours behave completely independently. The new concrete
estimate will be the expected successful blocksize. Additionally this
allows us to combine both the (probabilistic) SKR 2016 Estimate and
the new DSD-PT estimate in a single estimator. With some more
administration we can also predict the distribution of the successful
location κ, and predict the probability that the SKR event happens
before the DSD event.

BKZ shape for low blocksizes. While the formulas for the (Z)GSA
slope αβ and the expected first minimum gh(β) convert to the ex-
perimental values for large blocksizes of say β ≥ 50, they are not as
accurate for small β. As expected the convergence is worse for pro-
gressive BKZ when we only use a few tours of each blocksize. We ran
some experiment on random low dimensional q-ary lattices to obtain
practical estimates for gh(β) with β ≤ 50. Earlier works about the
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2016 Estimate resorted to BKZ simulators to predict the BKZ shape,
which account for the number of tours and also the special shape of the
head and tail that do not perfectly follow the GSA shape. Together
with the earlier mentioned refinements this resulted in very precise
predictions [DDGR20; PV21]. However how BKZ acts on a Z-shaped
basis is much less understood [AD21] and as of yet there are no accu-
rate BKZ simulators. Understanding the behaviour and creating an
accurate simulator would be very interesting, but is out of the scope of
this work. We continue using the ZGSA, but we resort to experimental
values for αβ obtained by running BKZ on random q-ary lattices for
large q. To remain consistent we also do not use a simulator for the
GSA shape, and accept the small discrepancy between the predictions
and practical experiments.

7.5 Experimental validation

7.5.1 Successful blocksize

We start with comparing the concrete predictions to the preliminary
experiment from Section 7.3.1. We ran progressive BKZ with 8 tours
on matrix NTRU instances with parameters n = 127, σ2 = 2

3
for

several moduli q. In Figure 7.10 we show the blocksizes at which the
SKR or DSD event is first detected, and compare them to the concrete
estimator. We ran the estimator three times for each modulus q: only
accounting for SKR, only accounting for DSD-PT, and accounting
for both. Note that the combined estimate can be strictly lower than
both the first two because the probabilities to succeed accumulate over
both events. We calibrated the values of αβ by running the same BKZ
routine on (2 · 127)-dimensional q-ary lattices with q ≈ 220.

We observe that the experiments match the estimates reasonably
well, with an average blocksize error of less than 2 for the DSD events
and less than 3 for the SKR events. We shortly discuss potential
sources of the small errors error.

• We do not actually run the classical BKZ algorithm, but the
BKZ 2.0 algorithm as it is more feasible to run for large block-
sizes. One part of the latter algorithm is that in each BKZ block
[κ : κ+β) the last β− 1 vectors are randomised before finding a
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Figure 7.10: Experiment versus prediction for progressive BKZ with
8 tours on matrix NTRU instances with parameters n = 127, σ2 = 2

3

for several moduli q. We did 10 runs per modulus q.

short projected vector. This temporarily breaks the GSA shape
and results a small ‘bump’ in the profile that is pushed to the
right during a tour. On average we measured at the SKR events
a log-increase of 0.048 on the value of ∥b̃κ∥ compared to the GSA
(while the rest of the basis matches very closely). Although anec-
dotal, adjusting the estimator with this offset of 0.048 resulted
in very close predictions for the SKR events.

• For small blocksizes β ≤ 30 we see that the DSD-PT estimate is
slightly pessimistic compared to the experiments. However the
successful profile slope αβ (computed from the profile at the mo-
ment of detection) does closely match the predicted slope αβpred

,
pointing to a wrong calibration of the slope parameter for very
low blocksizes. Note that the non-flat part of the Z-shape in the
experiments has size less than the 2·127 dimensional lattice used
for calibration, which plausibly explain why the slope converges
quicker than expected.
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Figure 7.11: Results from running progressive BKZ with 8 tours on 200
circulant NTRU instances in the overstretched regime with parameters
n = 151, q = 2003 and σ2 = 2

3
. (a) Distribution of κ at which the DSDκ

event is triggered. (b) The log-length decrease from ∥v∥ to ∥πκ(v)∥
normalised by the expected decrease (Lemma 112). (c) Successful
blocksize β versus the position κ, and (d) versus the volume vol(LGF).

7.5.2 Detailed behaviour

Because the estimator computes actual probabilities we can com-
pare the predictions to the experiments on a deeper level. We
ran 200 experiments on circulant NTRU instances with parameters
n = 151, q = 2003 and σ2 = 2

3
. These parameters fall into the over-

stretched regime. The results, compared to the estimator, are shown
in Figure 7.11. The average successful blocksize over all 200 instances
is βavg = 40.99, which is close to the estimated value of βpred = 41.21.
We note however that the average squared error is as large as 16.9;
the successful blocksizes range from 27 to 49 for identical initial pa-
rameters. Looking at Figure 7.11(d) we see that this can mostly be
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7.5. Experimental validation

explained by the large variance of the volume of the dense sublattice
vol(LGF), as earlier noticed in Figure 7.9. Adjusting the estimate with
the concrete volume (instead of the average case prediction) decreases
the average squared error all the way down to 0.83. E.g., the large
average squared error is not an imprecision of the estimator, but an
inherent high variance in the hardness of circulant NTRU instances.
In many schemes this variance is significantly reduced by sampling the
secret keys f ,g under some fixed constraints on the lengths ∥f∥, ∥g∥
or even stronger restrictions.

We now take a look at the positions κ at which the DSDκ events
took place. In Figure 7.11(a) we see that most events (169/200) hap-
pen for κ ≤ n, as predicted by the DSD-PT estimate. We see in
Figure 7.11(b) that for these instances the projection πκ(v) of the
dense sublattice vector v is also not much shorter than expected,
which matches the DSD-PT event as defined in Section 7.3.1. For
the remaining events (31/200) with κ > n we note that κ seems to be
evenly distributed over n + 1, . . . , 2n − β, while the projected length
becomes increasingly smaller than expected for increasing κ.

These DSD-LL events do not seem properly predicted by the
model. Indeed, looking at κ around 2n − β the model predicts that
the probability that a random vector has such a short projection is
as small as 10−55, and the probability that such a vector would cor-
rectly be lifted by Babai’s nearest plane algorithm is even smaller (see
script lucky_lift.sage). Interestingly however is that the transition
between DSD-PT and DSD-LL events is rather continuous, and it is
not so clear where to put the threshold between these two events.

In Figure 7.11(c) we see no clear difference between the successful
blocksizes at positions κ ≤ n versus those at κ > n, and their av-
erage of 41.1 and 40.4 respectively. This suggests that, at least for
these parameters, the DSD-LL events do not significantly contribute
to making the attack cheaper. This was also the case for all other
experiments we ran with different parameters.

In Figure 7.11(a) we also show the predicted distribution of the
event positions κ. We correctly predicted the peak around κ ≈ n −
1
2
βpred, and that κ ≤ n for the DSD-PT events. However the prediction

is much more concentrated than the experimentally observed events,
and neglects to notice the events at κ ≤ n − 1

2
βpred. We give two

possible explanations for this.
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7. Overstretched NTRU

• The estimate assumes an average-case dense sublattice volume,
ignoring the high variance of the dense sublattice volume. Ad-
justing for this using the real volumes makes the prediction less
concentrated and closer to the observed events. However this
still not captures all events at κ ≤ n− 1

2
βpred.

• The experiments and the estimator inherently measure two dif-
ferent things. The experiment detects a DSDκ event if the pro-
jection πκ(v) is inserted and is lifted to a dense sublattice vector
v by Babai’s nearest plane algorithm. The estimator however es-
timates the probability that the projection is short enough and
that the projection is eventually lifted to the dense sublattice
vector v by later tours of the BKZ algorithm. Therefore a DSD-
PT event predicted at position κ might experimentally only be
detected one tour later at κ−β+1 or at an even lower position.
This could potentially be resolved by also taking into account
the direct lift of Babai’s nearest plane in the estimator, but note
that for the eventual goal of estimating the successful blocksize
this will not matter.

7.5.3 Fatigue point

The concrete estimator follows the experiments reasonably well and
thus we can use it to estimate the concrete fatigue point for dimensions
that are not feasible in practice. To verify the estimate of the fatigue
point we also did some experiments in dimensions that are still feasible.
For this we ran a soft binary search, only decreasing the interval length
by 3/4 so as not view a probabilistic result as a definitive answer. More
specifically, starting with a range of [qmin, qmax] we ran an experiment
for a prime q ≈ (qmin + qmax)/2. If it succeeds with an SKR event
we update qmin to (qmin + q)/2 + 1, if it succeeds with a DSD event
we update qmax to (qmax + q)/2− 1. We repeat this until the interval
does not contain any prime and we return (qmin + qmax)/2 as a rough
estimate of the fatigue point. We averaged this over 20 experiments
for each parameter n. We chose for matrix NTRU because of the lower
variance in the hardness of these instances.

We compared this to the prediction. Because the estimator ac-
counts for probabilities of events, we can predict for which value of q
about 50% of the instances succeeds with a DSD event. Because it
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would be unreasonable to calibrate the low blocksize slope values αβ

for each dimension we reused those of the 2 · 127 dimensional q-ary
lattice from an earlier experiment. This might make the estimates a
bit less precise for n≪ 127, and n≫ 127 if the successful blocksize is
small around the fatigue point.

The results are shown in Figure 7.12 and plotted against Cn2.484 for
several constants C. Remarkably the experiments and concrete pre-
dictions closely follow the asymptotics already for reasonably small
values of n. A loglog-linear regression of the 50% DSD-PT estimate
over all primes 199, . . . , 499 gives 0.0034 ·n2.506. Restricting the expo-
nent to 2.484 gives 0.0038 ·n2.484 with a log-standard deviation of only
0.006.

The experimental average appears slightly higher than the esti-
mator prediction for 50% DSD - 50% SKR. The main reason for this
seems to be that the estimator is slightly pessimistic for detecting the
SKR event, as already observed and explained in Section 7.5.1. An-
other small detail is that the binary search is slightly biased to higher
values of q because at each iteration we pick the next prime after
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Figure 7.12: Concrete fatigue point versus asymptotics using pro-
gressive BKZ with 8 tours on matrix NTRU instances with variance
σ2 = 2

3
. The 0.5 percentile line shows for which q we estimate that

the DSD event is triggered before the SKR event for about 50% of the
instances.
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Figure 7.13: Experiment versus prediction for progressive BKZ with 8
tours on matrix NTRU instances with parameters n = 113, σ2 = 2

3
for

several moduli q. We did 100 runs per modulus q and the plot shows
the ratio of these runs succeeding with a DSD event (before an SKR
event).

(qmin + qmax)/2.

7.5.4 Zoom on the fatigue point: a smooth
probabilistic transition

We take a closer look at the transition from the non-overstretched
to the overstretched regime. For this we ran several experiments on
matrix NTRU instances with parameters n = 113, σ2 = 2

3
for several

moduli q, with 100 runs each. We compare the DSD success ratio with
the probabilistic concrete estimate. The results are shown in Figure
7.13. Just as in Figure 7.12 we see a shift between the experiment
and prediction, which can again be explained by the SKR estima-
tor being too pessimistic. Note however that while the discrepancy
looks significant in this zoomed plot, it only emphasises a small error
of about 2 block sizes between the experiments and the predictions.
Ignoring this shift the shape of the predicted transition matches the
experiments very well.
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CHAPTER 8
Basis Reduction for Binary

Codes

This chapter is an abbreviated version of the joint work ‘An
Algorithmic Reduction Theory for Binary Codes: LLL and
more’, with Thomas Debris-Alazard and Léo Ducas, published
in IEEE Transactions on Information Theory.

8.1 Introduction
Codes and lattices share many mathematical similarities. A (linear)
code C ⊂ Fn

q is defined as a subspace of a vector space over a finite
field, typically endowed with the Hamming metric, while a lattice
L ⊂ Rn is a discrete subgroup of a Euclidean vector space. They
both found similar applications in information theory and computer
sciences. For example, both can be used to perform error correction;
on digital channels for codes, and on analogue channels for lattices.

Both objects also found applications in cryptography. Cryptosys-
tems can be built relying either on the hardness of finding a close
codeword or a close lattice point from a given target. And just as
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8. Basis Reduction for Binary Codes

for lattices, cryptography based on codes appears to be resistant to
quantum computing.

The set of techniques for attacking those problems also have simi-
larities, and some algorithms have been transferred in each direction:
for example the Blum-Kalai-Wasserman [BKW03] algorithm has been
adapted from codes to lattices [Alb+15], while the introduction of
locally-sensitive hashing in code cryptanalysis [MO15] shortly followed
its introduction in lattice cryptanalysis [Laa15].

It is therefore very natural to question whether all techniques used
for codes have also been considered for lattices, and reciprocally. Be-
yond scientific curiosity, this approach can hint us at how complete
each state of the art is, and therefore, how much trust we should put
into cryptography based on codes and cryptography based on lattices.

Comparing both states of the art, it appears that there is a major
lattice algorithmic technique that has no clear counterpart for codes,
namely, basis reduction. Recall from Chapter 6 that lattice reduction
attempts to find a basis with good geometric properties; in particular
its vectors should be rather short and orthogonal to each others.

More specifically, the basis defines, via Gram-Schmidt Orthogo-
nalization, a fundamental domain (or tiling) of the space, and a cor-
responding decoding algorithm. Decoding with this algorithm is the
most favourable when these tiles are close to being square, i.e. when
the Gram-Schmidt lengths are balanced. Basis reduction algorithms
such as LLL aim at making the Gram-Schmidt lengths more balanced.

Certainly, the problem of finding short codewords has also been
intensively studied in cryptanalysis with the Information Set Decod-
ing (ISD) literature [Pra62; LB88; Ste88; Dum91; MMT11; BJMM12;
MO15; BM18], but notions of basis reduction for lattices are more sub-
tle than containing short vectors; as discussed above, a more relevant
objective is to balance the Gram-Schmidt norms. There seem to be
no analogue notions of Gram-Schmidt norms and basis reduction for
codes, or at least they are not explicit nor associated with reduction
algorithms. We are also unaware of any study of how such reduced
bases would help with decoding tasks.

This observation leads to two questions. Is there an algorithmic
reduction theory for codes, analogue to the one of lattices? And if so,
can it be useful for decoding tasks?
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8.1.1 Contributions

In this chapter we answer both questions positively, and set the foun-
dation of an algorithmic reduction theory for codes. More specifically,
we propose as main contributions:

1. the notion of an epipodal matrix B+ of the basis B of a binary
code C ⊂ Fn

2 (depicted in Figure 8.1), playing a role analogue to
the Gram-Schmidt Orthogonalisation B̃ of a lattice basis,

2. a fundamental domain (or tiling) of C over Fn
2 associated to this

epipodal matrix, as an analogue to the rectangle parallelepipedic
tiling for lattices,

3. a polynomial time decoding algorithm (SizeRed) effectively re-
ducing points to this fundamental region, analogue to the Near-
est Plane algorithm popularised by Babai [Bab86],

4. a relation between the geometric quality of the fundamental do-
main and the success probability for decoding a random error to
the balance of the lengths of the epipodal vectors,

5. an adaptation of the seminal LLL reduction algorithm [LLL82]
from lattices to codes, providing in polynomial time a basis with
some epipodal length balance guarantees. Interestingly, this LLL
algorithm for codes appears to be an algorithmic realisation of
the classic bound of Griesmer [Gri60], in the same way that LLL
for lattices realizes Hermite’s bound.

These contributions establish an initial dictionary between reduction
for codes and for lattices, summarised in Table 8.1.

Open Artefacts: Source code (c++ kernel, with a python inter-
face)1.

8.1.2 Organisation

We introduce some preliminaries on binary linear codes in Section
8.2. In Section 8.3 we introduce the notion of orthopodality for bi-
nary vectors, and use this to define (orthopodal) projections and a

1Available at https://github.com/lducas/CodeRed/.
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8. Basis Reduction for Binary Codes

Table 8.1: A Lattice-Code Dictionary.

Lattice L ⊂ Rn Code C ⊂ Fn
2

Ambient Space Rn Fn
2

Metric Euclidean Hamming
∥x∥2 =∑x2i |x| = #{i | xi ̸= 0}

Support (element) R · x {i | xi ̸= 0}
Support (lattice/code) SpanR (L) {i | ∃c ∈ C s.t. ci ̸= 0}

Sparsity det(L) 2n−k

Effect. Sparsity det(L) 2#S(C)−k

x ⊥ y Orthogonality Orthopodality
⟨x,y⟩ = 0 S(x) ∩ S(y) = ∅

Projection πx Ortho. Project. onto x Punct. pattern x

y 7→ ⟨x,y⟩⟨x,x⟩ · x y 7→ y ∧ x

Auxiliary matrix Gram-Schmidt Orth. Epipodal matrix

b̃i = bi −
∑
j<i

⟨bi,b̃j⟩
⟨b̃j ,b̃j⟩

· b̃j b+i = bi ∧ (b+1 ∨ · · · ∨ b+i−1)

Basis profile ℓ ℓi = ∥b̃i∥ ℓi = |b+i |

Fundamental domain Parallelepiped P(B̃) Prod. of Hamming balls1

F(B)
{
x
∣∣∣∀i |⟨x, b̃i⟩| ≤ ℓ2i

2

} {
x
∣∣∣∀i |x ∧ b+i | ≤

ℓi
2

}
Error correct. radius mini ℓ

2
i /2 mini⌊(ℓi − 1)/2⌋

Average deco. dist.
√

1
12

∑
i ℓ

2
i ≈ n

2
− 1√

π

∑
i

√
⌈ℓi/2⌉

Worst deco. dist.
√

1
2

∑
i ℓ

2
i

∑
i⌊ℓi/2⌋

Favourable decoding balanced ℓi’s balanced and odd ℓi’s

Basis inequality
∏ ∥bi∥ ≥ det(L) ∑ |bi| ≥ #S(C)

Invariant
∏ ∥b̃i∥ = det(L) ∑ |b+i | = #S(C)

LLL balance ℓi ≤
√

4/3 · ℓi+1 1 ≤ ℓi ≤ 2 · ℓi+1

LLL first length ℓ1 ≤ ( 4
3
)
n−1
2 det(L)

1
n ℓ1 − ⌈log2 ℓ1⌉

2
≤ n−k

2
+ 1

Corresponding bound Hermite’s Griesmer’s [Gri60]
1This is not exactly correct when some epipodal length |b+i | are even. See

tie-breaking in Section 8.4.
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code analogue to the Gram-Schmidt basis. In Section 8.4 we give a
translation of Babai’s Nearest Plane algorithm to binary linear codes,
and explain how its performance depends on the basis profile. In Sec-
tion 8.5 we give a translation of the LLL algorithm to binary linear
codes, and show how it results in a reasonably balanced basis profile.
In the last Section 8.6 we discuss some future research directions.

8.2 Binary linear codes

We give a short introduction on the Hamming metric, binary linear
codes, and how they relate to lattices.

Binary vector space

While lattices live in the continuous Euclidean vector space Rn, codes
live in the discrete non-euclidean vector space Fn

q for some prime q. In
this work we will only consider the binary case q = 2, as it allows us to
explain our general ideas, without too many technical difficulties. We
identify F2 with the binary set {0, 1}, and thus interpret elements of
Fn
2 as binary vectors. We will use the standard boolean notations x,

x⊕y, x∧y, x∨y, for respectively the bitwise NOT, the bitwise XOR
(vector addition over Fn

2 ), the bitwise AND, and the bitwise OR.2 In
contrast to most code-based literature the vectors x ∈ Fn

2 should be
interpreted as column vectors, following the overall notation in this
thesis.

Hamming metric

The most common metric in the code-based literature is the Hamming
metric. The support S(x) of a vector x ∈ Fn

2 is the set of indices of
its nonzero coordinates, and its Hamming weight |x| ∈ J0, nK is the
cardinality of its support:

S(x) := {i ∈ J1, nK | xi ̸= 0} , |x| := #S(x).

2In the code-based cryptography literature, for instance [COT16], the bitwise
AND is often interpreted algebraically as a star-product or Schur-product, denoted
⊙ or ⋆. We found the boolean notations more adapted to our geometric purposes,
especially given that the bitwise OR also plays an important role.

221



8. Basis Reduction for Binary Codes

The Hamming distance between two vectors x,y ∈ Fn
2 is likewise given

by |x ⊕ y| ∈ J0, nK. We will denote by Sn
w the Hamming sphere and

by Bn
w the Hamming ball of radius w over Fn

2 , namely:

Sn
w := {x ∈ Fn

2 : |x| = w} , Bn
w := {x ∈ Fn

2 : |x| ≤ w} .

Binary linear codes

A binary linear code C of length n and dimension k — for short, an
[n, k]-code — is a subspace of Fn

2 of dimension k. The ratio R = k/n is
called the rate of the code. Every linear code can be described either
by a set of linearly independent generators (basis representation) or
by a system of modular equations (parity-check representation). We
will mostly consider the first representation for our purpose.

To build an [n, k]-code we may take any set of vectors b1, . . . ,bk ∈
Fn
2 which are linearly independent and define:

C(b1, . . . ,bk) :=

{
k∑

i=1

zibi : zi ∈ F2

}
(Basis representation)

We say that b1, . . . ,bk is a basis for the code C = C(b1, . . . ,bk).
Alternatively we will call the matrix B = [b1, . . . ,bk] ∈ Fn×k

2 a basis
or a generating matrix of the code C = C(B).

Properties

An element c ∈ C of a code C is called a codeword. The support of the
code is defined as the union of the supports of all its codewords, which
also implies the definition of an effective length |C| ≤ n of a [n, k]-code
C:

S(C) :=
⋃
c∈C

S(c), |C| := #S(C).

Indeed, the code length n defined by the ambient space is rather ex-
trinsic information, in particular extending a code C by padding a 0
to all codewords does not affect the geometry of the code, but it does
affect the apparent length n. To avoid unnecessary technicalities we
assume in the rest of this chapter that each code has full support, i.e.,
|C| = n.
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Note that in contrast to lattices, the span of a code basis is au-
tomatically discrete due to its ambient space Fn

2 , while for lattice we
need to restrict to the Z-span to obtain the discreteness inside Rn.
Similar to lattices, the discreteness allows us to define a first mini-
mum, or minimal distance dmin(C) of a code, as the shortest Hamming
weight of nonzero codewords, namely:

dmin(C) := min {|c| : c ∈ C and c ̸= 0} .

Hard problems

The problem of finding such a minimum length codeword, the analogue
of the Shortest Vector Problem, is known as the Minimum Codeword
Problem.

Definition 116 (Minimum Codeword Problem (MCP)). Given a
basis B of a binary [n, k]-code C, compute a nonzero codeword x ∈ C
of minimum weight, i.e., such that |x| = dmin(C).

Similarly the Closest Vector Problem has a direct analogue in
codes, usually named the Nearest Codeword Problem.

Definition 117 (Nearest Codeword Problem (NCP)). Given a ba-
sis B of a binary [n, k]-code C, and a target t ∈ Fn

2 , compute a codeword
x ∈ C of minimum distance to t, i.e., such that |t⊕ x| is minimal.

Alternatively this is called decoding the code C.

Systematic form

An usual way in code-based cryptography to decode random codes is
to use bases in systematic form. A basis B of an [n, k]-code is said
to be in systematic form or in reduced row echelon form if up to a
permutation of its rows B = (Ik;B

′) where Ik denotes the identity
of size k × k and B′ ∈ F(n−k)×k

2 . Such bases can be produced from
any basis by doing a Gaussian elimination over the columns. Choosing
the set of pivots iteratively (possibly at random among available ones),
this can be done in time O(nk2).
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8.3 Orthopodality and the epipodal
matrix

Let us start by recalling the standard definition of Gram-Schmidt Or-
thogonalisation (GSO) over Euclidean vector spaces. Given a basis
[b1, . . . ,bn] of the Euclidean space (Rn, ∥ · ∥) its Gram-Schmidt or-
thogonalisation (b̃1; . . . ; b̃n) is defined inductively by:

b̃i := πi(bi) where πi : x 7→ x−
∑
j<i

⟨x,b̃j⟩
⟨b̃j ,b̃j⟩

· b̃j.

The map πi denotes the orthogonal projection onto the orthogonal of
the space generated by vectors b1, . . . ,bi−1 in Rn. While the GSO of
the basis of a lattice is not itself a basis of that lattice, it is a central
object in the reduction theory of lattices, and in lattice reduction al-
gorithms. This section is dedicated to the construction of an analogue
object for bases of binary linear codes.

8.3.1 An orthogonality notion for binary vectors

In the case of Euclidean vector spaces Rn, orthogonality can be defined
via the standard inner-product, namely x ⊥ y : ⟨x,y⟩ = 0 and so
orthogonal projections onto the line spanned by x as πx(y) := ⟨x,y⟩

⟨x,x⟩x.
Orthogonality also provides Pythagorian additivity:

∥x⊕ y∥2 = ∥x∥2 + ∥y∥2.

The space Fn
2 is also endowed with an inner-product, but it does not

lead to a geometrically meaningful notion of orthogonality. For in-
stance for x,y ∈ Fn

2 , ⟨x,y⟩ = 0 (mod 2) does not seem to imply
anything similar to Pythagorian additivity. However we note that, by
definition of the Hamming weight we do have:

|x⊕ y| = |x|+ |y| ⇐⇒ S(x) ∩ S(y) = ∅.

In fact, we even have the identity:

|x⊕ y| = |x|+ |y| − 2|x ∧ y|
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8.3. Orthopodality and the epipodal matrix

for x,y ∈ Fn
2 , which should be read as an analogue of the Euclidean

identity:
∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2⟨x,y⟩.

This suggests to define x,y ∈ Fn
2 to be orthopodal if their supports are

disjoint, that is, defining the orthogonality relation as:

x ⊥ y⇐⇒ x ∧ y = 0.

We can then associate convenient notions of projections onto (the
support of) x and orthopodally to (the support of) x as follows:

πx : y 7→ y ∧ x, π⊥
x : y 7→ y ∧ x = πx(y)

Such transformations are certainly not new to codes, and known in
the literature as puncturing [MS77, Ch.1 §9]. However, we are here
especially interested in their geometric virtues. They do satisfy similar
properties as their Euclidean analogues: πx is linear, idempotent, it
fixes x, it does not increase length (Hamming weight), and together
with π⊥

x yields an orthogonal decomposition. More formally:

Lemma 118. For any x,y, z ∈ Fn
2 it holds that:

πx(y ⊕ z) = πx(y)⊕ πx(z), π2
x(y) = πx(y),

π⊥
x (x) = 0, πx(x) = x,

π⊥
x (y) ⊥ x, |πx(y)| ≤ |y|,

πx(y) ⊥ π⊥
x (y), πx(y)⊕ π⊥

x (y) = y.

The proof is immediate by boolean algebra. Furthermore, and un-
like their Euclidean analogues: they always commute and their com-
positions can be compactly represented.

Lemma 119. For any x,y ∈ Fn
2 it holds that:

πx ◦ πy = πy ◦ πx = πx∧y,

π⊥
x ◦ π⊥

y = π⊥
y ◦ π⊥

x = π⊥
x∨y.

The proof is also immediate by boolean algebra. We therefore
extend the notation π⊥

S to sets S ⊆ Fn
2 to denote the projection or-

thopodally to the support of S, namely π⊥
x where x =

∨
s∈S s. This

compact representation will allow for various algorithmic speed-ups.
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8.3.2 Epipodal matrix

We are now fully equipped to define an analogue of the Gram-Schmidt
Orthogonalisation process over real matrices to the case of binary ma-
trices. An important remark is that this analogue notion given below
does not preserve the F2-span of partial bases, which may appear as
breaking the analogy with the GSO over the reals which precisely
preserves R-span of those partial bases. This is in fact not the right
analogy for our purpose, noting that the GSO does not preserve the
Z-spans of those partial bases. The proper lattice to code translation
(Table 8.1) associates Z-spans (i.e. lattices) to F2-spans (i.e. codes),
and R-spans to supports.

Definition 120 (Epipodal matrix). Let B = [b1, . . . ,bk] ∈ Fn×k
2 be

a binary matrix. The i-th projection associated to this matrix is defined
as πi := π⊥

{b1,...,bi−1} where π1 denotes the identity. Equivalently,

πi : Fn
2 −→ Fn

2

c 7−→ c ∧ (b1 ∨ · · · ∨ bi−1).

The i-th epipodal vector is then defined as:

b+i := πi(bi),

and the matrix B+ := [b+1 , . . . ,b
+
k ] ∈ Fn×k

2 is called the epipodal matrix
of B.

Note that the definition does not need to be restricted to full rank
matrices. The i-th epipodal vector should be interpreted as the sup-
port increment from the code C(b1, . . . ,bi−1) to C(b1, . . . ,bi). The
epipodal matrix enjoys the following properties, analogue to the GSO.

Lemma 121 (Properties of Epipodal Matrices). For any binary
matrix B = [b1, . . . ,bk] ∈ Fn×k

2 , its epipodal matrix B+ = [b+1 , . . . ,b
+
k ]

satisfies:

1. The epipodal vectors are pairwise orthopodal:

∀i ̸= j, b+i ⊥ b+j . (8.1)
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b1,b2,b3 (transposed) b+1 ,b
+
2 ,b

+
3 (transposed)

Figure 8.1: The (transposed) basis B of a [8, 3]-code, and its associated
epipodal matrix B+.

2. For all i ≤ k, (b1, . . . ,bi) and [b+1 , . . . ,b
+
i ] have the same sup-

ports, that is:⋃
j≤i

S(b+j ) =
⋃
j≤i

S(bj), or equivalently,
∨
j≤i

b+j =
∨
j≤i

bj. (8.2)

Proof. For any i, we have by definition that b+i = πi(bi) = bj ∧
(b1 ∨ · · · ∨ bi−1), so it holds that S(b+i ) ⊂ S(bi), and that S(b+i ) ∩
S(bj) = ∅ for any j < i. Therefore S(b+j ) ∩ S(b+i ) = ∅, that is b+i ⊥
b+j . For the second item, rewrite b+j = bj ∧

∧
i<j bi and conclude by

induction.

Furthermore, one may note that epipodal vectors satisfy a similar
induction to the one of the GSO over the reals:

GSO: b̃i = bi −
∑
j<i

⟨bi,b̃j⟩
⟨b̃j ,b̃j⟩

· b̃j.

Epipodal Matrix: b+i = bi ⊕
∑
j<i

bi ∧ b+j ,

However following this induction leads to perform O(k2) vector oper-
ations. In the case of the epipodal matrix, the computation can be
sped-up to O(k) vector operations using cumulative support vectors
si:

s0 = 0, si = si−1 ∨ bi, b+i = bi ∧ si−1.

The epipodal matrix of the basis of a code also enjoys an analogue
invariant to the GSO for lattices. The GSO (b̃1, . . . , b̃k) of a lattice
L is not generally a basis of L but it verifies the following invariant∏k

i=1 ∥b̃i∥ = det(L).
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8. Basis Reduction for Binary Codes

Corollary 122 (Length Invariant). For any basis [b1, . . . ,bk] of an
[n, k]-code C:

k∑
i=1

|b+i | = |C|.

Proof. Using equation (8.2) we have
⋃

j≤n S(b
+
j ) =

⋃
j≤n S(bj) = S(C),

and according to (8.1) this union is disjoint.

8.4 Size-reduction and its fundamental
domain

While the GSO of a lattice basis is not itself a basis of that lattice, it is
a central notion to define what a “good” basis is. For example, because
of the invariant

∏ ∥b̃i∥ = det(L), and because b̃1 = b1, making the
first vector of a basis short means that other Gram-Schmidt lengths
must grow.

The notion of quality of a basis should more specifically be linked
to what we can do algorithmically with it. In the cases of lattices, the
GSO of a basis allows to tile the space. More formally, if B is the basis
of a full rank lattice L ⊂ Rn, one can define a fundamental domain of
the translation action of L over Rn (i.e. a set of representatives of the
quotient Rn/L) by the following rectangle parallelepiped:

P(B̃) :=
{∑

xib̃i

∣∣∣ − 1
2
≤ xi <

1
2

}
=

[
−1

2
,
1

2

)k

· B̃

Furthermore, there is a polynomial time algorithm that effectively
reduces points x ∈ Rn modulo L to this parallelepiped, namely size-
reduction [LLL82], also known as the Nearest Plane Algorithm [Bab86].
This parallelepiped has inner radius rin = min ∥b̃i∥/2 and outer square
radius r2out = 1

4

∑ ∥b̃i∥2. This means that size-reduction can, in the
worst case, find a close lattice vector at distance rout, and correctly
decode all errors of length up to rin. One can also establish that
the average squared distance of the decoding of a random coset is
1
12

∑ ∥b̃i∥2.
This Section is dedicated to an equivalent size-reduction algorithm

for binary codes, and to the study of its associated fundamental do-
main.
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8.4.1 Size-reduction: definition and algorithm

Let us start by defining size-reduction and its associated fundamental
domain. A first technical detail is that in the case of codes, it is not
given that the epipodal vectors are nonzero, a minor difference with
the Gram-Schmidt Orthogonalisation for bases in a real vector space.
We restrict our attention to proper bases.

Definition 123 (Proper bases). A basis B is proper if all epipodal
vectors b+i are nonzero.

Note for example that bases in systematic form are proper bases:
proper bases do exist for all codes, and can be produced from any
basis in polynomial time.

A more annoying hiccup is that we may need to handle ties to
prevent the size-reduction tiles from overlapping; in the case of lattices
these might as well be ignored as the difference between [−1

2
, 1
2
]n and

[−1
2
, 1
2
)n has zero measure. This issue arises when an epipodal vector

p has even weight, if we are reducing some y ∈ Fn
2 such that |y∧p| =

|p|/2 = |(y⊕p)∧p|. We (arbitrarily) use the first epipodal coordinate
to break such ties:

TBp(y) =


0 if |p| is odd,
0 if yj = 0 where j = min(S(p)),

1/2 otherwise.

Definition 124 (size-reduction). Let B = [b1, . . . ,bk] be a basis of
an [n, k]-code. The Size-Reduced region relative to B is defined as:

F(B+) :=

{
y ∈ Fn

2 : ∀i ∈ J1, kK, |y ∧ b+i |+ TBb+i
(y) ≤ |b

+
i |
2

}
.

Vectors in this region are said to be size-reduced with respect to the
basis B.

Furthermore, as for lattices, we have an efficient size-reduction
algorithm that reduces any target to this region.

Proposition 125. Algorithm 12 is correct and runs in polynomial
time.
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8. Basis Reduction for Binary Codes

Algorithm 12: SizeRed(B,y) Size-reduce y with respect to
B

Input : A basis B = [b1, . . . ,bk] ∈ Fk×n
2 and a target y ∈ Fn

2

Output: e ∈ F(B+) such that e⊕ y ∈ C(B)
1 e← y
2 for i = k down to 1 do
3 if |e ∧ b+i |+ TBb+i

(e) > |b+i |/2 then
4 e← e⊕ bi

5 end
6 end
7 return e

Proof. First note that e ⊕ y ∈ C(B) is a loop invariant, as we only
add basis vectors bi to e. Therefore all we need to show is that
e ∈ F(B+). Note that the loop at step i enforces |e∧b+i |+TBb+i

(e) ≤
|b+i |/2. Furthermore, this constraint is maintained by subsequent loop
iterations of index j < i since bj ∧ b+i = 0.

Proposition 126 (Fundamental Domain). Let B := [b1, . . . ,bk] be
a proper basis of an [n, k]-code C. Then F(B+) is a fundamental do-
main for C, that is:

1. F(B+) is C-packing:

∀c ∈ C \ {0}, (c+ F(B+)) ∩ F(B+) = ∅,

2. F(B+) is C-covering:

C(B) + F(B+) = Fn
2 .

Proof. Let us start by proving that F(B+) is C(B)-packing. Let c =∑
i xibi ∈ C(B) and y1,y2 ∈ F(B+) such that c = y1 ⊕ y2. By

definition of the orthopodalization c =
∑

i xib
+
i ⊕
∑

j<i xibi∧b+j which
gives:

∀ℓ ∈ J1, kK, c ∧ b+ℓ = xℓb
+
ℓ ⊕

∑
i>ℓ

xibi ∧ b+ℓ .
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Suppose by contradiction that c ̸= 0. Let j be the largest index such
that xj ̸= 0. Then c∧b+j = b+j . As c = y1⊕y2 where y1,y2 ∈ F(B+),

|c ∧ b+j | ≤ |y1 ∧ b+j |+ |y2 ∧ b+j | < |b+j |,

which is a contradiction. Therefore c = 0 which shows that F(B+) is
C(B)-packing. The C(B)-covering property follows from the fact that
Algorithm 12 is correct as proven in Proposition 125.

8.4.2 Decoding performance of size-reduction

Given any fundamental domain F of an [n, k]-code C(B) and a cor-
responding reduction algorithm one can consider the decoding perfor-
mance. Such a reduction algorithm would reduce a target y ∈ Fn

2 to
the (unique) error e ∈ (y + C) ∩ F , and thereby finding a close code-
word c = y ⊕ e to y. A uniformly random target in Fn

2 is uniformly
distributed over the fundamental domain after reduction and thus the
quality of decoding fully dependents on the geometric properties of
the fundamental domain. For example, the expected Hamming dis-
tance is equal to the expected weight E[|U(F)|]. And, more precisely,
decoding a random target, to a codeword at Hamming distance w,
succeeds with probability:

prand
≤w (F) = #(F ∩ Bn

w)

#F =
#(F ∩ Bn

w)

2n−k
.

The minimal distance d := dmin(C) of a random code C is expected to
be very close to the Gilbert-Varshamov bound [OS09, §3.2, Definition
1], and a uniformly random target lies almost always at distance ≈ d
(see [MO15, §2] for a justification). Therefore in this setting random
decoding is mostly interesting for w ≥ d, as otherwise no solution is
expected to exist.

Another regime we can consider is unique decoding, where we have
the guarantee that our target has a unique codeword at distance at
most w. For general codes this is the case for half distance decoding
up to weight w < d/2. If the error is uniform over Bn

w, we obtain a
success probability of

puniq
≤w (F) = #F ∩ Bn

w

#Bn
w

.
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8. Basis Reduction for Binary Codes

For random codes a target at distance at most w < d (instead of d/2)
is almost always uniquely decodable and as a result the success prob-
ability is also close to the above quantity. For cryptanalytic purposes
it is assumed to be identical [OS09, page 3.3].

Let us now consider three such fundamental domains, an optimal
one, the one corresponding to an algorithm by Prange [Pra62], and
finally the size-reduction domain F(B+).

Maximum likelihood decoding

An optimal decoder, also know as a maximum likelihood decoder,
always decodes to a nearest codeword. Implicitly this corresponds to
a fundamental domain F where each coset representative has minimal
weight. This implies that the random decoding probability prand

≤w (F)
hits the probability that a uniformly random target lies at distance
at most w to the code, and a perfect unique decoding probability
of puniq

≤w (F) = 1. For lattices the analogue fundamental domain is
unique up to the boundary and is known as the Voronoi Domain of a
lattice. Unfortunately, reducing a target to this fundamental domain
is in general hard for both lattices and codes, and takes exponential
time [Pra62; MV13; DLW19].

Prange’s fundamental domains

Given a basis B in systematic form, a more common decoding algo-
rithm, namely the Prange algorithm [Pra62], is to assume an error of 0
on the k pivot positions of the systematic form. This induces a funda-
mental domain, but of geometric shape Fn−k

2 ×{0}k instead of F(B+).
This leads respectively to an expected error weight of (n− k)/2, and
random and unique decoding probabilities of:

prand
≤w (Fn−k

2 × {0}k) = #Bn−k
w

2n−k
, and puniq

≤w (Fn−k
2 × {0}k) = #Bn−k

w

#Bn
w

.

Size-reduction

In the case of lattices, size-reduction gives a fundamental domain that
can be written as a direct sum of segments P(B̃) =

∏
i[−1/2, 1/2) · b̃i

where the b̃i’s are the GSO of the lattice basis. The expected squared
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8.4. Size-reduction and its fundamental domain

decoding error 1
12

∑∥b̃i∥2 is simply the sum of the expected squared
error on each segment, and only depends on the Gram-Schmidt profile
∥b̃1∥, . . . , ∥b̃k∥.

We proceed similarly for the Size-Reduced region F(B+). The role
of the segment is taken over by the fundamental ball Ep of length p > 0
as:

Ep :=
{
y ∈ Fp

2 : |y|+ TB(1,...,1)(y) ≤ p/2
}
.

It should be thought of as the canonical fundamental domain of the
[p, 1]-code C = F2 ·(1, 1, . . . , , 1) inside Fp

2 (the repetition code of length
p). To each proper epipodal vector b+i we assign an epipodal ball E |b+i |,
and this allows to rewrite the fundamental domain F(B+) as a direct
product of balls via the isometry:

F(B+)
∼−→

k∏
i=1

E |b+i | : y 7→
(
y|S(b+1 ), . . . ,y|S(b+k)

)
.

The latter object only depends on the epipodal lengths |b+1 |, . . . , |b+k |
which we call the profile (ℓi := |b+i |)i of the basis B.

We can now proceed to analyse the Hamming weight of uniformly
random targets in the domain by looking at their weight in each local
fundamental ball E |b+i |. LetWp := |U(Ep)| for p > 0 be the distribution
of the Hamming weight of uniformly drawn targets in the fundamental
ball Ep. This weight distribution has the following probabilities for
integer weight w ≥ 0:

Pr [Wp = w] =


0 if w > p/2 or w < 0,
( p
p/2)
2p

if w = p/2,
(p
w)

2p−1 otherwise,

and its expectation is given by:

E [Wp] =
p

2
−
⌈p
2

⌉
·
(
p⌊
p
2

⌋) · 2−p =
p

2
−
√

p

2π
+Θ(1/

√
p) (8.3)

which is bounded by p−1
2

. This bound is strict for p ≥ 3, which will give
us a gain over the Prange decoder [Pra62]. Analogues to the lattice
case the expected Hamming weight of a uniformly random target in
Ep is given by the sum of the local expectations

∑k
i=1 E [Wℓi ].
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8. Basis Reduction for Binary Codes

To be more precise, for a basis B with profile ℓ = (ℓ1, . . . , ℓk),
the weight distribution W (B) := |U(F(B+))| of the size-reduction
algorithm, simply denoted by W (ℓ), is given by a convolution of the
local weight distributions Wℓ1 , . . . ,Wℓk :

Pr[W (B) = w] =
∑

∑
i wi=w

(
k∏

i=1

Pr[Wℓi = wi]

)
.

The whole distribution can efficiently (in time polynomial in n) be
computed by iterated convolutions, as its support J0, nK is discrete
and small (see weights.py).

8.4.3 Comparing profiles for size-reduction
decoding

We have shown that the geometric shape of the fundamental domain
F(B+) depends fully on the profile ℓ1, . . . , ℓk. For any profile we have
E[W (ℓ)] =

∑k
i=1 E [Wℓi ] ≤

∑k
i=1

ℓi−1
2

= (n − k)/2, with a strict in-
equality if |ℓi| ≥ 3 for any i ∈ J1, kK, and thus we improve on the
fundamental domain induced by Prange. But what is actually a good
profile?

Let us first focus on the expected error weight. By eq. (8.3) the
expectation roughly equals

E[W (ℓ)] ≈
k∑

i=1

ℓi
2
−
√

ℓi
2π

= n/2− 1√
2π

k∑
i=1

√
ℓi,

or more precisely we have the following statement, which follows from
the inequalities 4k√

π(k+1)
≤
(
2k
k

)
≤ 4k√

πk
.

Lemma 127. Given a proper basis B of an [n, k]-code with profile
ℓ = (ℓ1, . . . , ℓk) we have:

1√
π

k∑
i=1

√√√√ ⌈
ℓi
2

⌉2⌈
ℓi
2

⌉
+ 1

≤ n

2
− E [W (B)] ≤ 1√

π

k∑
i=1

√⌈
ℓi
2

⌉
.

Since x 7→ √
x is concave, Lemma 127 (ignoring the rounding)

suggest that the expected error is minimised when the ℓi are the most
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balanced. Again a similar phenomenon is well known in the case of
lattices: on random inputs, size-reduction produces vectors with an
expected squared length of 1

12

∑ ∥b̃i∥2; under the invariant
∏ ∥b̃i∥ =

det(L) the expectation is minimised for a basis with a balanced profile
∥b̃1∥ = ∥b̃2∥ = · · · = ∥b̃k∥.

However, the quantity E [W (B)] discussed above does not nec-
essarily reflect the quality of the basis for all relevant algorithmic
tasks. For example, if one wishes to decode errors of weight at most
w with a 100% success probability, it is necessary and sufficient that
w < mini ℓi/2.

We therefore propose the following partial ordering on profiles that
is meant to account that a profile is better than another for the men-
tioned natural decoding tasks; as a counterpart, this is only a partial
ordering and two profiles may simply be incomparable.

Definition 128 (Comparing Profiles). We define a partial ordering
(Ln,k,⪯) on the set of proper profiles Ln,k of [n, k]-codes by:

ℓ ⪯ ℓ′ ⇐⇒ Pr[W (ℓ) ≤ w] ≥ Pr[W (ℓ′) ≤ w] for all w ∈ J0, nK.

This also defines an equivalence relation ≍ on Ln,k. We call a
profile ℓ better than ℓ′ if ℓ ⪯ ℓ′. We call ℓ strictly better than ℓ′ and
write ℓ ≺ ℓ′ if ℓ ⪯ ℓ′ and ℓ ̸≍ ℓ′. We call ℓ, ℓ′ incomparable and write
ℓ ≺/≻ ℓ′ if ℓ ̸⪯ ℓ′ and ℓ ̸⪰ ℓ′.

Let us first justify the relevance of this partial ordering for random
decoding and unique decoding for an [n, k]-code C(B) with profile ℓ.

Random decoding

The probability to successfully decode a random target up to an error
of weight at most w can directly be expressed as Pr[W (ℓ) ≤ w]. For
a better profile we see that this probability will also be higher. The
expected distance is equal to E [W (ℓ)]. By noting that E [W (ℓ)] =
n −∑n

w=0 Pr[W (ℓ) ≤ w] we see that a better profile also implies a
lower expected distance.

235



8. Basis Reduction for Binary Codes

Unique decoding

For unique decoding up to weight w < dmin(C(B))/2 we can also
rewrite the success probability in terms of the weight distribution as:

#F(B+) ∩ Bn
w

#Bn
w

=
2n−k · Pr[W (ℓ) ≤ w]∑w

i=0

(
n
i

) .

Again we see that a better profile gives a higher success probability.

The more balanced, the better

Now that we have argued that the ordering of Definition 128 is rele-
vant, let us show that, indeed, balanced profiles are preferable. As we
will see, this rule of thumb is in fact imperfect, and only apply strictly
to profiles that share the same parities (℘i := ℓi mod 2)i.

Lemma 129 (Profile Relations). The partial ordering ⪯ has the fol-
lowing properties:

(1) If ℓ is a permutation of ℓ′ then ℓ ≍ ℓ′.

(2) if ℓ1 ⪯ ℓ′1 and ℓ2 ⪯ ℓ′2, then (ℓ1|ℓ2) ⪯ (ℓ′1|ℓ′2).

(3) If 3 ≤ x ≤ y + 1, then (x, y) ≺ (x− 2, y + 2).

Proof. (1) follows from the fact that the geometric properties of the
size-reduced region fully depend on the values of the profile (and not
their ordering). For (2) note that ℓi ⪯ ℓ′i implies the existence of a
one-to-one map fi from the size-reduction domain F(ℓi) to F(ℓ′i) that
is non-decreasing in weight for i = 1, 2. The product map f1 × f2 is
then a one-to-one map from F(ℓ1|ℓ2) to F(ℓ′1|ℓ′2) that is non-decreasing
in weight, which implies that (ℓ1|ℓ2) ⪯ (ℓ′1|ℓ′2). For the technical proof
of (3) see the full version of this work3.

3Available at https://eprint.iacr.org/2020/869.
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An odd game of parity

Although for fixed parity a balanced profile is always better than an
unbalanced one there are some exceptions to this rule when dropping
the parity constraint. For example, looking at Lemma 127 one can
notice that, at least for average decoding distances, odd values in
a profile are preferable to even values. One can show that a slight
unbalance with odd coefficients is preferable for all purpose to a perfect
even balance:

(x− 1, x+ 1) ⪯ (x, x) for all even x ≥ 2.

This is an artefact of the need to tie-break certain size-reductions with
respect to epipodal vectors of even length.

8.4.4 Basis size-reduction

To complete the analogy with the lattice literature, let us now adapt
the notion of size-reduction for a basis. We call a basis size-reduced
if each basis vector is size-reduced with respect to all previous basis
vectors.

Definition 130. We call a proper basis B = [b1, . . . ,bk] size-reduced
if bi ∈ F([b1, . . . ,bi−1]

+) for all 1 < i ≤ k.

Size-reduction for a basis allows to control the basis vector lengths
with the epipodal lengths as follows.

Proposition 131. Let B = [b1, . . . ,bk] be a size-reduced basis with
epipodal lengths ℓi = |b+i |. Then, for all i ≤ n it holds that |bi| ≤
ℓi +

∑
j<i⌊ℓj/2⌋ for all i ≤ k.

Perhaps surprisingly, this global notion of size-reduction will not
be required in the LLL algorithm for codes discussed in the next Sec-
tion 8.5.2, which is a first deviation from the original LLL algorithm
for lattices [LLL82]. However it can still be useful to adapt more
powerful reduction algorithms such as deepLLL [SE94; FSW14].

Proposition 132. Algorithm 13 is correct and runs in polynomial
time.
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Algorithm 13: SizeRedBasis(B,y) Size-reduce the basis B

Input : A proper basis B = [b1, . . . ,bk] ∈ Fk×n
2 of a code C

Output: A size-reduced basis of C(B) with the same epipodal
matrix as B.

1 for i = 2 to k do
2 bi ← SizeRed([b1, . . . ,bi−1],bi)
3 end
4 return [b1, . . . ,bk]

Proof. The polynomial claim immediately follows from Proposition
125. Secondly note that vectors bi’s form a basis of the code C given
as input, and this is a loop invariant. Indeed, in any step i of the
algorithm only codewords from the sub-code C(b1, . . . ,bi−1) are added
to bi. Furthermore, this does not affect b+i := πi(bi). The loop at
step i enforces that bi ∈ F([b1, . . . ,bi−1]

+) and this constraint is
maintained as b1, . . . ,bi are unchanged by all later steps.

8.5 LLL for binary codes

In the previous section, we have seen that the geometric quality of
the fundamental domain F(B+) solely depends upon the epipodal
lengths ℓi := |b+i |: the more balanced, the better, both for finding
close codewords of random words, and for decoding random errors.
This situation is in perfect analogy with the situation in lattices. We
therefore turn to the celebrated LLL [LLL82] algorithm for lattice
reduction, which aims precisely at balancing the profile (ℓi)i.

The LLL algorithm can be interpreted as an algorithmic version
of the so-called Hermite’s bound on the minimal length of an n-
dimensional vector [GHKN06]. Again, the analogy between codes
an lattices stands: the LLL reduction for codes turns out to be an
algorithmic version of Griesmer’s bound [Gri60].

Certainly, Griesmer’s bound [Gri60] is far from tight in all regimes
for the parameters of the code, as it is already the case with Hermite’s
bound for lattices which is exponentially weaker than Minkowski’s
bound. Griesmer’s bound and Hermite’s bound virtues reside in the
algorithm underlying their proofs.
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8.5.1 Griesmer’s bound and LLL reduction

In this section, we revisit the classical Griesmer’s bound and its proof
from the perspective of reduction theory, that is we will re-interpret
its proof in terms of the epipodal matrix and in particular its profile.
The proof we propose is admittedly a bit less direct than the original;
our purpose is to dissect this classic proof, and extract an analogue to
LLL reduction for codes.

Theorem 133 (Griesmer Bound [Gri60]). For any [n, k]-code of
minimal distance d := dmin(C), it holds that:

n ≥
k−1∑
i=0

⌈
d

2i

⌉
.

In particular, if k − 1 ≥ log2(d), it holds that d− ⌈log2(d)⌉
2
≤ n−k

2
+ 1.

The latter inequality follows from the first by setting r = ⌈log2(d)⌉
as follows:

n ≥ d
r−1∑
i=0

1

2i
+

k−1∑
i=r

1

= 2d(1− 1

2r
) + (k − r)

≥ 2d− 2 + k − r.

Definition 134 (Griesmer-reduced basis). A basis B = [b1, . . . ,bk]

of an [n, k]-code is said to be Griesmer-reduced if b+i is a shortest
nonzero codeword of the projected subcode πi(C(bi, . . . ,bk)) for all i ∈
J1, kK.

This definition is a direct analogue of the so-called Hermite-
Korkine-Zolotarev (HKZ) reduction for lattice bases. Note that the
existence of such a basis is rather trivial by construction: choose b1

as a shortest nonzero vector and so forth. The only minor difficulty
is showing that the projected codes πi(C(bi, . . . ,bk)) are non-trivial,
which can be done by resorting to Singleton’s bound. In particular,
Griesmer-reduced bases are proper bases.
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8. Basis Reduction for Binary Codes

Lemma 135 ([HP10, Corollary 2.7.2]). Let C be an [n, k]-code and c

be a codeword of weight dmin(C). Then C ′ := π⊥
c (C) = C ∧ c satisfies:

1. |C ′| = n− dmin(C) and its dimension is k − 1,

2. dmin(C ′) ≥ ⌈dmin(C)/2⌉.
Therefore with the first point of this lemma we can prove by in-

duction on k that there exists for any [n, k]-code C a Griesmer-reduced
basis. Let [b1, . . . ,bk] be such a basis and let ℓi := |b+i |. From defi-
nition of Griesmer-reduced bases and the previous lemma we deduce
that ℓi+1 ≥ ⌈ℓi/2⌉. In other words, the profile (ℓi)i is somewhat con-
trolled: it does not decrease too fast. To prove Griesmer’s bound it
remains to chain those inequalities and to sum them up to obtain:

n ≥ |C| =
k∑

i=1

ℓi ≥
k−1∑
i=0

⌈
ℓ1
2i

⌉
=

k−1∑
i=0

⌈
dmin(C)

2i

⌉
(8.4)

The proof of Lemma 135 proceeds by a local minimality argument,
namely it looks at the first two vectors b1,b2. It shows that the
support of b1 is at most 2/3 of the support of C(b1,b2):

|b1| ≤ 2
3
·
∣∣C(b1,b2)

∣∣.
The proof is rather elementary as the code C(b1,b2) has only 3 nonzero
codewords to consider: b1,b2 and b1⊕b2. What we should note here is
that the notion of Griesmer-reduction is stronger than what is actually
used by the proof: indeed, we only need the much weaker property
that b1 is a shortest codeword of the 2-dimensional subcode C(b1,b2),
and so forth inductively. This relaxation gives us an analogue of the
LLL reduction for linear codes.

Definition 136 (LLL reduced basis). A basis B = [b1, . . . ,bk] of an
[n, k]-code is said to be LLL-reduced if it is a proper basis, and if b+i
is a shortest nonzero codeword of the projected subcode πi(C(bi,bi+1))
for all i ∈ J1, k − 1K.

Note that a Griesmer-reduced basis is an LLL reduced basis, and
the same holds for lattices: an HKZ reduced lattice basis is also LLL
reduced. Indeed, if b+i is a shortest codeword of πi(C(bi, . . . ,bn)) it is
also a shortest vector of the subcode πi(C(bi,bi+1)).
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8.5. LLL for binary codes

Having identified this weaker yet sufficient notion of reduction, we
can finalize the proof of Griesmer’s bound, in a reduction-theoretic
fashion.

Lemma 137. Let [b1, . . . ,bk] be an LLL-reduced basis, and let ℓi =
|b+i | for i ≤ k. Then we have,

∀i ∈ J1, kK, ℓi+1 ≥
⌈
ℓi
2

⌉
.

Proof. We start by noting that LLL reduced bases are proper bases
by definition, hence every projected subcode Ci := πi(C(bi,bi+1)) =
C(b+i , πi(bi+1)) has dimension 2 and support size ℓi + ℓi+1.

Let us denote by x = b+i , y = πi(bi+1) and z = y ⊕ x the three
nonzero codewords of Ci, and remark that |x| = ℓi, |z| = |x| + |y| −
2|x∧y| and |x∧y| = |y|−ℓi+1. This gives |x|+ |y|+ |z| = 2(ℓi+ℓi+1),
4 and because x is the shortest codeword among x,y, z, we conclude
with:

ℓi = |x| ≤ 1
3

(
|x|+ |y|+ |z|

)
≤ 2

3
(ℓi + ℓi+1).

We can now reformulate Griesmer bound, while making the under-
lying reduction notion explicit.

Theorem 138 (Griesmer bound, revisited). Let [b1, . . . ,bk] be a ba-
sis of a (linear, binary) [n, k]-code C that is LLL-reduced. Then,

n ≥
k−1∑
i=0

⌈
ℓ1
2i

⌉
, (8.5)

where ℓ1 := |b1| ≥ dmin(C). In particular, if k − 1 ≥ log2(dmin(C)), it
holds that ℓ1− ⌈log2(ℓ1)⌉

2
≤ n−k

2
+1. Moreover, every binary linear code

admits an LLL-reduced basis.

Proof. The inequalities follow from (8.4), while the existence of an
LLL reduced basis follows from the fact that Griesmer-reduced bases
are LLL reduced.

4Alternatively, one could have invoked the more general fact that the average
weights 2−k

∑ |c| over a linear code of dimension k is half of its support size |C|/2.
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8. Basis Reduction for Binary Codes

Tightness

A first remark is that the local bound ℓi+1 ≥
⌈
ℓi
2

⌉
is tight; it is reached

by the [3, 2]-code C = {(000), (101), (110), (011)}, and more generally
by [n, 2]-codes for any n ≥ 3 following a similar pattern. Griesmer’s
bound is also reached globally and thus we know inputs that give
the worst case of our LLL algorithm (which computes efficiently LLL
reduced bases of a code), i.e. the largest ℓ1. For instance there are
the simplex codes5 [MS77, Ch.1, §9] and the Reed-Muller codes of
order one [Ree53; Mul54] which are respectively [2m−1,m]-codes and
[2m,m+ 1]-codes.

Generalisations

The discussion above shows that one can think of Griesmer’s bound as
an inequality relating codes of dimension k to codes of dimension 2, in
the same way that Hermite related lattices of rank n to lattices of rank
2 via Hermite’s inequality on the eponymous constants γn ≤ γn−1

2 .
This type of reasoning can be generalised to relate other quanti-

ties. In the literature on lattices, those are known as Mordell’s in-
equalities [GHKN06; GN08a]. These bounds also have underlying al-
gorithms, namely block-reduction algorithm such as BKZ [Sch87] and
Slide [GHKN06]. Translating those bounds and their associated al-
gorithms from lattices to codes appears as a very interesting research
direction.

Beyond algorithms based on finding shortest vectors of projected
sublattices, we also note that some algorithms consider the dense sub-
lattice problem [DM13; LN14]. According to [Bog01], the analogy
should be made with the notion of higher weight [Wei91; TV95].

Comparison with other code-based bounds

Before presenting our LLL algorithm let us quickly compare in Table
8.2 Griesmer’s bound (and thus the bound reached by the LLL algo-
rithm) to classic bounds from coding theory: Singleton’s and Ham-
ming’s. One can consult [HP10] for their proofs.

An important remark is that until now, only the Singleton bound
was algorithmic while Griesmer’s bound was seen as an extension of

5The simplex code is defined as the dual of the Hamming code.
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Bound Concrete Asymptotic Poly. Algo.

Singleton’s d ≤ n− k + 1 δ ≤ 1−R YES

Hamming’s 2k
∑⌊ d−1

2 ⌋
i=0

(
n
i

)
≤ 2n R ≤ 1− h

(
δ
2

)
NO

Griesmer’s d− log2 d

2
≤ n− k

2
+ 1 δ ≤ 1−R

2
Now, YES

Table 8.2: Bounds on d = dmin(C). Asymptotic form is given for a
fixed rate R = k/n ∈ [0, 1], δ := d/n and n → ∞. In Hamming’s
constant, h(x) := −x log2(x)− (1−x) log2(1−x) denotes the so-called
binary entropy of x.

it but not algorithmic. For an [n, k]-code, Singleton’s bound states
that dmin(C) ≤ n − k + 1. The underlying algorithm of this bound
simply consists in putting the basis in systematic form, namely to
reduce in row echelon form the basis, to get a short codeword. It
may be argued that for random codes this bound is far from tight.
Indeed, the systematic form in fact produces codewords of average
length n−k

2
+ 1 (this is exactly what Prange algorithm [Pra62] does).

While this seems better than Griesmer’s bound, the LLL algorithm
gives a codeword of length at most n−k

2
+ log2 n but in the worst-case.

This concludes the translation of all the notions at hands from
lattices to codes. We summarize them as a dictionary in Table 8.1.

8.5.2 An LLL reduction algorithm for codes

In the above subsection, we have defined LLL reduced bases and have
shown that they exist by constructing a basis with an even stronger
reduction property. However, such a construction requires to solve the
shortest codeword problem, a problem known to be NP-hard [Var97],
and the best known algorithm have exponential running time in n or
in k, at least for constant rates R = k/n.

In other words, we have shown existence of LLL reduced bases (lo-
cal minimality) by a global minimality argument, which would trans-
late into an algorithm with exponential running time. Instead, we can
show their existence by a descent argument, and this proof translates
to a polynomial time algorithm, the LLL algorithm for binary codes.
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8. Basis Reduction for Binary Codes

The strategy to produce LLL reduced bases is very simple, and
essentially the same as in the case of lattices [LLL82]: if πi(bi) is not
a shortest nonzero codeword of πi(C(bi,bi+1)) for some i, then apply
a change of basis on bi,bi+1 so that it is. Such a transformation may
break the same property for nearby indices i − 1 and i + 1, however,
we will show that, overall, the algorithm still makes progress.

There are two technical complications of the original LLL [LLL82]
that can be removed in the case of codes. The first is that we do
not need a global size-reduction on the basis; this step of LLL does
not affect the Gram-Schmidt vectors themselves, but is needed for
numerical stability issues, which do not arise over the finite field F2.
Secondly, we do not need to introduce a small approximation term
ε > 0 to prove that the algorithm terminates in polynomial time,
thanks to the discreteness of epipodal lengths.

Algorithm 14: LLL(B) LLL reduce the basis B

Input : A proper basis B = [b1, . . . ,bk] ∈ Fk×n
2 of a code C

Output: An LLL reduced basis for C
1 while ∃i ∈ J0, k − 1K s.t.

min
(∣∣πi(bi+1)

∣∣, ∣∣b+i ⊕ πi(bi+1)
∣∣) < ∣∣b+i ∣∣ do

2 if
∣∣πi(bi+1

)
∧ b+i

∣∣+ TBb+i

(
πi
(
bi+1

))
>
∣∣b+i ∣∣/2 then

3 bi+1 ← bi+1 ⊕ bi // Local size-reduction
4 end
5 bi ↔ bi+1 // Swap
6 end
7 return B

Theorem 139. Algorithm 14 is correct and its running time is poly-
nomial; more precisely on input an [n, k]-code it performs at most kn
vector operations over Fn

2 .

It will be a consequence of the two following lemmata. Let us start
with correctness.

Lemma 140 (Correctness). If the LLL algorithm terminates then it
outputs an LLL-reduced basis for the code spanned by the basis given
as input.
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8.5. LLL for binary codes

Proof. Note that vectors bi’s form a basis of the code C given as input
and this is a loop invariant. The exit condition ensures that the basis
is indeed LLL reduced, at least if it is proper. So it suffices to show
that properness is also a loop invariant.

Assume that the basis is proper (ℓj ≥ 1 for all j) as we enter the
loop at index i. The local size-reduction step does not affect epipodal
lengths. The swap only affects ℓi and ℓi+1, and leaves ℓi + ℓi+1 un-
changed. The epipodal length ℓi decreases, but remains nonzero since
b+i is a shortest-codeword of a 2-dimensional code by construction.
The epipodal length ℓi+1 can only increase.

The key-ingredient to prove that LLL terminates lies in the con-
struction of a potential: a quantity that only decreases during the
algorithm, and is lower bounded.

Definition 141 (Potential). Let B = [b1, . . . ,bk] be a basis of an
[n, k]-code. The potential of B, denoted DB, is defined as:

DB :=
k∑

i=1

(k − i+ 1)ℓi =
k∑

i=1

(
i∑

j=1

ℓj

)
=

k∑
i=1

DB,i,

where DB,i := |C(b1, . . . ,bi)| and ℓi := |b+i |.
Each time LLL makes a swap, the potential decreases at least

by one as shown in the proof of the following lemma. Furthermore,
this quantity is always positive. Therefore the number of iterations is
upper-bounded by the initial value of DB.

Lemma 142 (Termination). The number of iterations in Algorithm
14 on input B = [b1, . . . ,bk] is upper bounded by,

min

{
kn,

k(k + 1)

2
max

i
|b+i |

}
.

Proof. The potential DB only changes during the swap step. Let us
show that it decreases by at least one at each swap step. Suppose
there is a swap at the index i. Let bi and bi+1 be the values of the
basis vectors after the if loop and just before the swap step. Here, the
if loop ensures:

|b+i ∧ πi(bi+1)| ≤
|b+i |
2
. (8.6)
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Now, whether or not the if loop was executed we have that:

min
(∣∣πi(bi+1)

∣∣, ∣∣b+i ⊕ πi(bi+1)
∣∣) < ∣∣b+i ∣∣. (8.7)

Therefore, combining Equations (8.6) and (8.7) with
∣∣b+i ⊕πi(bi+1)

∣∣ =
|b+i |+ |πi(bi+1)| − 2|b+i ∧ πi(bi+1)| leads to:

|πi(bi+1)| < |b+i |. (8.8)

Now during the while execution only DB,i is modified. Let C ′i be the
new partial code C(b1, . . . ,bi) after the swap, and D′

B,i be the new
values of DB,i. We have,

D′
B,i −DB,i = |C ′i| − |Ci|

=
i−1∑
j=1

|b+j |+ |πi(bi+1)| −
i−1∑
j=1

|b+j | − |b+i |

= |πi(bi+1)| − |b+i | < 0

where for the inequality we used Equation (8.8). Potentials DB,i are
integers. Therefore at each iteration DB decreases by at least one. Let
D(0)

B be the initial value of the potential DB. We conclude with:

D(0)
B =

k∑
i=1

(k − i+ 1)|b+i | ≤ min

{
kn,

k(k + 1)

2
max

i
|b+i |

}
,

where for the first bound we use that
∑

i |b+i | = |C| ≤ n.

8.6 Perspectives
This work brings codes and lattices closer to each other by enriching
the existing dictionary (Table 8.1); we hope that it can enable more
transfer of techniques between those two research areas, and list some
research directions.

Generalisations

In principle, the definitions, theorems and algorithms of this article
should be generalizable to codes over Fq endowed with the Hamming
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metric, with the minor inconvenience that one may no longer conflate
words over Fq with their binary support vector. Some algorithms may
see their complexity grow by a factor Θ(q), meaning that the algo-
rithms remain polynomial-time only for q = nO(1). It is natural to
hope that such a generalised LLL would still match Griesmer [Gri60]
bound for q > 2. However, we expect that the analysis of the fun-
damental domain of Section 8.4 would become significantly harder to
carry out.

Another natural generalisation to aim for would be codes con-
structed with a different metric, in particular codes endowed with
the rank metric [Gab85; Gab95]. In this case codes are subspaces
of Fqm endowed with the rank metric; the weight of a codeword
x ∈ Fn

qm is the rank of its matrix representation over Fq (which is
a matrix of size m × n). While the support of a codeword with the
Hamming metric is the set of its nonzero coordinates, the support of
x = (x1, · · · , xn) ∈ Fn

qm is the Fq-subspace of Fqm that the xi’s gen-
erate, namely {∑i λixi : λi ∈ Fq}. We believe that this work can be
generalised in this case, in particular the notion of epipodal matri-
ces. However there are some difficulties to overcome. In particular,
projecting one support orthopodally to another one is not canonical.

Cryptanalysis

In the full version of this work we introduce a hybrid
(LeeBrickellBabai) of the Lee-Brickell information set decoding algo-
rithm [LB88], and the size-reduction algorithm (after LLL). We show
heuristically that for common decoding parameters this leads to a
small polynomial (in n) speed-up over Lee-Brickell. This contribu-
tion is meant to show that this algorithmic reduction theory for codes
is compatible with existing techniques, and can, in principle bring
improvements. By itself, this hybrid LeeBrickellBabai algorithm with
LLL preprocessing is only tenuously faster than the original algorithm.
Time-memory trade-offs such as [Ste88; Dum91; MMT11; BJMM12;
MO15; BM18] admittedly provide much more substantial speed-ups
in theory, and currently hold the records in practice [ALL19].

However, the lattice literature has much stronger reduction algo-
rithms to offer than LLL [Sch87; GHKN06; GN08a; LN14; DM13]; this
work opens their adaptation to codes as a new research area, together
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with the study of their cryptanalytic implications. Furthermore, it
is not implausible that reduction techniques may be compatible with
memory intensive techniques [Ste88; Dum91; MO15]; this is the case
in the lattice cryptanalysis literature [Duc18].

Further algorithmic translations

Still based around the same fundamental domain, a central algorithm
for lattices is the Branch-and-Bound enumeration algorithm of Fin-
kle and Pohst [FP85], which has been the object of numerous vari-
ations for heuristic speed-ups [GNR10]. While the hybrid algorithm
LeeBrickellBabai may be read as an analogue of the random sampling
algorithm of Schnorr [Sch03; AN17], a more general study of enumer-
ation techniques for codes would be interesting.

Both for codes and lattices, there are other natural fundamental
domains than the size-reduction studied in this paper. For lattices we
have the (non-rectangle) parallelepiped P(B) provided with the so-
called “simple rounding" algorithm x 7→ x−⌊x ·B−1⌉ ·B [Bab86]. For
codes we have a domain of the form Fn−k

2 ×{0}k for each information
set I ⊂ J1, nK of size k given by Prange’s algorithm [Pra62]. It is
tempting to think they could be in correspondence in a unified theory
for codes and lattices.

Another fundamental domain of interest is the Voronoi domain,
which is naturally defined for both codes and lattices. In the case
of lattices there are algorithms associated with it known as iterative
slicers. Rather than operating with a basis, the provable versions of
this algorithm operates with the (exponentially large) set of Voronoi-
relevant vectors [MV13], while heuristic variants can work with a
(smaller, but still exponential) set of short vectors (see chapter 5).
We are not aware of similar approaches in the code literature.

Cryptographic design

Some of the developed notions could have application in cryptographic
constructions as well, in particular for trapdoor sampling [GPV08;
DST19]. Indeed, the Gaussian sampling algorithm of [GPV08] is
merely a careful randomisation of the size-reduction algorithm, and
the variant of Peikert [Pei10] is a randomisation of the “simple round-
ing” algorithm discussed above. It requires knowing a basis with a
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good profile as a trapdoor. While the construction of a sampleable
trapdoor function has finally been realised [DST19], the method and
underlying problem used are rather ad-hoc. We note in particular that
the underlying generalized (U,U + V )-codes admit bases with a pe-
culiar profile, which may explain their fitness for trapdoor sampling.
The algorithmic reduction theory proposed in this work appears as
the natural point of view to approach and improve trapdoor sampling
for codes.

Bounds

Beyond cryptography, this reduction theory may be of interest to es-
tablish new bounds for codes. In particular we emphasize the notion
of higher weight [Wei91; TV95] as an analogue of the notion of the
density of sub-lattices [Bog01]; the latter are subject to the so-called
Rankin-bound, generalizing Hermite’s bound on the minimal distance
of a lattice.

Duality

Also on a theoretical level, one intriguing question is how this reduc-
tion theory interacts with the notion of duality for codes. In particu-
lar, for lattices, the dual of an LLL reduced basis of the primal lattice
is (essentially) an LLL reduced basis of the dual lattice. One could
wonder whether this also holds for codes; however, while there is a
notion of a dual code, their doesn’t seem to be a 1-to-1 correspon-
dence between primal and dual bases. The notion of orthopodality
does allow to introduce (non-unique) dual bases for codes, with simi-
lar geometric properties as the (reversed) dual basis. For lattices this
leads to a correpondence ∥b̃i∥ = ∥d̃i∥−1; for codes the similar con-
cept seems to be the correspondence between the [|b+i |, 1] repetition
code generated by b+i , and the [|b+i |, |b+i | − 1] even code generated
by some d+j1 , . . . ,d

+
j|b+

i
|−1

. The construction allows for some choices,

such as which basis to use for the even code. Under some light con-
ditions this gives for ℓi ≥ 2 a primal-dual profile correspondence of
(ℓi) ↔ (2, 1, . . . , 1) with ℓi − 2 ones. We leave a further investigation
of the concept of a dual basis, and self-duality of the presented LLL
algorithm to future work.
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Another remark is that it may also be natural to consider Branch-
and-Bound enumeration algorithms working with a reduced basis of
the dual code rather than a basis of the primal code, at least if self-
duality can not be established. This may be advantageous in certain
regimes.
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The Lattice Isomorphism
Problem, Remarkable Lattices

and Cryptography
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CHAPTER 9
The Lattice Isomorphism

Problem

This chapter gives an introduction to the Lattice Isomorphism
Problem. It contains results from the joint work ‘A canonical
form for positive definite matrices’, with Mathieu Dutour
Sikirić, Anna Haensch, John Voight, published at ANTS 2020.
In addition it shows direct applications of this work to ongoing
joint work on Perfect form and C-type enumeration, with
Mathieu Dutour Sikirić.

9.1 Introduction
When are two lattices the same? Two distinct bases B,B′ ∈ GLn(R)
can generate exactly the same lattice L(B) = L(B′), and they do if
and only if B′ = B · U for some unimodular matrix U ∈ GLn(Z).
What about a lattice L and a rotation L′ of the same lattice? These
lattices are not (necessarily) the same as sets, but they do carry the
same geometric information. We call such lattices isomorphic. More
precisely we say that a lattice L and a lattice L′ are isomorphic if
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9. The Lattice Isomorphism Problem

there is an orthonormal transformation O ∈ On(R), i.e., an isometry,
such that L′ = O · L = {Ov : v ∈ L}.

The study of isomorphisms between lattices is as old as the use of
lattices, for example by Gauss, Lagrange, Minkowski and Voronoi from
the 18th century to the beginning of the 20th century. Isomorphisms
naturally arise in the search for interesting lattices1, as a lattice is only
really ‘new’ if it is not already isomorphic to a known one. Further-
more, isomorphisms between a lattice and itself, enable a study of the
symmetries of a lattice.

Computing an isometry O ∈ On(R) between two isomorphic lat-
tices, known as the Lattice Isomorphism Problem (LIP), or even de-
ciding if two lattices are isomorphic, is seemingly a hard problem. Al-
most all algorithms require as a first step the enumeration of (many)
short lattice vectors, which in itself is a hard problem. This includes
the best proven algorithm, that runs in time nO(n) [HR14], as well
as the best practical algorithms [PP85; PS97]. Moreover among the
interesting lattices there are many with a high kissing number, and
LIP seems even harder for those. For practical computations we are
thus restricted to somewhat low dimensions, and this chapter must
be considered in this context. For higher dimensions the hardness of
LIP directly motivates its use in cryptography, and in Chapter 10 we
show how to leverage LIP to construct a new type of lattice-based
cryptography.

In this chapter we give an overview of the literature on LIP. First
we show that this problem is more natural to state in the quadratic
form setting. Next, we discuss the presence of natural invariants, that
can be used to answer LIP in the negative, or guide the search for an
isomorphism. We show how so-called characteristic sets play a funda-
mental role in solving LIP, and even in constructing a canonical repre-
sentative inside an isomorphism class. We end with some interesting
applications of this canonical representative, such as computationally
solving the lattice packing problem by perfect form enumeration.

1Examples are lattices that are good packings, coverings or have a high kissing
number, perfect lattices or those arising from number theory.
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B,B ·U B′ = O ·B ·U

0 b1

b2

0

b′
1

b′
2

O ∈ On(R)

Figure 9.1: Illustration of two isomorphic lattices.

9.2 LIP & quadratic forms
Abstractly, the set of full rank, n-dimensional lattices can be thought
of as the homogeneous space2 GLn(R)/GLn(Z): two bases B,B′ ∈
GLn(R) generate the same lattice if and only if there exists a unimod-
ular matrix U ∈ GLn(Z) such that B′ = BU. Two lattices L,L′ are
isomorphic if and only if there exists an orthonormal transformation
O ∈ On(R) such that L′ = O·L. The set of lattices up to isomorphism
can thus be thought of as the double quotient

On(R)\GLn(R)/GLn(Z).

Reconstructing equivalence in this double quotient is known as the
Lattice Isomorphism Problem (LIP).

Definition 143 (LIP, lattice version). Given bases B,B′ ⊂ Rn of
two isomorphic lattices, compute an orthonormal transformation O ∈
On(R), and an unimodular transformation U ∈ GLn(Z) such that B′ =
OBU.

2This quotient should read as the quotient of a set by the action of group,
and not a group quotient. Indeed GLn(Z) is not a normal subgroup of GLn(R) for
n > 1.
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If either O ∈ On(R) or U ∈ GLn(Z) is known, recovering the other
reduces to a matrix inversion. The presence of both the unknown
orthonormal and the unknown unimodular transformation is what
makes LIP seemingly a hard problem. In other words, reconstruct-
ing (or even testing) equivalence in either quotient GLn(R)/GLn(Z) or
On(R)\GLn(R) is easy, doing so in the double quotient appears to be
hard.

The real-valued coordinates of the basis and orthonormal transfor-
mation can be inconvenient and inefficient to work with. We can alle-
viate some of these concerns by moving to the (equivalent) quadratic
form setting, where instead of a basis B we focus on the Gram matrix
Q = B⊤B = (⟨bi,bj⟩)i,j.

Quadratic forms and arithmetical equivalence

The idea of the Quadratic Form point of view on LIP is to consider
the quotient in the opposite order than in the lattice point of view:
first on the left by On(R) and then only on the right by GLn(Z).

Definition 144 (Quadratic Form). A quadratic form of rank n is a
positive definite real3 symmetric matrix Q ∈ S>0

n (R).

Quadratic forms can be thought of as bases modulo rotation; they
realize the quotient On(R)\GLn(R). More precisely, consider the sur-
jective Gram map γ : GLn(R) → S>0

n (R) sending a lattice basis B to
the quadratic form Q = B⊤B. The preimages of γ(B) are precisely
the OB for O ∈ On(R).

Lemma 145. The Gram map γ : GLn(R)→ S>0
n (R) induces a bijec-

tion

On(R)\GLn(R)←→ S>0
n (R),

On(R) ·B 7−→ B⊤B.

Proof. Because (OB)⊤(OB) = B⊤O⊤OB = B⊤B the map is well
defined. The matrix B⊤B is symmetric and positive definite as for any

3In constrast to the standard definition, our quadratic form is always real and
positive definite. Furthermore we define the quadratic form as a symmetric matrix,
and not by the associated degree two polynomial f(x,y) = x⊤Qy.
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nonzero x ∈ Rn\{0} the vector Bx is nonzero, and thus x⊤(B⊤B)x =
∥Bx∥2 > 0. The map is injective because if for any A,B ∈ GLn(R)
we have A⊤A = B⊤B, then (BA−1)⊤(BA−1) = In and thus BA−1 ∈
On(R). The map is surjective because for every quadratic form Q ∈
S>0
n (R) the Cholesky decomposition gives a unique upper-triangular

lattice basis BQ with positive diagonal such that Q = B⊤
QBQ.

For a lattice basis B the Gram matrix Q = B⊤B naturally gives a
quadratic form. We can now translate the notions we have for lattices
to those of quadratic forms. In the quadratic form setting lattice
vectors Bx ∈ Rn are represented by their integral basis coefficients x ∈
Zn. The inner product with respect to a quadratic form is naturally
given by ⟨x,y⟩Q := x⊤Qy, and the norm by ∥x∥2Q := x⊤Qx. Note
that this perfectly coincides with the geometry between the original
lattice vectors. We denote the Q-ball of radius r by BQ(r) := {x ∈
Rn : ∥x∥Q ≤ r}. Translating the lattice definition, one gets the first
minimum4 λ1(Q) defined by

λ1(Q) := min
x∈Zn\{0}

∥x∥Q ,

and more generally the i-th succesive minimum λi(Q) defined as the
smallest r > 0 such that Zn ∩ BQ(r) spans a space of dimension at
least i.

In this realization S>0
n (R) of the quotient On(R)\GLn(R), the

(right) action of U ∈ GLn(Z) is given by Q 7→ U⊤QU. We may now
rephrase lattice isomorphisms in terms of quadratic forms, moving the
real-valued orthonormal transform O ∈ On(R) out of the picture.

Definition 146 (Arithmetical Equivalence). Two quadratic forms
Q,Q′ ∈ S>0

n (R) are called equivalent, denoted Q ∼= Q′, if there exists
a unimodular U ∈ GLn(Z) such that Q′ = U⊤QU.

For two equivalent forms Q,Q′ we denote the set of all such uni-
modular transformations by Isom(Q,Q′) := {U ∈ GLn(Z) : Q′ =
U⊤QU}.
Lemma 147. Two lattice bases B,B′ are isomorphic if and only if
their Gram matrices are equivalent.

4In the setting of quadratic forms the first minimum often refers to the squared
norm, i.e., the value λ1(Q)2. We chose to stay in line with the lattice definition.
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Proof. Let B,B′ ∈ GLn(R) be isomorphic bases, i.e., there exists an
O ∈ On(R), and U ∈ GLn(Z) such that B′ = OBU, then for Q′ =
B′⊤B′ and Q := B⊤B we have:

Q′ := (B′)⊤B′ = U⊤B⊤O⊤OBU = U⊤B⊤BU = U⊤QU,

and thus Q′ and Q are equivalent.
For the other direction, assume that Q′ = U⊤QU for some

U ∈ GLn(Z). This implies that (B′)⊤B′ = (BU)⊤(BU), and thus
by Lemma 145 there exists some O ∈ On(R) such that B′ = OBU
and thus B and B′ are isomorphic.

We denote the equivalence class, or orbit, of a quadratic form Q
by [Q] := {U⊤QU : U ∈ GLn(Z)}. Many remarkable lattices attain
a rational-valued Gram matrix Q, removing the need for real-valued
or approximate arithmetic. We will often restrict ourself to the set of
integer-valued (positive-definite) quadratic forms denoted by S>0

n (Z).

Remark 148 (Isometry). Generally the term isometry is used for a
distance preserving bijective map between normed vector spaces, and
linear isometry for norm preserving bijective linear maps. In this the-
sis we simply refer to isometry for any bijective inner product preserv-
ing map between (subsets of) inner product spaces. In particular for
two equivalent forms Q,Q′ ∈ S>0

n (R), any unimodular U ∈ GLn(Z)
such that Q′ = U⊤QU corresponds to an isometry x 7→ U−1x be-
tween Zn ⊂ Rn w.r.t. (the inner product given by) Q and Zn ⊂ Rn

w.r.t. Q′.

The Lattice Isomorphism Problem, quadratic form
formulation

The Lattice Isomorphism Problem can now be restated. We start
by properly defining the worst-case problems, in both a search and
distinguishing variant.

Definition 149 (Worst-case search LIP: wc-sLIPQ). For a
quadratic form Q ∈ S>0

n the problem wc-sLIPQ is, given any
quadratic form Q′ ∈ [Q], to compute a unimodular U ∈ GLn(Z) such
that Q′ = U⊤QU.
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Note that the problem is equivalent to the original LIP problem
as we can still extract an orthonormal transformation by computing
O = B′(BU)−1. We also consider a distinguishing variant of LIP,
denoted wc-∆LIP. It is not to be confused with the decisional version
of LIP (which we will refer to as dLIP).5

Definition 150 (Worst-case distinguishing LIP: wc-∆LIPQ0,Q1).
For two quadratic forms Q0,Q1 ∈ S>0

n the problem wc-∆LIPQ0,Q1 is,
given any quadratic form Q′ ∈ [Qb], where b ∈ {0, 1} is a uniform
random bit, to recover b6.

The distinguishing problem wc-∆LIPQ0,Q1 is worst-case w.r.t. the
choice of Q′, but also the fact that the challenge b ∈ {0, 1} is sam-
pled uniformly is worst-case: any additional bias would only make the
problem easier for an attacker.

Automorphisms

Isomorphisms between a lattice and itself are called automorphisms.
They represent the internal symmetry of the lattice. In the quadratic
form setting, these are exactly the unimodular transformations that
act invariantly, i.e., thet form the stabilizer group of Q under the
action of GLn(Z). This group is called the automorphism group of Q.

Definition 151 (Automorphisms). For a quadratic form Q ∈
S>0
n (R), the automorphism group Aut(Q) of Q is defined by

Aut(Q) := {V ∈ GLn(Z) : V⊤QV = Q}.

The automorphism group is finite, as will become clear in Section
9.5. For any Q′ = U⊤QU ∈ [Q] we have the natural stabilizer con-
jugacy Aut(Q′) = U−1Aut(Q)U. Additionally, we obtain a bijection
between the right cosets Aut(Q) \ GLn(Z) and the orbit [Q], and thus

5In dLIPQ0 one is given an arbitrary Q′ and must decide whether Q′ belongs
to [Q0]. The distinguishing version is potentially easier in that Q′ is promised to
belong to either [Q0] or [Q1] for some known fixed [Q1].

6The distinguishing problem should be interpreted as a game: a challenger
samples b ∈ {0, 1} uniformly and responds with any Q′ ∈ [Qb], the prover should
respond with a bit b′ and wins if b = b′. The prover solves the problem if it can
win with non-negligible advantage (over the trivial win probability of 0.5).
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9. The Lattice Isomorphism Problem

for any isomorphism U ∈ Isom(Q,Q′), the full set of isomorphisms is
given by Isom(Q,Q′) = Aut(Q) ·U.

9.3 Invariants

Equivalent quadratic forms Q,Q′ := U⊤QU (for some U ∈ GLn(Z))
share many common properties, and these invariants can be used to
decide that two quadratic forms cannot be equivalent, or can guide the
search for an isomorphism. We start with some arithmetic invariants
that are efficiently computable, and then discuss some geometric in-
variants which are only efficiently computable in low dimensions. We
restrict ourself to integral quadratic forms Q,Q′ ∈ S>0

n (Z), as those
are common in practice and allow for the most invariants.

9.3.1 Arithmetic invariants

Firstly we have det(U) = ±1, and thus for two equivalent quadratic
forms we have

det(Q′) = det(U⊤) det(Q) det(U) = det(Q).

Secondly because U and U−1 are both integral, the quantity
gcd(Q) := gcd{Qij : 1 ≤ i, j ≤ n} also gives an invariant.

A third and less obvious invariant is the parity of the quadratic
form. The notion is standard for unimodular lattices: it is called
even if all norms are even, and odd otherwise. More generally, writing
∥x∥2Q =

∑
i Qiix

2
i+2

∑
i<j xjQijxi one gets that gcd{∥x∥2Q : x ∈ Zn} ∈

{1, 2} · gcd(Q). We call this factor par(Q) ∈ {1, 2} the parity of Q. It
is also efficiently computable by noting that par(Q) = gcd({Qii : 1 ≤
i ≤ n} ∪ {2 gcd(Q)})/ gcd(Q).

These invariants are all a bit ad hoc, and possibly incomplete. All
these invariants (and more) are captured by the following.

Weaker equivalence (genus)

The study of integral equivalence of quadratic forms is classically ap-
proached via weaker notions, namely, equivalence over larger rings
[CS13, Ch. 15, Sec. 4] R ⊃ Z. In particular we consider R =
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R,Q,Qp,Zp, where Qp denotes the rational and Zp the integer p-adic
numbers for a prime p. For any ring R we denote the equivalence
class of a quadratic form Q by [Q]R := {U⊤QU : U ∈ GLn(R)}.
These equivalences are coarser than integral equivalence, [Q] = [Q′]⇒
[Q]R = [Q′]R. The R-equivalence class is thus an invariant under in-
tegral equivalence, which, in contrast to R = Z, might be efficiently
computable.

Over the reals one can always diagonalize a quadratic form D :=
U⊤QU with U ∈ GLn(R) such that Dii ∈ {−1, 0, 1}. Let nj = #{i :
Dii = j} for j{−1, 0, 1} denote the number of occurrences of j on
the diagonal. Then (n1, n0, n−1), also called the signature, uniquely
represents the R-equivalence class. A positive definite quadratic form
of rank n always has a signature of (n, 0, 0), and thus all quadratic
forms of fixed rank that we consider fall in the same class.

We now turn our focus to the p-adic integral equivalence for all
primes p. For (positive definite) quadratic forms this equivalence over
all primes p is nicely summarized as the genus.

Definition 152 (Genus). The genus genus(Q) of a (positive defi-
nite) quadratic form Q ∈ S>0

n (Z) is defined as the collection of p-adic
integral equivalence classes ([Q]Zp)p for all primes p.

Two quadratic forms Q,Q′ ∈ S>0
n (Z) have the same genus if and

only if they are p-adic integral equivalent for all primes p. In general,
the genus is defined to also cover R-equivalence, but for positive def-
inite forms that would be redundant. The genus turns out to cover
all arithmetic invariants mentioned so far, while, as we see later, still
being efficient to compute.

Theorem 153 (Hasse-Minkowski). If two (positive definite)
quadratic forms are p-adic equivalent for all primes p, then they are
equivalent over the rationals, and their invariants det, gcd, and par
match.

Proof. Note that Zp ⊂ Qp, and that all positive definite quadratic
forms of the same rank are R-equivalent. So the first statement follows
from the Hasse-Minkowski theorem. The second part of the proof
follows from Remark 155.
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We shortly discuss how p-adic integral equivalence can be classi-
fied efficiently by a complete system of invariants by Conway [CS13,
Ch.15]. Let p ≥ 2 be any prime. By appropriate (near) diagonalizing
any form Q can be decomposed over the p-adic integers as a block
diagonal matrix

Q = Q1 ⊕ pQp ⊕ p2Qp2 ⊕ · · · ⊕ qQq ⊕ · · · , (9.1)

in which each Qq is a p-adic integral form whose determinant is co-
prime to p. For an odd prime p ̸= 2 the (finite) set of values of q
occurring in eq. (9.1), together with the dimensions nq := dim(Qq)
and signs

ϵq :=

(
det(Qq)

p

)
,

form a complete set of invariants for the p-adic integral equivalence of
Q.

Theorem 154 ([CS13, Ch. 15, Theorem 9]). For any odd prime p ̸=
2, two quadratic forms Q,Q′ are equivalent over the p-adic integers if
and only if they have the same invariants nq, ϵq for each power q of p.

For any odd prime p ∤ det(Q) we have nq = n, and ϵq is fully
determined by the determinant det(Q). As such primes can be ig-
nored, we only have to consider the finite number of odd primes
p | det(Q). For such odd primes p there are at most n powers
q1, . . . , qk ≤ det(Q) of p with a non-trivial block dimension nqi > 0,
and thus {(q, nqi , ϵqi)}i=1,...,k determines canonically the p-adic integral
equivalence. So the genus (except for p = 2) can be described in a
finite and canonical way.

For p = 2 there are some additional complexities. For example
for Qq with q a power of 2, the existence (or not) of an odd entry
on the diagonal gives an additional invariant, which is related to the
earlier defined parity of a quadratic form. If there is an odd entry on
the diagonal, the trace tq mod 8 of Qq, better known as the oddity, is
needed to completely specify the 2-adic equivalence. These oddities
are not an invariant, but together with the other invariants they can
efficiently be turned into a canonical description (see [CS13, Ch. 15,
Sec. 7].

Maybe unsurprisingly, the genus covers all the previously defined
invariants.
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Remark 155 (Genus invariants). The genus of a quadratic form
Q ∈ S>0

n (Z) completely determines the det, gcd and par of Q.

Proof. For any p and the p-adic decomposition eq. (9.1) the maximal
power of p dividing the determinant det(Q) is given by

∏
q=pi q

nq . The
maximal power of p dividing gcd(Q) is given by the minimal q = pi

such that nq ≥ 1. The parity is fully determined by the decomposition
at p = 2. Namely, let q = 2i be the minimal power of 2 such that
nq ≥ 1, then par(Q) = 1 if and only if there is an odd value on the
diagonal of a matrix representing Qq.

The hull

In the literature for linear code equivalence, a relevant notion is that of
the efficiently computable hull C ∩ C⊥ of a code C ⊂ Fn

q . Properties
such as the rank of the hull are invariant under equivalence, and a
small rank even allows to efficiently find the isometry [Sen00].

For a lattice L and its dual L∗ we could define the hull as L ∩ L∗.
For integral lattices (i.e., if the associated quadratic form is integral)
the hull does not present us with new information, since we always
have L ⊂ L∗ and thus L∩L∗ = L. We could generalize the definition
to consider L∩ (k · L∗) for rational k ∈ Q ̸=0. However, even for such a
generalized construction the genus of the resulting lattice is completely
determined by the genus of the original lattice L [DG22]. To conclude,
the (generalized) hull does not appear to give us any new arithmetic
invariant.

One possibility is that the generalized hull could have certain ge-
ometric properties that could be exploited (more so than the original
lattice or its dual). This is a question that deserves further investiga-
tion, but is beyond the scope of this work.

9.3.2 Geometric invariants

The defining property of a unimodular transformation U ∈ GLn(Z) is
that it gives a bijection Zn → Zn by x 7→ Ux (or x 7→ U−1x). With
respect to the quadratic forms Q,Q′ := U⊤QU this even gives an
isometry (from Q′ to Q) as

⟨x,y⟩Q′ = x⊤Q′y = x⊤U⊤QUy = ⟨Ux,Uy⟩Q for x,y ∈ Rn.
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This isometry results in several natural geometric invariants related
to the norms and inner products of integral vectors. We have already
seen some, namely the first minimum λ1(Q) and the i-th successive
minimum λi(Q). More geometric invariants can be defined, such as
the kissing number κ(Q) = |Min(Q)| where

Min(Q) := {x ∈ Zn : ∥x∥Q = λ1(Q)},

and more generally the (formal) Theta-series ΘQ(q) =
∑

ℓ≥0Nℓq
ℓ as-

sociated to Q, where Nℓ = |
{
x ∈ Zn : ∥x∥2Q = ℓ

}
|. Going back to

the inner products one could also consider the (multi-)set of all pair-
wise inner products {⟨x,y⟩ : x,y ∈ S}, where e.g., S = Min(Q) or
S =

{
x ∈ Zn : ∥x∥2Q = ℓ

}
. One could also consider pairwise inner

products between two of such sets that are distinct.
Two equivalent forms also share symmetries Aut(Q′) ∼= Aut(Q),

which for example implies that |Aut(Q′)| = |Aut(Q)|.
The computation of all these geometric invariants appears to in-

volve finding or even enumerating short vectors, or computing auto-
morphisms; in particular they seem hard to compute in general.

9.4 Characteristic sets
To solve the Lattice Isomorphism Problem we need to recover a right
unimodular transformation U ∈ GLn(Z) such that Q′ = U⊤QU.
Since the group GLn(Z) of such transformations is infinite, it is a
priori not clear how even a brute-force approach would work. Instead,
we follow the framework introduced by Plesken and Souvignier [PS97]
based on so-called characteristic sets.

Definition 156 (Characteristic Set). A characteristic vector set
function V is a map that assigns to every n ≥ 1 and quadratic form
Q ∈ S>0

n (R), a finite subset of vectors V(Q) ⊂ Zn such that

(i) V(Q) generates Zn (as a Z-module); and

(ii) for all U ∈ GLn(Z), we have U−1V(Q) = V(U⊤QU).

The transformation property (ii) can be interpreted as a canonicity
property under equivalence of quadratic forms, or stated differently,
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that the map V is equivariant (for each n ≥ 1). For example the
minimal vectors function Q 7→ Min(Q) satisfies this property; minimal
vectors are mapped to minimal vectors by any isometry. Characteristic
sets allow us to limit the search space to a finite one; as, by property
(ii), each solution of LIP between two quadratic forms Q,Q′ induces
an isometry between their characteristic sets V(Q),V(Q′). Property
(i) is necessary to obtain the correspondence in the other direction.

Lemma 157 (Isometries). Let V be a characteristic function, and let
Q,Q′ ∈ S>0

n (R) be quadratic forms. There is a bijection

Isom(Q,Q′)↔ Isom(V(Q),V(Q′)),

U 7→ (ψU : x 7→ U−1x),

where Isom(V(Q),V(Q′)) is the set of isometries between V(Q)
w.r.t. Q, and V(Q′) w.r.t. Q′. If Q = Q′, then Isom(Q,Q′) = Aut(Q)
and Isom(V(Q),V(Q′)) are groups under function composition and the
bijection is an isomorphism.

Proof. Let U ∈ Isom(Q,Q′) be such that Q′ = U⊤QU. Then by
definition of the characteristic set we have V(Q′) = U−1V(Q), and
thus ψU induces a bijection from V(Q) to V(Q′). Furthermore for
any x,y ∈ V(Q) we have ⟨ψU(x), ψU(y)⟩Q′ = ⟨U−1x,U−1y⟩U⊤QU =
⟨x,y⟩Q, and thus ψU is actually an isometry.

For the injectivity let U,V ∈ Isom(Q,Q′) be such that ψU = ψV.
This implies that U−1x = V−1x for all x ∈ V(Q), and because V(Q)
is of full rank we have U−1 = V−1, and thus U = V.

For the surjectivity let ψ : V(Q) → V(Q′) be an isometry. Both
characteristic sets generate Zn as a Z-module, and thus in particu-
lar we can find n R-linear independent vectors x1, . . . ,xn ∈ V(Q).
Because ψ is an isometry, the vectors ψ(x1), . . . , ψ(xn) must also
be linearly independent, and thus we obtain a unique linear map
U ∈ GLn(R) such that ψ(xi) = ψU(xi) for all i = 1, . . . , n. Be-
cause ψ is an isometry we have for any y ∈ V(Q) the n independent
linear equations ⟨ψ(y), ψU(xi)⟩Q′ = ⟨y,xi⟩Q for i = 1, . . . , n, with the
unique solution ψ(y) = ψU(y). So ψ = ψU is in fact a linear isometry
represented by U, and because both characteristic sets generate Zn as
a Z-module, we have U ∈ GLn(Z) by definition. From the isometry
we obtain that e⊤i U

⊤QUej = e⊤i Q
′ej for all pairs of standard unit
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vectors ei, ej with i, j = 1, . . . , n, which in particular gives us that
Q′ = U⊤QU. So U ∈ Isom(Q,Q′), and it has image ψ = ψU.

If Q = Q′, then both sides are groups under composition. For
U,V ∈ Isom(Q,Q) = Aut(Q) their composition as automorphisms
V ◦U is represented by UV ∈ Aut(Q). Then for x ∈ V(Q) we have

ψV◦U(x) = ψUV(x) = (UV)−1x = V−1U−1x = (ψV ◦ ψU)(x),

and thus we have an isomorphism.

We will now discuss some examples of characteristic vector set
functions.

9.4.1 A set based on short vectors

As mentioned before the map Q 7→ Min(Q) satisfies the desired trans-
formation property of a characteristic vector set function. However,
two problems remain for using Min(A) as a characteristic vector set:

PB1. If n ≥ 2, then span(Min(A)) may not have rank n.

PB2. If n ≥ 5, then span(Min(A)) may have rank n, but may not
generate Zn as a Z-module.

Thus we have to consider larger sets of short lattice vectors. For λ > 0,
let

Min(Q, λ) :=
{
x ∈ Zn \ {0} : ∥x∥Q ≤ λ

}
, (9.2)

be the set of all nonzero integer vectors up to length λ w.r.t. Q. In
particular we have Min(Q) = Min(Q, λ1(Q)).

Now we need to pick λ > 0 large enough such that Min(Q, λ) gener-
ates Zn. The implementations AUTO/ISOM by Plesken and Souvignier
[PS97], pick λ2 equal to maxdiag(Q) := maxQii, to compute auto-
morphisms. The set Min(Q,

√
maxdiag(Q)) contains the standard

unit vectors, and thus generates Zn. One could first use lattice reduc-
tion techniques to limit the size of maxdiag(Q), to prevent large sets.
Such a set is enough to compute automorphisms, but can be problem-
atic for equivalence, e.g., two forms Q,Q′ can be equivalent but satisfy
maxdiag(Q) ̸= maxdiag(Q′). For a particular LIP instance this can
be solved by picking the bound λ2 = max{maxdiag(Q),maxdiag(Q′)}.
However, such a choice is still not canonical (something we will care
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about in Section 9.6), and would in particular break the transforma-
tion property. Additionally this may lead to much larger sets than
necessary.

To prevent these problems we can use a more reliable vector set,
namely by picking the smallest bound λ, such that Min(Q, λ) still
spans Zn.

Vms(Q) := Min(Q, λmin), where
λmin := min{λ > 0 : spanZ(Min(Q, λ)) = Zn}. (9.3)

Lemma 158. The map Q 7→ Vms(Q) is a characteristic vector set
function.

This characteristic set function often works great in practice7, but
in general we do not have any bound on the size of |Vms(Q)|, as the
following example shows.

Example 159. The quadratic form Qλ =

(
1 0
0 λ2

)
for λ ≥ 1 gives

Vms(Qλ) = {±e2} ∪ {±e1,±2e1, . . . ,±⌊λ⌋e1}.
One way to solve the particular example above is by also remov-

ing all non-primitive vectors from the set, but this is not enough to
solve the general problem of obtaining vector sets of unbounded size
(under a fixed dimension). To overcome this problem, we introduce
a characteristic vector set, although somewhat impractical, that does
come with bounds on the number of vectors, only depending on the
dimension n.

9.4.2 A set based on Voronoi-relevant vectors

A well-known geometric shape associated to lattices, extensively dis-
cussed in Chapter 5, is the Voronoi cell. The Voronoi cell is the set
of all points closer to 0 with respect to Q than to any other integer
point. For a form Q, the (closed) Voronoi cell is the intersection of
half-spaces

Vor(Q) :=
⋂

x∈Zn\{0}
HQ,x, (9.4)

7Practical for computational algebra purposes in low dimensions of say n ≤ 30.
Not for cryptographic lattices of large dimension.
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with HQ,x := {y ∈ Rn : ∥y∥Q ≤ ∥y − x∥Q}. However, almost all vec-
tors in this intersection are superfluous, and we only consider the finite
set of Voronoi-relevant vectors Vvor(Q), i.e., the (unique) minimal set
of vectors such that

Vor(Q) =
⋂

x∈Vvor(Q)

HQ,x. (9.5)

Each Voronoi-relevant vector corresponds to exactly one facet of the
Voronoi cell. Using, an algorithm by Micciancio and Voulgaris [MV13],
we can compute the set of Voronoi-relevant vectors in time 22n+o(n).

Lemma 160. The following statements hold

(i) The map Q 7→ Vvor(Q) is a characteristic vector set function;

(ii) We have #Vvor(Q) ≤ 2 · (2n − 1).

Proof. Property (ii) of a characteristic vector set for Vvor follows from
the geometric definition, fully independent of the basis. For property
(i), note that for any nonzero x ∈ Zn, we have x ̸∈ Vor(Q), and thus
by definition there is a Voronoi-relevant vector v ∈ Vvor(Q) such that
x − v lies strictly closer to 0 with respect to Q. Repeating this (a
finite number of time by a packing argument) we eventually end up
at 0 and thus x is the sum of Voronoi-relevant vectors. The second
statement was already proven by Minkowski in 1897 [Min97]. The
idea is that each Voronoi-relevant vector v has precisely two closests
vectors in 2L, namely 0 and 2v. This implies that each ±v (up to
sign) represents a distinct and nonzero coset modulo 2L, so there can
be at most 2 · (|L/(2L)| − 1) Voronoi-relevant vectors.

Although this characteristic vector set has great theoretical
bounds, we refrain from using it in practice: most lattices actually at-
tain the worst-case 2 · (2n− 1) Voronoi bound [Vor08; Vor09], whereas
constructions based on short vectors often beat the theoretical worst-
case bounds and give much smaller vector sets in practice.

9.5 Solving LIP
We discuss several algorithms to solve the Lattice Isomorphism Prob-
lem. We start with some practical approaches based on the earlier
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introduced characteristic vector sets, and then discuss some theoreti-
cal results.

9.5.1 Characteristic set approach

Recall from Lemma 157 that solving LIP between two quadratic forms
Q,Q′ is equivalent to finding an isometry between the finite sets V(Q)
and V(Q′), for any characteristic set function Q 7→ V(Q).

A generic approach, that we formalize in [DHVW20], of finding
such isometries is to construct two complete weighted graphs for Q
and Q′ respectively, where the nodes are the elements from the charac-
teristic vector set, and each edge (x,y) gets weight ⟨x,y⟩Q or ⟨x,y⟩Q′

respectively.

Definition 161. Let V be a characteristic vector set function, and
let Q ∈ S>0

n (R) be a quadratic form. We define the complete weighted
graph GQ,V = (V,w) as the graph with nodes V := V(Q) and weight
function

w(x,y) := ⟨x,y⟩Q for all x,y ∈ V(Q).

Using these graphs turns the problem of quadratic form equivalence
into one of graph isomorphism. Recall that two complete weighted
graphs G = (V,w) and G′ = (V ′, w′) are isomorphic G ∼= G′ if there
exists a bijection ψ : V → V ′, which keeps the edge weights intact,
i.e., w′(ψ(x), ψ(y)) = w(x, y) for each edge (x, y) ∈ V 2. We denote
the set of all such bijections by Isom(G,G′).

Lemma 162. Let V be a characteristic vector set function, and let
Q,Q′ ∈ S>0

n (R) be two quadratic forms, then Q and Q′ are equivalent
if and only if GQ,V and GQ′,V are isomorphic. In particular there exists
a bijection

Isom(Q,Q′)↔ Isom(GQ,V , GQ′,V).

If Q = Q′, then Isom(Q,Q′) = Aut(Q) and Isom(GQ,V , GQ′,V) are
groups under function composition and the bijection is an isomor-
phism.

Proof. By Lemma 157 we only have to show that there exists a bijec-
tion between Isom(V(Q),V(Q′) and Isom(GQ,V , GQ′,V). Because all
pairwise inner products (and norms) are encoded in the graph, these
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two sets are the same by definition, so the bijection (and isomorphism)
is trivial.

So to solve LIP, we can use heavily optimized graph isomorphism
algorithms on the resulting graphs, such as Nauty, Traces [MP14]
and Bliss [JK07]. These are backtrack algorithms, that try to ef-
ficiently enumerate all possible node mappings that keep the edge
weights invariant. They make heavy use of graph invariants to limit
the search tree, such as the degree of nodes, or the degree of all neigh-
bours. These algorithms do not directly work on weighted graphs,
but in the Nauty manual [McK07] there are generic transformations
from weighted graphs to (somewhat larger) unweighted graphs that
keep the isomorphisms intact. Depending on the size of the charac-
teristic set V(Q), this approach can be very practical, and a public
implementation by Dutour Sikirić can be found at [Dut22]. On the
asymptotic side, the graph isomorphism algorithm by Babai [Bab16],
gives an algorithm that runs in time quasi-polynomial in the charac-
teristic vector set size |V(Q)|. However, this time may be as large as
exp(nO(1)) given that |V(Q)| itself may be as large as exp(Θ(n)), for
example, when using Voronoi-relevant vectors.

The approach of Plesken and Pohst [PP85], later improved by
Plesken and Souvignier [PS97], can be seen as a specialized variant
of the above approach, where more (geometric) invariants are consid-
ered to improve the search, and possibly without explicitly construct-
ing the full graph. Implementations by Souvignier for automorphisms
and equivalence testing are available under the names AUTO and ISOM
respectively8.

9.5.2 A provable algorithm

The best asymptotic algorithm is one by Haviv and Regev [HR14]
that runs in time and space nO(n), and returns all solutions to a LIP
instance. As the lattice Zn has 2n · n! = nO(n) automorphisms, this
result is in some sense optimal. A major open question is, whether
there exists a single exponential time algorithm to find only a single
solution to LIP.

8The AUTO and ISOM programs are available through MAGMA. The implemen-
tation has also been ported to PARI/GP (and thus SageMath).
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The algorithm by Haviv and Regev requires short primal as well as
short dual vectors. Let Q,Q′ ∈ S>0

n (R) be two equivalent quadratic
forms. They first consider the case that Min(Q) (and Min(Q′)) are
full rank, i.e., span(Min(Q)) = Rn. Fundamental to their algorithm
is the so-called isolation lemma.

Lemma 163 (Isolation Lemma [HR14], informal). there exists a rel-
atively short dual vector v ∈ Zn (in the sense of ∥v∥Q−1), that uniquely
defines n linearly independent vectors x1, . . . ,xn ∈ Min(Q). These
vectors are defined as follows:
for every 1 ≤ j ≤ n, the minimum standard inner product9 ⟨v,x⟩ with
vectors x ∈ Min(Q) \ span(x1, . . . ,xj−1) is uniquely achieved by xj.

After such an isolating vector v ∈ Zn is found for Min(Q) by
enumerating short dual vectors, we do the same for Min(Q′). Once
the correct image of v in Min(Q′) is found by a similar enumer-
ation (which happens because short dual vectors are mapped to
short dual vectors), we obtain another unique chain of n indepen-
dent vectors y1, . . . ,yn ∈ Min(Q′), and the unimodular transforma-
tion U ∈ GLn(Z) can be recovered from the mapping yi 7→ xi. To
provably find such an isolating short dual vector we need to enumer-
ate all dual vectors up to some norm nO(1) · λ1(Q−1), of which there
can be at most nO(n). Running such an enumeration can also be done
in time nO(n), and space exp(O(n)) (to store Min(Q1),Min(Q2)).

For the general case Regev and Haviv note that one can first solve
LIP for the sublattices in the span of Min(Q) and Min(Q′) respec-
tively, and (recursively) for the lattices projected away from that span.
The resulting transformations can then be combined if compatible.

While the algorithm is useful as an asymptotic result, the (proven)
constant in the exponent of nO(n) is quite large, which makes the algo-
rithm seemingly impractical. We do not know of any implementation
of this algorithm, and therefore if the practical complexity might be
better.

9The standard inner product ⟨v,xi⟩ has the same value as the inner product
between the primal lattice vector Bxj and the dual lattice vector (B⊤)−1v for any
full rank basis B.
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9.5.3 The case of Zn, an approach by Szydlo

In 2003 Szydlo [Szy03] showed a search LIP to decision LIP reduction
for the special case of the integer lattice Zn. Note that for Zn the stan-
dard basis gives the quadratic form In, so the search problem becomes:
given U⊤U for some unimodular matrix U ∈ GLn(Z), recover U (up
to Aut(In); i.e., all signed permutations). He shows how to solve this
search problem by querying a decisional LIP oracle on lattices that
are very similar to Zn.

Additionally, Szydlo gives a heuristic algorithm to instantiate such
a decision oracle for these specific cases, that requires to sample vectors
of length O(

√
n). With the current reduction techniques, however, it is

easier to find the unusually short vectors of length 1, in any rotation
of Zn, than to enumerate vectors of length O(

√
n). So even if this

heuristic algorithm works, it is worse than solving the search problem
directly.

An interesting open question is, whether there exists a more general
search to decision reduction for LIP.

9.6 A canonical function

Using the algorithm in Section 9.5, we can compute the automorphism
group, and check for equivalence between two quadratic forms of low
dimension. However, in practice LIP often appears in the following
setting: we have many quadratic forms Q1, . . . ,QN ∈ S>0

n , and we
wish to identify them up to equivalence. For example, this occurs
during the enumeration (up to equivalence) of quadratic forms of low
rank with special properties, such as unimodular forms, perfect forms
and more. Since a naive application of an equivalence algorithm re-
quires O(N2) equivalence tests (in the worse case), this can quickly
become a bottleneck. The number of tests can be somewhat lowered
if many of the invariants presented in Section 9.3 differ, which may or
may not be the case.

The solution we present in this section solves the above problem
by introducing a canonical form CanGLn(Z)(Q) ∈ S>0

n for Q ∈ S>0
n .

This canonical form should satisfy the following two requirements.
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Definition 164. We say CanGLn(Z) : S>0
n → S>0

n is a canonical form
function if it satisfies the following two requirements:

1. For every Q ∈ S>0
n , CanGLn(Z)(Q) is equivalent to Q; and

2. for every Q ∈ S>0
n and U ∈ GLn(Z),

CanGLn(Z)(U
⊤QU) = CanGLn(Z)(Q).

We call the output CanGLn(Z)(Q) of Q the canonical form of Q
(assuming that the function is fixed). A canonical form can be seen as
a canonical representative of the equivalence class [Q], and thus two
quadratic forms are equivalent if and only if their canonical forms are
identical. Combining a canonical form with a hash table, the identifi-
cation of equivalence classes in a list of N quadratic forms then takes
only N canonical form computations (and N hash table lookups), and
thus has the potential to be much faster. In Section 9.7 we present
an application with N ≥ 109 quadratic forms that became feasible
largely due to the introduction of a canonical form function.

Recall from Lemma 162 that we used a characteristic vector set
function V to turn the question of quadratic form equivalence Q ∼= Q′

into one of graph isomorphism GQ,V ∼= GQ′,V . For graphs there is
already a long line of research into canonical functions CanSymm

(e.g.,
[BKL80; McK81; BL83; FSS83; JK07; MP14; Bab19]). The main idea
is to apply a canonical function to the graph GQ,V , and then lift the
result back.

For simplicity we limit ourself to the set G of weighted graphs with
(ordered) nodes [m] = {1, . . . ,m} for some m ≥ 1, such that automor-
phisms and isomorphisms can be represented by permutations. For a
graph G = ([m], w) ∈ G with m ≥ 1 nodes and weight function w,
and a permutation π ∈ Symm we denote by π(G) = ([m], w′) ∈ G the
graph with weight function w′ given by w′(i, j) := w(π−1(i), π−1(j))
for all i, j = 1, . . . ,m. Two graphs G,G′ ∈ G with m ≥ 1 nodes
are called isomorphic G ∼= G′ if there exists a π ∈ Symm such that
π(G) = G′.

Definition 165. For m ≥ 1 we say that CanSymm
: G → G is a

canonical graph ordering if it satisfies the following requirement:

1. For every G ∈ G, CanSymm
(G) is isomorphic to G; and
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2. for every G ∈ G with m ≥ 1 nodes and π ∈ Symm,
CanSymm

(π(G)) = CanSymm
(G).

In fact, the graph isomorphism implementations mentioned in Sec-
tion 9.5, solve the graph isomorphism problem by computing a canon-
ical graph ordering on both graphs. On the theoretical side there also
has been some effort by Babai [Bab19] to turn the quasi-polynomial
(in m) graph isomorphism algorithm [Bab16] into a canonical graph
ordering algorithm.

Remark 166. Given any vector set function V and canonical graph
ordering CanSymm

, the map Q 7→ CanSymm
(GQ,V) already defines a

canonical function, in the sense that the output on two forms is iden-
tical if and only if the forms are equivalent. However this graph can be
quite large, and the canonical quadratic form allows a more compact
representation.

We now construct a canonical form function by lifting the canonical
graph ordering back to the quadratic form setting. For this we first
need another type of canonization algorithm: the Hermite Normal
Form.

Definition 167 (Hermite Normal Form (HNF)). The Hermite Nor-
mal Form of an integer matrix M ∈ Zn×m of row rank r ≤ n is the
unique matrix H ∈ Zn×m for which there exists a U ∈ GLn(Z), such
that M = UH, and moreover

1. The first r rows of H are nonzero and the remaining rows are
zero; and

2. for 1 ≤ i ≤ r, if hi,ji is the first nonzero entry in row i, then
j1 < . . . < jr; and

3. for 1 ≤ i ≤ r, we have hi,ji > 0; and

4. for 1 ≤ k < i ≤ r, we have 0 ≤ hk,ji < hi,ji.

The HNF of a matrix is computable in polynomial time [KB79;
MW01]. The HNF can be seen as a canonical function of the left
action of GLn(Z) given by multiplication on integer matrices Zn×m.
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In particular it turns any (transpose) basis of a lattice into a (trans-
pose) canonical basis. Note however that it is only canonical up to
the action of GLn(Z), and not with respect to the action of On(R).
Therefore it cannot directly be used to solve LIP. Furthermore, given
that V(U⊤QU) = U−1V(Q), one might be temped to apply HNF di-
rectly to the characteristic set to make the action of GLn(Z) canonical,
however, the output of the HNF does depend on the order of the char-
acteristic vectors, i.e., it is not simultaneously canonical with respect
to the permutation action of Symm. Obtaining a canonical ordering
is precisely where we use the canonical graph function.

Algorithm 15: A canonical form function CanGLn(Z).
Given : A characteristic set function V , and a canonical

graph function CanSymm
.

Input : A quadratic form Q ∈ S>0
n .

Output: A canonical representative Q′ ∈ [Q].
1 Compute the characteristic vector set V(Q), m← |V(Q)|
2 Construct the weighted graph GQ,V
3 Run CanSymm

on GQ,V to obtain a canonical ordering
v1, . . . ,vm of V(Q)

4 M← (v1, . . . ,vm) ∈ Zn×m

5 Compute UV(Q) ∈ GLn(Z) such that M = UV(Q)H is the
unique HNF decomposition of M

6 return CanGLn(Z)(Q) = U⊤
V(Q)QUV(Q)

Proposition 168. Algorithm 15 is a canonical form function.

Proof. We first show that the algorithm is well defined, i.e., that it
does not depend on the initial ordering of the characteristic vector
set V(Q). Note that the output ordering of CanSymm

is unique up to
Aut(GQ,V), and thus by Lemma 162 the ordering of the characteris-
tic vectors is unique up to Aut(Q). For any such different ordering
Sv1, . . . ,Svm for S ∈ Aut(Q) would lead to the matrix SUV(Q), and
thus UV(Q) is well-defined as a coset representative in Aut(Q)\GLn(Z).
As Q is by definition invariant under Aut(Q) the output form is thus
well-defined.
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We now verify the two properties in Definition 164. The first prop-
erty is clear by definition. For the second property note that for any
V ∈ GLn(Z), we have

UV(V⊤QV) ≡ UV−1V(Q) ≡ V−1UV(Q) ∈ Aut(V⊤QV) \ GLn(Z),

and thus CanGLn(Z)(V
⊤QV) = CanGLn(Z)(Q) as desired. Here the first

equivalence stems from the transformation property of the character-
istic set, and the second equivalence stems from the uniqueness of the
HNF.

9.7 Applications to perfect form
enumeration

The technique to construct a canonical form from graphs is quite ver-
satile and has many applications. For example, a similar function can
be constructed for symplectic groups [DHVW20], or for the equiva-
lence of C-type domains [DMW22]. Beyond testing for equivalence, a
canonical function also gives a deterministic naming scheme for lat-
tices (for a fixed function). In this section, we dive in a bit deeper
on applying the canonical form function for perfect form enumeration,
and we discuss a further improvement that gives a 30-fold speed-up in
practice.

9.7.1 Background on perfect lattices and forms

The search for perfect forms is motivated by the Lattice Packing Prob-
lem (LPP): how to pack n-dimensional balls in Rn in a lattice pattern,
such that their density, the proportion of Rn they fill, is maximized?
So far LPP has only been solved up to dimension 8 and in dimension
24 (by the remarkable Leech lattice). It is known that every optimal
lattice packing is attained by a perfect lattice, and up to similarity
there are only a finite number of them in each dimension. Therefore,
to solve LPP, one can simply enumerate all perfect lattices.

From a quadratic form perspective the goal of LPP is to find a
form Q ∈ S>0

n that maximizes λ1(Q)2/ det(Q)1/n. This is a search
problem over the cone of (positive definite) quadratic forms S>0

n . As
the objective function is invariant under scaling we can restrict the
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space to those forms with λ1(Q)2 ≥ 1, which defines the Ryshkov
polyhedra

P := {Q ∈ S>0
n : λ1(Q)2 ≥ 1}.

The inequality λ1(Q)2 ≥ 1 is equivalent to the infinite set of (lin-
ear) inequalities x⊤Qx ≥ 1 for all nonzero x ∈ Zn, which implies
that the Ryshkov polyhedra is an intersection of infinitely many half-
spaces. Over the Ryshkov polyhedra we now only have to minimize the
determinant. Minkowski showed that the function Q 7→ det(Q)1/n is
concave on S>0

n , which implies that the optima lie at the vertices of the
Ryshkov polyhedra, and we call the quadratic forms that correspond
to these vertices perfect. Up to equivalence (and scaling) there are only
a finite number of distinct perfect forms. In fact, we have an upper
bound of exp(O(n2)) on the number of equivalence classes [Woe20].
Voronoi’s Algorithm [Vor08] explores the Ryshkov polyhedra up to
equivalence, and thereby enumerates all perfect forms in a fixed di-
mension. It has been successfully used to find all perfect forms in
dimensions up to 8, with respectively 1, 1, 1, 2, 3, 7, 33, 10916 equiva-
lence classes in each dimension.

While in dimension 8 the main bottleneck was due to high degen-
eracy in the Ryshkov polyhedra, we have an additional problem in di-
mension 9: the large number of perfect forms. With possibly billions of
non-equivalent perfect forms we require a very efficient canonical func-
tion to quickly check if an encountered perfect form is already known
or not. Previous enumeration attempts in dimension 9, stranded at
only 500.000 [SSV07] or 25 million [Woe18] forms respectively, with
equivalence computations as the main bottleneck.

9.7.2 An improved canonical function

Ignoring the few highly degenerate vertices (perfect forms), the main
cost of enumerating all 9-dimensional perfect forms is the computa-
tion of canonical forms. Any speed-up in this computation directly
translates to a significantly reduced running time to finish the enu-
meration. We discuss one trick to achieve this. For perfect forms the
most costly step in Algorithm 15 is that of computing the canonical
graph function, e.g., using Nauty, Traces [MP14] or Bliss [JK07].
The runtime of these algorithms depends on many factors, but when
restricting to our application the runtime mostly seems to depend on
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the number of vertices |V(Q)|, and the number of distinct weights,
i.e., |{⟨x,y⟩Q : x,y ∈ V(Q)}|.

In order to improve the algorithm we thus have to try to limit
the size of this graph. The minimal vectors of a perfect form often
(except for a few cases) already span Zn, and thus we have V(Q) :=
Vms(Q) = Min(Q). Reducing this set any further seems hard (and
is actually impossible if the automorphism group acts transitively).
Note, however, that we have the sign symmetry x ∈ Vms(Q)⇔ −x ∈
Vms(Q). What happens if we ignore the signs?

Similarly to GQ,V we can construct the absolute graph Gabs
Q,V , where

each node corresponds to some ±x ∈ V(Q), and the weight function
is (well-)defined as w(±x,±y) := |⟨x,y⟩Q|.

Lemma 169. For any perfect form Q ∈ S>0
n , and the characteristic

set function Vms, we have an injective homomorphism

Aut(GQ,Vms)/⟨±In⟩ ↪−→ Aut(Gabs
Q,Vms

),

π 7→ πabs,

where −In sends x 7→ −x for all x ∈ Vms.

Proof. Let π ∈ Aut(GQ,Vms). The inner product constraints enforce
that if π maps x 7→ y, then −x 7→ −y for x,y ∈ Vms. So π induces
a permutation πabs on Gabs

Q,Vms
by mapping pairs to pairs ±x 7→ ±y.

Because π is invariant with respect to the inner products, πabs is clearly
invariant with respect to the absolute invariants, and thus πabs ∈
Aut(Gabs

Q,Vms
).

For the injectivity we have to show that the kernel is ⟨±In⟩. First
suppose (as we will later prove) that the graph GQ,Vms is connected
if we remove all edges of weight 0 . Let π ∈ Aut(GQ,Vms) be such
that πabs is trivial. Every x ∈ Vms is mapped to either x or −x.
However any pair x,y is connected by some path with nonzero (signed)
inner products in GQ,Vms , and thus any choice for x 7→ x or x 7→ −x
determines the signs for all other elements. So there are only two
choices for π, and clearly the identity map In and the negation map
−In satisfy this.

What remains is to shoe that the graph GQ,Vms is connected. We
have Min(Q) ⊂ Vms, and by definition of perfect, the set {xx⊤ : x ∈
Min(Q)} has full rank 1

2
n(n+ 1) inside the space of n× n symmetric
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matrices. Assume for contradiction that the graph GQ,Vms is discon-
nected if we remove the edges of weight 0. This implies that we can
decompose Vms = V1 ⊔ V2 into two disjunct non-empty sets such that
⟨x,y⟩Q = 0 for all pairs (x,y) ∈ V1 × V2. Let 1 ≤ ri := rk(Vi) be the
rank of the subspace spanned by Vi inside Rn, and note that the pair-
wise orthogonality gives r1 + r2 ≤ n. By the (strict) convexity of the
map c 7→ c(c+1) for c > 0 we then obtain the following contradiction

1

2
n(n+ 1) ≤

2∑
i=1

rk{xx⊤ : x ∈ Vi} ≤
2∑

i=1

1

2
ri(ri + 1) <

1

2
n(n+ 1),

and thus the graphs are connected.

If the above injective morphism is in fact an isomorphism, and we
have an efficient way to lift πabs back to π (up to sign), then we could
simply use Gabs

Q,V instead of GQ,V , with half as many nodes and almost
half as many distinct weights. In fact an algorithm for the inverse map
immediately follows from the proof of Lemma 9.7.2: fix a single sign
choice, and determine the other signs uniquely via a spanning tree of
the graph.

In general however, removing the signs could also introduce more
automorphisms, so we have to check if this is the case or not. The
strategy is as follows, first we compute the canonical function using
Gabs

Q,V . As a cheap by-product of the canonical graph algorithm we
also obtain generators for Aut(Gabs

Q,V), and we check if each of these
(unsigned) generators πabs correctly lifts to a (signed) automorphism π
of GQ,V . If this is the case then we are done, if not then we recompute
the full canonical function using GQ,V . Our hope is that the latter
almost never happens, and thus we can rely on a much smaller, and
thus more efficient, canonical graph computation.

9.7.3 Results

We implemented a canonical function, highly optimized for the perfect
form use-case. As a characteristic function we used Vms(Q), which in
the case of perfect forms is often just Min(Q) and thus quite small.
For the canonical graph function we implemented both BLISS [JK07]
and Traces [MP14].
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Graph Variant

Canonical Library Signed Absolute speed-up

BLISS [JK07] 3558± 613 µs 398± 129 µs 8.94×
Traces [MP14] 601± 84 µs 223± 36 µs 2.70×

Table 9.1: The average number of microseconds and the standard
deviation per full canonical form computation on the 524.288 9-
dimensional perfect forms found by [SSV07]. The absolute graph tim-
ings include the check and fallback to the signed case if needed.

The timings for this highly optimized implementation, and the
additional speed-up of the absolute graph improvement, are shown in
Table 9.1. The low dimension allowed to implement most steps of the
algorithm with primitive types (no extended precision), which gave a
large speed-up over the original generic implementation. In addition,
depending on the canonical graph library we obtain a speed-up of 2.7
to 8.94 using the absolute graph approach, even including the fallback
to the original case if needed. The generic implementation from the
original paper (using Traces) took an average of 5941µper canonical
form on the same dataset and same hardware [DHVW20; Dut22]; in
total we obtain a 27-fold speed-up over this implementation.

Exploring all perfect forms in dimension 9 requires roughly 2 · 1011
canonical form computations. Based on the experiments, the extra
improvement thus reduced the running time spend on this part of the
algorithm from roughly 330.000 core-hours to less than 12.500 core-
hours, making (that part of the) computation feasible on a high-end
server or a small cluster.

Finishing the full enumeration is an ongoing joint project with
Mathieu Dutour Sikirić. The canonical form function allowed us to
find (probably) all perfect forms, with only a few exceptionally hard
cases yet to treat.

Lemma 170. There are at least 2,237,251,033 non-similar perfect
forms in dimension 9.

Conjecturally the above inequality is tight and we have found all
perfect forms in dimension 9, of which the densest corresponds to the
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laminated lattice Λ9. To be certain about this we still have to enu-
merate all neighbours of a few perfect forms (with many neighbours).

The same idea, using the absolute graph canonical function, has
been used to make the enumeration of all 55,083,358 C-type domains
in dimension 6 feasible [DMW22].
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CHAPTER 10
Remarkable Lattices &

Cryptography

This chapter is based on the joint work ‘On the Lattice Iso-
morphism Problem, Quadratic Forms, Remarkable Lattices,
and Cryptography’, with Léo Ducas, published at Eurocrypt
2022. The last section summarizes the follow-up joint work
‘HAWK: Module LIP makes Lattice Signatures Fast, Compact
and Simple’, with Léo Ducas, Eamonn W. Postlethwaite and
Ludo Pulles.

10.1 Introduction

The central idea in lattice-based cryptography is the concept of a bad
basis acting as a public key, and a good basis of the same lattice
acting as a secret key. With a good basis one can efficiently decode
or Gaussian sample at low width, while with a bad basis this is hard.
This discrepancy in hardness allows to create a backdoor that can be
used for encryption schemes, signature schemes and more.
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The creation of such a basis key-pair is precisely where the hard-
ness assumptions such as NTRU [HPS98] and the Learning with Error
(LWE) problem [Reg09] come in. They allow us to securely generate
a somewhat random lattice along with a (partial) good basis. These
assumptions are very versatile and allow to instantiate many different
kinds of cryptographic schemes. However, from a decoding perspec-
tive, these good bases can only decode up to a radius Ω(

√
n) from the

optimal Minkowski bound, as they essentially reduce to the case of the
trivial lattice Zn. Due to this non-optimal decoding distance we can
break these schemes by solving SVP in some dimension β ≤ n/2+o(n),
which forces the dimension to be at least 2 times larger than a direct
SVP attack would imply.

In contrast, there do exist many remarkable lattices for which we
can efficiently decode at much lower approximation factors. For exam-
ple, Ducas and Pierrot [DP19] showed that the Chor-Rivest cryptosys-
tem [CR88] was implicitly relying on a family of lattices for which it
is possible to efficiently decode errors up to a radius within a factor of
O(log n) from optimal. Recently, lattice families reaching a factor of
O(
√
log n) were found [MP21; BP22]. We cannot use such remarkable

lattice directly, everyone, including an adversary, can decode in them.
To use such remarkable lattices in cryptographic protocols we need
a way to hide their remarkable structure, without destroying their
decoding capabilities.

At repeated occasions [CR88; Len91; OTU00; SCM01; LLXY20],
and over more than 30 years, exactly this has been tried, for exam-
ple by porting the original public-key encryption scheme of McEliece
[McE78] from codes to lattices: instead of giving a public bad basis of
the lattice L ⊂ Rn itself, one gives a bad basis of the permuted lattice
π(L) := {(yπ−1(i))i ∈ Rn : y ∈ L} for some secret random permutation
π. One can efficiently decode in π(L) via L (only) when π is known.
Unfortunately this code-style way of hiding the lattice is also suscep-
tible for code-style attacks, leading to subexponential attacks [CR88;
Lap21; Odl90]; either by Information Set Decoding techniques or by
guessing or brute-forcing some coordinates. Due to these attacks, this
approach has not been very popular lately.

These attacks are enabled by the fact that these schemes do barely
more than re-randomize the lattice by applying a permutation of the
coordinates. Such permutations are isometries, i.e., lattice isomor-
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phisms, but those are not the only ones. Since the isometry group
On(R) acting on lattices is much larger than the one acting on codes,
applying a random isometry from this larger group should convinc-
ingly thwart those code-style attacks: the canonical coordinate system
becomes irrelevant.

All these remarks point toward the Lattice Isomorphism Prob-
lem (LIP) as a potential theoretical platform for finally getting this
natural approach properly formalized, and hopefully, truly "lattice-
based" in the cryptanalytic sense: the best known attack should be
based on generic lattice reduction algorithms such as LLL [LLL82]
and BKZ [Sch87]. As seen in Section 9.5 the current state of the art
on LIP supports this hypothesis: all known algorithms [PP85; PS97;
HR14; DHVW20] rely on finding short vectors. This is the case even
for algorithms specialized to the trivial lattice Zn [Szy03]. Experimen-
tal studies [BM21] do show that the basis randomization step requires
care, in order to not introduce any weak instances.

While instantiating LIP with Zn may already give rise to secure
cryptosystems, the end goal of this work is to enable lattice-based
cryptosystems that could be be even more secure than those based on
LWE and SIS in similar dimensions, by instantiating the constructed
schemes with remarkably decodable lattices.

10.1.1 Contributions

We introduce a formal and convenient framework for LIP-based cryp-
tography, from which we build three cryptographic schemes: an iden-
tification scheme based on search-LIP (sLIP), a (passively secure) Key
Encapsulation Mechanism (KEM) based on distinguish-LIP (∆LIP),
and a signature scheme also based on ∆LIP. In more detail:

• In Chapter 9 we discussed LIP, recalled the quadratic form for-
malism, and rephrased the LIP problem in terms of quadratic
forms to conveniently avoid real numbers. Here, with the use of
Gaussian Sampling [GPV08; Pei10], we define an average-case
distribution for LIP and establish a worst-case to average-case
reduction within an isomorphism class (Section 10.2). This ad-
dresses the concerns raised by Blanks and Miller [BM21] and
formalizes their heuristic countermeasure.

285



10. Remarkable Lattices & Cryptography

• The above cryptographic foundations are directly inspired by
the Zero-Knowledge proof of lattice non-isomorphism of Haviv
and Regev [HR14]. We further extend on their techniques by
proposing a Zero-Knowledge proof of knowledge (ZKPoK) of a
lattice isomorphism (Section 10.3). This directly implies the
existence of an identification scheme based on sLIP.

• We propose a KEM scheme (Section 10.4) and a hash-then-sign
signature scheme (Section 10.5), both based on ∆LIP. Per-
haps surprisingly, and unlike the original scheme of McEliece
for codes, we circumvent the additional assumption that decod-
ing a certain class of random lattices is hard. This is done via a
lossyness argument [PW11] for the KEM, and a dual argument
for the signature scheme.

• We review the state of the art for solving LIP (Section 10.6).
In particular we note that all known algorithms require lattice
reduction, and we quantify the required approximation factor.

• We discuss natural instantiations for each scheme given any re-
markable lattice in Section 10.7. This section handles the con-
struction of the auxiliary lattice appearing in ∆LIP for the lossy-
ness arguments to get through.

10.1.2 Potential advantages

The KEM. To instantiate the KEM, consider a lattice L (w.l.o.g., of
volume 1) such that:

• the minimal distance is within a factor f from Minkowski’s
bound: λ1(L) ≥ Ω(

√
n/f),

• there exists an efficient algorithm that can decode errors in L
up to radius ρ < λ1(L)/2 within a factor f ′ from Minkowski’s
bound: ρ ≥ Ω(

√
n/f ′).1

• the dual minimal distance is within a factor f ∗ from Minkowski’s
bound: λ1(L∗) ≥ Ω(

√
n/f ∗).

1Note that uniqueness of decoding implies f ′ ≥ 2f .
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Then, the instantiated KEM appears to resist concrete lattice reduc-
tion attacks down to an approximation factor O(max(f, f ∗, f ′)). For a
security reduction to ∆LIP we have to create a pair of lattices, which
increases the approximation factor to O(max(f, f ∗) · f ∗ · f ′). More
specifically, it’s security is based on ∆LIP for two lattices whose pri-
mal and dual first minima are all within a factor O(max(f, f ∗) ·f ∗ ·f ′)
from Minkowski’s bound.

The trivial lattice Zn gives all three factors f, f ′, f ∗ of the order
Θ(
√
n). The Barnes-Wall lattice improves all three factors down to

Θ( 4
√
n) [MN08].

The endgame would be to instantiate with lattices for which all
three factors f, f ′, f ∗ would be very small. In particular, one would
naturally turn to recent work on decoding the Chor-Rivest lattices
[CR88; DP19; LLXY20; Lap21] and the Barnes-Sloane lattices [MP21]
giving f = polylog(n) and f ′ = polylog(n), but unfortunately their
dual gaps are not that good: f ∗ ≥ Θ(

√
n). Indeed, both Chor-Rivest

and Barnes-Sloane are integer lattices L ⊂ Zn with single exponen-
tial volume det(L) = cn: their duals L∗ have a Minkowski bound of
Θ(
√
n/ det(L)1/n) = Θ(

√
n), but contain all of Zn ⊂ L∗, including

vectors of norm 1.
Note, nevertheless that there is no geometric impossibility to the

existence of the desired remarkably decodable lattice: random lattices
have f = O(1) and f ∗ = O(1); so unique decoding is in principle
possible down to f ′ = f/2 = O(1). Unfortunately the the best known
decoding algorithm for such lattices takes exponential time.

The signature scheme. The same principle also applies to our signa-
ture scheme, but this time with respect to Gaussian sampling rather
than decoding: lattices with tight sampling (and large dual minimal
distance) would lead to a scheme resisting attacks down to very small
approximation factors. Unfortunately, even ignoring the constraint on
the dual lattice, we do not know of any lattice much better than Zn

for efficient Gaussian sampling. However, instantiated with Zn our
scheme still has an interesting feature: not having to deal with any
Gram-Schmidt or Cholesky matrices over the real numbers. This may
be a worthy practical advantage over currently proposed hash-then-
sign signature schemes [GPV08].
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Primal Dual Decoding

Decodable Lattice f f ∗ f ′

Random Lattice Θ(1) Θ(1) 2Θ(n)

Zn Θ(
√
n) Θ(

√
n) Θ(

√
n)

NTRU [HPS98] Ω(α) Ω(α) Ω(n/α)

LWE [Ajt99; AP11; MP12] Ω(1) Ω(α) Ω(n/α)

Prime Lattice [CR88; DP19] Θ(log n) Ω(
√
n) Θ(log n)

Barnes-Sloane [MP21] Θ(
√
log n) Ω(

√
n) Θ(

√
log n)

Reed-Solomon [BP22] Θ(
√
log n) Ω(

√
n) Θ(

√
log n)

Barnes-Wall [MN08] Θ( 4
√
n) Θ( 4

√
n) Θ( 4

√
n)

Table 10.1: Some decodable lattices and their primal gap f =
gh(L)/λ1(L), dual gap f ∗ = gh(L∗)/λ1(L∗) and efficient decoding
gap f ′ = gh(L)/ρ. We have 1 ≤ α ≤ n.

The identification scheme. Because sLIP seems super-exponentially
hard in the dimension for well chosen lattices (i.e., that have a large
kissing number), it might be secure to instantiate our ZKPoK with a
rather small lattice dimension, maybe down to about a hundred (see
the challenge in Table 10.2). This is more a theoretical curiosity than a
practical advantage —the protocol still needs soundness amplification,
where each round requires exchanging Õ(n2) bits.

10.1.3 Open questions

A KEM with polylog-approximation factor security. Is there any fam-
ily of lattices that can be efficiently decoded within a polylog fac-
tor from Minkowski’s bound such as [CR88; DP19; LLXY20; Lap21;
MP21], but whose dual would also have an equally large minimal dis-
tance?

Tight Gaussian Sampling for signatures. Is there any family of lattices
L (of volume 1) in which one can efficiently sample a discrete Gaus-
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sian with small parameter σ < o(
√
n), if not σ = polylog(n) (with

exponential smoothing σ > η2−n(L))? And if so, do they and their
dual have a large minimal distance? Note that quantumly, this ques-
tion is related to the previous one via the reduction of Regev [Reg09]:
decoding in the primal for a large radius gives Gaussian sampling in
the dual for a small width. But a classical algorithm would be much
preferable.

Concrete instantiation with simple lattices. Instantiated with Zn, our
signature scheme has the advantage of not requiring any Gram-
Schmidt or Cholesky decomposition, contrary to existing hash-then-
sign signature schemes, and may therefore be of practical interest.
It could also be reasonable to instantiate our KEM with the lat-
tice of Barnes and Wall, by using the decoder of Micciancio and
Nicolesi [MN08].

Module-LIP. Lastly, it also seems natural to explore structured vari-
ants of LIP, where both the lattice and the isometry should be struc-
tured. We note that for every ideal lattice in complex-multiplication
number fields, a classical polynomial time algorithm for LIP is known
[GS02; LS14]. Could the module variant be secure? Can our con-
structions gain a linear factor on key sizes from such a variant? And
are there remarkably decodable lattices that are also modules over
certain number fields? For example the repeated-difference lattices
(Craig’s lattices [CS13]) are ideal lattices in cyclotomic number fields
with large minimal distances, but a polynomial decoding algorithm
for them remains to be discovered.

Remark 171. The last two open questions were partially answered
positively in a follow-up work [DPPW22]. In this work we build a
competitive signature scheme, named Hawk, based on the simple lat-
tice Zn, instantiated as a rank 2 module. In Section 10.8 we give a
short summary of this work, and show that it improves upon Falcon
in several ways.
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10.2 LIP and self-reducibility

In this section we lay the foundation for using the Lattice Isomorphism
Problem in cryptography. We present an average-case distribution
for any quadratic form equivalence class, show how to sample from
it, and conclude with a worst-case to average-case reduction. Note
that the worst-case to average-case reduction is realized within an
equivalence class [Q] = {U⊤QU : U ∈ GLn(Z)}. But first we start
with some adaptation of discrete Gaussian sampling to the quadratic
form setting.

10.2.1 Discrete Gaussians and sampling

Discrete Gaussian sampling has been fundamental to the development
of lattice based cryptography, by allowing to return short or nearby lat-
tice vectors without leaking information about the secret key [GPV08].
We rephrase the relevant definitions and propositions in the quadratic
form language.

Distribution. For any quadratic form Q ∈ S>0
n we define the Gaussian

function on Rn with parameter s > 0 and center c ∈ Rn by

∀x ∈ Rn, ρQ,s,c(x) := exp(−π ∥x− c∥2Q /s2).

The discrete Gaussian distribution is obtained by restricting the con-
tinuous Gaussian distribution to a discrete lattice. In the quadratic
form setting the discrete lattice will always be Zn, but with the geom-
etry induced by the quadratic form. For any quadratic form Q ∈ S>0

n

we define the discrete Gaussian distribution DQ,s,c with center c ∈ Rn

and parameter s > 0 by

Pr
X∼DQ,s,c

[X = x] :=
ρQ,s,c(x)

ρQ,s,c(Zn)
if x ∈ Zn, and 0 otherwise.

If the center c is not denoted we have c = 0. An important property
of the discrete gaussian distribution is the smoothing parameter, i.e.,
how much gaussian noise s > 0 is needed to ‘smooth out’ the discrete
structure.
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Definition 172 (Smoothing Parameter). For a quadratic form Q ∈
S>0
n and ϵ > 0 we define the smoothing parameter ηϵ(Q) as the minimal
s > 0 such that ρQ−1,1/s(Zn) ≤ 1 + ϵ.

The smoothing parameter is a central quantity for gaussians over
lattice, for example it permits to control the variations of ρQ,s,c(Zn) is
over all centers c.

Lemma 173 ([MR07]). For any quadratic form Q ∈ S>0
n , ϵ > 0,

center c ∈ Rn and parameter s > ηϵ(Q) we have:

(1− ϵ) sn√
det(Q)

≤ ρQ,s,c(Zn) ≤ (1 + ϵ)
sn√

det(Q)
.

Note that the smoothing parameter ηϵ(Q) is an invariant property
of the similarity class [Q], and so we might also denote ηϵ([Q]) for a
similarity class. While computing or even approximating the exact
smoothing parameter is hard, we can obtain sufficient bounds via the
dual form.

Lemma 174 (Smoothing bound [MR07]). For any ϵ > 0 and any
quadratic form Q ∈ S>0

n we have η2−n(Q) ≤ √n/λ1(Q−1), and

ηϵ(Q) ≤ ∥B̃Q∥ ·
√

ln(2n(1 + 1/ϵ))/π.

Above the smoothing parameter the discrete gaussian distribution
is in some sense ‘well behaved’ and we have the following tailbound
that one would expect from a Gaussian distribution.

Lemma 175 (Tailbound [MR07, Lemma 4.4] ). For any quadratic
form Q ∈ S>0

n , ϵ ∈ (0, 1), center c ∈ Rn and parameter s ≥ ηϵ(Q), we
have

Pr
x∼DQ,s,c

[∥x− c∥Q > s
√
n] ≤ 1 + ϵ

1− ϵ · 2
−n.

A constant factor above the smoothing parameter we can further-
more lower bound the min-entropy of the distribution.

Lemma 176 (Min-entropy [PR06]). For any quadratic form Q ∈
S>0
n , positive ϵ > 0, center c ∈ Rn, parameter s ≥ 2ηϵ(Q), and for

every x ∈ Zn, we have

Pr
X∼DQ,s,c

[X = x] ≤ 1 + ϵ

1− ϵ · 2
−n.
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Gaussian Sampling. While the discrete Gaussian distribution already
is an important theoretical tool, for many practical purposes we want
to actually sample (close to) the distribution in an efficient manner. In
their breakthrough work Gentry et al. [GPV08] showed that Klein’s
[Kle00] randomized Babai’s nearest plane algorithm does exactly that.
Given a lattice basis one can sample statistically close to the discrete
Gaussian distribution with parameters depending on the shortness of
the (Gram-Schmidt) basis; a better reduced basis allows for a lower
Gaussian width s. To simplify later proofs we use an exact sampling
algorithm by Brakerski et al. [Bra+13].

Lemma 177 (Discrete Sampling [Bra+13, Lemma 2.3]). There is a
polynomial-time algorithm DiscreteSample(Q, s, c) that given a
quadratic form Q ∈ S>0

n , center c ∈ Rn, and a parameter s ≥
∥B̃Q∥ ·

√
ln(2n+ 4)/π, returns a sample distributed as DQ,s,c.

10.2.2 An average-case distribution

First, we define our average-case distribution within an equivalence
class [Q], which can be seen as an extension of the techniques used
by Haviv and Regev [HR14] to show that LIP lies in SZK. While in
their work they use a discrete Gaussian sampler [GPV08] to sample a
generating set of the lattice, we extend this by a linear algebra step
that returns a canonically distributed lattice basis — or, in our case,
a quadratic form.

In hindsight, this algorithm appears very similar to the heuristic
approach of [BM21], but the use of Gaussian sampling formally guar-
antees that the output distribution solely depends on the lattice and
not on the specific input basis — or, in our case, depends only on the
class of the input quadratic form.

We start with the linear algebra step, that, given a quadratic form
and a set of short vectors of full rank, returns a well-reduced equivalent
form.

Lemma 178 (Adapted from [MG02, Lemma 7.1]). There is a poly-
nomial time algorithm (R,U) ← Extract(Q,Y) that on input a
quadratic form Q, and vectors Y = (y1, . . . ,ym) ∈ Zn×m such that
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rk(L(Y)) = n, outputs a transformation U ∈ GLn(Z) and a quadratic
form R = U⊤QU equivalent to Q such that

∥∥∥B̃R

∥∥∥ ≤ maxi ∥yi∥Q.

Proof. First let U ∈ GLn(Z) be the unique transformation such that
T = U−1Y is the canonical upper-diagonal Hermite Normal Form of
Y. Let R = U⊤QU and note that R is equivalent to Q. Denote the
column vectors of U by u1, . . . ,un. Let p1, . . . , pn be the pivot columns
of T. Because T is upper triangular and in Hermite Normal Form we
have ypi =

∑i
j=1Tj,piuj, where Ti,pi ≥ 1. In particular we have

that span(ypi , . . . ,ypk) = span(u1, . . . ,uk). Let ỹpi and ũi be the i-th
Gram-Schmidt vector of (yp1 , . . . ,ypn) and U respectively w.r.t. Q.
Note that ỹpi = Ti,pi · ũi, and thus ∥ũi∥Q = ∥ỹpi∥Q /Ti,pi ≤ ∥ỹpi∥Q ≤
∥ypi∥Q. We conclude by

∥∥∥B̃R

∥∥∥ = maxi ∥ũi∥Q ≤ maxi ∥yi∥Q .

For our final distribution to be well-defined we need that the ex-
tracted quadratic form only depends on the geometry of the input
vectors, and not on the particular representative Q.

Lemma 179. Let Y = (y1, . . . ,ym) ∈ Zn×m have full rank n. If
(R,U)← Extract(Q,Y), and for some unimodular V ∈ GLn(Z) we
have (R′,U′) ← Extract(V⊤QV,V−1Y), then R′ = R, and U′ =
V−1 ·U.

Proof. From the canonicity of the Hermite Normal Form we immedi-
ately obtain that (U′)−1V−1Y = T = U−1Y, and thus U′ = V−1 ·U.
It follows that R′ = (V−1 ·U)⊤V⊤QV(V−1 ·U) = U⊤QU = R.

Now we can define our average-case distribution for a Gaussian
parameter s > 0.

Definition 180. Given a quadratic form Q ∈ S>0
n , we define the

Gaussian form distribution Ds([Q]) over [Q] with parameter s > 0
algorithmically as follows:

1. Let C := 1− (1+ e−π)−1 > 0, and m :=
⌈
2n
C

⌉
. Sample m vectors

(y1, . . . ,ym) =: Y from DQ,s. Repeat until their span has full
rank n.

2. (R,U)← Extract(Q,Y).

3. Return R.
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Proof. We have to show that the distribution is well-defined over the
equivalence class [Q], i.e., for any input representative Q′ ∈ [Q] the
output distribution should be identical. Let Q′ = V⊤QV ∈ [Q]. Note
that step 1 only depends on the geometry of the vectors w.r.t. Q′.
Therefore if step 1 on input Q finishes with Y, then on input Q′

it finishes step 1 with Y′ = V−1Y with the same probability. By
Lemma 179 step 2 extracts the same quadratic form R in both cases.
So the distribution is independent of the input representative Q′ ∈ [Q],
and thus it is well-defined over [Q].

Given the algorithmic definition of Ds([Q]), an efficient sampling
algorithm follows with only a few adaptations. Firstly, we need to effi-
ciently sample from DQ,s which puts some constraints on the parame-
ter s depending on the reducedness of the representative Q. Secondly,
we need to show that step 1 does not have to be repeated very often.
For this we require the additional constraint s ≥ λn(Q).

Algorithm 16: Sampling from Ds([Q]).
Data: A quadratic form Q ∈ S>0

n (Zn), and a parameter
s ≥ max{λn(Q), ∥B̃Q∥ ·

√
ln(2n+ 4)/π}.

Result: Sample R = U⊤QU from Ds([Q]), with a
transformation U ∈ GLn(Z).

1 C ← 1− (1 + e−π)−1, m←
⌈
2n
C

⌉
;

2 do
3 Sample y1, . . . ,ym ← DQ,s ; // Using Lemma 177
4 Y ← (y1, . . . ,ym);
5 while rk(Y) < n;
6 (R,U)← Extract(Q,Y);

Lemma 181. For any quadratic form Q ∈ S>0
n (Z), and parameter

s ≥ max{λn(Q), ∥B̃Q∥ ·
√
ln(2n+ 4)/π},

Algorithm 16 runs in expected polynomial time and returns (R,U) ∈
[Q]×GLn(Z), where R is a sample from Ds([Q]), and U, conditioned
on R, is uniform over Isom(Q,R). In particular R = U⊤QU.
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Proof. By Lemmas 177 and 178 every step in Algorithm 16 runs in
polynomial time. What remains is to show that the number of itera-
tions is polynomially bounded in expectation. Let the random variable
T be the number of iterations before a set of full rank vectors is found,
we have to bound E[T ].

If rk(y1, . . . ,yi) < n, then because s ≥ λn(Q) we have by [HR14,
Lemma 5.1] that every newly sampled vector yi+1 ← DQ,s is not in
the span of y1, . . . ,yi with constant probability at least C := 1 −
(1 + e−π)−1 > 0. Let m :=

⌈
2n
C

⌉
. The failure probability pfail of not

finding n linearly independent vectors is upper bounded by a binomial
experiment with success probability C, where we reach at most n− 1
wins in m trials. By Hoeffding’s inequality we have the tail bound
pfail ≤ exp(−2m · (C − n−1

m
)2) ≤ exp(−mC) ≤ exp(−2n) ≤ e−2. The

expected number of iterations E[T ] is then bounded by the mean of a
geometric distribution with success probability 1− pfail, i.e.,

E[T ] ≤ 1/(1− pfail) ≤ 1/(1− e−2) < 2.

Suppose that the algorithm runs and finishes with a full rank ma-
trix Y, and returns (R,U)← Extract(Q,Y). For any automorphism
V ∈ Aut(Q), i.e., such that V⊤QV = Q, it would have been just as
likely that the final full rank matrix equalled VY, because the samples
from DQ,s and the stopping condition only depend on the geometry of
the vectors w.r.t. Q. Then, by Lemma 179, we have:

Extract(Q,VY) = Extract((V−1)⊤QV−1,VY) = (R,VU),

and thus the algorithm would have returned VU with the same prob-
ability as U, which makes the returned transformation uniform over
the set of isomorphisms {VU : V ∈ Aut(Q)} from Q to R.

For (exponentially) large parameters s we can always efficiently
sample from the average-case distribution by first LLL reducing the
representative.

Lemma 182. Given any quadratic form Q ∈ S>0
n (Z) we can sample

from Ds([Q]) (together with a transformation) in polynomial time for
s ≥ 2Θ(n) · λn([Q]).

Proof. Run the LLL algorithm on Q to obtain a representative Q′ ∈
[Q] for which ∥B̃Q′∥ ≤ 2Θ(n) ·λn([Q]). Then apply Lemma 181 on Q′.
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For a sample Q′′, combining the unimodular transformations obtained
from LLL and the sampling gives us a unimodular U ∈ GLn(Z) such
that Q′′ = U⊤QU.

Lemma 183. For any quadratic form Q ∈ S>0
n , parameter ϵ ∈ (0, 1),

and s ≥ max{λn(Q), ηϵ(Q)}, we have

Pr
Q′∼Ds([Q])

[∥B̃Q′∥ > s
√
n] ≤ 1 + ϵ

1− ϵ · 100n · 2
−n.

Proof. Given full rank vectors Y = (y1, . . . ,ym) ∈ Zn×m the extractor
returns a quadratic form Q′ such that ∥B̃Q′∥ ≤ maxi ∥yi∥Q and thus
we can just focus on the norms ∥yi∥Q of the sampled vectors. Let
the random variable T ≥ 1 be the number of iterations before a set
of full rank vectors is found. From the proof of Lemma 181 we have
E[T ] ≤ 2. After t iterations we have sampled t ·m vectors x1, . . . ,xt·m,
and by Lemma 175 we have ∥xi∥ > s

√
n with probability at most

(1 + ϵ)/(1− ϵ) · 2−n for each of them. By a union bound we conclude

Pr

[
max

1≤i≤T ·m
∥yi∥Q > s

√
n

]
=

∞∑
t=1

Pr[T = t] · Pr[ max
1≤i≤t·m

∥yi∥Q > s
√
n]

≤
∞∑
t=1

Pr[T = t] · t︸ ︷︷ ︸
E[T ]

·m · 1 + ϵ

1− ϵ · 2
−n

≤ 2 ·
⌈
2n
C

⌉
· 1 + ϵ

1− ϵ · 2
−n ≤ 100n · 1 + ϵ

1− ϵ · 2
−n.

10.2.3 Average case LIP

The above definition of a distribution over a class which is efficiently
sampleable from any representative of that class leads us to a natural
average-case version of both versions of LIP. It is parametrized by a
width parameter s > 0.

Definition 184 (Average-case search LIP: ac-sLIPQ
s ). For s > 0

and a quadratic form Q ∈ S>0
n , the problem ac-sLIPQ

s is, given a
quadratic form sampled as Q′ ← Ds([Q]), to compute a unimodular
U ∈ GLn(Z) such that Q′ = U⊤QU.
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Definition 185 (Average-case distinguishing LIP: ac-∆LIPQ0,Q1
s ).

For two quadratic forms Q0,Q1 ∈ S>0
n and parameter s > 0 the

problem ac-∆LIPQ0,Q1
s is, given a quadratic form sampled as Q′ ←

Ds([Qb]) where b ∈ {0, 1} is a uniform random bit, to recover b.

Trivially the average-case variants can be reduced to their respec-
tive worst-case variants. In the following section we show that the
reverse is also true.

10.2.4 A worst-case to average-case reduction

In general, lattice problems become easier when given a short ba-
sis and harder when given a long basis. Similarly, one would expect
that ac-sLIPQ

s and ac-∆LIPQ0,Q1
s become harder when the parameter

s > 0 increases. In fact, when s is large enough, the average-case
problem becomes at least as hard as any worst-case instance, making
the average-case and worst-case problems equivalent.

Lemma 186 (ac-sLIPQ
s ≥ wc-sLIPQ for large s). Given an oracle

that solves ac-sLIPQ
s for some s ≥ 2Θ(n) · λn(Q) in time T0 with prob-

ability ϵ > 0, we can solve wc-sLIPQ with probability at least ϵ in time
T = T0 + poly(n, log s).

Proof. Given any (worst-case) instance Q′ ∈ [Q], apply Lemma 182
to sample Q′′ ← Ds([Q]) for some s ≥ 2O(n) · λn([Q]), together with
a U′′ such that Q′′ = U′′⊤Q′U′′. Note that Ds([Q]) = Ds([Q

′]);
we can therefore apply our ac-sLIPQ

s -oracle once to Q′′ and obtain
U ∈ GLn(Z) such that Q′′ = U⊤QU. Now for U′ := UU′′−1 ∈ GLn(Z)
we have:

U′⊤QU′ = (U′′−1)⊤U⊤QUU′′−1 = (U′′−1)⊤Q′′U′′−1 = Q′.

So given an ac-sLIPQ
s -oracle we can solve wc-sLIPQ.

To allow for more efficient schemes we would like to decrease the
parameter s > 0 in the worst-case to average-case reduction. We can
do so at the cost of a stronger lattice reduction algorithm than LLL.
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Lemma 187. Given an oracle that solves ac-sLIPQ
s for some s ≥

λn(Q) in time T0 with probability ϵ > 0, we can solve wc-sLIPQ with
probability at least 1

2
in time

T =
1

ϵ
(T0 + poly(n, log s)) + C

(
n,

s

λn(Q) ·
√
ln(2n+ 4)/π

)
,

where C(n, f) is the cost of solving the Shortest Independent Vector
Problem in dimension n (SIVP, [Reg09]) within an approximation fac-
tor of f .

Proof. Since the f -approx-SIVP oracle returns n linearly independent
vectors of norm at most f · λn(Q), we can construct an equivalent
form Q′ ∈ [Q] with ∥B̃Q′∥ ≤ f · λn(Q), using Lemma 178. We do
this once at cost C(n, f). For f := s/(λn(Q) ·

√
ln(2n+ 4)/π) we

obtain that s ≥ ∥B̃Q′∥ ·
√

ln(2n+ 4)/π. Therefore using Q′ we can
sample efficiently from Ds([Q]). The rest of the proof is similar to
that of Lemma 186. Additionally the reduction succeeds with some
probability ϵ > 0, so we need to repeat it 1

ϵ
times to obtain a success

probability of at least 1
2
. Note that each additional sample can be

computed in polynomial time from the same representative Q′.

Remark 188. Note that the overhead is entirely additive, in par-
ticular it does not suffer from the 1

ϵ
amplification. So, despite the

reduction not being polynomial time, one can still afford extraordi-
nary large overheads. Concretely, for example, a hardness of 2100 for
f -SIVP would barely affect the hardness reduction, if the hardness
of ac-sLIP is 2128. This situation is quite different from the usual
inefficient reductions found in the literature, where the overhead is
multiplicative.

In Lemma 187, the SIVP oracle can be instantiated by a vari-
ant of the BKZ algorithm [Sch87]. With a sub-linear blocksize of
β := n/ log(n) we could decrease s to a quasi-polynomial factor
exp(log2(n)) · λn(Q), with only a subexponential additive cost to
the reduction. For security based on exponential hardness (e.g.,
T0/ϵ = exp(Ω(n))) this would still be meaningful, while the lower pa-
rameters imply a more efficient scheme with only a poly-logarithmic
bitlength for the integer entries of the manipulated matrices.
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Going down to polynomial factors s = poly(n) · λn(Q) (and hence
single logarithmic integer bitlength) would require a linear blocksize
β := Θ(n), and an exponential cost 2cn. For small constants c > 0 such
that cn is smaller than the security parameter the reduction would
still be meaningful. However, for provable algorithms this constant c
is generally too large to be useful. As we want to keep our reduction
non-heuristic in this initial work, we will leave this regime for further
research.

Using a similar strategy, one can also establish a worst-case to
average-case reduction for ∆LIP. Note that, because it is a distin-
guishing problem, the advantage amplification requires O(1/α2) calls
to the average-case oracle.

Lemma 189 (ac-∆LIPQ0,Q1
s ≥ wc-∆LIPQ0,Q1 for large s). Given an

oracle that solves ac-∆LIPQ0,Q1
s for some

s ≥ 2Θ(n) ·max{λn(Q0), λn(Q1)}

in time T0 with advantage α > 0, we can solve wc-∆LIPQ0,Q1 with
advantage α in time T = T0 + poly(n, log s).

Lemma 190. Given an oracle that solves ac-∆LIPQ0,Q1
s in time T0

for some s ≥ max{λn(Q0), λn(Q1)} with advantage α > 0, we can
solve wc-∆LIPQ0,Q1 with advantage at least 1

4
in time

T =
1

α2
(T0 + poly(n, log s))

+ C

(
n,

s

max{λn(Q0), λn(Q1)} ·
√
ln(2n+ 4)/π

)
,

where C(n, f) is the cost of solving the Shortest Independent Vector
Problem in dimension n (SIVP, [Reg09]) within an approximation fac-
tor of f .

10.3 Zero Knowledge Proof of Knowledge
Recall from Section 2.7.2 that a ZKPoK protocol allows one to prove
knowledge of a solution to some problem without revealing the so-
lution. In our case, given public quadratic forms Q0,Q1 ∈ S>0

n (Z)
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we want to show knowledge of a LIP solution U ∈ GLn(Z) such that
Q1 = U⊤Q0U, without revealing any information about U. The pro-
tocol is defined in Figure 10.1.

On a high level, the protocol of Haviv and Regev [HR14], as well
as ours, is very similar to protocols for other types of isomorphisms,
in particular protocols for graph isomorphism [GMW91] and for code
isomorphism [BMPS20].

A notable difference, however, is that both these type of proto-
cols [GMW91; BMPS20] rely on the action of a finite group (per-
mutations), allowing to show zero-knowledgness by uniformity of the
distribution over an orbit. Since in our case, the group acting GLn(Z)
is not finite, not even compact, it cannot admit such uniform dis-
tribution. It is perhaps surprising to see that uniformity is in fact
not required; our earlier defined average-case distribution can be used
instead.

10.3.1 The Σ-protocol

Besides efficiency we have to check the standard properties of a sigma
protocol as defined in Section 2.7.2: completeness, special soundness
and honest-verifier zero-knowledge.

Efficiency and completeness. To show the efficiency of the prover we
have to check that Algorithm 16 runs in polynomial time. Indeed, by
Lemma 181, this is the case because

s ≥ max
{
λn([Q0]), ∥B̃Q0∥ ·

√
ln(2n+ 4)/π

}
.

To show the efficiency of the verifier we have to show that the check
W ∈ GLn(Z) can be done efficiently. This is the case, since W ∈
GLn(Z) if and only if W is integral and det(W) = ±1, both of which
are easy to check in polynomial time.

To prove completeness of the protocol Σ, we have to show that the
verifier accepts, whenever the prover executes the protocol honestly.
If the prover is honest then we have W := U−c ·V ∈ GLn(Z) because
U and V are both unimodular by definition. Additionally we have

Q′ = V⊤Q0V = (V⊤(U−c)⊤)︸ ︷︷ ︸
W⊤

((Uc)⊤Q0U
c)︸ ︷︷ ︸

Qc

(U−cV)︸ ︷︷ ︸
W

= W⊤QcW,
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10.3. Zero Knowledge Proof of Knowledge

Zero Knowledge Proof of Knowledge Σ

Consider two equivalent public quadratic forms Q0,Q1 ∈ S>0
n (Z) and

a secret unimodular U ∈ GLn(Z) such that Q1 = U⊤Q0U. Given
the public parameter

s ≥ max
{
λn([Q0]),max

{
∥B̃Q0∥, ∥B̃Q1∥

}
·
√
ln(2n+ 4)/π

}
,

we define the following protocol Σ that gives a zero-knowledge proof
of knowledge of an isomorphism between Q0 and Q1:

Prover Verifier

Sample Q′ ← Ds([Q0])
by Alg. 16, together with V
s.t. Q′ = V⊤Q0V

Q′
−−−−−−→

Sample c← U({0, 1})
c←−−−−−−

Compute W = U−c ·V
W−−−−−−→

Check if W ∈ GLn(Z),
and Q′ = W⊤QcW.

Figure 10.1: A zero knowledge proof of knowledge sigma protocol for
knowledge of a solution to search LIP.

and thus the verifier accepts.

Special Soundness. For special soundness, we have to show that two
accepting conversations with the same initial message, but a different
challenge, allow to compute an isomorphism from Q0 to Q1. Suppose
we have two such accepting conversations (Q′, 0,W0) and (Q′, 1,W1)
of Σ where the first message Q′ is identical. The acceptance implies
that W0,W1 ∈ GLn(Z) and W⊤

0 Q0W0 = Q′ = W⊤
1 Q1W1. Therefore
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U′ := W0W
−1
1 ∈ GLn(Z) gives an isomorphism from Q0 to Q1, as

U′⊤Q0U
′ = (W−1

1 )⊤(W⊤
0 Q0W0)W

−1
1

= (W−1
1 )⊤(W⊤

1 Q1W1)W
−1
1 = Q1.

We conclude that Σ has the special soundness property.

Honest-verifier zero-knowledge. To show that a honest verifier cannot
learn anything from the interaction, we must show that there exists an
efficient simulator that can produce accepting conversations following
the same distribution, but without knowledge of a secret isomorphism
between Q0 and Q1. We create such a simulator that given the public
input Q0,Q1, outputs an accepting conversation with the same prob-
ability distribution as it would have been between a honest prover
and verifier. Note that the first message Q′ is always distributed as
Ds([Q0]), the challenge c as U({0, 1}), and V is uniform over the set of
isomorphisms from Q0 to Q′, by Lemma 181. Because U is an isomor-
phism from Q0 to Q1 we have, given the challenge c, that W = U−c ·V
is uniform over the set of isomorphisms from Qc to Q′.

To simulate this we first sample the uniformly random challenge
c ← U({0, 1}). If c = 0 we can proceed the same as in Σ itself,
e.g., sample Q′ ← Ds([Q0]) using Algorithm 16, together with a V
such that Q′ = V⊤Q0V, and set W := V. The final conversation
(Q′, 0,W) is accepting and follows by construction the same distribu-
tion as during an honest execution conditioned on challenge c = 0.

If c = 1 we use the fact that [Q0] = [Q1], and that we can use
Algorithm 16 with representative Q1 as input instead of Q0. So again
we obtain Q′ ← Ds([Q1]) = Ds([Q0]) following the same distribu-
tion, but now together with a unimodular W ∈ GLn(Z) such that
Q′ = W⊤Q1W. The conversation (Q′, 1,W) is accepting by con-
struction, and Q′ follows the same distribution Ds([Q0]). Additionally
by Lemma 181 the transformation W is indeed uniform over the set
of isomorphisms from Q1 to Q′.

We conclude that Σ has the honest-verifier zero-knowledge prop-
erty.

302



10.4. Key Encapsulation Mechanism

10.3.2 Identification scheme

The Zero Knowledge Proof of Knowledge in the previous section is
worst-case in the sense that, given any two equivalent forms Q0,Q1 ∈
S>0
n (Z) and a secret isomorphism U ∈ GLn(Z) from Q0 to Q1, we

can show knowledge of such an isomorphism. However, to turn this
Σ-protocol into an identification scheme (see [Dam02]), we need to
define a distribution of U ∈ GLn(Z) (or alternatively of Q1 w.r.t Q0).
Finding an isomorphism between Q0 and Q1 is at most as hard as solv-
ing either ac-sLIPQ0

s or ac-sLIPQ1
s for parameter s as in Σ. Therefore, a

natural choice is to have Q1 distributed according toDs′([Q0]) for some
parameter s′ ≥ max{λn([Q0]), ∥B̃Q0∥ ·

√
ln(2n+ 4)/π}, which we can

efficiently sample from using Algorithm 16. The security of our iden-
tification scheme is then solely based on the hardness of ac-sLIPQ0

s′ .

10.4 Key Encapsulation Mechanism

In this section we construct a Key Encapsulation Mechanism (KEM)
with a security proof based on the hardness of ∆LIP. See Figure 10.2
for the scheme. In short, we will need a quadratic form S along with
an efficient decoder up to some radius ρ < λ1(S)/2. The public key
will consist of a long equivalent form P := U⊤SU ← Ds([S]), while
the unimodular transformation U will be the secret key. Knowledge of
the transformation U allows to decode w.r.t. P via S; without any loss
in decoding performance. The generated key will be a random error
e of norm ∥e∥P ≤ ρ, and it can be encapsulated as the syndrome
e := e mod Zn ∈ [0, 1)n. The receiver with knowledge of the secret
transformation U can recover e by decoding via S. The correctness
follows from the fact that the decoding is unique due to ρ < λ1(S)/2.

For the security we assume that it is (computationally) hard to
differentiate between P ← Ds([S]) and some random sample R ←
Ds([Q]) from a special class [Q], corresponding to a lattice admitting
a dense sublattice. This assumption allows us to replace P by R in the
security proof, which completely breaks the uniqueness of the decod-
ing. That is, the syndrome e has many (say exp(Ω(λ))) nearby points
w.r.t. R, and retrieving the exact original point becomes statistically
hard.
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Key Encapsulation Scheme

Let ρ < λ1(S)/2 and let S ∈ S>0
n (Z) be a quadratic form with

an efficient decoder Decode with decoding radius ρ. Let E :
1
q
Zn×{0, 1}z → {0, 1}ℓ be a (ℓ, negl(n))-extractor for some ℓ = Θ(n).

Given the public parameters

s ≥ max{λn(S), ∥B̃S∥ ·
√
ln(2n+ 4)/π}, and

q :=

⌈
s · n
ρ
·
√

ln(2n+ 4)/π

⌉
,

we define the KEM K := (Gen,Encaps,Decaps) as follows:

• (pk, sk)← Gen(1n): on input 1n do:

1. Sample P← Ds([S]) using Alg. 16, together with U such
that P = U⊤SU.

2. Output (pk, sk) = (P,U).

• (c, k)← Encaps(pk): on input a public key P = pk do:

1. Sample e← 1
q
DP,qρ/

√
n ∈ 1

q
Zn using Lemma 177.

2. Compute c← e mod Zn s.t. c ∈ Tn
q = {0, 1

q
, . . . , q−1

q
}n.

3. Sample a random extractor seed Z ← {0, 1}z.
4. Compute k ← E(e, Z).
5. Output (c, k) where c := (c, Z).

• k ← Decaps(sk, c): on input c = (c, Z) and a secret key
U := sk do:

1. Compute y← Decode(S,Uc) s.t. ∥y −Uc∥S ≤ ρ,
output ⊥ on failure.

2. Compute k ← E(c−U−1y, Z).
3. Output k.

Figure 10.2: A key encapsulation scheme based on LIP.
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Efficiency and correctness. We consider the efficiency and correct-
ness of the KEM K := (Gen,Encaps,Decaps) instantiated with
quadratic form S ∈ S>0

n (Z) and public parameter

s ≥ max{λn(S), ∥B̃S∥ ·
√

ln(2n+ 4)/π}.

By the above constraint on s, Algorithm 16 will run in polynomial-time
by Lemma 181. Furthermore by Lemma 183 we have with overwhelm-
ing probability that

qρ/
√
n ≥ s

√
n ·
√

ln(2n+ 4)/π ≥ ∥B̃P∥ ·
√
ln(2n+ 4)/π,

and thus we can efficiently sample from DP,qρ/
√
n by Lemma 177.

In order to prove correctness, note that in the key encapsulation
algorithm the sampled error e has norm at most ∥e∥P ≤ ρ except with
negligible probability by Lemma 175. We denote the encapsulated key
by k := E(e, Z), where Z denotes the randomness extractor’s seed.
Because ρ < λ1(S)/2 the vector x := c− e ∈ Zn is the unique closest
vector to c with respect to P, which makes Ux the unique closest
vector to Uc with respect to S = (U−1)⊤PU−1. In the decapsulation
the decoder computes the unique vector y at distance at most ρ from
Uc, which implies that y = Ux. So indeed the output k′ := E(c −
U−1y, Z) = E(c − x, Z) = E(e, Z) = k equals the encapsulated key
with overwhelming probability.

CPA security. To show that our KEM is CPA-secure we fall back
to a lossy trapdoor argument as in [PW11]. Under the hardness of
decisional LIP we can replace our unique ρ-decodable quadratic form
by one that is far from uniquely decodable. For the latter it is enough
to have a dense sublattice.

Lemma 191. Let Q ∈ S>0
n (Z) be a quadratic form with a rank r

sublattice D · Zr ⊂ Zn. For positive ϵ > 0, center c ∈ Rn, parameter
ρ ≥ √n · 2ηϵ([D⊤QD]), and for every x ∈ Zn we have

Pr
X∼DQ,ρ/

√
n,c

[X = x] ≤ 1 + ϵ

1− ϵ · 2
−r.

Proof. Let y := x − c ∈ Rn, and decompose y =: yD + yD⊥ where
yD ∈ span(DZr), and yD⊥ is orthogonal to yD w.r.t Q. Then, writing
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s := ρ/
√
n, we have

Pr
X∼DQ,s,c

[X = x] =
ρQ,s,c(x)

ρQ,s,c(Zn)
=

ρQ,s(y)

ρQ,s(y + Zn)
≤ ρQ,s(y)

ρQ,s(y +DZr)

=
ρQ,s(yD⊥) · ρQ,s(yD)

ρQ,s(yD⊥) · ρQ,s(yD +DZr)
=

ρQ,s(yD)

ρQ,s(yD +DZr)
.

Since we can write yD = Dz for some z ∈ Rr, the above equals
PrX∼D

D⊤QD,s,z
[X = 0], which, by Lemma 176, is bounded by 1+ϵ

1−ϵ
· 2−r

because s ≥ 2ηϵ([D
⊤QD]).

Theorem 192. We consider the KEM K :=
(Gen,Encaps,Decaps) instantiated with quadratic form
S ∈ S>0

n (Z), decoding radius ρ, and public key parameter s > 0.
Let Q ∈ S>0

n (Z) be a quadratic form with a dense rank r = Θ(n)
sublattice DZr ⊂ Zn, in particular such that η 1

2
(D⊤QD) ≤ ρ/(2

√
n).

Then K is CPA-secure if ac-∆LIPS,Q
s is hard.

Proof. Let A be a probabilistic polynomial-time adversary. We
present two games Game1 and Game2, where Game1 is the regular
CPA-security game with the original scheme, and Game2 is almost
identical but with the only change that the public key is drawn from
Ds([Q]) instead of Ds([S]). By the hardness of ac-∆LIPS,Q

s the two
games are computationally indistinguishable, and due to the dense
sublattice we can conclude that winning Game2 with a non-negligible
advantage is statistically impossible.

Let the key-size ℓ = Θ(n) be such that ℓ ≤ r−log2(3). The original
KEM CPA game Game1 is as follows [KL20]:

• Gen(1n) is run to obtain a public key pk = P. Then
Encaps(pk) is run to generate (c, k) with k ∈ {0, 1}ℓ.

• A uniform bit b ∈ {0, 1} is chosen. If b = 0, set k̂ := k, if b = 1,
choose a uniform k̂ ∈ {0, 1}ℓ.

• Given (pk, c = (c, Z), k̂) the adversary A wins the experiment if
b is guessed correctly.
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The only difference between Game1 and Game2 is that in Game2 we
sample the public key P from Ds([Q]) instead of Ds([S]). Note that
Game1 and Game2 both only use public information and thus by the
hardness of ac-∆LIPS,Q

s the two are computationally indistinguishable
by A.

Now we take a look at Game2. Consider the output (c = (c, Z), k)
← Encaps(pk) where pk := Q′ ∈ [Q]. For any fixed c we have
by construction that k := E(e, Z), where e ← 1

q
DQ′,qρ/

√
n under the

condition that e = c mod Zn. Equivalently we could say that e ←
c−DQ′,ρ/

√
n,c, then, by Lemma 191, we know that e has a min-entropy

of at least r− log2(3) ≥ l, and thus k := E(e, Z) ∈ {0, 1}ℓ is negligibly
close to uniform and independent of c. So, in Game2 we have that
k̂ is negligibly close to uniform, independent of c and the choice of
b ∈ {0, 1}, making it impossible for A to guess b with non-negligible
advantage.

10.5 Signature scheme

Similar to the Key Encapsulation Mechanism we propose in Fig-
ure 10.3 a hash-then-sign signature scheme based on ∆LIP. The main
requirement is a quadratic form S along with an efficient discrete Gaus-
sian sampling algorithm of smallish width ρ/

√
n ≥ η2−Θ(n)(S).

Again the public key will consist of some lesser reduced form
P := U⊤SU← Ds([S]) equivalent to S, where the unimodular trans-
formation U will form the secret key. To sign a message we use a full
domain hash to obtain a uniform coset t + Zn, The signature then
consists of a nearby vector σ ← DP,ρ/

√
n,t w.r.t. the form P. The

nearby vector is obtained via S by using the secret transformation U.
The security assumption is similar, but in some way dual to that

of the KEM. Again assume that it is computationally hard to differ-
entiate between P and some special class of forms [Q]; however in this
case Q must admit a sparse projection (equivalently, their dual should
contain a dense lattice). The sparsity implies that a uniformly random
target t does not have a nearby vector with overwhelming probability,
making the signage vacuously hard.

307



10. Remarkable Lattices & Cryptography

Signature Scheme

Let S ∈ S>0
n (Z) be a quadratic form together with a sampling algo-

rithm DiscreteSample that allows to sample statistically close to
DP,ρ/

√
n(t + Zn) for some parameter ρ/

√
n ≥ η2−Θ(n)([S]) and any

target t ∈ Tn
q . Let H : M → Tn

q be a full domain hash function
(modeled as a random oracle). Given the public parameters

s ≥ max{λn(S), ∥B̃S∥ ·
√

ln(2n+ 4)/π}, and

q :=

⌈
s · n
ρ
·
√

ln(2n+ 4)/π

⌉
,

we define the signature scheme S := (Gen,Sign,Verify) as follows:

• (pk, sk)← Gen(1n): on input 1n do:

1. Sample P ← Ds([S]) using Alg. 16, together with U s.t.
P = U⊤SU.

2. Output (pk, sk) = (P,U) ∈ S>0
n (Z)× GLn(Z).

• σ ← Sign(sk,m): on input a message m and a secret key
U := sk do:

1. Compute t← H(m).
2. Sample σ′ ← DS,ρ/

√
n,Ut using DiscreteSample.

3. Compute σ ← U−1σ′.
4. Output σ ∈ Zn.

• b := Verify(pk,m,σ): on input a public key P = pk, a mes-
sage m and a signature σ do:

1. Compute t← H(m).
2. If σ ∈ Zn, and ∥t− σ∥P ≤ ρ, output b = 1.
3. Otherwise, output b = 0.

Figure 10.3: A signature scheme based on LIP.
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Correctness. To prove correctness, we mainly have to check that the
returned signature σ ∈ Zn is indeed close to t := H(m) w.r.t P.
Because P = U⊤SU we have:

∥σ − t∥P = ∥U(σ − t)∥S = ∥σ′ −Ut∥S ,

and by Lemma 175 we have with overwhelming probability that

∥σ − t∥P = ∥σ′ −Ut∥S ≤ ρ/
√
n · √n = ρ,

concluding the correctness.

Security. For the security proof we first consider a class of quadratic
forms for which the signage is vacuously hard, e.g., for a random target
t ∈ Rn/Zn there exists no nearby vector.

Lemma 193. Let Q ∈ S>0
n (Z) be a quadratic form with a dense rank

k sublattice DZk ⊂ Zn, in particular such that ρ/
√
k ≤ 1/(

√
8πe ·

det(D⊤QD)1/2k). Then for the dual form Q−1 we have

Pr
t∼U([0,1]n)

[|(t+ Bn
Q−1,ρ) ∩ Zn| ≥ 1] ≤ 2−k.

Proof. Let V := span(D) ⊂ Rn such that the orthogonal projection
w.r.t. Q−1 of Zn onto V defines a projected lattice CZk := πQ−1,V (Zn)
of rank k, with det(C⊤Q−1C) ≥ 1/ det(D⊤QD). Because a projection
is non-increasing in length we have

Pr
t∼U(Rn/Zn)

[|(t+ Bn
Q−1,ρ) ∩ Zn| ≥ 1]

≤ Pr
t∼U(Rk/Zk)

[|(t+ Bk
C⊤Q−1C,ρ) ∩ Zn| ≥ 1] = (∗).

Then using Markov’s inequality we can bound the above by

(∗) ≤ Et∼U(Rk/Zk)[|(t+ Bk
C⊤Q−1C,ρ) ∩ Zn|] =

VolC⊤Q−1C(Bk
C⊤Q−1C,ρ

)

VolC⊤Q−1C(Rk/Zk)

≤ (2πe/k)k/2 · ρk√
det(C⊤Q−1C)

≤ 2−k.

309



10. Remarkable Lattices & Cryptography

Theorem 194. We consider the signature scheme S := (Gen,Sign,
Verify) instantiated with quadratic form S ∈ S>0

n (Z), sampling pa-
rameter ρ, and public key parameter s > 0. Let Q ∈ S>0

n (Z) be a
quadratic form with a dense rank k = Θ(n) sublattice DZk ⊂ Zn, in
particular such that 2ρ/

√
k ≤ (

√
8πe · det(D⊤QD⊤)1/k)−1. Then S is

EUF-CMA secure if ac-∆LIPS,Q−1

s is hard.

Proof. Let A be a probabilistic polynomial-time adversary. We
present three games Game1,Game2,Game3 where Game1 is the
regular EUF-CMA game with the original scheme, Game2 reprograms
the random oracle to generate valid signatures without knowledge of
the secret key, and Game3 samples the public key from [Q−1] instead
of [S]. By a standard smoothness argument the adversary’s view of
Game1 and Game2 is statistically indistinguishable, and Game2 and
Game3 are indistinguishable by the hardness of ac-∆LIPS,Q−1

s . Then
we conclude by Lemma 193 that the problem of forging a signature in
Game3 is statistically hard.

The original EUF-CMA game Game1 is as follows [KL20]:

• Gen(1n) is run to obtain keys (pk = P, sk = U).

• Adversary A is given pk = P and access to an oracle Sign(sk, ·).
The adversary then outputs (m,σ) where m was not queried
before to the oracle.

• A succeeds if and only if Verify(pk,m,σ) = 1.

To show that our signature scheme S is EUF-CMA secure we have
to show that Game1 succeeds only with negligible probability. We
assume that the adversary queries the oracle on l = poly(n) distinct2

message m1, . . . ,ml. In Game1 the secret key is used to obtain a valid
signature (mi,σi) where σi ← DP,ρ/

√
n,H(mi). In Game2 instead we

first sample a random error ei ← 1
q
·DP,qρ/

√
n. By Lemma 183 we have

qρ/
√
n ≥ ∥B̃P∥ ·

√
ln(2n+ 4)/π with overwhelming probability, and

thus by Lemma 177 we can do the sampling without using the secret
key. Then we reprogram the random oracle such that H(mi) := ti =
e mod Zn ∈ Tq, and return the signature pair (mi,σi := ti−ei). Note
that the probability that ti equals any target t ∈ Tn

q is proportional
2this can be enforced by salting messages or by derandomization.
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to ρP,ρ/
√
n,t(Zn). So ti is close to uniform by Lemma 173 because

ρ/
√
n ≥ η2−Θ(n)([S]) = η2−Θ(n)([P]), and thus the random oracle is

still simulated correctly. Additionally the conditional probability of
σi conditioned on ti is exactly the same as in Game1, so we can
conclude that Game1 and Game2 are statistically indistinguishable
from the adversary’s point of view.

The only difference between Game2 and Game3 is that in Game3
we sample the public key P from Ds([Q

−1]) instead of Ds([S]). Note
that Game2 and Game3 both only use public information and thus
by the hardness of ac-∆LIPS,Q−1

s the two are computationally indis-
tinguishable.

To conclude note that for any message m we obtain a random
target t := H(m) ∈ Tn

q . Let e′ be uniform over the Babai nearest
plane region defined by P, then ∥e′∥P ≤

√
n
2
∥B̃P∥, and t′ := t + 1

q
e′

is uniform over Rn/Zn. By Lemma 193 the uniformly random target
t′ lies at distance at least 2ρ from Zn w.r.t. P with overwhelming
probability. So for t we have with overwhelming probability that:

distP(t,Zn) ≥ distP(t′,Zn)−
∥∥∥∥1qe′

∥∥∥∥
P

≥ 2ρ−
√
n · ∥B̃P∥
2q

≥ 2ρ− ρ/(2
√

ln(2n+ 4)/π) > ρ.

Therefore it is statistically impossible for the adversary to return a
valid signature for m, and thus to win Game3.

10.6 Cryptanalysis

Equivalent quadratic forms Q,Q′ := UtQU (for some U ∈ GLn(Z))
share many common properties, and these invariants can be used to
decide that two quadratic forms cannot be equivalent, or can guide
the search for an isomorphism.

10.6.1 Invariants

Recall from Section 9.3 that we named the invariants that are easy
to compute arithmetic invariants, and those that are hard to compute
geometric invariants. The arithmetic invariants for an integral form
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Q ∈ S>0
n (Z), such as the determinant, gcd, parity and the genus,

provide an efficiently computable fingerprint ari(Q). The fingerprint
is essentially only useful to answer the ∆LIP problem in the negative.
When instantiating ∆LIP for cryptosystems, we should therefore make
sure that these fingerprints match.

The geometric invariants, such as |Min(Q)| or more generally (part
of) the Theta-series, appears to involve finding or even enumerating
short vectors; in particular they are plausibly hard to compute.

10.6.2 Algorithms for distinguish-LIP and
hardness conjecture

In Section 10.7, we will use ∆LIP with quadratic forms that have dif-
ferent minimal distances λ1(Q0) < λ1(Q1). However we will be careful
to ensure that their arithmetic invariant match ari(Q0) = ari(Q1) to
not make the problem trivial.

Approximate-SVP oracle. An f -approx-SVP oracle applied to a form
Q finds a short vector of length at most f · λ1(Q). So ∆LIP is no
harder than f -approx-SVP for f = λ1(Q1)/λ1(Q0) > 1 in any of
those lattices.

Unusual-SVP via lattice reduction. However even when the gap be-
tween λ1(Q0) and λ1(Q1) is small, the minimal vectors may individ-
ually still be unusually short, which make them significantly easier
to find than in a random lattice. This is usually formalized via the
f -unique-SVP problem, but many instances of interest do not have
such a gap between λ1 and λ2. In fact the lattice Zn, the the lat-
tices of Barnes-Wall and Barnes-Sloane, all have λ1 = λ2 = · · · = λn.
But practical and heuristic studies have showed that uniqueness is not
that relevant to lattice attacks [AD21]. We therefore introduce yet an-
other lattice problem, called unusual-SVP to discuss such instances.
A formal complexity reduction between unusual-SVP and unique-SVP
matching or approaching the heuristic state of the art appears to be
a valuable research objective, but is beyond the scope of the present
article.

We define f -unusual-SVP: find a minimal vector under the promise
that λ1(Q) ≤ gh(Q)/f , where the Gaussian Heuristic gh(Q) is a
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heuristic estimate for λ1(Q) given by:

gh(Q) := det(Q)1/2n · 1√
π
· Γ(1 + n/2)1/n ≈ det(Q)1/2n ·

√
n

2πe
.

State of the art lattice reduction techniques find these unusually short
vector more easily than longer vectors with length around gh(Q),
where (heuristically) the hardness is directly driven by the ratio
f = gh(Q)/λ1(Q) [AD21]. E.g., for f = O(nα) with α ≥ 0, we can
heuristically solve f -unusual-SVP by running BKZ-β with blocksize
β = n

2α+1
+ o(n). Given a form Q′ ∈ [Q0] ∪ [Q1], we parametrize the

lattice reduction algorithm to find a unusual short vector with length
min{λ1(Q0), λ1(Q1)}, then depending on success we learn that either
Q′ ∈ [Q0] or Q′ ∈ [Q1].

Conclusion. To conclude, let us also note that any of the above attack
can also be run over the dual. To state a hardness conjecture capturing
these attacks we define the primal-dual gap to the Gaussian Heuristic
as:

gap(Q) = max

{
gh(Q)

λ1(Q)
,
gh(Q−1)

λ1(Q−1)

}
.

Note that this quantity might be slightly lower than 1 (but no lower
than 1/2 by Minkowski’s bound): there might exist excellent lat-
tice packings beating the Gaussian Heuristic. We will be assum-
ing3 gap(Qi) ≥ 1, which implies that λ1(Qi)/λ1(Q1−i) ≤ gap(Qi)
for i = 0, 1, therefore also capturing the approximate-SVP approach.

In all the attacks above, one first searches for vectors no larger than
f · λ1(Qi) w.r.t. Qi for f = gap(Qi), hence the following conjecture.

Conjecture 195 (Hardness of ∆LIP (Strong)). For any two classes
of quadratic forms [Q0], [Q1] of dimension n, with ari([Q0]) =
ari([Q1]), and 1 ≤ gap([Qi]) ≤ f , the best attack against
wc-∆LIPQ0,Q1 requires solving f -approx-SVP in the worst-case from
either [Q0] or [Q1].

3That is, we do not make a hardness conjecture for such exceptionally dense
lattice packings. Such a regime has never been considered in practical cryptanalysis
and would deserve specific attention.
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This conjecture is meant to offer a comparison point with existing
lattice-based cryptography in terms of the approximating factor. Be-
yond contradicting this assumption, we also invite cryptanalysis effort
toward concrete comparison of f -approx-SVP on those instances to
SIS and LWE with the same approximation factor f .

If one only wishes to argue exponential security in n of the schemes
proposed in this paper, a sufficient conjecture is the following.

Conjecture 196 (Hardness of ∆LIP (Mild)). For any two classes
of quadratic forms [Q0], [Q1] of dimension n, with ari([Q0]) =
ari([Q1]), and gap([Qi]) ≤ poly(n), wc-∆LIPQ0,Q1 is 2Θ(n)-hard.

Note that the conjectures above are very strong and ‘best-case’
over the choice of the isomorphism classes. That is, even though
we may only want to use ∆LIP for specific choices of isomorphism
classes, we gladly invite cryptanalysis effort on ∆LIP for any choice
of isomorphism classes.

We would also like to motivate any reductions from more standard
lattice assumptions to LIP, though given current knowledge on LIP,
this may be hard to attain. A more reasonable goal might be to
generalize the search-to-decision reduction of Szydlo [Szy03], which
is currently limited to solving sLIP for the trivial lattice Zn given a
decisional LIP oracle for a few special lattices.

10.6.3 Algorithms for search-LIP and challenges

While the mentioned arithmetic and geometric invariants allow to
semi-decide LIP, the search version requires more effort. Recall
from Section 9.5 that it typically proceeds by enumerating sets of
short vectors for both quadratic forms, and then to backtrack search
for isometries between these sets. The hardest instances appear to
be those with many minimal vectors, and in particular those with
λ1(Q) = . . . = λn(Q).

Given the current state of the art, it seems difficult to give a precise
conjecture for the hardness of search-LIP, as it may depend on the
minimal distance, the kissing number, and the size and structure of the
automorphism group. Given that all known approaches require finding
at least one short vector, we can conjecture exponential hardness for
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Source Dim. Kissing Number
Λ24 [NS11; CS13] 24 196560 ≈ 217.6

MW44 [NS11] 44 2708112 ≈ 221.4

P48n [NS11] 48 52416000 ≈ 225.6

Ne64 [NS11] 64 138458880 ≈ 227.0

Γ72 [NS11] 72 6218175600 ≈ 232.5

MW128 [NS11] 128 218044170240 ≈ 237.7

BWn [CS13, Sec 6.5] n = 2m 2m
2/2+O(m)

Vn [Vlă19] n ≥ 20.0338n−o(n)

Table 10.2: Some challenge lattices for search-LIP

lattices with polynomial gap([Q]), bearing in mind that some instances
may be much harder, with a complexity up to nO(n).

Conjecture 197 (Hardness of sLIP). For any class [Q] of quadratic
forms of dimension n such that gap([Q]) ≤ poly(n), wc-sLIPQ is
2Θ(n)-hard.

To motivate further study of the hardness of LIP, we provide a list
of challenge lattices for LIP in Table 10.2, selected from known lattices
with large kissing numbers. More remarkable lattices may be found
in the online catalogue of Nebe and Sloane, in particular the section
on the kissing number [NS11].

For these large kissing number challenges it might be more enlight-
ening to separate the search for short vectors and the isomorphism
reconstruction. We therefore invite the cryptanalist to even assume
that sampling uniformly a random shortest vector comes at unit cost.
The search for all shortest vectors in these specific lattices may also
be harder in practice than for random lattices. Indeed, for these chal-
lenges, the kissing number is significantly larger than the ≈ (4/3)n/2

many short vectors provided by heuristic sieving algorithms [NV08].
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10.7 Instantiating from remarkable
lattices

To instantiate our KEM and signature scheme, we do not only need a
lattice with efficient decoding or sampling; we also need a second lat-
tice with a specific property to instantiate the ∆LIP problem and ar-
gue security. This section deals with how the ∆LIP pair is constructed
from a single remarkable lattice, while keeping the gaps small. Note
that this is just one generic way of doing this; for specific lattices there
might exist better instantiations.

10.7.1 Key Encapsulation Mechanism

To instantiate our KEM we need two quadratic forms: a form S along
with an efficient decoder that can decode up to some distance ρ <
λ1(S)/2, and a form Q with a dense rank k = Θ(n) sublattice D ·Zk ⊂
Zn such that η 1

2
(DtQD) ≤ ρ/(2

√
n). For simplicity of notation we

move to the lattice point of view.
We assume to have an n-dimensional lattice L for which gap(L) ≤

f = f(n) is bounded, and for which we can decode up to ρ =
Θ(1/f)·gh(L) < λ1(L)/2. I.e., a lattice for which the primal, dual and
decoding gap are bounded by f . We consider a general construction
leading to a 2n-dimensional primary lattice LS and secondary lattice
LQ with primal-dual gaps bounded by O(f 3) and such that LQ has a
dense enough sublattice to instantiate our KEM.

By Lemma 174 and due to the bounded gap of L, we have

η 1
2
(L) ≤ η2−n(L) ≤

√
n

λ1(L∗)
≤
√
n · f

gh(L∗)
= Θ(f · det(L)1/n).

Now let g = Θ(f 2) be a positive integer and consider the lattices:

LS := g · L ⊕ (g + 1) · L, and LQ := L ⊕ g(g + 1)L.

By construction the first lattice LS is geometrically similar to (two
orthogonal copies of) the original lattice. In particular we can still
decode LS up to radius ρ′ := g · ρ = Θ(g/f) · gh(L). Furthermore, the
second lattice LQ contains by construction a dense sublattice L ⊂ LQ,
where the parameter g allows to tune the precise (relative) density.
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Invariants match. Both lattices have determinant gn(g + 1)n det(L)2.
Due to the coprimality of g and g + 1 we still have gcd(LS) =
gcd(LQ) = gcd(L), and similarly for the parity. It remains to check
rational equivalence and p-adic equivalence for all primes p. Let R
denote a quadratic form representing L. Up to integral equivalence,
we have:

S :=

(
g2R 0
0 (g + 1)2R

)
Q :=

(
R 0
0 g2(g + 1)2R

)
.

Let In be the n× n identity matrix and consider the transformations:

U1 :=

(
g−1In 0
0 gIn

)
U2 :=

(
0 (g + 1)In

(g + 1)−1In 0

)
.

Then Q = Ut
1SU1 over Q: this implies [S]Q = [Q]Q. For any prime

p we have that gcd(g, p) = 1 or gcd(g + 1, p) = 1. So g or (g + 1) is
invertible over the p-adic integers Zp, and thus U1 ∈ GLd(Zp) exists
and Q = Ut

1SU1 over Zp or U2 ∈ GLd(Zp) exists and Q = Ut
2SU2 over

Zp. In any case, we have established [S]Zp = [Q]Zp , which concludes
the comparison of arithmetic invariants: ari(S) = ari(Q).

Dense sublattice. We now check the requirements for Theorem 192,
namely that η 1

2
(L) ≤ ρ′/(2

√
2n), where ρ′ = Θ(g/f) · gh(L) is the

decoding radius of LS. Given that η 1
2
(L) ≤ Θ(f · gh(L)/√n), it is

sufficient if

Θ(f · gh(L)/√n) ≤ ρ′/(2
√
2n) = Θ(g/f) · gh(L)/√n,

and thus we can conclude that some g = Θ(f 2) indeed suffices.
Following the conclusions from the cryptanalysis in Section 10.6.2

and more specifically Conjecture 195, we take a look at the primal-
dual gap for LS and LQ. We have that gap(LS) = Θ(gap(L)) ≤ O(f),
and gap(LQ) = Θ(g · gap(L)) ≤ O(f 3).

More specifically, following the same computation above but for
a primal gap of f , dual gap of f ∗, and a decoding gap of f ′ ≥ 2f
we would have g = Θ(f ∗ · f ′) and obtain a final primal-dual gap of
O(max(f, f ∗) · f ∗ · f ′).
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10.7.2 Signature scheme

Our signature scheme can be instantiated with any lattice for which
we can sample efficiently at small Gaussian widths, following a similar
∆LIP pair as above.

Namely, we assume to have a lattice L with gap(L) ≤ f and such
that we can sample a discrete Gaussian over L efficiently with param-
eter ρ/

√
n = Θ(η2−Θ(n)(L)) close to the smoothing bound. Similarly to

the KEM we set LS := g · L⊕ (g+1) · L, and LQ−1 = L⊕ g(g+1) · L
for some integer g ≥ 1. In particular, as in the KEM, we do have
ari(S) = ari(Q−1) with Q−1 instead of Q.

Then for the dual we have LQ = L∗ ⊕ 1
g(g+1)

L∗, with 1
g(g+1)

L∗

as a dense sublattice. The constraint of Theorem 194 boils down to
the inequality Θ(g · f · det(L)1/n) ≤ Θ(g2 det(L)1/n), and thus some
g = Θ(f) suffices. The final primal-dual gap of LS and LQ−1 is then
bounded by O(f 2).

The simplest lattice for which we have very efficient samplers is of
course the integer lattice Zn, leading to a gap of O(n) via the above
construction. Instantiating our scheme with this lattice would lead
to an interesting signature scheme where there is no need to compute
any Cholesky decomposition, even for signing, and that could be fully
implemented with efficient integer arithmetic.

We refer to our last open question (Section 10.1.3) regarding lat-
tices with a tighter Gaussian sampler, in order to obtain a signature
scheme with a better underlying approximation factor.

10.7.3 Getting down to O(f)

The general constructions presented turn a well-decodable or well-
sampleable lattice L with gaps f into a primary and secondary lat-
tice with gap O(f 3) and O(f 2) to instantiate our KEM and signature
scheme respectively. We suggest here that these losses from O(f) to
O(f 3) and O(f 2) respectively might be an artifact of the security proof
and our generic instantiation construction.

Suppose we can generate a random lattice LQ such that ari(LQ) =
ari(L); without the arithmetic constraint we would have with over-
whelming probability that gap(LQ) = O(1) (but even O(f) would
suffice). Let’s assume that the constraint does not affect this gap.
Then similar to the scheme of McEliece, by adding the extra security
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assumption that it is hard to decode in LQ (or hard to sample for
the signature scheme), we could remove the lossyness argument from
the security proof and directly instantiate our schemes with the pair
(L,LQ), leading to a gap of O(f).

10.7.4 Remarkable lattices

In Table 10.1 we show a list of some remarkable lattices that have effi-
cient decoding algorithms together with their primal, dual and decod-
ing gap. These are interesting candidates for instantiating our KEM,
especially those that reach poly-logarithmic decoding gaps. Unfortu-
nately, for all candidates at least one gap exceeds the poly-logarithmic
regime, and thus we do not yet obtain a KEM that is secure up to
poly-logarithmic approximation factors. Note, however, that the best
decoders in the list are very recent, and that there is no (obvious)
geometric obstacle for the existence of an efficiently decodable lattice
reaching poly-logarithmic primal, dual and decoding gaps.

For the signature scheme we have yet to find a lattice for which one
can do discrete Gaussian sampling significantly better than the generic
randomized Babai approach. Potentially the list decoding [GP12] al-
gorithm for the Barnes-Wall lattice can be turned into a sampler.
From a practical perspective, the lattice Zn is extremely interesting,
as it allows to sample very efficiently (and in parallel), with similar or
even better parameters than those based on LWE and NTRU trapdoor
lattices.

10.8 HAWK: fast, compact and simple
The end goal of LIP based cryptography is to build lattice-based
schemes that significantly improve upon the state-of-the-art based on
LWE, SIS and NTRU assumptions. Until then, we show here that
LIP is already competitive with the state-of-the-art using a lattice as
simple as Zd.

We shortly present and summarize the signature scheme Hawk
[DPPW22], as a practical instantiation of the signature scheme from
Section 10.5. Hawk is a hash-then-sign signature scheme similar to
the to be standardized scheme Falcon. Hawk significantly improves
over Falcon in its simplicity, and lack of floating point operations
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[Pre+20] This work Gain
Falcon Hawk

(
Falcon
Hawk

)
512 512

AVX2 KeyGen 7.95ms 4.25ms ×1.87
Reference KeyGen 19.32ms 13.14ms ×1.47

AVX2 Sign 193 µs 50 µs × 3.9
Reference Sign 2449 µs 168 µs ×14.6

AVX2 Verify 50 µs 19 µs ×2.63
Reference Verify 53 µs 178 µs ×0.30
Secret key (bytes) 1281 1153 ×1.11
Public key (bytes) 897 1006± 6 ×0.89
Signature (bytes) 652± 3 542± 4 ×1.21

Table 10.3: Performance of Falcon and Hawk for n = 512, 1024
on an Intel® CoreTM i5-4590 @3.30GHz processor with TurboBoost
disabled. The Sign timings correspond to batch usage.

in signing and verification. This is all due to the simplicity of the
underlying lattice Zd compared to the more complicated NTRU lattice
of Falcon.

Discrete sampling in (cosets of) Zd is almost trivial and can be done
coordinate wise. The Gaussian parameter s, and thus the signatures,
can also be a relative factor 1.17 smaller than that of Falcon due to
the orthogonality of Zd. To make the sampling even more practically
efficient and easy to implement in constant time we restrict the target
to the cosets {0, 1

2
}d + Zd, such that we can use two precomputed

tables for the discrete Gaussian: one for Z and one for 1
2
+ Z. Note

that any short coset representative t also gives a short vector 2t ∈ Zd.
With the appropriate parameters the concrete cryptanalysis shows
that these vectors can be leaked safely.

To limit the size of the keys and signatures, and the arithmetical
operations, we instantiate Zd as a rank 2 module lattice. The number
ring R = Z[X]/(Xn + 1) for n = d/2 is naturally orthogonal under
the trace norm and can thus be identified with Zn. Then we simply
take R2 = R ⊕ R as a rank 2 R-module which can be identified with
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Zd. A basis B ∈ R2×2 of R2 consists of only 4 ring elements. Instead
of quadratic forms we have to work with hermitian forms Q = B∗B,
where B∗ denotes the adjoint transpose of B. The inner product and
norm w.r.t. Q can be defined in an analogues way from the original
trace inner product.

What remains is to discuss a sampler for the hermitian forms Q
corresponding to R2 serving as a public key. Given that I2 is a basis of
R2 the basis transformations and the bases themself coincide. I.e., we
only have to consider how to sample bases B ∈ SL2(R). Surprisingly
the natural way to do this is similar to the key generation of Falcon.
First we sample a vector (f, g)⊤ ∈ R2 each element according to a
discrete Gaussian, which we then have to complete with another vector
(F,G)⊤ ∈ R2 to a full basis B with determinant f ·G− g ·F = 1. The
Falcon key generation does exactly the same, except that there the
final basis must have determinant q, and Falcon’s efficient algorithms
for this can simply be adapted to suit the needs of Hawk. They key
generation is thus as follows: sample (f, g) ∈ R2, extend to a basis
B of R2, and return (sk = B,pk = B∗B). A similar worst-case to
average-case reduction as in Section 10.2 can be shown for the resulting
distribution.

The key and signature sizes can be further reduced. For example
the public key Q is hermitian: the symmetry, the self-adjointness of
the diagonal elements, and the relation det(Q) = 1, allow to throw
away (and later reconstruct) a lot of information. Similarly we can
throw away the first half of the signature, and reconstruct the other
half simply by size-reduction with the hermitian form. The resulting
scheme is very competitive with Falcon, see Table 10.3. The key and
signature sizes for NIST security level 1 are about the same, while
Hawk is about 1.5× to 4× faster with KeyGen,Sign and Verify
than Falcon. But Hawk really shines on low-end hardware without
floating-point support. Due to the simplicity and floating-point free
sampling over Zn the reference Sign implementation is more than
14× faster than Falcon. Solving a big disadvantage of the Falcon
scheme.
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Dit proefschrift gaat hoofdzakelijk over roosters. Niet in dimensie twee
of drie waar we ons nog een beeld van kunnen scheppen, maar in hon-
derden, soms wel duizenden dimensies. Deze hoge dimensies brengen
een hoop computationele problemen met zich mee. Vragen die makke-
lijk zijn in twee dimensies, kunnen erg lastig zijn in hogere dimensies.
En deze moeilijke problemen geven aanleiding tot cryptografie.

Cryptografie heeft als doel om communicatie veilig te maken in
het geval de verbinding afgeluisterd of beïnvloed wordt. Verrassend
genoeg kan dit zonder dat de communicerende partijen vooraf een
geheime codetaal afgesproken hebben. Dit vereist problemen die in
het algemeen lastig zijn, maar die toch opgelost kunnen worden als
bepaalde geheime sleutelinformatie bekend is. Als alleen de ontvanger
bekend is met die geheime sleutel, dan kan alleen die het bericht lezen,
en niemand anders. Denk aan een kluis met een hangslot. Iedereen kan
een bericht in de kluis stoppen en het slot dichtdrukken, maar alleen
de eigenaar van de sleutel kan de kluis (moeiteloos) ontgrendelen.

Roosterproblemen zijn uitermate geschikt voor zo’n versleuteling,
met als extra voordeel dat ze zelfs niet door kwantumcomputers ef-
ficiënt opgelost lijken te kunnen worden. Het idee is als volgt. Een
rooster kan, ondanks de hoge dimensie, omschreven worden door een
paar pijlen (zie afbeelding). Een omschrijving met lange pijlen (rood)
vormt hierbij de kluis met hangslot en een omschrijving met korte
pijlen (groen) vormt hierbij de sleutel. Het vinden van zo’n korte om-
schrijving, gegeven een lange omschrijving, heet reduceren en dit is
een moeilijk computationeel probleem. Als we een roosterpunt zien
als een letter, dan kan deze versleuteld worden door het roosterpunt
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iets te verplaatsen naar buiten het rooster. Het terugvinden van de
oorspronkelijke locatie, en dus het ontcijferen van het bericht, heet
decoderen. Decoderen is in het algemeen moeilijk, behalve met een
korte omschrijving, de sleutel.

Deel II en III gaan over cryptanalyse met de centrale vraag: hoe
moeilijk is het precies om het versleutelde bericht te lezen? We kun-
nen de sleutel achterhalen (reduceren), of het slot met geweld open
breken (decoderen). In Hoofdstuk 4 laten we zien hoe we met mo-
derne algoritmes en grafische kaarten in staat zijn om een rooster in
dimensie 180 te reduceren, 25 dimensies meer dan het oude record. In
Hoofdstuk 5 analyseren we een algoritme, dat na wat voorwerk, veel
punten kan decoderen in hetzelfde rooster. In Hoofdstuk 6 bespre-
ken we dat roosters die gebruikt worden in de cryptografie vaak wat
vreemd gevormd zijn, bijvoorbeeld doordat ze roosterpunten bevatten
die te dicht bij elkaar liggen. Deze afwijkingen leiden ertoe dat het
reduceren of decoderen vaak aanzienlijk makkelijker is dan je zou ver-
wachten, gegeven de hoge dimensie. We behandelen in Hoofdstuk 7
zogenoemde NTRU roosters, die al in de cryptografie gebruikt worden
sinds 1996. Deze roosters hebben in sommige gevallen een nog grotere
afwijking dan verwacht en wij voorspellen voor het eerst precies wat
hiervan de invloed is op hun veiligheid.

Helaas zijn deze afwijkingen inherent aanwezig in alle roosters die
momenteel gebruikt worden. Speciale roosters, die minder grote afwij-
kingen hebben, maar nog wel decodeerbaar zijn, bestaan wel en zou-
den in theorie veiliger zijn. Het probleem is dat deze speciale roosters
voor iedereen bekend zijn, dus ook hun korte omschrijving, waardoor
ze momenteel niet bruikbaar zijn. In Deel IV laten we zien dat de
korte omschrijving alsnog verstopt kan worden, simpelweg door het
rooster te roteren, waarbij nu de rotatie de sleutel vormt. In Hoofd-
stuk 9 onderbouwen we waarom het vinden van de rotatie lastig is.
In Hoofdstuk 10 laten we zien hoe dit in theorie gebruikt kan worden
voor het versleutelen of het digitaal ondertekenen van berichten en we
geven een praktische demonstratie in de vorm van een zeer efficiënte
digitale handtekening genaamd HAWK.

In het losstaande Hoofdstuk 8 laten we zien dat bekende begrippen
en algoritmes voor roosters, ook vertaalbaar zijn naar lineaire codes,
een soort eindige analogie van roosters. We dragen onder andere het
beroemde LLL-reductiealgoritme over naar lineaire codes.
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This thesis is primarily about lattices. Not in dimension two or three
which we can still visualize, but in hundreds, sometimes thousands of
dimensions. These high dimensions bring with them a lot of compu-
tational problems. Questions that are easy in two dimensions, can be
very hard in higher dimensions. And these hard problems give rise to
cryptography.

Cryptography aims to make communications secure in case the
connection is overheard or influenced. Surprisingly enough, this can
be done without the communicating parties agreeing in advance on
a secret code language. This requires problems which are hard in
general, yet can be solved if certain secret key information is known.
If only the recipient is familiar with that secret key, then only that
person can read the message, and no one else. Think of a safe with
a padlock. Anyone can put a message in the safe and push the lock
shut, but only the owner of the key can unlock the safe (effortlessly).

Lattice problems are ideally suited for such an encryption, with
the added advantage that they do not appear to be efficiently solvable
even by quantum computers. The idea is as follows. A lattice, despite
its high dimension, can be described by a few arrows (see figure). A
description with long arrows (red) hereby forms the safe with padlock
and a description with short arrows (green) hereby forms the key.
Finding such a short description, given a long description, is called
reduction and is hard computational problem. If we think of a lattice
point as a letter, it can be encrypted by moving the lattice point
slightly outside the lattice. Recovering the original location, and thus
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decrypting the message, is called decoding. Decoding is generally hard
except with a short description, the key.

Part II and III deal with cryptanalysis asking the central question:
exactly how hard is it to read the encrypted message? We can find
out the key (reduce), or break open the lock by force (decrypt). In
Chapter 4, we show how, using modern algorithms and graphic cards,
we are able to reduce a lattice in dimension 180, 25 dimensions more
than the old record. In Chapter 5, we analyse an algorithm, which
after some preliminary work, can decode many points in the same
lattice. In Chapter 6 we discuss that lattices used in cryptography
are often somewhat oddly shaped, for example by containing lattice
points that are too close together. These deviations make reduction or
decoding often considerably easier than you might expect, given the
high dimension. We deal in Chapter 7 with so-called NTRU lattices,
which have been used in cryptography since 1996. These lattices have
in some cases an even larger deviation than expected, and we predict
for the first time exactly how this affects their security.

Unfortunately, these deviations are inherently present in all lattices
currently in use. Remarkable lattices, which have smaller deviations
but are still decodable, actually do exist and would theoretically be
safer. The problem is that these remarkable lattices are known to
everyone, including their short description, making them currently
unusable. In Part IV, we show that the short description can still be
hidden, simply by rotating the lattice, where now the rotation is the
key. In Chapter 9, we substantiate why finding the rotation is hard.
In Chapter 10, we show how this can theoretically be used to encrypt
or digitally sign messages, and give a practical demonstration in the
form of a highly efficient digital signature called HAWK.

In the stand-alone Chapter 8, we show that well-known notions and
algorithms for lattices, are also translatable into linear codes, a kind
of finite analogue to lattices. Among others, we transfer the famous
LLL reduction algorithm to linear codes.
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