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ABSTRACT
Background Renal endothelial cells from glomerular, cortical, and medullary kidney compartments are
exposed to different microenvironmental conditions and support specific kidney processes. However,
the heterogeneous phenotypes of these cells remain incompletely inventoried. Osmotic homeostasis is
vitally important for regulating cell volume and function, and in mammals, osmotic equilibrium is regu-
lated through the countercurrent system in the renal medulla, where water exchange through endothe-
lium occurs against an osmotic pressure gradient. Dehydration exposes medullary renal endothelial cells
to extreme hyperosmolarity, and how these cells adapt to and survive in this hypertonic milieu is
unknown.

Methods We inventoried renal endothelial cell heterogeneity by single-cell RNA sequencing .40,000
mouse renal endothelial cells, and studied transcriptome changes during osmotic adaptation upon water
deprivation. We validated our findings by immunostaining and functionally by targeting oxidative phos-
phorylation in a hyperosmolarity model in vitro and in dehydrated mice in vivo.

Results We identified 24 renal endothelial cell phenotypes (of which eight were novel), highlighting ex-
tensive heterogeneity of these cells between andwithin the cortex, glomeruli, andmedulla. In response to
dehydration and hypertonicity, medullary renal endothelial cells upregulated the expression of genes
involved in the hypoxia response, glycolysis, and—surprisingly—oxidative phosphorylation. Endothelial
cells increased oxygen consumption when exposed to hyperosmolarity, whereas blocking oxidative
phosphorylation compromised endothelial cell viability during hyperosmotic stress and impaired urine
concentration during dehydration.

Conclusions This study provides a high-resolution atlas of the renal endothelium and highlights extensive
renal endothelial cell phenotypic heterogeneity, as well as a previously unrecognized role of oxidative
phosphorylation in the metabolic adaptation of medullary renal endothelial cells to water deprivation.

JASN 31: 118–138, 2020. doi: https://doi.org/10.1681/ASN.2019080832

The kidney is vital for organismal homeostasis, and
has a complex vasculature to achieve this task.
Within the kidney, renal endothelial cells (RECs)
differ according to their origin and vascular bed.1,2

For instance, renal endothelial cells within glo-
meruli (gRECs) are fenestrated (but without

diaphragm) to facilitate water passage but also to
restrict filtration of high-molecular-weight sub-
stances.3 By contrast, cortical renal endothelial cells
(cRECs) in larger vessels (arteries, arterioles) and
medullary renal endothelial cells (mRECs) in the
descending vasa recta (DVR) have a continuous
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lining, and are surrounded by pericyte/smooth muscle cells,
which can regulate GFR in the cortex and osmolarity gradient
preservation in the medulla. In addition, the parallel arrange-
ment of the DVR and the ascending vasa recta (AVR) in the
medulla causes an oxygen shunt, resulting in hypoxia in the
renal papilla.4,5 The molecular heterogeneity of RECs from
the cortex, glomeruli, and medulla has been investigated
only using microarrays on bulk gREC, cREC, and mREC pop-
ulations.6 Single-cell RNA sequencing (scRNA-seq) studies
that sequenced enriched, freshly isolated RECs to construct
a comprehensive taxonomy of RECs at high resolution are not
available.

The heterogeneity of RECs may be of particular relevance
for the medullary circulation. For example, dehydration ex-
poses medullary cells to extreme hyperosmolarity.7–9 How the
renal medullary endothelium adapts to such conditions is un-
known, but could be critical for the function of the counter-
current system and hence capacity to concentrate urine.
Because the osmolarity gradient is maximal in the medullary
papilla, we utilized scRNA-seq to dissect the distinct responses
of mRECs, gRECs, and cRECs to dehydration, and used the
metabolic gene expression signature as a guidance to function-
ally confirm novel metabolic changes. To augment the resource
value of our REC database, we provide access to http://
www.vibcancer.be/software-tools/rec-dehydration to explore
all genes that are shown in t-distributed stochastic neighbor
embedding (t-SNE) plots or are listed in gene expression
heatmaps.

METHODS

Animals
Animal experiments have been approved by the Institutional
Animal Ethics Committee of Katholieke Universiteit Leuven
(KU Leuven) (approved project no. P144/2018, “Renal endo-
thelial cells in health and disease: from full characterization to
therapeutic intervention,” animal experiments 10, 11, and 15).
All animals were maintained in a room with controlled tem-
perature and humidity under a 12-hour light/dark cycle.
No statistical method was used to predetermine sample size.

For the scRNA-seq experiment, 12-week-old male mice
(C57Bl6/J strain; Charles River Laboratories) were exposed
to food and water ad libitum, or were water-deprived, for
12, 24, 36, or 48 hours (n=6 per group). Rodents are physio-
logically equipped to tolerate acute dehydration for periods of
as long as 24 hours without overt signs of physiologic distress
or behavioral abnormalities.10 On the basis of previous rec-
ommendations, longer periods of acute water deprivation are
acceptable procedures, but only with suitable monitoring pro-
tocols.10 Following these recommendations,10 mice were
tightly monitored assessing body weight loss (twice a day),
behavior (physical vigor, activity), and any sign of major dis-
tress or suffering (hunched posture, fuzzy facial fur, sunken/
recessed eyes) (three times a day), up to 48 hours of water dep-
rivation. Humane end points were defined according to these
parameters. None of the dehydrated mice included in the ex-
periments showed signs of major distress or suffering as well
as behavioral abnormalities. Mice were anesthetized with an
intraperitoneal injection of ketamine/xylazine (Dechra,
Innovet) and blood was collected from the right ventricle.
Mice were then submitted to left heart perfusion with 3 ml
PBS (1ml/min) and perfused kidneys were collected in ice-cold
HBSS. All 60 kidneyswere collected the same day to avoid batch
effects.

REC Isolation
Kidney capsules were removed and kidneys were further dis-
sected under a microscope to separate cortex from medulla.
Kidney cortices and medullae from each condition were then
cut into small pieces in a collagenase digestion buffer (2mg/ml
collagenase I [C9891; Sigma-Aldrich], 27 IU/ml DNAse I
[D4527; Sigma-Aldrich], and HBSS [14025100; Thermo
Fisher Scientific]); 15 ml were used for cortex samples and
5 ml for medulla samples. The samples were then incubated
for 40 minutes at 37°C, shaking every 10 minutes, and diges-
tion was stopped by adding 20 ml ice-cold HBSS. Digested
cortex andmedulla samples were sequentially filtered through
70 and 40 mm filters and glomeruli were collected from the
40 mm filter used to filter the cortex samples, and were resus-
pended in HBSS. RECs from cortex andmedulla were enriched
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Significance Statement

The specialized vessels comprising the renal vasculature are char-
acterized by highly differentiated renal endothelial cell types, but
this heterogeneity has been poorly inventoried. Using single-cell
RNA sequencing, the authors developed a high-resolution atlas of
mouse renal endothelial cells. They also investigatedhowmedullary
renal endothelial cells adapt to a switch fromdiuresis to antidiuresis.
This study describes the molecular and metabolic adaptation of
medullary renal endothelial cells to dehydration, and uncovers a
role for mitochondrial oxidative phosphorylation in hyperosmolarity
conditions to allow for urine concentration. The authors’ atlas of
mouse renal endothelial cells provides a resource for future studies,
and their findingsmay provide insights into cardiometabolic or kidney
diseases involving hyperosmolarity and dehydration, in which urine
concentration capacity is perturbed.
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using mouse CD31 magnetic microbeads (130–097–418;
Miltenyi Biotec) and QuadroMACS separators with LS col-
umns (Miltenyi Biotec). Collected glomeruli were further dis-
sociated in a trypsin digestion buffer (0.2% trypsin [25200056;
Thermo Fisher Scientific], 100 IU/ml DNAse I, 100 mg/ml
heparin [Heparine LEO; LeoPharma]) for 23 minutes at 37°C.
Trypsin was inactivated by adding 10% FBS in ice-cold HBSS.
Glomerular cells were centrifuged for 6 minutes at 4003g, and
resuspended in wash buffer (0.1% BSA in PBS). Cortical and
medullary endothelial-enriched cells as well as glomerular cells
were incubated with CD102-Alexa647 antibody (1/300, A15452;
Thermo Fisher Scientific), CD45-PeCy7 antibody (1/500, 130–
097–418;ThermoFisher Scientific),CD73-PerCP-Cy5.5 antibody
(1/100, 127213; BioLegend, for glomerular cells only), and vi-
ability dye eFluor450 (1/1000, 65–0863–14; Thermo Fisher
Scientific) in FACS buffer (0.1% BSA, 2 mM EDTA in PBS)
for 30 minutes at 4°C. OneComp ebeads (01–1111–42; Thermo
Fisher Scientific) and cooked cells (20minutes at 60°C) were used
for compensation. A total of 100,000 viable endothelial cells
(ECs) were FACS-sorted using a FACS Aria III (BD Biosci-
ences), and collected in wash buffer (0.1% BSA in PBS). Cells
were centrifuged for 6 minutes at 4003g, and resuspended in
40 ml wash buffer. Cell viability and number were assessed by
staining cells with acridine orange and propidium iodide
(F23001; Logos Biosystems) and using the automatic dual-
fluorescence cell counter system (Luna-Fl; Logos Biosystems).

Single-Cell Droplet-Based RNA Sequencing and
Data Preprocessing
The single-cell suspensions of FACS-sorted gRECs, cRECs,
and mRECs were converted to barcoded scRNA-seq libraries
using the Chromium Single Cell 39 Library, Gel Bead &
Multiplex Kit and Chip Kit (103 Genomics; PN-120237,
PN-120236), aiming for approximately 4000 cells per li-
brary of control gRECs, cRECs, and mRECs, and 3000 cells
of RECs from each compartment and for each dehydration
time point. Samples were processed with 103 Genomics’ V2
barcoding chemistry. Cells from each sample were treated with
the same master mix and in the same reaction vessel, by pro-
cessing every single sample in a single well of a PCR plate. All
samples were processed in parallel in the same thermal cycler.
Libraries were sequenced on an Illumina HiSeq4000 and
mapped to the mouse genome (build mm10) using CellRanger
(103Genomics, version 2.2.0), resulting in a sequencing depth
of 63,692 reads per cell and a saturation rate of 92% on average.
Data from the raw unfiltered matrix was further processed
using R (version 3.4.4). After quality filtering on the basis of
the number of detected genes, doublet exclusion, and mito-
chondrial read counts (see details below), a total of 40,662
high-quality RECs were obtained (15,419 gRECs; 11,762 cRECs;
13,481 mRECs for all conditions). One of the cREC samples
(cREC4: cRECs isolated after 36 hours of water deprivation)
didnot pass the quality control because of a lownumberof unique
molecular identifiers (UMIs) per cell (Supplemental Table 1) and
was therefore excluded from downstream analyses. Among all

high-quality cells, the total number of genes detected was
15,977, ranging between 1029 and 1309 (average of 1141) genes
per cell. Data were first normalized for sequencing depth by
dividing by the total number of UMIs in each cell, and then
transformed to a log scale for each cell using the Seurat (http://
satijalab.org/seurat/) NormalizeData function.11

For all of the samples, the following quality control steps were
applied: (1) genes expressed by ,50 cells or with a row mean
of ,0.001 were not considered; and (2) cells that had either
,300 (low-quality cells) or .3000 expressed genes (possible
doublets), or .10% of UMIs derived from the mitochondrial
genome were removed. Dataset-specific cut-off values and
parameter settings are listed in Supplemental Table 1.

scRNA-seq Bioinformatic Analysis
In Silico EC Selection
After autoscaling, the normalized data were first summarized
by principal component analysis (PCA) using the flash PCApack-
age, and the first 15 PCAs were visualized using t-SNE (Rtsne
package) with a perplexity value of 200 and a learning rate of
100. Graph-based clusteringwas performed to group cells accord-
ing to their gene expression profiles as implemented in Seurat (see
Supplemental Table 1 for parameter settings). Cell clusters were
annotated on the basis of canonical cell type markers, including
Pecam-1, Icam2, and Cdh5 (ECs); and Hbb-a1, Hbb-a2, and
Hbb-bs (red blood cells) to discriminate ECs from contaminating
cells. No lymphatic ECs (Lyve1, Prox1), immune cells (Ptprc), or
other renal cell types (tubular epithelial cells [Slc27a2, Lrp2,
Slc12a1, Slc12a3,Pvalb,Aqp2,Hsd11b2,Atp6v1g3,Atp6v0d2, Insrr,
Rhbg], podocytes [Nphs1, Nphs2], and mesangial and granular
cells [Myl9, Ren1]) were detected. We did not identify a separate
cluster, highly expressing a stress-response signature (artifactually
resulting from the dissociation procedure).12 All downstream
analyses were performed on ECs only.

EC Cluster Identification
We used the Seurat FindVariableGenes function to identify
genes with high variability (see Supplemental Table 1 for pa-
rameter settings for each analysis). The normalized data were
autoscaled and PCA was performed on variable genes or all
genes (see Supplemental Table 1 for parameter settings for
each analysis), followed by t-SNE to construct a two-dimen-
sional representation of the data. To unbiasedly group control
gRECs, cRECs, and mRECs, we performed PCA on highly
variable genes, and used graph-based clustering as implemen-
ted in the FindClusters function of the Seurat package.11 In
addition, to identify clusters of cells with discriminating gene
expression patterns in all datasets, we color-coded t-SNE plots
for each of the 15,977 detected genes using an in-house devel-
oped R/Shiny-based web tool. Cluster results were visualized
using t-SNE to verify that all visually identified clusters were
captured and not underpartitioned. Underpartitioned clusters
that represented two distinct biologic phenotypes were subclus-
tered. Overpartitioned clusters that represent the same biologic
phenotype were merged into a single cluster. Clusters were
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considered only when containing at least 1% of the total num-
ber of cells per sample. We did not identify a separate cluster,
highly expressing a stress-response signature (artifactually re-
sulting from the dissociation procedure).12 Details of clustering
parameters are listed in Supplemental Table 1.

To obtain ranked marker gene lists for each REC cluster, we
performed pairwise differential gene expression analysis for
each cluster against all other clusters independently, using the
limma package (version 3.34.9). The results of each differen-
tial analysis were ordered on the basis of log2 fold change
(genes with the highest fold change receiving the lowest rank
number). We obtained a final ranked marker gene list for each
cluster by calculating the rank product for all genes in all pair-
wise comparisons. This analysis was performed on gREC, cREC,
and mREC samples taken separately, by using gene expression
in control samples only, to avoid dehydration-induced effects.

To annotate clusters, we used canonicalmarker genes of artery,
capillary, and vein ECs. In addition, we searched for a coherent set
of genes involved in similar biologic processes within the top 50
ranking list of markers to further identify the associated REC
phenotype. We also used gene set variation analysis (GSVA) to
confirm upregulation of the identified biologic processes in the
respective REC phenotypes (see below). Cells that could not be
unambiguously assigned to a biologically meaningful phenotype
might represent low-quality cells and were excluded from the
analysis. Because of the manual microdissection of medulla
from the cortex and of the REC isolation procedure, mREC and
cREC samples contained a small cluster annotated as gRECs. This
“contaminating” cluster was removed from the analyses for these
two compartments.

GSVA
We used GSVA as implemented in theGSVA R-package (version
1.26.0) to convert the gene-by-cell matrix into a gene-set-by-cell
matrix. Gene set analysis was performed using a set of 415 vas-
cular related gene sets selected from the Molecular Signa-
tures Database (MSigDB version 5.2 downloaded from
http://bioinf.wehi.edu.au/software/MSigDB/). GSVA scores
were only calculated for gene sets with a minimum of five de-
tected genes. All other parameters were default.

Heatmap Analysis
All heatmaps are on the basis of cluster-averaged gene expres-
sion to account for cell-to-cell transcriptomic stochastics.
Data were autoscaled for visualization. Heatmaps were pro-
duced using the Heatmaply R package (version 0.15.2). The
data matrix for each heatmap can be downloaded from the
accompanying web tool (see Data Availability below).

Single-Cell Regulatory Network Inference and
Clustering Analysis
Single-cell regulatory network inference and clustering
(SCENIC) scans differentially expressed genes for overrepresented
transcription factor binding sites and analyzes coexpression of
transcription factors and their putative target genes. Data were

subsampled by randomly selecting 575 gRECs, cRECs, and
mRECs for each control and dehydration time point and
analyses were performed as described,13 using the SCENIC
R package (version 1.1.0, which corresponds to RcisTarget
1.2.0, GENIE3 1.5.4, and AUCell 1.4.1) with RcisTarget motif
databases (RcisTargets.mm9.motifDabases.20 k).

Venn Diagram Dehydration Analysis
To evaluate the dehydration effect on the gene signature be-
tween gREC, cREC, and mREC, we calculated the intersec-
tion of genes between the three compartments from the top
50 up- and downregulated genes for each dehydration time
point, using Venn diagram calculation and visualization.

Gene Set Enrichment Analysis
Weused gene set enrichment analysis (GSEA) as implemented in
the clusterProfiler package (version 3.6.0) to compare gene ex-
pression signatures betweenmRECs at 48-hour dehydration and
controlmRECs.14 Gene set analysis was performed using a set of
415 vascular-related gene sets and 857 metabolic gene sets se-
lected from theMolecular SignaturesDatabase (MSigDB version
5.2 downloaded from http://bioinf.wehi.edu.au/software/
MSigDB/). GSEA scores were calculated for sets with a mini-
mum of ten detected genes, all other parameters were default.

Trajectory Inference
We used the SCORPIUS package (version 1.0.2) to place cells
onto pseudotime trajectories.15 Analysis was performed on
highly variable genes. Dimensionality reduction was per-
formed using the reduce dimensionality function (we used
15 dimensions, all other parameters were default). Individual
RECs from each cluster were subsequently placed onto linear
pseudotime using the infer trajectory function of the SCORPIUS
package with default settings. Activated RECs (angiogenic and
response-to-IFN clusters) expressed a highly distinct signature
and could therefore not be placed on the differentiation
trajectory.

Jaccard Similarity Analysis
Tomeasure the similarity of mRECs subclusters from dehydra-
tedmice comparedwith those from controlmice, we calculated
the similarity of the top 50 marker gene sets using pairwise
Jaccard similarity coefficients for all subclusters against each
other. The Jaccard similarity coefficient is defined as the size of
the intersection divided by the size of the union of sets:

JðA;BÞ ¼ jA∩Bj
jA∪Bj ¼

jA∩Bj
jAj þ jBj2 jA∩Bj

where J is the Jaccard index and A and B are two sets of marker
genes. PCA was used for visualization.

Crossdataset Validation of the mRECs in Dehydration
Subclusters from the control mREC samples were projected on
all samples (respective control and all dehydration time points),
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using the scmapCluster algorithm as implemented in the scmap
package (version 1.1.5).16 We used the top 50 marker genes for
each mREC subcluster in the control mREC taxonomy and a
similarity threshold of 0.5; all other parameters were default.
Below this threshold, cells were annotated as unassigned. The
projection was visualized using a Sankey plot, similarity scores
for each subcluster were visualized using a boxplot.

Data Visualization
The R implementation of the Plotly software was used for
t-SNE, violin plot, and bar graph visualization.

Human Umbilical Vein Endothelial Cells
Human umbilical vein endothelial cells (HUVECs) were
freshly isolated from different donors after obtaining their in-
formed consent and under the ethical approval protocol
S57123 (Ethics Committee Research UZ/KU Leuven), as pre-
viously described.17 The cells were routinely cultured in the
appropriate gelatin-precoated (0.1% in PBS) cell culture plates
in M199 medium (Thermo Fisher Scientific) containing 20%
FBS, 2 mM L-glutamine, 100 IU/ml penicillin, and 100 mg/ml
streptomycin and endothelial cell growth factor supplements
(ECGS/heparin; Promocell) or in endothelial cell growth me-
dium (EGM2; Promocell) supplemented with endothelial cell
growth medium supplement mix (Promocell), and were regu-
larly tested for mycoplasma. For experiments with galactose
medium, glucose-free EGM2 medium was reconstituted with
10 mM galactose in combination with dialyzed FBS (specifically
requested customized medium; Promocell). The cells were used
between passages 1 and 5 and all experiments were performed
with HUVECs from at least three different donors.

HUVEC Model of Dehydration
Confluent HUVECs were adapted to hyperosmolarity by
progressively increasing the medium osmolality from 300 to
900 mOsm/kg as follows: medium osmolality was changed
to 380, 600, and 650 mOsm/kg every 12 hours, and up to
900 mOsm/kg by augmenting of 50 mOsm/kg every 2.5 hours.
For seahorse experiments, the medium osmolality was in-
creased up to 1200 mOsm/kg (50 mOsm/kg increase every
2.5 hours). To achieve this higher osmolality, EGM2 was
supplemented with urea and NaCl (Sigma-Aldrich). For
the 380 mOsm/kg osmolality, urea was supplemented at
40 mM and NaCl at 20 mM, and for the 600 mOsm/kg, urea
was supplemented at 150 mM and NaCl at 75 mM. For adapt-
ing the medium from 650 to 1200 mOsm/kg, the urea molality
was kept constant at 150 mM, whereas NaCl was increased
progressively to achieve the desired osmolality. Cells were
kept in hyperosmolar medium for at least 12 hours before
performing any experiments.

Metabolic Assays
Seahorse Extracellular Flux Measurements
Freshly isolated CD31+MACS-enriched cRECs and mRECs
from control and 48-hour dehydrated mice (n=3 mice per

replicate per group) were seeded at a density of 500,000 cells
per well on Seahorse XF24 tissue culture plates (Agilent) in
complete mouse EC medium (M1168; Cell Biologics). Sim-
ilarly, cultured HUVECs in normal or hyperosmolar medium
(1200 mOsm/kg) were seeded at a density of 100,000 cells per
well on Seahorse XF24 tissue culture plates in normal or hyper-
osmolar (1200 mOsm/kg) EGM2 medium. For the metformin
experiments, cultured HUVECs in normal medium were pre-
treated withmetformin (1, 10, or 20mM) or control vehicle for
1 hour. Oxygen consumption rate (OCR) measurements were
performed at 6-minute intervals (2 minutes mixing, 2 minutes
recovery, 2 minutes measuring) in a Seahorse XF24 device. The
addition of oligomycin (1.2 mM final; Sigma-Aldrich) allowed
for the determination of ATP-coupled oxygen consump-
tion rate (OCRATP). The addition of antimycine A (1 mM final;
Sigma-Aldrich) allowed for the determination of basal OCR.
HUVEC cultures were supplemented with ouabain at 0.5 mM
immediately before OCR analyses to determine OCRATP re-
lated to Na+/K+ ATPase activity. The data were normalized to
protein content.

Detection of Organic Osmolytes
Details are provided in Supplemental Appendix 1.

Biochemical Assays
Plasma and Urine Sample Analyses
Blood was collected from the right ventricle in anesthetized
mice (see above) using potassium EDTA–coated syringes and
centrifuged at 30003g for 10 minutes. Plasma was collected
and stored at 220°C until biochemical measurement. Urine
was collected directly from the bladder. Plasma creatinine,
urea, sodium, total protein levels, osmolality, and aspartate
aminotransferase and lactate dehydrogenase (LDH) activity,
as well as urine osmolality, were measured in the Central
Medical Laboratory of the University Hospital of Leuven.

Bicinchoninic Acid Assay
Bicinchoninic acid assay (Pierce) was used to determine pro-
tein content following metabolic assays and for Western blot
experiments. Cells were lysed using only RIPA buffer (Thermo
Fisher Scientific) (for seahorse extracellular flux measure-
ments) or in the presence of protease and phosphatase inhib-
itors (Roche, Vilvoorde, Belgium) (for Western blot analyses).
For organic osmolyte detection, protein pellets were dissolved
in 200 mM sodium hydroxide. Bicinchoninic acid assay was
performed following the manufacturer’s guidelines.

Western Blot
Details are provided in Supplemental Appendix 1.

RNA Isolation and Quantitative RT-PCR
RNA was collected from HUVECs cultured in normal or
hyperosmolar EGM2 (900 mOsm/kg), purified using the
PureLink RNA Mini Kit (Invitrogen, Life Technologies) and
converted to complementary DNA using the iScript cDNA
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synthesis kit (Bio-Rad). RNA expression analysis was per-
formed by Taqman quantitative RT-PCR as described,18 using
premade primer sets (Integrated DNA Technologies, identifi-
cation numbers: Hs.PT.58.25051081, Hs.PT.58.4615682,
Hs.PT.58.2145446, Hs.PT.58.24360893, Hs.PT.58.39555113,
Hs.PT.58.45350074). For comparison of gene expression be-
tween conditions, expression (normalized to HPRT as endog-
enous control) is expressed relative to control condition.

LDH Release Viability Assay
HUVECs in normal or hyperosmolar EGM2 (900 mOsm/kg)
were trypsinated and seeded at a density of 100,000 cells per
well in 96-well plates. The following day, cells were treated
with rotenone (2 mM) (Sigma-Aldrich) or oligomycin
(1.2 mM; Sigma-Aldrich) in normal or hyperosmolar EGM2
(900 mOsm/kg) and in normal or hyperosmolar galactose me-
dium (900 mOsm/kg) for 24 hours. LDH assay kit (Cytotox-
icity Detection Kit; Roche) was used to quantify cellular LDH
release following the manufacturer’s guidelines.

Flow Cytometry
Mitochondrial Content
HUVECs cultured in normal or hyperosmolar medium were
trypsinated and incubated withMitoTracker Green FM (1/5000,
M7514; Thermo Fisher Scientific) for 30 minutes at 37°C in
phenol red–free EBM2 medium (Promocell) supplemented
with endothelial cell growthmedium supplement mix. Intensity
of incorporated MitoTracker green was determined by fluoro-
phore excitation with a 490 nm yellow laser and emission was
recorded at 516 nm. Data were recorded by flow cytometry, and
analyzedwith the FlowJo 10.4.2 software (https://www.flowjo.com).
MitoTracker staining was quantified by measuring median
fluorescence intensity.

Superoxide Content Measurement
HUVECs cultured in normal or hyperosmolar medium were
trypsinated and incubated with dihydroethidium (DHE; 1/250,
D11347; Thermo Fisher Scientific) for 30 minutes at 37°C in
phenol red–free EBM2 medium supplemented with endothe-
lial cell growth medium supplement mix. Intensity of incorpo-
rated DHE was determined by fluorophore excitation with a
518 nm laser and emission was recorded at 606 nm. Data were
recorded by flow cytometry, and analyzed with the FlowJo
10.4.2 software (https://www.flowjo.com). DHE staining was
quantified by measuring median fluorescence intensity.

Histology and Immunohistochemistry
All methods for histology and immunostainings have been
previously described.17,19 Mouse kidney samples were imme-
diately fixed after collection in 4% paraformaldehyde over-
night at 4°C, then dehydrated and embedded in paraffin.
Briefly, kidneys were sectioned at 7 mm thickness and were
stained using the following primary antibodies: CD105 (1/50,
AF1320; R&D Systems), endomucin (1/50, 14–5851–82;
Thermo Fisher Scientific), carbonic anhydrase–related protein

(CA-VIII; 1/400, 12391–1-AP; Proteintech), S100A4 (1/50,
A5114; Dako), PLVAP (1/40, Meca32-c; Developmental Studies
Hybridoma Bank), FXYD6 (1/50, 15805–1-AP; Proteintech),
and CRYAB (1/200, AB13497; Abcam). Sections were then
incubated with the appropriate fluorescence-conjugated sec-
ondary antibodies (Thermo Fisher Scientific) or followed by
amplification with the proper tyramide signal amplification
systems (NEL704A001KT, NEL705A001KT, NEL701A001KT;
Perkin Elmer). Tyramide signal amplification was used for
CA-VIII, S100A4, PLVAP, and FXYD6 antibodies. Nuclei
were counterstained with Hoechst (1 mg/ml, H3570; Thermo
Fisher Scientific). Negative controls were performed omitting
incubation with primary antibodies. Sections were mounted
on glass slides in ProLong mounting medium. Images were
acquired with a Zeiss LSM780 confocal microscope, coupled
to ZEN software (Zeiss). Images were processed with ImageJ
software.

Renal Hypoxia
Details are provided in Supplemental Appendix 1.

Total Mitochondrial Volume
HUVECs cultured in normal or hyperosmolar EGM2
(900 mOsm/kg) were fixed in 4% paraformaldehyde for
30 minutes and then immunostained with TOMM20 (1/200;
Abcam) for mitochondria and Phalloidin-Alexa 488 (1/50; Life
Technologies) for actin. Images were acquired with a Zeiss
LSM780 confocal microscope, coupled to ZEN software.
Mitochondrial volumes were defined using Leica MetaMorph
AF 2.1 morphometry software package. A three-dimensional
volume mask was created for each cell in which the mitochon-
drial volume was calculated on the basis of the thresholded
TOMM20 signal.

In Vivo Metformin Treatment
For metformin treatment, 8- to 12-week-old male mice
(C57Bl6/J strain) were exposed to food and water ad libitum,
or were water-deprived and treated with 50ml of either vehicle
(water) or metformin (600 mg/kg; Sigma-Aldrich; a dose
previously reported to influence urine concentration20)
twice a day by gavage for 48 hours (n=5–17 per group).
Dehydrated mice were closely followed up, as described in
the Animals section. Mice were anesthetized with an intraper-
itoneal injection of ketamine/xylazine, blood was collected
from the right ventricle and urine was collected from the
bladder, and then analyzed as described above.

Statistical Analyses
Data are represented as mean6SEM. The presence of outliers
was assessedusing theROUT test and eventual identified outliers
were excluded from downstream analyses. Two-tailed statistical
test was used for all analyses. Statistical significance was assessed
with one sample t test or unpaired t test when comparing
two conditions, and one- or two-way ANOVAwith Bonferroni
correction after the evaluation of variance homogeneity in
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Figure 1. Control RECs show kidney compartment-specific gene signatures. All data in (C–F) are generated using RECs from kidneys in
control condition. (A) Simplified schematic overview of the nephron and glomerular vasculature. The renal artery supplies blood to the
entire kidney, and branches into afferent arterioles, which enter glomeruli to form fenestrated glomerular capillaries where blood
ultrafiltration takes place. Unlike most capillary beds, glomerular capillaries exit into efferent arterioles, which branch into cortical
peritubular capillaries vascularizing the proximal and distal convoluted tubules. DVR branch off from the efferent arterioles of juxta-
medullary nephrons, enter the medulla and branch into a capillary plexus that drains blood into AVR. Vasa recta surround the loop of
Henle and are essential for concentrating the urine. Peritubular capillaries and AVR connect to renal veins in the cortex, which drain the
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Brown–Forsythe tests, or Kruskal–Wallis tests followed by
Dunn tests, as appropriate, for multiple comparisons, using
Prism 7 (GraphPad Prism). P,0.05 was considered statistically
significant.

Data Availability
All raw sequencing data are available in ArrayExpress under
accession number E-MTAB-8145. Normalized data can be
downloaded from the accompanying web resource at http://
www.vibcancer.be/software-tools/rec-dehydration. Custom
code is available upon request.

RESULTS

Isolation and scRNA-seq of RECs from Control and
Dehydrated Mice
The kidney vasculature displays a hierarchically organized ar-
chitecture1,2 (Figure 1A). To characterize the molecular het-
erogeneity of RECs and their adaptation to dehydration, we
collected kidneys frommice under euhydration (controls) and
mice deprived from drinking water for 12, 24, 36, and 48 hours
(Figure 1B). RECs from glomeruli, cortex, and medulla were
processed separately to obtain a similar resolution for further
characterization (Figure 1B, Supplemental Figure 1A). All
gREC, cREC, and mREC single-cell samples were subjected
to scRNA-seq, resulting in 40,662 high-quality RECs (Figure
1B, Supplemental Figure 1B, Supplemental Table 1).

Intercompartment REC Heterogeneity
We first constructed a REC taxonomy in control conditions. A
heatmap representing all genes expressed by gRECs, cRECs, and
mRECs showed that different REC types have unique transcrip-
tome profiles (Figure 1, C and D). Using a rank product–based
method, we identified the top 50 marker genes for each REC
cluster (Supplemental Table 2). As reported, gRECs highly ex-
pressed Ehd3, Cyp4b1, and Tspan7,6,21,22 whereas mRECs
showed higher expression of Igf1 and Cd366 (Figure 1, E and
F, Supplemental Table 2). Specific markers for cRECs have not
yet been described. Here, we found that cRECs highly expressed
Igfbp3, Npr3, and other novel markers (Figure 1, E and F,

Supplemental Table 2). In addition, Plvap, a marker of fenes-
trated ECs with diaphragm, was highly expressed in cRECs and
mRECs, but not in gRECs, consistent with previous reports1

(Figure 1F).We identifiedmarkers for each REC type previously
not highlighted in the literature (Figure 1, E and F, Supplemental
Table 2). Some markers were not uniformly expressed through-
out the clusters, butwere identified only in a subset of cellswithin
these clusters (Npr3 in cRECs; Aqp1, Cryab, and Ifi27l2a in
mRECs) (Figure 1F, Supplemental Table 2), raising the question
of whether these clusters contained additional REC subclusters.

To study the underlying molecular mechanisms driving
the differentiation of the different REC phenotypes, we used
SCENIC.13 We identified the top ten enriched transcription fac-
tor networks in gRECs, cRECs, or mRECs, including Gata5,
Gata2, and Nuak2 regulons in gRECs; Irf1, Foxp1, and Sp1 net-
works in cRECs; and Pparg, Lef1, Nfe2l2, and Irf7 regulons in
mRECs (Figure 1G). In agreement with our findings on gRECs,
EC loss of gREC marker Gata5 causes glomerular lesions.23

Intracompartment REC Heterogeneity
To further characterize the heterogeneity of gRECs, cRECs,
and mRECs, we used a shared nearest neighbor modularity
optimization–based clustering algorithm to subcluster RECs
on the basis of their gene expression signatures, resulting in
24 subclusters (Supplemental Figure 1, C–E). We used canon-
ical marker genes of arterial (Sox17, Fbln5), fenestrated capil-
lary (Plvap,Kdr), and venous (Plvap,Nr2f2) ECs, as well as the
top 50 marker genes of each subcluster to identify the differ-
ent REC phenotypes. The number of RECs per subcluster as
well as the numbers of UMIs and genes per kidney compart-
ment are displayed in Supplemental Figure 1, C–E. A detailed
description of the marker genes (including novel markers, not
previously highlighted in the literature), with their inferred
putative biologic role used to identify each subcluster, is
reported in Supplemental Table 3.

gRECs exhibited five subclusters (Figure 2, A and B, Sup-
plemental Figure 2A, Supplemental Tables 3 and 4): afferent
arteriolar ECs (G1), ECs from the terminal portion of the af-
ferent arterioles associated with the juxtaglomerular apparatus
(JGA) with enriched expression of cell-cell interaction genes
(G2) (Supplemental Figure 2B), fenestrated capillary gRECs (G3),

blood from the kidney. (B) Schematic overview of the study design. Kidney cortex, medulla, and glomeruli were enzymatically digested
until obtaining single-cell suspensions. After a pre-enrichment of CD31+ cRECs and mRECs via MACS, all RECs were purified by FACS.
Single-cell RNA sequencing of these RECs resulted in 15,419 high-quality gRECs; 11,762 high-quality cRECs; and 13,481 high-quality
mRECs for all conditions. (C) Expression-level scaled heatmap of all genes from RECs isolated from the three kidney compartments. Scale:
light blue is low expression, red is high expression. (D) t-SNE plot showing REC clusters from the three kidney compartments. (E) Ex-
pression-level scaled heatmap of the top 50marker genes of REC clusters isolated from the three kidney compartments. (F) t-SNE plots of
RECs isolated from the three kidney compartments, color-coded for the expression of the indicated markers. Red arrowheads indicate
cells with high expression of the indicated marker on the t-SNE plots. Scale: light blue is low expression, red is high expression. Asterisks
indicate novel marker genes. (G) Expression-level scaled heatmap of the top 10 inferred transcription factor gene regulatory networks (as
analyzed using SCENIC) in RECs from the three kidney compartments. Numbers between parentheses indicate the number of genes (g)
that are part of the regulons for the respective transcription factors. Red corresponds to high transcription factor activity, blue corresponds
to low transcription factor activity. See also Supplemental Figure 1 and Supplemental Tables 1 and 2.
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ECs expressing a mix of capillary and arterial EC markers (G4),
and efferent arteriolar gRECs (G5). When taking advantage of a
pseudotime algorithm to reconstruct the trajectory of the glomer-
ular vascular bed, we observed that G4 positioned as an interme-
diate subcluster between G3 and G5, suggesting that it represents a
gREC population between the glomerular capillaries and efferent
arteriole, as observed also for G2 with the afferent arteriole (Figure
2C). Thus, in analogy with G2, G4 likely represents efferent
arteriolar gRECs associated with the JGA (Figure 2, A–C).

A total of nine cREC subclusters were identified (Figure 2,
D and E, Supplemental Figure 2C, Supplemental Tables 3 and
4): C1, C2, and C3 represent ECs from arteries, arterioles, and
efferent arterioles, respectively; C4 and C5 presented highly
expressed capillary markers and were characterized by high
(C4) or low (C5)ApoE expression; C6 showed an intermediate
capillary-vein gene signature associated with postcapillary ve-
nules; and C7 included cRECs from veins. Pseudotime-based
predictions of the renal cortical vascular trajectory confirmed
this analysis, positioning the identified arterial, capillary, and vein
subclusters in this order (Figure 2F). Validation at the protein level
by immunostaining for CA-VIII confirmed expression of this
novel venous cRECmarker in endomucin-positive venous cRECs,
but not in endomucin-negative arterial cRECs24 (Figure 2, G and
H, Supplemental Figure 2D). We also discovered two novel cap-
illary cREC subclusters: C8 showing an angiogenic phenotype,
and C9 exhibiting an IFN-response phenotype (Figure 2, D and
E, Supplemental Figure 2C, Supplemental Tables 3 and 4).

mRECs exhibited ten subclusters (Figure 3, A and B, Sup-
plemental Figure 3A, Supplemental Tables 3 and 4): M1 rep-
resented mRECs from arterioles; M2 exhibited markers of the
DVR; and M3 likely represented mRECs from the papillary
portion of the descending vasa recta (papillaryDVR). Although
no knownmarkers of the papillary DVR exist, these cells highly
expressed hyperosmolarity responsive genes, consistent with
the high osmolarity in the papilla.25 Immunostaining for
S100A4 confirmed expression of this novel papillary DVR
marker in mRECs in the papilla, but not in the inner and outer
medulla (Figure 3, C andD, Supplemental Figure 3B). Fenestrated
capillary subcluster M4 included mRECs from the medullary
capillary plexuses. M5 represented postcapillary venous ECs,
and M6 included vein-like mRECs from the AVR. Immunos-
taining for FXYD6 confirmed expression of this novel AVR
marker in mRECs in the inner and outer medulla, but not

the papilla (Figure 3, C and E, Supplemental Figure 3B). We
also uncovered vein-like mRECs, which likely represented
mRECs from the papillary portion of the ascending vasa recta
(papillary AVR) (M7), as they showed enriched expression of
hyperosmolarity responsive genes, similar to papillary DVR
RECs. This was confirmed by immunostaining of the novel
papillary AVR marker, CRYAB, expressed in the fenestrated
PLVAP+ mRECs from AVR in the papilla (but not in the inner
and outer medulla) (Figure 3, C and F, Supplemental Figure 3B).
Although mRECs from both papillary AVR and papillary DVR
exhibited distinct transcriptome profiles, they shared upregula-
ted expression of hyperosmolarity-inducible genes and other
novel marker genes (Supplemental Figure 3A). Pseudotime-
based predictions of the renal medullary vascular trajectory con-
firmed this analysis, positioning the arterial, capillary, and vein
subclusters in this order (Figure 3G).We also identified three new
mRECsubpopulations, including capillarymRECs representing
an angiogenic phenotype (M8), as well as capillary (M9) and
venous (M10) mRECs displaying a response-to-IFN pheno-
type (Figure 3, A and B, Supplemental Figure 3A).

GSVA showedhigh expressionof genes encodingMHCclass II
protein complexes in response-to-IFN ECs (Supplemental Figure
4A, Supplemental Table 5). However, these RECs did not express
detectable levels of the coactivators Cd80 and Cd86. Interestingly,
cRECs from veins also highly expressed MHC II genes (Supple-
mental Figure 4A). GSVA revealed enrichment of transcripts in-
volved in angiogenesis in angiogenic clusters from the cortex and
medulla (Supplemental Figure 4B, Supplemental Table 5). Un-
biased correlation heatmap analysis and hierarchical clustering
revealed that gRECs (afferent and efferent arterioles, capillaries)
represented a separate entity, resembling each other more than
RECs from other kidney compartments, illustrating their high
specification (Supplemental Figure 4C). Overall, this taxonomy
captures the complex heterogeneity of RECs between and within
kidney compartments. We used this atlas to study the transcrip-
tome response of each REC compartment to dehydration.

Renal Endothelial Cells Differentially Respond
to Dehydration
In response to acute dehydration, the kidney concentrates the
urine, increases water reabsorption, and reduces glomerular fil-
tration.7–9 To characterize the transcriptional adaptation of RECs
to dehydration, mice were deprived of water for up to 48 hours,

(D) cREC subclusters visualized by t-SNE plot. Asterisks indicate newly recognized subclusters. (E) Expression-level scaled heatmap of the
top 20 marker genes in cREC subclusters. (F) Pseudotime analysis of cREC subclusters and loess smoothed gene expression of the in-
dicatedmarkers in pseudotime in the indicated cREC subclusters. Angiogenic and response-to-IFN cREC subclusters were not included in
the pseudotime analysis. (G) Simplified schematic overview of the renal cortical vasculature. Inset shows larger magnification of the boxed
area. Subclusters C4 andC5 are novel; the other vascular beds havebeenpreviously documented at the anatomic level. (H) Representative
micrographs of mouse kidney sections immunostained for the endothelial cell marker CD105 (red), the vein/capillary marker endomucin
(gray), and the novel marker CA-VIII (green) for the vein cluster (C7). Nuclei are counterstained with Hoechst (blue). Bottom images are
magnifications of the respective boxed areas. Arrrowheads indicate endothelial cells from an artery and a vein. A t-SNE plot of cRECs,
color-coded for the expression of Car8 is shown below. Scale: light blue is low expression, red is high. Note: CA-VIII denotes the protein,
encoded by the Car8 gene. Scale bar, 200 mm (top panels) and 50 mm (bottom panels). See also Supplemental Figures 2 and 4, and
Supplemental Tables 1, 3–5. Art, artery.
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Figure 3. Control mRECs exhibit intracompartment heterogeneity. All data shown were generated using mRECs from kidneys in control
condition. (A) mREC subclustering visualized by t-SNE plot. (B) Expression-level scaled heatmap of the top 20 marker genes in mREC sub-
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using a previously reportedmodel, documented to induceweight
loss, increased plasma urea, sodium, total protein and osmolality
levels, urine osmolality, and decreased urine volume26–30 (Figure
1B). Water-deprived mice lost body weight, whereas their urine
and plasma osmolality, plasma sodium and total protein levels,
and plasma LDH and aspartate transferase activities were in-
creased (Supplemental Figure 5, A–G). Plasma urea levels were
slightly elevated at certain time points (Supplemental Figure 5H),
whereas plasma creatinine levels remained unchanged (,0.15
mg/dl), indicating that the kidneys were still functional.

We performed a differential analysis of transcriptome profiles
of gRECs, cRECs and mRECs at different time points after de-
hydration compared with their respective controls (Supplemen-
tal Table 6). Analysis of the top 50 up- and downregulated genes
in RECs from the different compartments for each dehydration

time point revealed kidney compartment-specific REC gene ex-
pression changes, with only a few genes in common (Figure 4A,
Supplemental Figure 5I, Supplemental Table 6). Thus, RECs
from different compartments respond distinctly to dehydration,
illustrating the heterogeneity of RECs not only in baseline but
also uponwater deprivation. Quantification of the upregulated
[log2(fold change).0.2] or downregulated [log2(fold change)
,0.2] genes in RECs from each compartment suggested that
mRECs were the most affected by dehydration (Figure 4B). We
therefore focused primarily on mRECs.

Adaptation of mRECs to Hyperosmolarity during
Dehydration
The medullary countercurrent system enables production of
urine of widely varying osmolalities, and thereby exposes

magnifications of the respective boxed areas. (D) Representative micrographs of mouse kidney sections immunostained for the endo-
thelial cell marker CD105 (red) and the novel marker S100A4 (green) for the DVR/papilla subcluster (M3). Nuclei are counterstained with
Hoechst (blue). Top and middle panels are images of the papilla; middle images are magnifications of the respective boxed areas, with
arrowheads indicating CD105+S100A4+ ECs. Bottom panels are images of outer/inner medulla. A t-SNE plot of mRECs color-coded for
the expression of S100a4 is shown beneath the micrographs. Scale: light blue is low expression, red is high expression. Scale bar, 200 mm
(top and bottom panels) and 50 mm (middle panels). (E) Representative micrographs of mouse kidney sections immunostained for the
endothelial cell marker CD105 (red), the fenestrated endothelial marker PLVAP (gray), and the novel marker FXYD6 (green) for the AVR
cluster (M6). Nuclei are counterstainedwith Hoechst (blue). Top panels are images of the papilla; middle and bottom panels are images of
outer/inner medulla; bottom images are magnifications of the respective boxed areas, with arrowheads indicating CD105+PLVAP+

FXYD6+ ECs. A t-SNE plot of mRECs color-coded for the expression of Fxyd6 is shown beneath the micrographs. Scale: light blue is low
expression, red is high expression. Scale bar, 200mm (top andmiddle panels) and 50 mm (bottom panels). (F) Representative micrographs
of mouse kidney sections immunostained for the endothelial cell marker CD105 (red), the fenestrated endothelial marker PLVAP (gray),
and the novel marker CRYAB (green) for the AVR/papilla cluster (M7). Nuclei are counterstained with Hoechst (blue). Top and middle
panels are images of the papilla of the mouse kidney; middle images are magnifications of the respective boxed areas. Higher magni-
fication of the respective boxed areas is shown in insets, with arrowheads indicating CD105+PLVAP+CRYAB+ ECs. Bottom panels are
images of outer/innermedulla of themouse kidney. A t-SNEplot ofmRECs color-coded for the expression ofCryab is shownon the right of
the micrographs. Scale: light blue is low expression, red is high expression. Scale bar, 200 mm (top and bottom panels), 50 mm (middle
panels), and 10 mm (insets in middle panels). (G) Pseudotime analysis of mREC subclusters and loess smoothed gene expression of the
indicated markers in pseudotime in the indicated mREC subclusters. Angiogenic and response-to-IFN mREC subclusters were not in-
cluded in the analysis. The t-SNE plots shown in (D–F) are also represented in Supplemental Figure 4A at a larger size for reasons of clarity.
See also Supplemental Figures 3 and 4 and Supplemental Tables 1, 3–5.
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Figure 4. mRECs are the most affected by dehydration. (A) Venn diagram of the top 50 up- and downregulated genes in RECs from the three
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quality standards and was therefore not included in downstream analyses. See also Supplemental Figure 5 and Supplemental Table 6.
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Figure 5. mRECs show a typical transcriptomic response to hyperosmolarity in dehydration. (A) Correlation heatmap of mRECs from
the control condition and at different dehydration time points. Scale: red indicates a high transcriptome similarity, blue indicates a low
transcriptome similarity. (B) t-SNE plot color-coded for mRECs from the control condition and at different dehydration time points. (C)
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medullary renal cells to harsh conditions (elevated levels of
solutes such as sodium chloride and urea) upon dehydration.
Although the adaptation of medullary epithelial cells to sur-
vive in such hostile milieu are described,25,31,32 little is known
about the mechanisms viawhich mRECs cope with and adapt
to a hyperosmolarity challenge. We observed a shift in gene
expression as early as 12 hours of water deprivation in mRECs
(Figure 5, A and B). Their response to dehydration occurred in
two phases: an early adaptation phase (12–24 hours) and a late
response (36–48 hours) (Figure 5, A and B). Pseudotime anal-
ysis of mRECs showed that the arterial-capillary-venous
trajectory was affected the most at 36–48 hours of water dep-
rivation and that dehydration affected medullary capillaries
the most (Figure 5C). Differential analysis of mREC transcrip-
tome profiles in control and at 12, 24, 36, and 48 hours of
water deprivation largely confirmed this result (for the upre-
gulated genes, the 36-hour time point seemed to be a transi-
tion phase) (Figure 5, D and E).

In the early phase, we observed a transient increase in ex-
pression of genes encoding heat shock proteins and immediate
early genes, and initial changes in expression of genes involved
in cytoskeleton remodeling, DNA damage, and growth arrest,
as reported for renal epithelial cells upon dehydration or hy-
perosmolarity33 (Figure 5F). In the late phase, the changes in
expression of genes involved in cytoskeleton remodeling,
DNA damage, and growth arrest became more prominent
(Figure 5F). Other transcriptome changes related to genes in-
volved in cell volume regulation, especially encoding trans-
porters and biosynthetic enzymes necessary to increase the
intracellular concentration of inert osmolytes and sodium as
well as water transport to equilibrate intra- and extracellular
osmolarity.25,31,32 In agreement, mRECs upregulated the
expression of genes involved in taurine transport (Slc6a6),
myo-inositol transport (Slc5a3, transiently), sodium-coupled
neutral amino acid transport (Slc38a2), sorbitol synthesis
(Akr1b3), Na+/K+ ATPase (Atp1a1, Atp1b3, Fxyd2, Fxyd5),
and water transport (Aqp1) (Figure 5, G and H). Not previ-
ously reported as a response mechanism to hyperosmolarity,
we observed a transcriptome switch from myo-inositol trans-
port (Slc5a3) to synthesis (Isyna1) (Figure 5, G and H). Con-
trary to what is described in epithelial cells,34 transcript levels
of the Na+/K+/Cl2 (NKCC) cotransporter (Slc12a2) were de-
creased in mRECs (Figure 5G).

mRECs from dehydration samples contained the same
number of similar mREC subclusters as control mRECs (Sup-
plemental Figure 6A). In addition, by using scMap16 and the
top 50 marker genes of each mREC subcluster (M1–M10),
mRECs from dehydration samples were confidently assigned
to mREC subclusters in the control mREC taxonomy

(similarity threshold .0.5; Supplemental Figure 6B). Thus,
no novel dehydration-evoked cluster was identified inmRECs.

mRECs Adapt Their Metabolic Gene Expression
Signature upon Dehydration
GSEA of mRECs from control versus 48-hour dehydrated
mice, in combination with expression heatmap analysis, re-
vealed upregulation upon dehydration of gene sets involved in
hypoxia/hypoxic response, but surprisingly, also in inorganic
ion transmembrane transport (genes encoding complex sub-
units of OXPHOS) (Figure 6, A and B, Supplemental Table 7),
suggesting that mRECs might be exposed to deeper hypoxia,
yet upregulated OXPHOS (see below). Upregulation of
OXPHOS genes has never been reported in medullary epithe-
lial cells exposed to hyperosmolarity. Consistent with a
report highlighting an increase in hypoxia inducible factor
1a–positive cells in the renal medulla upon dehydration,35

we observed an increase in pimonidazole-stained hypoxic
areas in the inner kidney medulla from dehydrated mice
(48 hours) (Supplemental Figure 5J), validating the GSEA re-
sults. Also, SCENIC revealed that the Epas1 regulon (encoding
hypoxia-inducible factor 2a) was upregulated in mRECs after
dehydration (Figure 6C). We also identified upregulation of
Rad21 regulon, involved in DNA repair,36,37 at all dehydration
time points, whereas the Pparg regulon was downregulated
(Figure 6C).

Considering that the unbiased GSEA yielded an upregula-
tion of mainly metabolic pathway genes, together with hyp-
oxia, we performed a GSEA focusing on metabolic pathways
only (Figure 6D, Supplemental Table 7). This analysis revealed
an upregulation of ribosome- and proteasome-related genes,
suggesting high protein turnover (Figure 6, E and F). Also,
genes involved in OXPHOS and glycolysis were upregulated
in mRECs after 36–48 hours of dehydration (Figure 6,
B and G), whereas expression of TCA cycle–related genes
did not show prominent changes, as visualized by metabolic
pathway mapping (Figure 6H). Consistently, freshly isolated
mRECs from mice exposed to 48 hours of water deprivation
showed a higher level of oxygen consumption coupled to ATP
synthesis, whereas oxygen consumption was not affected in
cRECs from the same animals (Figure 6I). Taking advantage of
the mREC taxonomy, we observed that OXPHOS genes were
enriched in papillary mRECs compared with other mRECs in
both control and 48 hours dehydration conditions (Figure 6J).

In contrast to mRECs, which launched a response in two
clearly distinct phases, each time point after dehydration
largely evoked a different response in gRECs (Supplemental
Figure 7, A and B). In addition, changes in expression of the
aforementioned genes involved in cell volume regulation,

levels. (H) Pathway map showing changes in transcript levels of genes belonging to myo-inositol and polyol pathways, and genes en-
coding transporters related to cell volume regulation in mRECs after 48 hours of dehydration compared with control. Scale bar: red
corresponds to gene upregulation after dehydration, gray indicates that the change in gene expression did not reach the fold change
threshold to be color-coded. See also Supplemental Figure 7 and Supplemental Table 1.
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metabolism, protein turnover, and stress response were differ-
ent in gRECs (Supplemental Figure 7, C–H). Overall, the
adaptive response of gRECs to dehydration was qualitatively
and quantitatively different, likely because these cells are not
exposed to such high hyperosmolarity and are influenced by
their local microenvironment.

OXPHOS Upregulation Promotes EC Survival and Urine
Concentration
To investigate whether the upregulation of the OXPHOS gene
signature and oxygen consumption in mRECs after dehydra-
tionwas triggered by hyperosmolarity, we developed an in vitro
model using HUVECs, by exposing them to a progressive in-
crease in urea and NaCl concentration in the culture medium,
the main osmolytes in the kidney medullary interstitium,38

until reaching an osmolality of 900–1200 mOsm/kg in the me-
dium corresponding to osmolality values close to the maximal
urine concentration capacity in humans.38 Consistent with
the mREC data in dehydration, HUVECs exposed to hyper-
osmolarity upregulated several osmolytes necessary to
maintain cell volume, such as sorbitol and glutamine, among
others (Supplemental Figure 8A). They also upregulated genes
encoding the different complex subunits of OXPHOS (Figure
7A), and augmented OCRATP (Figure 7B). The Na

+/K+ ATPase
pump plays a critical role in maintaining physiologic concen-
trations of intracellular sodium, especially in hyperosmolarity
conditions, a process requiring high amounts of ATP.25,39,40 As
in mRECs during dehydration (see above), protein levels of
this pump were upregulated in HUVECs exposed to hyperos-
molarity (Supplemental Figure 8B). In agreement, treatment of
hyperosmolarity-exposed HUVECs with ouabain, a Na+/K+

ATPase inhibitor, inhibited the increase in OCRATP (Figure 7B),
suggesting that the increase in OXPHOS is necessary to sustain
ATP production for sufficient Na+/K+ ATPase activity.

Hyperosmolarity-induced upregulation of OXPHOS was
associated with an increase in mitochondrial content and re-
active oxygen species levels (Figure 7, C–E). To study the func-
tional relevance of the increased OXPHOS gene expression,
we treated hyperosmolarity-exposed HUVECs with OXPHOS
inhibitors (complex I inhibitor rotenone; complex V inhibitor
oligomycin). OXPHOS inhibition compromised HUVEC sur-
vival when cells were cultured in a hyperosmolar medium, in
which glucose was replaced by galactose to increase aerobic

over anaerobic metabolism41–43 (Figure 7F). By contrast, con-
trol ECs exposed to the same medium were not significantly
affected by OXPHOS inhibitors, highlighting a key role
for OXPHOS in EC survival in hyperosmolarity conditions
(Figure 7F).

Furthermore, treatment of mice with metformin, a multi-
functional compound that inhibits complex I of OXPHOS
and oxygen consumption in ECs (Supplemental Figure 8C;
consistent with previous reports44,45), during dehydration el-
evated plasma urea levels, without altering plasma creatinine
levels (,0.12 mg/dl), consistent with more severe dehydration
(Figure 7G).26 Notably, metformin treatment largely prevented
the increase in urine osmolality during dehydration, reflecting
an impaired capability in urine concentration (Figure 7H).
Overall, mRECs adapted to hyperosmolarity upon dehydration
by upregulating an OXPHOS gene signature and oxygen con-
sumption, whereas treatment with amultifunctional OXPHOS
blocker (see Limitations of the Study) impaired the physiologic
ability of mice to concentrate urine to spare body fluid.

DISCUSSION

Renal Endothelial Cell Heterogeneity in Health
Using scRNA-seq, we revealed a total of 24 different REC
subpopulations, of which eight were previously not recog-
nized. In the glomerular vasculature, we identified a new
gREC subpopulation (G4) presumably lining the juxtaglo-
merular section of the efferent arteriole. Interestingly, gRECs
in afferent arterioles associated with the JGA (G2) highly ex-
pressed genes encoding cell-cell interactionmolecules, possibly
to control processes (renin production, tubulo-glomerular
feedback) that require close interactions between gRECs, renin-
producing cells, and other cells in the JGA.46 For instance, en-
riched Dll4 expression in this gREC cluster might signal to
Notch-expressing granular cells to maintain renin produc-
tion.6,47 Consistent with their role in fine-tuning GFR,48 gRECs
from afferent and efferent arterioles highly expressed marker
genes encoding vasoregulatory molecules. In the cortical
vasculature, we deconvoluted cortical capillaries in two sub-
populations, characterized by high (C4) or low (C5) ApoE
expression and other transcriptome signatures. In the medul-
lary vasculature, we identified novel markers of DVR mRECs,

Numbers between parentheses indicate the number of genes (g) that are part of the regulons for the respective transcription factors. Red
corresponds to high transcription factor activity, blue corresponds to low transcription factor activity. (D) GSEA using only metabolic gene
sets of mRECs after 48 hours of dehydration compared with controls. (E–G) Expression-level scaled heatmap of ribosomal genes (E),
proteasome genes (F), and glycolysis-related genes (G) for mRECs from the control condition and at different dehydration time points. (H)
Pathway map showing changes in transcript levels of metabolic genes of glycolysis, TCA cycle, and oxidative phosphorylation in mRECs
after 48-hour dehydration compared with controls. Scale bar: red corresponds to gene upregulation after dehydration, gray indicates that
the change in gene expression did not reach the fold change threshold to be color-coded. (I) OCRATP of cRECs and mRECs isolated from
control mice and frommice subjected to 48 hours of dehydration (DH). Data are from n=3 independent experiments, for which threemice
were pooled each time. (J) Expression-level scaled heatmap of oxidative phosphorylation-related genes for mRECs from papillary sub-
clusters or other medullary subclusters in the control condition and after 48 hours dehydration. See also Supplemental Figure 5 and
Supplemental Table 7. Statistical test: unpaired t test, *P,0.05.
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including, for instance, Scin encoding Scinderin (binding the
water channel aquaporin-2 in collecting duct epithelial cells49).
The high expression of Scin andAqp1 in DVRmRECs raises the
question whether a similar interaction of Scinderin with AQP1
may be operational in mRECs. Other novel markers of DVR
mRECs included genes involved in vasodilation (Adipor2,
Hpgd), consistent with the role of DVR mRECs in regulating
medullary blood flow and osmolarity gradient formation.50

We also identified new markers of mRECs of the DVR and
AVR in the medullary papilla, which were poorly characterized
in the past. For instance, papillary AVR mRECs highly ex-
pressed Cryab involved in the hyperosmolarity response51

and Car2, the loss of which causes polyuria and a failure to
augment the medullary osmolarity and thereby to concentrate
the urine.52

We also uncovered capillary and vein mREC and cREC
populations showing a response-to-IFN phenotype as well
as antigen processing and presentation-related genes, but
not Cd80 and Cd86, suggesting participation in immune sur-
veillance as semiprofessional antigen presenting cells, capable
of activating only antigen-experienced immune cells.53 Angio-
genic capillary mRECs and cRECs were also identified, al-
though whether they are involved in repair/regeneration of
damaged RECs requires further study.

Renal Endothelial Cell Response to Dehydration
The fundamental question of how mRECs adapt to dehydra-
tion and survive in hyperosmolarity conditions has not re-
ceived much attention. This is highly relevant because ECs
have long half-lives, and mRECs are exposed to inhospitable
conditions during dehydration, whichwould be lethal to other
cell types in the body. Dehydration-exposed mRECs upregu-
lated expression of genes involved in heat shock proteins, cy-
toskeleton rearrangement, and DNA damage/growth arrest,
consistent with a response to the hypertonic effect of high
NaCl and to the denaturating effect of urea on cellular mac-
romolecules,32,38 as described in renal innermedulla epithelial
cells.32 mRECs from dehydrated mice also highly expressed
genes, involved in proteasome degradation, possibly of dena-
tured proteins, and increased the expression of ribosomal genes,
possibly to compensate for the enhanced protein turnover.54,55

Medullary epithelial cells accommodate hyperosmolarity
by accumulating organic metabolites as inert osmolytes.25,32,56–58

In agreement,mRECs upregulated the expressionof genes involved
in water transport, taurine/sodium and amino acid/sodium
cotransport, and myo-inositol and sorbitol synthesis, as well
as genes involved in Na+/K+-ATPase–mediated sodium export
during dehydration, presumably to equilibrate osmotically
with their hypertonic interstitium while preventing toxic intra-
cellular Na+ accumulation. The lowmedullary oxygen, resulting
in part from the low blood flow rate in the vasa recta, is an
inevitable accompaniment of urinary concentration, especially
in antidiuretic conditions.59 Deeper hypoxia in the medulla
during dehydration may contribute to the upregulated expres-
sion of glycolytic genes in mRECs, as also occurs in medullary

renal epithelial cells, which primarily rely on glycolysis for ATP
production.25,60

Interestingly, although ECs are glycolysis-addicted and
produce most of their ATP glycolytically,61 mRECs upregula-
ted OXPHOS gene expression and oxygen consumption upon
dehydration, while being exposed to deeper hypoxia, possibly
to use the available oxygen more efficiently. Furthermore,
OXPHOS inhibition compromised EC survival in hyperos-
molar conditions in vitro and largely prevented urine concen-
tration in dehydrated mice in vivo. Such a role for OXPHOS
in the response to hyperosmolarity has not been documented
previously, also not in medullary epithelial cells. We speculate
that hyperosmolarity-exposed mRECs upregulate OXPHOS to
provide ATP for energy-demanding processes such as protein
synthesis, volume and osmolyte content regulation, and main-
tenance of intracellular sodium concentration requiring so-
dium export driven by the Na+/K+ ATPase,25,39,40 especially
because ATP production from glycolysis can be compromised
if a fraction of the glycolytic intermediates is shunted for os-
molyte (sorbitol; myo-inositol) synthesis in hyperosmolarity,
and OXPHOS is a more productive pathway to generate ATP
per mole of glucose than glycolysis. Hyperosmolarity-exposed
mRECsmight also upregulate OXPHOS to produce “metabolic
water” during mitochondrial respiration, resulting from the
oxidation of organic materials.62–65 Whether and to which ex-
tent metabolic water production by hyperosmolarity-exposed
mRECs contributes to cell volume regulation in dehydration
remains to be determined.

In addition to providing a detailed REC taxonomy in base-
line condition, this study also offers insight in the transcrip-
tome adaptation of RECs to dehydration at the single-cell
level, highlighting a previously unrecognized role of
OXPHOS in the mREC response to hyperosmolarity and
the ability to concentrate urine in dehydration. As such, this
study may constitute grounds for examining the response of
medullary epithelial cells upon hyperosmolarity challenge in
the future. Furthermore, the publicly available extensive data-
set is a rich resource for future data mining.

Limitations of the Study
There were several limitations of our study. First, we used
metformin as a non-toxic compound to inhibit OXPHOS in
RECs in dehydrated mice in vivo, and acknowledge that this
compound may have additional activities66,67 and can act in-
directly, and hence more direct proof is required in the future.
Second, although we did not identify REC subclusters
expressing a tissue dissociation artifact gene signature, we can-
not exclude the possibility that the REC isolation procedure
might have influenced REC transcriptomes. Tominimize such
effect, we used similar dissociation protocols. Third, unfortu-
nately, the insufficient number of cRECs at 24 hours of de-
hydration precluded us from confidently characterizing their
possible different transcriptome response to dehydration.
Fourth, although we demonstrate that freshly isolated mRECs
from dehydrated mice have elevated oxygen consumption,
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additional studies are required to further characterize possible
elevations of OXPHOS and oxidative stress in vivo by comple-
mentary quantitativemethods. Finally, we also acknowledge that
water deprivation may evoke additional systemic and local ef-
fects, such as reducing caloric intake, BP, and urine volume, and
altered mechanostimulatory stimuli (lower blood and urine
flow),10,26,28,30 which may contribute to the observed findings.
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