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Abstract
Community structure is a commonly observed feature of real networks. The term
refers to the presence in a network of groups of nodes (communities) that feature
high internal connectivity, but are poorly connected between each other. Whereas the
issue of community detection has been addressed in several works, the problem of
validating a partition of nodes as a good community structure for a real network has
received considerably less attention and remains an open issue. We propose a set of
indices for community structure validation of network partitions that are based on an
hypothesis testing procedure that assesses the distribution of links between and within
communities. Using both simulations and real data, we illustrate how the proposed
indices can be employed to compare the adequacy of different partitions of nodes as
community structures in a given network, to assess whether two networks share the
same or similar community structures, and to evaluate the performance of different
network clustering algorithms.

Keywords Community structure · Community validation · Graph · Network
clustering · Network enrichment analysis · Stochastic blockmodel

1 Introduction

The growing availability of data on real world networks has inspired the study of com-
plex networks in the multidisciplinary fields of social, technological and biological
networks. What makes networks so attractive? We are constantly dealing with net-
works: supermarkets use networks to propose specific deals to targeted groups; banks
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orchestrate a complex system of transactions between them and clients; media net-
works dominate our lives, and inside each living being genes express and co-regulate
themselves via complex networks (even when we sleep). Graphs constitute a math-
ematical representation of complex systems, whose understanding requires a careful
study of their structure. Such a task can be particularly challenging for large graphs
featuring hundreds or thousands of nodes.

The study of the structure of a graph is often achieved by decomposing it into its
constituent modules or communities. Girvan and Newman (2002) address the con-
cept of community structure as a network property. Indeed networked systems can
be described via main statistical properties such as small-world property, power-law
degree distributions, network transitivity and clustering coefficient. They highlight that
the property of community structure is found in most real networks. This essentially
means that nodes within a network are connected together in tightly joined groups,
while between those groups connections are looser. Identifying communities in a net-
work is highly relevant, as it enables to disclose the presence of an internal network
structure at a very preliminary analysis step. Over the years, a significant effort has
been devoted to the development of several community detection algorithms (Clauset
et al. 2004; Pons and Latapy 2005; Newman 2006; Blondel et al. 2008; Newman
and Clauset 2016), with a strong focus on the scalability of these methods to large
networks.

In applied network analysis, the communities that constitute a network are usually
unknown. A network may not have any property of community structure; or, even if
it does have a community structure, the communities remain unknown and have to be
reconstructed via a community detection algorithm. Once the communities have been
estimatedwith a network clustering algorithm, the analyst is then left with questions on
the adequacy of the retrieved clusters. On the one side, the nodes may be misclassified
(assigned to the wrong community); on the other, the graph at hand may not have a
true underlying community structure, and the clusters may thus be scarcely relevant.
The question that motivates our work is thus: how can we evaluate when a partition
of a given network is meaningful?

In the analysis of real networks where no information on the true communities is
available, it is common practice to try to relate the clusters obtained through a cer-
tain community detection algorithm to known features of the nodes. If an association
between some features and the clusters can be found, this may be taken as a confir-
mation of the goodness of the clusters. However, this practice is problematic, because
it does not take into account network topology, which is what actually determines
the community structure. For example, a network may exhibit a strong community
structure even if this structure cannot be related to any observed feature of the nodes;
and, on the contrary, it is possible that in a network without community structure, a
community detection procedure may produce clusters that can be related to certain
nodal attributes, but that are nevertheless meaningless. Thus, a more robust approach
to community validation, based on network topology, is needed.

Two recent attempts to assess the quality of network partitions have focused on
the possibility to improve clustering methods by exploiting metadata, i.e. additional
information about the nodes (Newman and Clauset 2016; Peel et al. 2017). Newman
andClauset (2016) proposed a novel clusteringmethod that combines a network and its
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metadata, arguing that relevant metadata can improve the performance of clustering
methods. On the other hand, Peel et al. (2017) argued against the use of metadata
as ground truth for the assessment of the quality of clusters in real-world network.
Finally, Carissimo et al. (2018) recently proposed a method for the evaluation of
network partitions that does not take metadata as ground truth; instead, the method
evaluates the stability of the partition recovered by a given algorithm against random
perturbations of the original graph structure.

In this article we propose a new method for the validation of network partitions
as community structures. We focus on the idea that the validation of network parti-
tions should primarily focus on the distribution of links between nodes in the different
clusters, rather than simply consider the distribution of nodes among clusters or try
to identify observed attributes that correlate with the clusters. Indeed, when assessing
the goodness of different partitions of a network, intuitively we would like to rate
better partitions with more links connecting nodes within the same community, and
less links connecting nodes in different communities. Our method is based on a sig-
nificance testing procedure for the number of links that are observed between and
within the communities; the results from these tests are then combined into a commu-
nity structure validation (CSV) index that provides an overall assessment of whether
a certain partition of nodes induces a community structure in the network. Figure 1
summarizes the steps for the construction of the CSV index.

Our work borrows the concept of network enrichment from the literature on cross-
talk enrichment between gene sets and pathways in biological networks, implementing
in particular a one-tailed adaptation of the Network Enrichment Analysis Test (NEAT)
proposed by Signorelli et al. (2016). Although the comparison of genetic networks has
been an important driver of our work, we emphasize that the proposed methodology
is more general and it can be applied to other types of networks as well. Our approach
provides also a practical way of comparing networks, by assessing similarity and
differences in their community structures.

The remainder of the paper is organised as follows: in Sects. 2 and 3 we describe the
construction of community structure validation indices andwe discuss how they can be
employed to validate network partitions and to compare community structures across
networks. The proposed methodology is evaluated through simulations in Sect. 4 and
illustrated with two example applications in Sect. 5. Section 6 briefly summarizes the
results obtained in this paper.

2 Community structure validation

In this Section we introduce the main methodological contributions of our work. In
Sect. 2.1we propose a statistical testing procedure to assesswhether a specific partition
is a valid community structure for a given graph. In Sect. 2.2 we define a set of indices
that summarize the results from the testing procedure, allowing to quantify the strength
of the evidence that a partition induces a valid community structure in a network.
We have implemented the proposed methodology in the R programming language (R
Core Team 2020). The code used in this paper is available from https://github.com/
mirkosignorelli/csv.
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Tests within 
each community 

(black edges) 

(a) (b) 

(c)(d) 

Tests between 
pairs of communi�es 

(red edges) 

Fig. 1 Graphical representation of the construction of theCommunity StructureValidation index.aConsider
a binary graph of interest. In the example, we use the Zachary Karate club graph. bDefine a partition of the
nodes into q clusters or communities. The communities may either be known a priori, or be the result of a
clustering procedure. c Following the testing procedure outlined in Sect. 2.1, perform q tests of enrichment
within each community and q(q − 1)/2 (or q2 − q if the graph is directed) tests of enrichment between
each pair of different communities. d Combine the results of the tests thus performed in the Community
Structure Validation Index (CSV), as illustrated in Sect. 2.2

2.1 Inferential procedure

We consider a graph G = (V , E), which consists of a set of vertices (or nodes) V
connected by a set E of edges or arrows. Although in this paper we focus mostly
on undirected graphs, our approach can be applied to directed and mixed graphs as
well. We denote by PV = {C1, ...,Cq} a partition of V into q disjoint sets, such that
Cr ∩ Cs = ∅ if r �= s and ∪q

r=1Cr = V .
In order to assess whether PV induces a community structure in G, we compare

the observed number of links within and between each set with the number of links
that we would expect to observe by chance if the groups were irrelevant. We do this
by implementing a one-tailed adaptation of NEAT, the Network Enrichment Analysis
Test proposed by Signorelli et al. (2016). For undirected networks, NET compares the
observed number of edges nAB between the set of nodes A and B with an hypergeo-
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metric null model which assumes that

NAB ∼ hypergeom (n = dA, K = dB, N = dV ) , (1)

where dA, dB and dV denote the total degrees of sets A, B andV . For directed networks,
NEAT compares the observed number of arrows nAB from the set of nodes A to the
set of nodes B with

NAB ∼ hypergeom (n = oA, K = iB, N = iV ) , (2)

where oA denotes the outdegree of A and iB and iV are the indegrees of B and V .
In its original implementation (Signorelli et al. 2016), NEAT tests the null hypoth-

esis H0 : μAB = μ0
AB that the expected number of edges (arrows) between

A and B, μAB = E(NAB), is equal to the expected number of links μ0
AB =

E(NAB |H0) = nK/N obtained from models (1) or (2) against the two-tailed alterna-
tive H1 : μAB �= μ0

AB . Here, instead, we implement a one-tailed adaptation of NEAT
and consider two distinct one-tailed tests, one for overenrichment, H0 : μAB = μ0

AB
vs H1 : μAB > μ0

AB , and one for underenrichment, H0 : μAB = μ0
AB vs

H1 : μAB < μ0
AB .

Since a community structure features high internal connectivity within each com-
munity and few connections between different communities, we assess the extent to
which PV generates a community structure by testing

1. overenrichment within each community Cr , r ∈ {1, ..., q}:

H0 : μrr = μ0
rr , H1 : μrr > μ0

rr , (3)

where μrr = E(Nrr ) denotes the expected number of links between nodes in Cr ,
and μ0

rr is the corresponding null expectation from model (1) if G is undirected,
or from model (2) if it is directed. Then, we compute the mid-p-values prr =
1
2 P (Nrr = nrr |H0) + P (Nrr > nrr |H0);

2. underenrichment between each pair of communities (Cr ,Cs), with r < s ∈
{1, ..., q} if G is undirected or r �= s if it is directed:

H0 : μrs = μ0
rs, H1 : μrs < μ0

rs, (4)

where μrs = E(Nrs) denotes the expected number of links between nodes in sets
Cr and Cs , and μ0

rs the null expectation from model (1) if G is undirected, or (2)
if it is directed. Here, we obtain the mid-p-values prs = 1

2 P (Nrs = nrs |H0) +
P (Nrs < nrs |H0).

Because the procedure outlined above requires the computation of q(q +1)/2 tests
for undirected graphs, or q2 tests for directed graphs, we account for multiple testing
using the multiple testing correction procedure proposed by Heyse (2011) (which is
an adaptation of the Benjamini–Hockberg method for p-values obtained from discrete
test statistics) and we derive the adjusted p-values p̃rr and p̃rs . Alternative multiple
testing corrections, or no multiple testing correction at all, may be considered as well.
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1170 M. Signorelli, L. Cutillo

2.2 Community structure validation indices

Ideally, evidence that a partition induces a clear community structure is strongest if
every null hypothesis is rejected for a given type I error α, i.e., p̃rr < α and p̃rs < α

∀r , s. More generally, a large proportion of rejections can be regarded as sufficient
evidence of a valid community structure. We summarize this intuition through a set of
Community StructureValidation (CSV) indices. The steps involved in the construction
of the CSV indices are illustrated in Fig. 1.
For undirected graphs, we define the CSV index as

CSVU =
∑q

r=1 I ( p̃rr ≤ α) + ∑
r>s I ( p̃rs ≤ α)

q(q + 1)/2
. (5)

The corresponding index for directed graphs is given by

CSVD =
∑q

r=1 I ( p̃rr ≤ α) + ∑
r �=s I ( p̃rs ≤ α)

q2
. (6)

CSVU and CSVD represent the proportion of null hypotheses described in Sect. 2.1
that can be rejected at a given significance levelα (after correcting formultiple testing).
Unless otherwise stated, hereafter we set α = 0.05 for the computation of the CSV
indices. By definition, CSVU ∈ [0, 1] and CSVD ∈ [0, 1]; higher values of CSV
provide stronger evidence that a partition of nodes induces a community structure in
a graph.

Besides evaluating the validity of a partition as a whole with the CSV index, it may
be interesting to also check whether each cluster Cr ∈ PV is well separated from
the others. This can be done by considering, for each set Cr , the proportion of tests
involving Cr that lead to a rejection at the α level:

I ( p̃rr ≤ α) + ∑
s �=r I ( p̃rs ≤ α)

q
.

Lastly, a valuable feature of the CSV indices defined in Eqs. (5) and (6) is that they
can be directly interpreted as the proportion of null hypotheses that can be rejected
for a given α level. However, one may additionally be interested in evaluating the
“strength” of each rejection by weighting each rejection by the distance between p̃rs
and α. This can be done by considering a weighted version of CSV, which we call
WCSV, where we weight each rejection I ( p̃rs ≤ α) by α− p̃rs

α
∈ [0, 1]. For example,

for undirected graphs this yields

WCSVU =
∑q

r=1 I ( p̃rr ≤ α)
α− p̃rr

α
+ ∑

r>s I ( p̃rs ≤ α)
α− p̃rs

α

q(q + 1)/2
. (7)

An equivalent definition for directed graphs can be obtained by adding weights to Eq.
(6). Similarly to CSV, also WCSV ∈ [0, 1]; moreover, WCSV ≤ CSV . As we will
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show in Sect. 4.2, CSV and WCSV typically differ for small graphs, and they tend to
achieve the same value for larger graphs (Fig. 3).

3 Comparing different network partitions and different networks

3.1 Comparing different partitions of a network

Network clustering represents a common way to summarize the set of relations
encoded in a network. However, in practice this task is complicated by the availability
of several alternative clustering algorithms that typically produce different network
partitions. When this happens, one is left with the question of which partition can
separate better the retrieved clusters.

In Fig. 2 we show how CSV can be employed to compare different partitions
of a network: by computing the value of CSV for each partition, we can obtain a
quantification of how strong is the evidence that each network partition induces a
community structure with well-separated communities. The higher the value of CSV,
the stronger the evidence that a partition produces a clear community structure.

3.2 Comparing community structures across networks

The difficulty to inspect and visualize relations between thousands of nodes represents
a primary challenge in the analysis of large networks. As discussed in Sect. 3.1,
network clustering algorithms are often employed to simplify this task, summarizing
a network into a set of clusters of nodes. In addition to this, clustering algorithms are
also employed to compare networks. The idea, in this context, is that we may expect
similar networks to share similar communities, so that the comparison of communities
in networks can point out structural similarities and differences between networks.

A simple way to put this idea in practice is to apply a clustering algorithm to the
networks of interest, and check the overlap (proportion of shared genes) between the
communities of each network: a high overlap between the partition P1 of graph G1
and the partition P2 of graph G2 can be taken as an indication that the networks share
similar community structures. However, such a comparison directly compares only
the allocations of nodes within P1 and P2, ignoring the different distribution of edges
in the two graphs. In this Section we illustrate how CSV allows to carry out a more
comprehensive assessment of the overall similarity between the community structures
of two graphs.

We propose a procedure that is based on the assessment of the validity of P1 as
community structure for G2, and of P2 as community structure for G1. The idea at the
basis of this approach is that if G1 and G2 have the same (or similar) community struc-
ture, then the communities extracted from one graph should also induce a community
structure in the other graph.

This procedure comprises the following steps:

1. choose a community detectionmethod and apply it toG1 so as to derive its partition
in q communities P1 = {C11, ...,C1q}. Similarly, obtain P2 from G2;

123



1172 M. Signorelli, L. Cutillo

(a)

(b)

CSV(P1) = 0.9

CSV(P2) = 0.4

CSV(P3) = 0.1

P1

P2

P3

(c)

Fig. 2 Graphical representation of the use of the Community Structure Validation index for the comparison
of different network partitions. a We generate a network with 100 nodes and 4 communities from the
degree-corrected stochastic blockmodel illustrated in Sect. 4.1. b We consider three different partitions of
the nodes: the partition induced by true communities (top) and two partitions where 20% (centre) and 40%
(bottom) of the nodes are assigned to the wrong cluster. c Computation of CSV results into values close
to 1 for the true communities, into intermediate values for partitions where a small proportion of the nodes
are assigned to the wrong communities and into values of CSV close to 0 for partitions that do not induce
a community structure into the network

2. compute the community structure validation indices of P1 in G1 and in G2, and of
P2 in G1 and in G2;

3. compute the relative indices

RCSV
(Pi |G j

) = CSV (Pi |G j )

CSV (Pi |Gi ) , i �= j ∈ {1, 2}, (8)

which compare the values of the CSV index of partition Pi in graph G j with the
value of CSV for Pi in Gi .
The rationale behind RCSV

(Pi |G j
)
is that since Pi is the partition in communities

of Gi , we expect CSV (Pi |Gi ) to be close to 1, or at least as high as possible for Gi .
The value of CSV (Pi |G j ) will be typically smaller than CSV (Pi |Gi ): we expect it to
be close to 0 if Pi provides a bad partition for G j ; however, if Pi partitions G j well,
the value of CSV (Pi |G j ) can be expected to be closer to CSV (Pi |Gi ).

As a result, we expect higher values of RCSV (P1|G2) and RCSV (P2|G1) when G1
and G2 share similar communities; if, on the other hand, the communities in the two
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graphs are different, we expect RCSV (P1|G2) and RCSV (P2|G1) to be close to 0. In
Sect. 5.2 we provide an example of this use of the CSV index.

4 Simulations

In this section we study the behaviour of CSV in three different simulation studies. In
Sect. 4.1 we introduce a degree-corrected stochastic blockmodel for binary graphs that
we employ to simulate the data. In Sect. 4.2 we study how graph size and modularity
affect the capacity of CSV to detect a clustering of nodes as valid community struc-
ture. In Sect. 4.3 we study the behaviour of CSV with respect to increasing levels of
community degradation, considering at the same time different values of modularity.
Finally, in Sect. 4.4 we employ CSV to compare the performance of four different
network clustering algorithms.

4.1 A degree-corrected stochastic blockmodel for binary graphs

The assessment of the performance of the CSV indices requires a realistic generative
model of graphs with weak and strong community structures. This is tipically achieved
by recurring to stochastic blockmodels (Holland et al. 1983), in which the probability
of observing an edge between two nodes depends on the communities they belong
to. A problem with stochastic blockmodels, however, is that they are often too simple
to reproduce the behaviour of real networks, mainly because they assume all nodes
within a community to behave similarly. This, for example, implies that in graphs
generated from such models, nodes within each community have roughly the same
degree: a fact, this, that is in sharp contrast with most real networks, which feature a
strong heterogeneity in the degree distribution.

To overcome this limitation, several different extensions of stochastic blockmodels
have been proposed (Wang andWong 1987; Karrer and Newman 2011; Signorelli and
Wit 2018). Among them, Karrer and Newman (2011) proposed a degree-corrected
stochastic blockmodel (DCSBM) for edge-weightedundirectedgraphswhere the value
of an edge between nodes i and j depends both on their communities Ci and C j , and
on nodal weights wi and w j : yi j ∼ Poi

(
wiw jλCi C j

)
.

To simulate networks in our simulation studies, we employ a DCSBM for binary
undirected graphs that is closely related to that of Karrer and Newman (2011). We
assume that the probability πi j of an edge between nodes i and j depends both on
their communities Ci and C j by means of a block-interaction parameter θCi C j , and
on nodal weights wi and w j :

yi j |i ∈ Ci , j ∈ C j ∼ Bern(πi j ),

πi j = min(wiw jθCi C j , 1), (9)
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1174 M. Signorelli, L. Cutillo

where wi > 0 ∀i ∈ V , θCi C j ∈ [0, 1] and

∑

i

wi I (Ci = Cr ) = nr ∀Ci ,C j .

Note that the weights are defined in such a way that the average nodal weight in each
community is 1; to wit, wi > 1 will indicate that the expected degree of node i is
above the average expected degree of nodes in community Ci .

4.2 Simulation 1: performance of CSV with respect to modularity and number of
vertices

The aim of our first simulation is to evaluate how CSV is affected by the modularity
(Newman and Girvan 2004) and number of vertices of the graph. CSV relies on a
significance testing procedure between each pair of groups, whose power is expected
to be affected both by the size of the groups between which enrichment is tested and
by the extent to which the communities are well-separated in the graph (to wit, the
modularity). Therefore, we expect that CSV performs better with larger and denser
networks and, for a given network size, with higher modularity and smaller number
of communities.

In order to assess the performance of CSV with respect to network size and
modularity, we consider four sequences of graphs with number of vertices v ∈
{100, 500, 1000, 5000}. For each v, we generate a sequence of 100 binary graphs
with p = 6 communities from the DCSBM described in Sect. 4.1, where the prob-
abilities to have an edge between nodes belonging to the same community are fixed
in such a way that Er (θrr ) = 0.3 and θrr ∈ [0.22, 0.38] ∀r ∈ {1, 2, ..., 8}, and we
progressively increase the probability to have an edge between nodes belonging to
different communities, i.e., θrs ∈ {0, 0.003, ..., 0.297, 0.3} ∀r �= s. Since the θrr s are
fixed, increasing θrs reduces the modularity of the graphs.

For each of the graphs thus generated, we compute the CSVU andWCSVU indices
associated to the partition of nodes induced by the true communities, following the
procedure outlined in Sects. 2.1 and 2.2. Figure 3 shows how the value of the two
indices changes for different values of modularity and v. We can observe that the
difference between WCSV and CSV tends to vanish in large networks. Since we are
testing enrichments between the true communities, ideally we would like the CSV
indices to attain their maximum possible value of 1; however, the fact that CSV relies
on a hypothesis testing procedure implies that this value can only be achieved for
sufficiently large networks, and for partitions that have a good level of modularity.
Indeed, for small graphs (v = 100) the index seldom achieves its maximum; this
is due to the fact that if the communities are small, rejecting the null hypotheses
of no enrichment is harder. For larger graphs (v ∈ {500, 1000, 5000}), instead, the
indices achieve their maximum value when the modularity is approximately above
0.3; on the other hand, the value of the indices start to drop as the modularity of
the partition generated by the true communities decreases (Q < 0.2). This result is
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Fig. 3 Study of the performance of CSVU and WCSVU with respect to the number of nodes (v) and the
modularity of the partition induced by the true communities. The capacity of CSV to validate the true
communities as valid network partitions is lower in small networks (top left panel), where moderate values
of CSV andWCSVmay correspond to valid network partitions.With larger networks (top right, and bottom
panels), instead, the true communities are easily identified as valid network partitions, provided that they
generate an actual community structure (i.e., themodularity is not too low). Note how the difference between
CSV and WCSV vanishes in large networks

desirable, because the low modularity indicates that the partition do not induce an
actual community structure in the network.

4.3 Simulation 2: behaviour of CSV with respect to community degradation

In Sect. 4.2 we have assessed how network size and modularity affect the capacity
of CSV to declare that the real communities result into a community structure. The
purpose of this second simulation, instead, is to understand the sensitivity of CSV to
different levels of community degradation. This is important because when dealing
with real data the true communities are typically be unknown, and analysts need to
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estimate them with a clustering algorithm that is likely to misclassify some nodes.
From a practical point of view, thus, it is important to knowwhether CSV is capable to
validate community structures even when a small proportion of nodes is misclassified.

Our desired behaviour for CSV is that a partition of nodes where most of the nodes
are correctly classified, and only a small proportion of nodes is assigned to a wrong
cluster, still induces a community structure in the network, and it should thus yield
high CSV values. Higher proportions of wrongly classified nodes, instead, should
progressively destroy the community structure, determining a sharp decrease of the
CSV index.

To verify this behaviour, we generate six graphs with v = 1000 nodes and p = 8
blocks from a degree-corrected stochastic blockmodel where we keep constant the
probabilities of interaction within blocks, θrr = 0.3 ∀r ∈ {1, 2, ..., 8}. We progres-
sively increase the probabilities of interaction between blocks θrs, r �= s from 0.01
in Simulation 2A to 0.3 in Simulation 2F. Note that the modularity of the graphs
decreases (from 0.68 in 2A to 0.17 in 2F) as θrs increases.

In each of the 6 scenarios considered, we take the graph thus generated and its com-
munities as reference. Then, we generate a sequence of graphs from a degree-corrected
stochastic blockmodel where we keep the same block-interaction probabilities θrr and
θrs , but we change community to a proportion q of nodes. We consider 100 graphs
for each level of community degradation q ∈ {0, 0.05, 0.10, ..., 0.95, 1} and compute
the CSV associated to the reference communities.

Supplementary Figures 1 and 2 show how the distribution of CSV changes for dif-
ferent levels of community degradation q. In Supplementary Figure 1 we can observe
that for high values of modularity, partitions of nodes with levels of community degra-
dation up to 20–25% still result into a clear community structure. The tolerance to
community degradation is instead lower when the modularity decreases, as shown in
Supplementary Figure 2. In both cases, the CSV index is stable around 1 for moderate
values of community degradation, after which it rapidly decreases towards 0, indicat-
ing that higher levels of perturbation of the real communities break the community
structure. These results show that CSV adheres to the desired behaviour described at
the beginning of this section.

4.4 Simulation 3: a comparison of network clustering algorithms based on CSV

The purpose of this third simulation is to show how CSV can be employed to compare
the performance of different network clustering algorithms. We consider the same six
scenarios of simulation 2 (where v = 1000, p = 8, θrr = 0.3 ∀r , and θrs, r �= s,
progressively increases from 0.01 to 0.3), generating 100 random graphs for each
scenario. We apply to each of the graphs thus generated the following clustering
algorithms:

1. fast greedy, proposed by Clauset et al. (2004);
2. leading eigenvalue, proposed by Newman (2006);
3. Louvain, proposed by Blondel et al. (2008);
4. walktrap, proposed by Pons and Latapy (2005);
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so that for each graph we obtain four partitions of nodes P j , j = 1, 2, 3, 4 (one for
each method), and compute the value of CSV for each partition. Then, we compare
the values of CSV across partitions obtained from the different methods. Because
a “good” clustering method should detect partitions that induce strong community
structures, the best performing methods are those that achieve higher values of CSV.

Supplementary Figure 3 shows the distribution of CSV for the 4 clustering methods
in each scenario. Note that for high values of modularity (Simulations 3A, 3B and
3C) the fast greedy, Louvain and walktrap algorithms perform very well, whereas the
leading eigenvaluemethod already retrieves partitions that result inweaker community
structures. As the value of the modularity increases, we observe a substantial drop also
in the performance of fast greedy.

Overall, walktrap andLouvain appear to be themost effective clustering algorithms.
Note how for small values of modularity the distribution of CSV remains stronglyly
concentrated at 1 with walktrap, whereas it is slightly more dispersed with Louvain.
This seems to indicate that walktrap may slightly outperform Louvain with “weak
communities”, i.e. communities that are associated to a low modularity.

5 Applications

In this Section we discuss two examples that illustrate how community structure val-
idation indices can be employed to compare different partitions of the same network
(Sect. 5.1) and to compare community structures across networks (Sect. 5.2). We
begin with an application to a network of collaborations between deputies in the Ital-
ian Chamber of Deputies, where we explore the usefulness of incorporating metadata
in community detection algorithms, andwe concludewith a comparison of community
structures across 30 tissue-specific gene co-regulation networks.

5.1 Community detection andmetadata: an application to bill cosponsorships

In Sect. 1 we mentioned that the use of nodal metadata for community detection
and community validation has recently become an active topic of discussion among
network scientists. Network data are often accompanied by annotations, or metadata,
that describe properties of nodes (such as age, gender and ethnicity in a social network,
or data capacity and location of nodes in the Internet network). Newman and Clauset
(2016) argued in favour of the use of metadata for community detection, and proposed
a community detection algorithm that uses both the graph structure and one categorical
variable to identify clusters of nodes. They claimed that when a network is not very
informative about communities, a given set of nodal labels (metadata) can improve the
accuracy of the clustering. On the other hand, Peel et al. (2017) observed that whereas
metadata describe the features of a node, the concept of community is about the edges
that exist between the nodes, rather than about the nodes themselves, and they warned
against the common practice of using metadata to validate communities in networks.

In this Section we use the CSV index to compare the performance of the 4 com-
munity detection algorithms considered in Sect. 4.4, which do not exploit metadata,
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Table 1 Value of the ARI for
network partitions with 3
clusters

Method fg np3 nc3

Fast greedy (fg) 1 0.6 0.6

Newclau + party, 3 clusters (np3) 0.6 1 0.992

Newclau + gender, 3 clusters (nc3) 0.6 0.992 1

Table 2 Value of the CSV index
for network partitions with 3
clusters

Method CSV index

Fast greedy 0.667

Newclau + party, 3 clusters 0.833

Newclau + gender, 3 clusters 0.833

to that of the method from Newman and Clauset (2016) (referred to as “Newclau”
hereafter), which makes use of metadata. The network that we use for this compari-
son is a bill cosponsorship network that summarizes the bill cosponsorship activity of
663 Deputies in Italian Chamber of Deputies during the XVI legislature (2008-2013)
(Briatte 2016; Signorelli andWit 2018). In particular, we consider a binary, undirected
network where each Deputy is a node, and an edge indicates that two Deputies have
cosponsored together at least one bill during the legislature; moreover, we consider
gender and party affiliation as metadata. A graphical illustration of the network is
presented in Supplementary Figure 4; it can be observed that nodes therein tend to
cluster according to party affiliation, but not based on gender.

Application of the fast greedy clustering algorithm leads to the identification of
3 clusters, whereas Louvain and the leading eigenvalue methods detect 4 clusters;
finally, walktrap extracts 4 clusters and a few isolate nodes. Since the Newclau method
does not select automatically the number of communities K , we set K = 3 for its
comparison to fast greedy, and K = 4 to compare it to Louvain, leading eigenvalue
andwalktrap.We compare each of the partitions thus obtained following the procedure
for the comparison of different partitions of the same network outlined in Sect. 3.1.

Table 1 reports the value of the adjusted random index (ARI) for the methods that
produce 3 clusters; it can be observed that Newclau using party or gender as metadata
result in almost the same partition, which is instead quite different from that of fast
greedy. The values of the CSV index, reported in Table 2, indicate that the partitions
identified by the Newclau method induce somewhat better community structures than
fast greedy.

As concerns the comparison of the methods that produce 4 clusters, the values of
the ARI presented in Table 3 show that three methods (Louvain, Newclau using party
as metadata, and Newclau using gender as metadata) yield very similar network parti-
tions, whereas walktrap and leading eigenvalue retrieve somewhat different partitions.
The values of the CSV index, reported in Table 4, indicate that walktrap, Louvain
and Newclau retrieve partitions that result into a clear community structure within the
cosponsorship network, outperforming the leading eigenvalue method.
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Table 3 Value of the ARI for network partitions with 4 clusters

Method wt le lou np4 nc4

Walktrap (wt) 1 0.767 0.903 0.894 0.897

Leading eigenvalue (le) 0.767 1 0.831 0.825 0.834

Louvain (lou) 0.903 0.831 1 0.970 0.982

Newclau + party, 4 clusters (np4) 0.894 0.834 0.970 1 0.988

Newclau + gender, 4 clusters (nc4) 0.897 0.834 0.982 0.988 1

We can observe that the lou, np4 and nc4 methods yield partitions that are very similar (bold)

Table 4 Value of the CSV index
for the partitions with 4 clusters

Method CSV index

Walktrap 0.90

Leading eigenvalue 0.70

Louvain 0.90

Newclau + party, 4 clusters 0.90

Newclau + gender, 4 clusters 0.90

5.2 Comparison of 30 tissue-specific gene regulatory networks

In this section we apply the procedure for the comparison of community structures
in different networks outlined in Sect. 3.2 to a collection of 30 tissue specific gene
co-regulatory networks that were inferred in Gambardella et al. (2013). The data are
publically available from https://bitbucket.org/ggambard/dina-differential-network-
analysis.

In this study, 30 tissue-specific co-regulation networks comprising 11730 human
genes were reverse-engineered from data from 2930 microarrays. The identification
of similarities and differences between these networks is complicated both by the size
of the networks, which prevents an effective graphical comparison, and by the large
number of networks considered. Here, we use the CSV1 index to compare community
structures between each pair of networks as illustrated in Sect. 3.2, and derive a simi-
larity matrix between networks that will provide a synthetic overview of the networks
at hand. We apply the Louvain network clustering method (Blondel et al. 2008) to
obtain a partition Pi of graph Gi and a partition P j of G j . To guarantee statistical
power in the testing procedure, only communities of size greater than 5 are retained in
our analysis. Then, we compute the relative indices RCSV (Pi |G j ) defined in Sect. 2.2
for each pair of graphs, deriving a 30 × 30 matrix R such that Ri j = RCSV (Pi |G j ).
In order to have a general picture of the tissues similarity, we build a similarity matrix
S = (

R + RT
)
/2, derive the corresponding distance matrix D = 1 − S and apply a

complete-linkage clustering over D. The dendrogram resulting from the clustering is
represented in Fig. 4 in circular layout. By cutting the dendrogram at different heights,
one can partition the 30 tissue-specific networks into a different number of clusters.
In Fig. 4, in particular, we discriminate among 13 clusters, highlighted in different
colours. Three of these clusters are, in fact, singletons (testis, skin and cartilage).
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Fig. 4 Dendrogram associated to the complete-linkage clustering of 30 tissue-specific gene co-regulation
networks. The resulting 13 clusters of tissues are highlighted in different colours

Ideally, one could expect gene networks associated to tissues that share similar
structure or function to be more similar with each other and, thus, to obtain as a
result higher RCSV s and similarities for such tissues so that, in the end, most of the
clusters displayed in the dendrogram would reflect analogies in tissues’ structure and
function. Indeed, this intuition seems corroborated (at least in part) by the results in
Fig.4: for example, one cluster exclusively comprises all the cerebral tissues considered
in the analysis (cerebrum, cerebellum, mid brain and brain stem), and one the only
two striated muscles (heart and skeletal muscle) involved in the study. Moreover,
the reproductive system female organs (mammary gland, uterus and ovary) are linked
together in the same cluster, and the two tissues from the lower digestive system (colon
and intestine) form together a unique cluster. Although a biological interpretation of
these results is beyond the scope of this paper, overall we can observe that CSV tends
to find higher similarities between graphs corresponding to tissues with structural or
functional similarities, in line with our initial expectations.

6 Conclusion

Community structure is a commonly observed property of real networks. The term
refers to the presence, in a network, of groups of nodes (also referred to as modules
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or communities) that are strongly tied to each other, and sporadically connected to
other nodes in the network; this feature is often exploited to simplify the interpretation
of large networks and to identify their relevant modules. Whereas the problem of
community detection in networks has received wide attention, the assessment of the
validity of a partition of nodes as community structure for a given graph has received
considerably less attention. In this article, we have proposed a strategy to perform
community structure validation of a partition P of nodes that consists of two steps.
First, the presence of enrichment between any two sets inP is assessedwith a one-tailed
modification of NEAT, the test for network enrichment analysis proposed by Signorelli
et al. (2016). Then, the results from these tests are summarized into a synthetic index
for community structure validation (CSV), which can either be unweighted (CSV) or
weighted (WCSV).

The rationale behind the CSV indices, which range between 0 and 1, is that they
will approach 1 when there is evidence of a strong separation between the sets in P
- to wit, when P induces a clear community structure - and they will be close to 0
otherwise. In this sense, the CSV indices can be used to validate P as community
structure.

Our simulations indicate that the performance of the proposed indices is poor for
very small networks (e.g., v = 100), where the hypothesis testing procedure is not
enough powerful to reject the null hypothesis of no enrichment between gene sets, but
it heavily improves for larger networks (v ≥ 500), where CSV behaves as expected
and the difference between CSV andWCSV rapidly vanishes (Sect. 4.2). Thus, CSV
is capable to identify whether a partition of nodes induces a community structure as
long as the network at hand is not too small. It is also robust to a moderate extent
of community degradation (Sect. 4.3), thus making allowance for the possibility that
a clustering algorithm may misclassify a small number of nodes. In Sect. 4.4, we
have employed CSV to compare four popular clustering algorithms for networks on
synthetic data. Our results indicate that the Louvain andwalktrap clustering algorithms
typically outperform the leading eigenvalue and fast greedy methods.

As illustrated in Sect. 3, CSV indices can be employed to compare the goodness of
different partitions of the same network as community structures, as well as to evaluate
whether different networks share similar or different community structures. An exam-
ple of the first task is given in Sect. 5.1, where we have compared partitions obtained
with several different clustering algorithms in a network representing cosponsorship
between Deputies in the Italian Parliament. An example of the second task, instead,
is provided in Sect. 5.2, where we have employed community structure validation to
quantify the extent of similarity across the community structures of 30 tissue-specific
gene co-regulation networks.

A limitation of the proposed indices is that because they depend on an hypothesis
testing procedure, they are affected by a lack of power for very small or very sparse
networks, and they may be “too powerful” when very large and dense networks are
considered instead. Moreover, the choice of the significance level α is somehow arbi-
trary. Although throughout this paper we kept α = 0.05 fixed for illustration purposes,
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it may be advisable to consider a larger α when small networks are at hand, and smaller
ones with larger networks.
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