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ADAR1-dependent editing
regulates human b cell
transcriptome diversity
during inflammation
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Angela Castela1, Maikel Colli 1, Piero Marchetti4,
Erez Levanon2, Decio Eizirik1‡ and Arnaud Zaldumbide3*‡

1ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium,
2Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel,
3Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands,
4Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
Introduction: Enterovirus infection has long been suspected as a possible

trigger for type 1 diabetes. Upon infection, viral double-stranded RNA (dsRNA)

is recognized by membrane and cytosolic sensors that orchestrate type I

interferon signaling and the recruitment of innate immune cells to the

pancreatic islets. In this context, adenosine deaminase acting on RNA 1

(ADAR1) editing plays an important role in dampening the immune response

by inducing adenosine mispairing, destabilizing the RNA duplexes and thus

preventing excessive immune activation.

Methods: Using high-throughput RNA sequencing data from human islets and

EndoC-bH1 cells exposed to IFNa or IFNg/IL1b, we evaluated the role of ADAR1

in human pancreatic b cells and determined the impact of the type 1 diabetes

pathophysiological environment on ADAR1-dependent RNA editing.

Results: We show that both IFNa and IFNg/IL1b stimulation promote ADAR1

expression and increase the A-to-I RNA editing of Alu-Containing mRNAs in

EndoC-bH1 cells as well as in primary human islets.

Discussion: We demonstrate that ADAR1 overexpression inhibits type I

interferon response signaling, while ADAR1 silencing potentiates IFNa effects.

In addition, ADAR1 overexpression triggers the generation of alternatively

spliced mRNAs, highlighting a novel role for ADAR1 as a regulator of the

b cell transcriptome under inflammatory conditions.
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Introduction

The type I interferon (IFN) response has recently been

identified as a common signature for the development of

autoimmunity (1). Induction of type I IFN (IFNa/b) following

viral infection or endogenous release of mitochondrial genetic

material is a highly regulated process in which pattern

recognition receptors (PRR), such as MDA5, RIG-I and TLR3,

act in concert to control inflammasome activation and the

production of IFNa and IFNb (2). In addition to this well-

described sensing machinery, the adenosine-to-inosine

conversion (A-to-I) catalyzed by the adenosine deaminase acting

on RNA 1 (ADAR1) plays an important role in fine-tuning the

innate immune response by destabilizing double-stranded RNA

(dsRNA) duplexes and therefore reducing PRR substrate to limit

further and potentially excessive inflammation (3).

ADAR1 exists as two isoforms that contain a central dsRNA

binding domain and an enzymatic deaminase domain located in

the C-terminal region. Both isoforms differ in localization (p110

remains mainly nuclear while p150 is expressed in the nucleus

and cytosol) and by the presence of a nuclear export signal

located in the N-terminus (4). ADAR1 has an essential role in

modifying self-dsRNA formed by repetitive inverted elements,

such as Alu short interspersed nuclear elements (SINE)

elements, which inhibits the immune response triggered by the

recognition of self-dsRNA by PRR.

Dysregulation of ADAR1 has been implicated in several

interferonopathies, autoimmune diseases and tumor

progression. Mutations within the RNA binding domain of

ADAR1 alter both substrate affinity and specificity which affect

RNA deamination and trigger the constitutive type I IFN

response in Aicardi-Goutières syndrome (5). In contrast, high

ADAR1 expression level has also been correlated with high

tumor T-cell infiltrating lymphocytes (TIL) in breast cancer,

and an increased amino acid substitution in the recognized

antigens (a consequence of cytosine-to-uracil or adenosine-to

-inosine editing at the RNA level) (6), demonstrating for the first

time a role for RNA editing enzymes in the generation of tumor-

specific neoantigens. Similarly, such processes have been

proposed as a potential source of neoantigens involved in the

development of autoimmune systemic lupus erythematosus (7).

In type 1 diabetes (T1D), increasing evidence indicate that

local inflammation or other forms of stress combined with genetic

predisposition leads to the generation and accumulation of

aberrant or modified proteins to which central tolerance is

lacking (8, 9). Examples of enzymatic deamidation or

citrullination of self-antigens (e.g., proinsulin, C-peptide, GAD65,

IA-2, GRP78, IAPP), as a consequence of activation of peptidyl

arginine deiminase (PAD) or tissue transglutaminase (tTG)

detected in pancreatic b cells in response to stress or primary

islets from T1D patients, illustrate how the islet microenvironment

can drive autoimmunity (10, 11).
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RNA editing is a post-translational modification mediated by

adenosine and cytosine deaminases which catalyzes the edition of a

nucleotide into another in the context of an “editosome” (12). In

addition to an amino acid change, RNA editing may enhance

transcriptome complexity/diversity by directly changing splicing

acceptor site motifs or altering splicing enhancer sequences with

possible consequences for b cell immunogenicity (13, 14). In T1D,

circulating T cells directed against alternative splice variants of GAD65,

secretogranin V, CCNI-008, IAPP and Phogrin have been recently

detected in patient blood samples and in the pancreatic islets (15).

To investigate the effect of the T1D pathophysiological

inflammatory milieu on ADAR1 and the b cell transcriptome,

we have analyzed high-throughput RNA sequencing data from

human islets and EndoC-bH1 cells exposed to IFNa or IFNg/
IL1b, cytokines that contribute to the pathogenesis of T1D (16,

17). We demonstrate herein that inflammatory-mediated

changes characteristic of early and late T1D development can

trigger an increased A-to-I Alu editing rate. In addition, we

demonstrate that ADAR1 not only dampens the innate immune

response in b cells but also contributes to the transcriptome

complexity with possible consequences for b cell function.
Materials and methods

Cell culture and treatment

EndoC-bH1 cells, kindly provided by Dr. Raphael

Scharfmann (Paris Descartes University, France) (18), were

maintained in low glucose DMEM supplemented with 5.5 mg/
ml human transferrin, 10 mM Nicotinamide, 6.7 ng/ml Selenite,

50 mM b-mercaptoethanol, 2% human albumin, 100 units/ml

penicillin and 100 mg/ml streptomycin. Cells were seeded in

extracellular matrix, fibronectin pre-coated culture plates.
Preprocessing and alignment of RNA
sequencing data for the editome analysis

Raw FASTQ quality was assessed using FastQC version 0.11.8

and PCR duplicates were removed with Super Deduper (19).

Remaining reads were uniquely aligned to the reference genome

(hg38 and mm10 assemblies) using STAR (20) version 2.7.3a with

parameters –alignSJoverhangMin 8 –alignIntronMax 1000000 –

alignMatesGapMax 600000 –outFilterMismatchNoverReadLmax 1

–outFilterMultimapNmax 1.

Alu editing index
RNA Editing Index (21) version 1.0 was used to assess the

overall editing in Alu elements, respectively. This measure

calculates the average editing level across all adenosines in

repetitive elements weighted by their expression, thereby
frontiersin.org
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quantifying the ratio of A-to-G mismatches over the total

number of nucleotides aligned to repeats and comprising a

global, robust measure of A-to-I RNA editing.

Quantification of expression
Abundance quantification was done using the quasi-

mapping-based mode Salmon (21) (version 0.11.2) for human

genome assembly hg38 with GENCODE version 24 and mouse

genome assembly mm10 with GENCODE version 20. Gene

expression analysis was later completed by using the tximport

R package (version 1.12.3) to transfer Salmon’s isoform-level

abundances to gene-level abundances (22, 23).
RNA-sequencing and differential
expression analysis

Total RNA was purified from EndoC-bH1 and EndoC-bH1/
ADAR1 cells using the Nucleospin miRNA Kit (Bioke) according

to the manufacturer’s guidelines. RNA quality was determined by

Experion RNA StdSens 1K Analysis Kit (Bio-Rad, product number

7007103) on a Experion Automated Electrophoresis System (Bio-

Rad) following the manufacturer’s protocol. Strand-specific bulk

RNA sequencing was performed on a NovaSeq 6000 (2x150

paired-end with a depth of >150 million reads) by Eurofins

Genomics Europe Sequencing GmbH (Konstanz, Germany).

Reads were quality checked with fastp (24) to exclude reads of

poor quality and remove remaining adapters. We used Salmon

v1.3 (25) with additional parameters “–seqBias –gcBias –

validateMappings” to quantify the gene and transcript

expression. GENCODE was used as the reference genome and

was indexed with default parameters. Differential Gene Expression

(DGE) was performed with DESEq2 v.1.30.1 (26) with paired

experiments included in the general linear model (i.e., ~ pairing +

overexpression). For each gene, we obtained a log2 fold-change

(log2FC), associated to an adjusted P value, which highlights the

difference in gene expression between ADAR1-overexpressing cells

and control cells. Gene Set Enrichment Analysis (GSEA) was

performed using the above-generated DGE data with fGSEA

(27). We pre-ranked genes according to the value of the Wald-

test statistics provided by the DESeq2 output. Up- (enrichment)

and down-regulated (depletion) pathways were considered

significant when adj. P value < 0.05, regardless of their

normalized enrichment score (Supplementary Data S1).

Gene-sets affected by alternative splicing were evaluated with

clusterProfiler (28) with Gene Ontology as the reference

(Supplementary Data S2).
RT-PCR

Total RNA was extracted from EndoC-bH1 using NucleoSpin
Kit (#740609.50S, Bioke). Approximately 0.5ug of RNA was used
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for reverse transcription. Oligo (dT) primers were used in the

reaction. For siRNA experiments, RNA was isolated using

Dynabeads mRNA DIRECT purification kit (Invitrogen,

Carlsbad, California, USA) and reverse transcribed using Reverse

Transcriptase Core kit (Eurogentec, Liège, Belgium). Real-time PCR

amplification was done with SsoAdvanced Universal SYBR Green

Supermix (BIO-RAD, Hercules, California, USA) and amplicons

were quantified using a standard curve. Expression of the transcript

of interest was detected using the following primers: ADAR1-p150

Fw GAATCCGCGGCAGGGGTAT, ADAR1-p150 Rv: GCTTAA

GCAGGAAACTACTGGG; ADAR1 endogenous Fw: CCGCACT

GGCAGTCTCCGGGTG, ADAR1 endogenous Rv: CCTGGCCC

AGGCTGCTGGTACC, INS Fw: AAGAGGCCATCAAGCAG

ATCA, INS Rv: CAGGAGGCGCATCCACA, PDX1 Fw: CCATG

GATGAAGTCTACCAAAGCT PDX1 Rv: CGTGAGATGTACTT

GTTGAATAGGAACT, MAFA Fw: AGTCCTGCCGCTTCAAG,

MAFA Rv: ACAGGTCCCGCTCTTTGG, NKX6.1 Fw: CTG

GCCTGTACCCCTCATCA, NKX6.1 Rv: CTTCCCGTCTTT

GTCCAACAA, GAPDH Fw: CCTGTTCGACAGTCAGCCG,

GAPDH Rv: CGACCAAATCCGTTGACTCC; ACTIN Fw: CTG

TACGCCAACACAGTGCT; ACTIN Rv: GCTCAGGAGGAGC

AATGATC; STAT1 Fw: CACAAGGTGGCAGGATGTCT,

STAT1 Rv: TCCCCGACTGAGCCTGATTA; MDA5 Fw: GTT

GCTCACAGTGGTTCAGG; MDA5 Rv: GCTTGGCAATA

TTTCTCTTGGT; IFNB Fw: AGGACAGGATGAACTTTGAC;

IFNb Rv: TGATAGACATTAGCCAGGAG; IFIT1 fw: CAGAAT

AGCCAGATCTCAGAGG; IFIT1 Rv: CCAGACTATCC

TTGACCTGATG; CXCL10 Fw: AGTGGCATTCAAGGAGTA

CC; CXCL10 Rv: TGATGGCCTTCGATTCTGGA
Western blot analyses

Cells were lysed in RIPA buffer supplemented with protease

inhibitor cocktail (Roche). Protein quantification was performed

with the BCA protein assay kit (Thermo Fisher Scientific). 25 mg
protein extracts were loaded on 10% acrylamide/bis acrylamide

SDS page gel. After electrophoresis, protein transfer was

performed onto a nitrocellulose membrane (GE Healthcare).

Membranes were stained with primary antibodies overnight at

4°C and secondary HRP conjugated antibodies (Santa Cruz

Biotechnology) for 1 hour RT. Antibodies used were: anti-

ADAR1 [#ab168809, Abcam (Figures 1, 2) and #14175, Cell

Signaling Technology (Figure 3)], anti-STAT1 and anti-STAT2

(#14995 and #72604, Cell Signaling Technology) and as a loading

control anti-actin (#0869100, MP Biomedicals) or anti-tubulin.
Lentiviruses production and transduction

The vectors were produced as described previously (29).

Viral supernatants (MOI=2) were added to fresh medium
frontiersin.org
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supplemented with 8 µg/mL Polybrene (Sigma-Aldrich), and the

cells were incubated overnight. The next day, the medium was

replaced with fresh medium. Transduction efficiency was

analyzed 3–6 days after transduction.
RNA interference

EndoC-bH1 cells were transfected overnight with 30 nmol/L

of siRNA and cells were kept in culture for 48 hours.

Transfection was performed using siRNA targeting ADAR (5’-

TTCCGTTACCGCAGGGATCTA-3’; 1027416, Qiagen, Venlo,

The Netherlands) using Lipofectamine RNAiMax (Invitrogen,

Carlsbad, CA, USA). Allstars Negative Control siRNA (siCTL;

Qiagen) was used as a negative control.
Assessment of cell apoptosis

Cells were stained with the DNA-binding dyes propidium

iodide (PI) and Hoechst 33342 (10 µg/ml, Sigma-Aldrich) to

count apoptotic cells under a fluorescent microscope. In each

experimental condition, a minimum of 500 cells were counted by

two independent observers (one of them unaware of

sample identity).
Data and materials availability

Bulk RNA-seq data that were generated by this study is

available on the Gene Expression Omnibus (GEO) database

under the accession number GSE214851. Other datasets

mentioned are available on GEO using accession numbers

GSE133218, GSE137136, GSE148058 and GSE108413.
Results

Cytokines trigger increased expression of
ADAR1 in b cells

IFNa and IFNg play important roles in T1D pathogenesis,

from initiation of autoimmunity (IFNa) to the more advanced b
cell destruction process (IFNɣ) (30, 31). To identify key

pathways involved during T1D development, we used RNA-

seq datasets from human islets and EndoC-bH1 cells exposed to

IFNa (24h) or IFNg/IL1b (48h), and searched for common

differentially regulated genes (32, 33). This resulted in the

identification of 623 common genes in EndoC-bH1 cells and

577 common genes in primary human islets. As expected, gene

ontology pathway analysis identified IFN signaling and genes

involved in HLA class I antigen peptide processing and

presentation, highlighting the importance of the islet
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microenvironment in triggering cytotoxic T lymphocyte

(CTL)-mediated b cell destruction (Figure 1A). In addition to

immune-related genes, we observed that both IFNa and IFNg/
IL1b stimulation led to a significant increase in expression of

ADAR1 in EndoC-bH1 cells and primary human islets

suggesting an increased RNA deamination rate in b cells

during inflammation (Figure 1B). We confirmed the effect of

the different cytokines on ADAR1 mRNA and protein

expression in EndoC-bH1 cells using STAT1 expression as a

control for treatment effectiveness (Figures 1C, D). Of note, the

expression of the isoform p150 of ADAR1 protein was

undetectable in the absence of cytokine stimulation.
Enhanced A-to-I editing in b cells
following IFNa and proinflammatory
cytokine stimulation

To determine the consequences of the observed high

ADAR1 expression following proinflammatory cytokine

stimulation, and to decipher the RNA editome, we screened

for A-to-G RNA mismatches (i.e., inosines present in the RNA

are reverse transcribed into guanosines in cDNA and A-to-I

editing is detected as A-to-G mismatches) by comparing reads in

IFNa and IFNg/IL1b-treated samples and non-treated samples

against genomic reference (34, 35). Using the RNA editing index

to measure the global rate of editing in Alu regions, we observed

that IFNa and IFNg/IL1b specifically triggered A-to-I RNA

editing in b cells and primary human islet samples

(Figures 2A, B).
ADAR overexpression inhibits the
antiviral response while ADAR silencing
exacerbates the effects of IFNa in b cells

To model the effect of ADAR1-p150 independently of the

pleiotropic effects of cytokines, we generated a stable ADAR1-

overexpressing human b cell line, by lentivirus transduction. In

these cells, we detected an over 20-fold increase in ADAR1-p150

gene expression, and confirmed the corresponding increase in

protein level by western blot analysis (Figure 3A). While ADAR1

overexpression had no major impact on endogenous ADAR1,

PDX1 and MAFA gene expression, we observed a slight but

significant increased NKX6.1 and a 50% decreased insulin gene

expression suggesting that ADAR1 may interfere with b cell

function (Supplementary Figure 1A). Differential gene

expression analysis performed on high-depth RNA-seq

revealed profound transcriptome changes following ADAR1

overexpression. In total, 2,851 genes were differentially

expressed (1,477 up-regulated, 1,374 down-regulated -

|Log2FC| > 0.58; P adj. P value < 0.05) (Figure 3B and

Supplementary Data S1). Among them, we observed regulation
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A B

DC

FIGURE 1

The proinflammatory cytokines IFNa and IFNɣ+IL-1b induce a partially shared gene signature in EndoC-bH1 and human islets Venn diagrams of
up-regulated (log2FC > 0.58 and adj. P value < 0.05) genes in EndoC-bH1 and human islets after exposure to IFNɣ+IL-1b (A), top) and IFNa
(A), bottom). Common genes have been tested for enrichment – using REACTOME as the reference – and significantly enriched pathways are
represented as a dot plot: the x-axis represents the gene ratio and the y-axis the enriched pathways. (B) Heatmap representing the log2 fold
change of the 128 up-regulated genes in all 4 datasets (|log2FC| > 0.58 and adj. P value < 0.05). (C) ADAR1 p150 and STAT1 gene expression in
EndoC-bH1 were assessed by qPCR after cytokine treatment. n=3 independent experiments (D) ADAR1 p150 ADAR1 (detected using Anti-ADAR1
#ab168809, Abcam), STAT1 and STAT2 protein expression determined by western blot. b-actin expression was used as loading control.
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of genes involved in immune system processes and defense to

bacterium, confirming a role for ADAR1 in immune

response (Figure 3C).

To validate this observation, we triggered the type I IFN

response in b cells by mimicking viral infection via poly-I:C

transfection (36). Poly-I:C transfection led to an increase in IFNb
expression and downstream IFN-stimulated genes (ISG) such as

MDA5, IFIT1, CXCL10 and STAT1, but ADAR1 overexpression

completely abolished this antiviral response (Figure 3D).
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To confirm these data using a reverse approach, we used an

siRNA targeting ADAR1 leading to 40-70% reduction in gene

and protein expression (Figures 4A–D). Of note, ADAR

silencing had no effect on b cell identity genes and insulin

expression (Supplementary Figure 1B). As expected, while IFNa
treatment induced the expression of several ISGs [e.g., STAT1

(Figure 4E) MDA5 (Figure 4F) and MX1 (Figure 4G)], ADAR1

silencing potentiated the effect of IFNa on the expression of

these antiviral genes and sensitized EndoC-bH1 cells to IFNa-
A

B

FIGURE 2

Cytokine treatment leads to A- to I- mutation in EndoC-bH1 and primary human islets. (A) Global A-to-I RNA editing index across Alu elements
(short interspersed nuclear elements) in RNA-seq data demonstrates a higher A-to-I editing signal in IFNa or IFNɣ/IL1b stimulated samples after
8 hours and 48 hours, respectively. Student’s paired two-tailed t-test; *P<0.05, **P<0.005, ****P<0.0001. (B) Noise levels (non-A-to-G
mismatches) are notably lower than seen in the global editing index’s biological signal (A-to-G mismatch).
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A B

D

C

FIGURE 3

ADAR1 overexpression inhibits the type I IFN response. (A) ADAR1 p150 expression in EndoC-bH1 and EndoC- bH1 (ADAR1) cells determined by
qPCR (upper panel) and western blot analysis using Anti-ADAR1 #ab168809, Abcam (lower panel). (B) Volcano plot on differential expressing
genes after ADAR1 overexpression. Dashed lines show log2FC ≤ -2 or log2FC ≥2 and adj. P value < 0.05. Plot was generated using Enhanced
Volcano (C) Pathway analysis on downregulated (left, log2FC ≤ -2, adj. P value < 0.05) and upregulated (right, log2FC ≥2, adj. P value < 0.05)
genes. Plots were generated using Revigo. (D) Gene expression of ADAR1 p150, MDA5, IFNb, IFITH1, CXCL10 and STAT1 after ADAR1
overexpression in the presence or absence of polyI:C. N=3 independent experiments. Data are expressed as means of independent experiments
± SEM. Differences between groups were evaluated using one-way ANOVA or linear mixed model in case of missing values, followed by
Bonferroni post-hoc test. **P<0.01 and ****P<0.0001.
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mediated cell death (Figure 4H). Altogether, these data unveil a

role for ADAR1 in dampening the type I IFN response to

prevent an excessive inflammatory response potentially leading

to b cell death.
ADAR1 overexpression triggers
alternative splicing events in b cells

Besides a role in immunity, gene ontology pathway analysis

presented in Figure 2C revealed a possible role of ADAR1 in

regulating alternative splicing. Considering the trend for an

increased A-to-I Alu editing rate in ADAR1 overexpressing

cells (Figure 5A), we studied the impact of adenosine

deamination on the b cell coding transcriptome and searched
Frontiers in Endocrinology 08
for the presence of ADAR1-induced alternative splice variants.

Of importance, in these cells, we observed an increased ADAR3

expression following ADAR1 transduction (Figure 5A).

After aligning the RNA sequencing reads to the reference

genome, we identified a total of 323 alternatively spliced events

(both known and de novo), modified by ADAR1 overexpression

(Figures 5B, C). These events derived mainly from spliced exons

(SE, 70%), but also mutually exclusive exons (ME, 10%) and

alternative 3’ spliced sites (A3SS, 10%). Retained introns (RI,

7%) and alternative 5’ spliced sites (A5SS, 3%) were less

abundant. Genes affected by alternative splicing were analyzed

for pathway enrichment analysis using the REACTOME

platform and were found to be mainly related to b cell

function (e.g., pre-synapse, regulation of neurotransmitter

levels), vesicle location (e.g., synaptic vesicle, vesicle-mediated
A B

D E F

G H

C

FIGURE 4

ADAR1 silencing exacerbates the effects of IFNa in human b cells. EndoC-bH1 cells were transfected with an siRNA control (siCTL: grey bars) or
with an siRNA targeting ADAR (white bars) and left to recover for 48h. After this period, cells were left untreated (NT) or were treated with IFNa
(2000 U/ml) for 24h. (A) Protein expression was measured by western blotting using Anti-ADAR1 antibody #14175 (Cell Signaling Technology)
and representative images of 4 independent experiments are shown. Densitometry results are shown for ADAR p110 (B) and ADAR p150 (C).
mRNA expression of ADAR (D), STAT1 (E), MDA5 (F) and MX1 (G) was analyzed by RT-qPCR and normalized by b-actin. Values of siCTL + IFNa
were considered as 1. (H) Cell death was evaluated using HO/PI staining. Data are expressed as means of independent experiments (shown as
individual data points, n=4-6) ± SEM. Differences between groups were evaluated using one-way ANOVA or linear mixed model in case of
missing values, followed by Bonferroni post-hoc test. *p<0.05, **p<0.01 and ****p<0.0001.
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t ranspor t to the p lasma membrane) and prote in

transport (Figure 5D).
Discussion

Our report positions ADAR1 as both an important player

in dampening innate immunity in b cells and as a key editor of

the b cell transcriptome. While exposure to inflammation,

characteristic of the early or later stages of T1D development,

is usually associated with deleterious effects, the data presented

here recall earlier work on enhanced expression of

Programmed death-ligand 1 PD-L1 detected in b cells from

long-standing T1D individuals (37), suggesting that ADAR1,
Frontiers in Endocrinology 09
like PD-L1, is involved in the positive adaptive mechanisms to

protect b cells from further destruction. During T1D, the

induction of the unfolded protein response, following

exposure to virus or inflammatory cytokines, participates in

this adaptive phase to restore cellular homeostasis or to initiate

apoptosis in the case of unresolved stress (38). At this decision

point, the A-to-I editing induced by ADAR1 has been

implicated in PERK activation and apoptosis induction via

EIF2a/CHOP pathway (39). Other reports describe additional

RNA-editing independent effects of ADAR1 via direct

interaction with RIG-I, PKR or NF90 that could regulate

cellular stress and the type I interferon response (3, 40, 41).

Supporting the concept that b cells are not passive victims

in their destruction (8), our results show that the increased
A B

DC

FIGURE 5

ADAR1 overexpression triggers alternative splicing in EndoC-bH1. (A) Global A-to-I RNA editing index across Alu elements (short interspersed
nuclear elements) in Puro modified EndoC-bH1 and ADAR1 modified EndoC-bH1 cells (left panel), ADAR3 expression in Puro and ADAR1
modified EndoC-bH1. Data are shown as Transcript Per Million. (B) Donut charts representing the cumulated number of known and de novo
alternative splicing events (top), and known events only (bottom). Events displayed have |DPSI| >0.10 and FDR <0.05. (C) Volcano plot of the
inclusion and exclusion SE (skipped exon) events in EndoC-bh1 cells overexpressing ADAR1. Negative PSI indicates the inclusion of the event in
ADAR1-overexpressing EndoC-bH1 cells whereas positive PSI indicates exclusion. Each dot represents an event with its DPSI (x-axis) associated
to its P-value (y-axis). Colored dots (blue and red) represent genes with FDR<0.05. (D) Dot plot of the enrichment analysis, using Gene Ontology
as reference, shows gene sets affected by known splicing events in cells overexpressing ADAR1. Gene ratio (x-axis) refers to the percentage of
total genes input with alternative splicing events in selected GO terms (y-axis). SE, Spliced Exon; RI, Retain Intro; MXE, Mutually Exclusive Exon;
A3SS, 3’ Alternative Splicing Site; A5SS, 5’ Alternative Splice Site.
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RNA editing rate correlates also with the emergence of novel

transcript variants, demonstrating that ADAR1 activity is not

only limited to Alu sequences but also affects coding regions

with possible consequences for gene regulation and cell

function (42). Surprisingly, ADAR1 p150 overexpression in

EndoC-b H1 cells led a to concomitant increase in ADAR3

expression, which has been reported to act as a negative

regulator of ADAR1-mediated editing (43). The competition

between the different ADAR proteins may explain the relatively

low editing rate measured in our samples and add to the

complexity of gene editing regulation.

Despite the higher editing rate observed in inflammatory

conditions or following ADAR1 overexpression, it is unlikely

that all of the detected alternative splicing results solely from a

direct A-to-I RNA editing of the target genes. As described here,

ADAR1 overexpression led to extensive regulation of the RNA

processing machinery or of spliceosome formation suggesting

that ADAR1 may affect the transcriptome by modulating the

expression of trans-regulatory elements. Among them, the

splicing regulators ELAVL4 and NOVA2, previously reported

as important splicing-regulatory RNA binding proteins involved

in modulating b cell survival (44), were upregulated in response

to ADAR1 transduction. The increased cell death observed after

ADAR1-specific inhibition (Figure 4) is in line with this

observation. Another report describes that the loss of RNA

editing activity may lead to non-apoptotic cell death induction

directly mediated by MDA5 (45), indicating that ADAR1

inhibition may lead to different forms of cell death. Of note,

ADAR1 expression in our dataset led to decreased expression of

pseudokinase mixed lineage kinase domain-like protein (MLKL)

that serves as an effector in necroptosis.

The present results illustrate a central role of ADAR1 in b cells
during inflammation and shed light on a novel regulatory

mechanism potentially used by b cells to cope with

environmental changes after viral infection but also during the

different phases of inflammation. Although ADAR1-dependent

effects are mostly protective, the functional and immunological

consequences of mutations induced by RNA editing, including the

potential generation of neoantigens, remain to be investigated.
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