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Abstract
We define an integral of real-valued functions with respect to a measure that takes its
values in the extended positive cone of a partially ordered vector space E . The mono-
tone convergence theorem, Fatou’s lemma, and the dominated convergence theorem
are established; the analogues of the classicalL 1- and L1-spaces are investigated. The
results extend earlier work byWright and specialise to those for the Lebesgue integral
when E equals the real numbers. The hypothesis on E that is needed for the defini-
tion of the integral and for the monotone convergence theorem to hold (σ -monotone
completeness) is a rather mild one. It is satisfied, for example, by the space of regular
operators between a directed partially ordered vector space and a σ -monotone com-
plete partially ordered vector space, and by every JBW-algebra. Fatou’s lemma and the
dominated convergence theorem hold for every σ -Dedekind complete space. When E
consists of the regular operators on a Banach lattice with an order continuous norm, or
when it consists of the self-adjoint elements of a strongly closed complex linear sub-
space of the bounded operators on a complex Hilbert space, then the finite measures
as in the current paper are precisely the strongly σ -additive positive operator-valued
measures. When E is a partially ordered Banach space with a closed positive cone,
then every positive vector measure is a measure in our sense, but not conversely. Even
when a measure falls into both categories, the domain of the integral as defined in this
paper can properly contain that of any reasonably defined integral with respect to the
vector measure using Banach space methods.
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1 Introduction and overview

Let X be a locally compact Hausdorff space. The Riesz representation theorem states
that, for a positive linear functional π : Cc(X) → R, there exists a Borel measure μ

on X such that

π( f ) =
∫
X
f dμ

for f ∈ Cc(X). The measure μ is uniquely determined when certain regularity prop-
erties of it are supposed. It is bounded if and only if π extends to a positive linear
functional on Cc(X), in which case the above equation holds for all f ∈ C0(X). In
[13], we shall establish similar representation theorems for positive linear operators
π : Cc(X) → E and π : C0(X) → E , where E is a (suitable) partially ordered vector
space.1 The class of spaces for which these theorems hold is fairly diverse. This is the
case, for example, when E is a Banach lattice with an order continuous norm; when
E consists of the regular operators on a KB-space; when E is the space of all self-
adjoint elements of a strongly closed complex linear subspace of B(H), where H is a
complex Hilbert space; and when E is a JBW-algebra.2 In [12], we shall consider pos-
itive algebra homomorphisms π fromCc(X) or C0(X) into (suitable) partially ordered
algebras. The representing measures are then spectral measures that take values in the
algebra. This existence theorem for abstract spectral measures immediately implies
the classical one for representations of (the complexification of) C0(X) on complex
Hilbert spaces, as well as the one for positive representations of C0(X) on KB-spaces
in [14]. In [11], we shall be concerned with representation theorems for vector lattices
(resp. Banach lattices) of regular linear operators from Cc(X) and C0(X) into Dede-
kind complete vector lattices (resp. Banach lattices with order continuous norms) in
the spirit of [4, Theorem 38.7]. The relation with existing representation theorems for
positive linear operators will be discussed in [13]. There appears to be no previous
work in the vein of [12] or [11].

The representation theorems in [11–13] are all of the following form. For a positive
operator π from Cc(X), say, into a partially ordered vector space E , there exists a
Borel measure μ on X such that

1 In the course of the present paper and its sequels [11–13] we shall encounter maps with Cc(X) or C0(X)

as domains that are sometimes positive linear operators, sometimes vector lattice homomorphisms, and
sometimes positive algebra homomorphisms. For each of these contexts, a canonical symbol for such maps
could be chosen. However, since our results for these contexts are related, we have chosen to use the same
symbol π throughout, thus keeping the notation as uniform as possible.
2 We shall use [2, 3] references for JBW-algebras. In these books, a JBW-algebra is supposed to have an
identity element; see [3, Definitions 1.5 and 2.2]. In other sources, this need not be the case. However, as
[17, Lemma 4.1.7] shows, the existence of an identity element is, in fact, automatic.
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π( f ) =
∫ o

X
f dμ

for f ∈ Cc(X). Here μ assigns an element of the extended positive cone of E to each
Borel subset of X . The integral is, as we have called it in the current paper, the order
integral—hence the superscript—of f with respect toμ. The goal of the present paper
is to develop the theory of this order integral to the extent where also the three basic
convergence theorems have been made available. It provides the very language for
the sequels [11–13] to the present paper, but its results—including the convergence
theorems—may also be of use elsewhere. In fact, as we shall argue in Sect. 7, when
E is a partially ordered Banach space, then the order integral provides a tool to work
with that is better than the integral with respect to positive vector measures.

This paper is organised as follows.
In Sect. 2, we collect the necessary prerequisites about partially ordered vector

spaces. It is explained how a point at infinity can be added to a partially order vector
space E , to accommodate the fact that—as is already obvious from Lebesgue measure
on the real line—representing measures need not be finite. The section also contains a
stockpile of technical tools that are helpful when working with the ordering in E and
the extended space E in the present paper and its sequels.

Section 3 provides a number of examples of spaces where the representation theo-
rems in [13] are valid. This material is not yet needed in the current paper. We have,
nevertheless, still included it here, to show that there are natural spaces, including
spaces of operators, to which the theory of the order integral in this paper applies.

In Sect. 4, measures with values in the extended positive cone E+ of a partially
ordered vector space E are introduced. The basic (convergence) properties are estab-
lished and the Borel–Cantelli lemma is proved. For two important examples of spaces
of operators, it is shown that the finite measures in our sense are precisely the strongly
σ -additive positive operator-valuedmeasures. In this section, it is still possible to work
with algebras rather than σ -algebras of subsets.

Section 5 covers outer measures in the context of partially ordered vector spaces.
This material is needed in the proof of one of the Riesz representation theorems in
[13], but does not reappear in the present paper.

Section 6 starts with the definition of the order integral for measurable functions
with values in the extended positive real numbers; the measure is now supposed to be
defined on a σ -algebra. After that, the monotone convergence theorem, Fatou’s lemma
and the dominated convergence theorem are established. The section concludes with
vector lattice properties of the general L 1- and L1-spaces.

In the final Sect. 7, we consider the situationwhen the partially ordered vector space
happens to be a Banach space with a closed positive cone. In this case, one can also
speak of positive vector measures and ask for the relation between such measures and
the positive measures in Sect. 4, and also for the relation between their integrals. It will
become clear that every positive vector measure is a positive measure as in Sect. 4,
but not conversely. It can occur that a measure falls in both categories, while the order
integral properly extends any integral that one may reasonably define using Banach
space methods.
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It appears that Wright was the first to realise how the σ -additivity of a measure
with values in the extended positive real numbers can be generalised to measures with
values in the extended positive cone of a partially ordered vector space E , and that
a theory of integration can be built on this. This was first done in [26] when E is
a Stone algebra, i.e., a Banach lattice algebra of the form C(X) for an extremally
disconnected compact Hausdorff space X . It is also mentioned there that this can be
done equally well if E is a σ -Dedekind complete Banach lattice. Topology is no longer
present in [27, p. 193], where it is noted that an order integral can be defined if E is a
σ -Dedekind complete vector lattice, and that analogues of the Lebesgue convergence
theorems can be obtained. Details are, however, not included. In [28, p. 678], the
measures are defined in the most general context—that of a σ -monotone complete3

partially ordered vector space—where this definition is meaningful. Definition 4.1 in
the current paper is taken from that source. An order integral is defined in [28] and
a monotone convergence theorem is established. Fatou’s lemma and the dominated
convergence theorem are alluded to as more complicated results to be worked on later;
the outcome appears not to have been published.

Apart from the facts that we extend the theory well beyond that in [26–28] by
including results such as the Borel–Cantelli lemma, Fatou’s lemma, the dominated
convergence theorem, as well as material on outer measures and vector lattice prop-
erties of L 1- and L1-spaces, there are also two important differences between the
approach in [26–28] and that in our work. Firstly, we define the order integral for mea-
surable functions that take values in the extended positive real numbers. The presence
of an extra ‘infinity’ for functions besides the one for the measure is technically a
little more complicated than when working with finite-valued functions. It is, how-
ever, desirable, to allow this so that the sharpest versions of the monotone convergence
theorem and Fatou’s lemma can be formulated and proved. We shall benefit from this
when studying ups and downs in [12]. Secondly, we believe that our approach to the
definition of the order integral of an (extended) positive measurable function is more
natural. In [26, 28], the integral of a measurable function f : X → R+ is defined
to be infinity when there exists a c > 0 such that {x ∈ X : f (x) > c} has infi-
nite measure. When this is not the case, then f can be approximated pointwise from
below by (finite-valued) elementary functions that have supports with finite measure;
the integral of f is then defined using such approximants. In our approach, the inte-
gral of a measurable function with values in the extended positive real numbers is
always defined using (finite-valued) elementary functions. Such an elementary func-
tion is allowed to have a support with infinite measure, in which case its integral is
automatically infinity as a consequence of the action of the positive real numbers on
the extended positive cone E+ of E . Provided one argues carefully with the opera-
tions on and the ordering of this extended cone, one thus obtains a completely natural
integration theory for measurable functions with values in the extended positive real
numbers. This is then used as a the starting point for finite-valued measurable func-
tions.

The order integral as defined in the present paper has the usual Lebesgue integral as
a special case. It will become clear that, in the end, it is possible to choose arguments

3 See Definition 2.1.
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for the real case that, after being reformulated and adapted appropriately, yield valid
proofs for the general case. Still, there are a few caveats when glancing over a proof
for the real case and concluding, perhaps all too quickly, that the result holds more
generally. Consider, for example, the fact that a measurable function that is almost
everywhere equal to zero has zero integral. For positive functions, this follows from
the definitions. For general functions, this then ‘obviously’ follows from the inequality
|∫ f dμ| ≤ ∫ | f | dμ. This inequality is, however, meaningless for general partially
ordered vector spaces, which implies that the proof of [15, Proposition 2.23.b] cannot
be used in the general case. Even though it is not difficult to remedy this, it still
shows that it is easy to make mistakes when thinking that results from the real case
are ‘clearly’ also true in general. The real numbers form a topological algebra, a
complete metric space, and their partial ordering is a linear ordering. Arguments that
rely on these properties—which are entrenched in our way of thinking—are to be
circumvented for the general theory. One has to (be enabled to) convince oneself—
with the formal technical tools in Sect. 2 at hand—that it is actually possible to do this.
It is for this reason that we have given proofs of all results.4 Some of them—and in
particular arguments of an algebraic nature that work for any commutative monoid—
are identical to those for the real case. Many of them, however, have to be adapted to
some extent for the general context. We did not want to necessitate the reader to keep
moving back and forth between other sources and the paper and have, therefore, kept
the latter self-contained.

Remark In the current paper, the function is real-valued and themeasure takes its values
in (the extension of) a partially ordered vector space. These roles can be reversed. For
this set-up, the reader is referred to [16, 18, 20, 24, 25].

2 Partially ordered vector spaces

In this section, we establish some terminology and notation for partially ordered vector
spaces, and collect a number of technical facts. We introduce various types of order
completeness and relate these to the extended space that is obtained by adjoining a
point at infinity.

Unless otherwise indicated, all vector spaces we shall consider are over the real
numbers. Operators between two vector spaces are always supposed to be linear, as
are functionals. All vector lattices are supposed to be Archimedean.

If E is a partially ordered vector space, then E+ denotes its positive cone. We do
not require that E+ be generating, i.e., it need not be the case that E = E+ − E+.
Equivalently, we do not require that E be directed. We do require, however, that E+
be proper, i.e., that E+ ∩ (−E+) = {0}.

Subsets of a partially ordered vector space E of the form {x ∈ E : a ≤ x ≤ b} for
a, b ∈ E such that a ≤ b, are called order intervals in E ; they are denoted by [a, b].
A subset of E is called order bounded if it is contained in an order interval.

Order completeness properties of partially ordered vector spaces are at the heart of
the current paper and the sequels [11–13]. We list them in the following definition,

4 Lemma 6.1 and a few statements surrounding it form an exception.
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which also contains some self-evident notation that we shall use. Index sets for nets
are supposed to be partially ordered, and not just pre-ordered.

Definition 2.1 A partially ordered vector space E is called

(1) σ -monotone complete if every increasing sequence {an}∞n=1 in E that is bounded
from above has a supremum

∨∞
n=1 an in E ;

(2) monotone complete if every increasing net {aλ}λ∈� in E that is bounded from
above has a supremum

∨
λ∈� aλ in E ;

(3) σ -Dedekind complete if every non-empty at most countably infinite subset S of E
that is bounded from above has a supremum

∨{x : x ∈ S} in E ;
(4) Dedekind complete if every non-empty subset S of E that is bounded from above

has a supremum
∨{x : x ∈ S} in E .

Equivalently, one can define these properties by requiring the existence of infima
when replacing ‘increasing’ with ‘decreasing’ and ‘bounded from above’ with ‘boun-
ded from below’. Still equivalently, one can define these properties under the
supposition that the sequence, net, or subset is contained in E+.

There are evident logical implications between these four properties. For vector
lattices,Dedekind completeness (resp.σ -Dedekind completeness) andmonotone com-
pleteness (resp. σ -monotone completeness) are equivalent. If E is directed and if E
is σ -Dedekind complete, then, for every x1, x2 ∈ E , the subset {x1, x2} is bounded
from above, so that it has a supremum. Hence E is then a vector lattice.

A partially ordered vector space E is Archimedean if
∧{εx : ε > 0} = 0 for all

x ∈ E+. One can equivalently require that
∧{rnx : n ∈ N} = 0 for every x ∈ E+ and

every (or just one) sequence {rn}∞n=1 ⊆ R+\{0} such that rn ↓ 0. Still equivalently,
one can require that, whenever y ∈ E+ and x are such that nx ≤ y for all n ∈ N
(or such that r x ≤ y for all r ∈ R+), it follows that x ≤ 0. As was observed in
[28, Lemma 1.1], every σ -monotone complete partially vector space (and then also
every monotone complete, σ -Dedekind complete, or Dedekind complete partially
order vector space) is Archimedean. Indeed, if x ≥ 0, then

∧{x/n : n ∈ N} exists
since E is σ -Dedekind complete, and it satisfies

∧{x/n : n ∈ N} = ∧{x/(2n) : n ∈
N} = 1/2

∧{x/n : n ∈ N}. Hence ∧{x/n : n ∈ N} = 0. We shall use this automatic
Archimedean property at a few essential moments; see the proof of Lemma 6.2, for
example.

We record the following analogue of the well-known inequality for the limit inferior
and the limit superior of a sequence of real numbers. We shall need it in the proof
of the dominated convergence theorem; see Theorem 6.13. The proof is completely
analogous to the proof for the case where E = R.

Lemma 2.2 Let E be a σ -Dedekind complete partially ordered vector space, and let
{xn}∞n=1 be an order bounded sequence in E. Then

∨∞
n=1

∧∞
k=n xk and

∧∞
n=1

∨∞
k=n xk

exist in E, and

∞∨
n=1

∞∧
k=n

xk ≤
∞∧
n=1

∞∨
k=n

xk .
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In [13], we shall, amongst others, consider Riesz representation theorems for posi-
tive operators π : Cc(X) → E ; here X is a locally compact Hausdorff space and E is
a partially ordered vector space. Once could hope that, ideally, such theorems would
state that this operatorπ is given by integration of a scalar-valued functionwith respect
to an E+-valued measure. However, as the case where E = R and π( f ) := ∫

R f dx
already shows,we cannot expect thismeasure to be actually finite. To be able to develop
a theory of measure and integration that incorporates this inevitable phenomenon, we
need to adjoin an element ∞ to E+ and letR+ act on the augmented structure. As is
also done in, e.g., [26, 27], we shall actually adjoin ∞ to the whole space E , which
is necessary for a formulation of some of the results; see part (4) of Lemma 4.4), for
example. The construction is as follows.

Firstly, we let E := E ∪{∞} be a disjoint union, and we extend the partial ordering
from E to E by declaring that x ≤ ∞ for all x ∈ E . The elements of E that are in E
will be called finite. We set E+ := E+ ∪{∞}. Then E+ is the set of positive elements
of E . Secondly, we make E into an abelian additive monoid by defining ∞+ x := ∞
and x + ∞ := ∞ for all x ∈ E ; then E+ is a sub-monoid of E . Thirdly, we define
r · ∞ := ∞ for all r ∈ R+\{0}, and define 0 · ∞ := 0. Thus the additive monoidR+
and the multiplicative monoid R+ both act as monoid homomorphisms on E+. It is
easily checked that, when x, y ∈ E are such that x ≤ y, then x + z ≤ y + z for all
z ∈ E , and that r x ≤ sy for all r , s ∈ R+ such that r ≤ s.

We have now carried out the desired construction, but one can also go further, as
follows. The construction in the previous paragraph can be applied to R. The set of
positive elements ofR is then the familiar extended positive real half lineR+. It is an
abelian additive monoid. The action of R+ on E+ can then be extended to an action
of R+ on E+ by defining ∞ · 0 := 0 and ∞ · x := ∞ for all x ∈ E+\{0}. Then the
additive monoid R+ acts as monoid homomorphisms on E+. If x, y ∈ E+ are such
that x ≤ y and r , s ∈ R+ are such that r ≤ s, then r x ≤ sy.

The construction in the previous step can be applied with E = R, which yields
an action of R+ on itself. Thus the familiar multiplicative structure on the extended
positive real half line is obtained. It is compatible with the action of R+ on E+: if
r , s ∈ R+ and x ∈ E+, then r · (s · x) = (rs) · x . Hence the multiplicative monoid
R+ also acts as monoid homomorphisms on E+.

We shall employ the usual notation in which aλ ↑means that {aλ}λ∈� is an increas-
ing net in E (or in E), and in which aλ ↑ x means that {aλ}λ∈� is an increasing net
in E (or in E) with supremum x in E (or in E). The notations aλ ↓ and aλ ↓ x are
similarly defined. We shall be careful to indicate explicitly whether we are working
in E or in E whenever this is necessary.

In the next two results, we collect a few technical facts that will be used repeatedly
in the sequel. They are quite obvious when E = R, but it is essential for many of the
proofs in the current paper and its sequels that they are generally valid. The tedious
proofs are elementary.

Lemma 2.3 Let E be a partially ordered vector space, and let S ⊆ E be non-empty.

(1) If S ⊆ E and
∨{s : s ∈ S} exists in E, then this supremum is also the supremum

of S in E; likewise for the infimum.
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(2) If
∨{s : s ∈ S} exists in E and is finite, then S consists of finite elements, and the

supremum of S exists in E and equals the supremum of S in E.
(3) If S �= {∞}, then ∧{s : s ∈ S} exists in E if and only if

∧{s : s ∈ S ∩ E} exists
in E. If this is the case, then these infima are equal.

(4)
∨{s : s ∈ S} = ∞ in E if and only if S is not bounded from above by a finite
element.

(5) If
∨{s : s ∈ S} exists in E, then, for all x ∈ E,

∨{x + s : s ∈ S} exists in E and
equals x + ∨{s : s ∈ S}; likewise for the infimum.

(6) If
∨{x + s : s ∈ S} exists in E for some x ∈ E, then

∨{s : s ∈ S} exists in E,
and

∨{x + s : s ∈ S} = x + ∨{s : s ∈ S}; likewise for the infimum.
(7) If

∨{s : s ∈ S} exists in E, then, for all r ∈ R+,
∨{rs : s ∈ S} exists in E and

equals r
∨{s : s ∈ S}; likewise for the infimum.

Lemma 2.4 Let E be a partially ordered vector space.

(1) If A and B are non-empty subsets of E such that
∨{a : a ∈ A} and ∨{b : b ∈ B}

exist in E, then
∨{a + b : a ∈ A, b ∈ B} exists in E and equals

∨{a : a ∈
A} + ∨{b : b ∈ B}; likewise for the infima.

(2) If {aλ}λ∈� and {bλ}λ∈� ⊆ E are nets in E and a, b ∈ E are such that {aλ}λ∈� ↑ a
and {bλ}λ∈� ↑ b in E, then {aλ +bλ} ↑ (a+b) in E; likewise for decreasing nets.

Lemma 2.5 Let E be a partially ordered vector space.

(1) If E is σ -monotone complete (resp. σ -Dedekind complete), then every increasing
sequence in (resp. every at most countably infinite subset of) E has a supremum
in E. If the sequence (resp. set) is bounded from above by a finite element, then
the supremum in E equals the supremum in E. If the sequence (resp. subset) is not
bounded from above by a finite element, then the supremum in E equals ∞.

(2) If E is σ -monotone complete (resp. σ -Dedekind complete), then every decreasing
sequence in (resp. every non-empty at most countably infinite subset of) E that is
bounded from below in E has an infimum in E. If all terms of the sequence are
equal to ∞ (resp. if the set equals {∞}), then this infimum in E equals ∞. If the
sequence contains finite terms (resp. if the subset contains finite elements), then
the infimum in E equals the infimum in E of the decreasing subsequence of finite
terms (resp. the subset of finite elements of the subset), which is bounded from
below by a finite element.

(3) If E is monotone complete (resp. Dedekind complete), then every increasing net
in (resp. every non-empty subset of) E has a supremum in E. If the set (resp. net)
is bounded from above by a finite element, then the supremum in E equals the
supremum in E. If the set (resp. net) is not bounded from above by a finite element,
then the supremum in E equals ∞.

(4) If E is monotone complete (resp. Dedekind complete), then every decreasing net
in (resp. every non-empty subset of) E that is bounded from below in E has an
infimum in E. If all terms of the net are equal to ∞ (resp. if the subset equals
{∞}), then this infimum in E equals ∞. If the net contains finite terms (resp. if
the subset contains finite elements), then the infimum in E equals the infimum in
E of the decreasing subnet of finite terms (resp. the subset of finite elements of the
subset), which is bounded from below by a finite element.
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3 Monotone complete and normal partially ordered vector spaces

In [11–13], we shall be concerned with positive operators π : Cc(X) → E or π :
C0(X) → E , where X is a locally compact Hausdorff space and E is a partially
ordered vector space; in [12], E is even a partially ordered algebra. The goal in [13]
is to find an E+-valued measure on the Borel subsets of X that represents π via the
order integrals of the present paper. Such results will then be applied in [11, 12]. It
will become apparent in Sects. 4 and 6 that, to be able to define order integrals with
respect to E+-valued measures and develop their theory at all, E needs to be at least
σ -monotone complete. Furthermore, it will become clear in [13] that, for σ -monotone
complete spaces—so that the order integrals in the aspired representation theorems
make sense to begin with—the most convenient ones for which there actually is such
a representing theorem, are the spaces that are even monotone complete and that are
also normal. The latter notion will be defined below.

This section contains a number of examples of monotone complete normal spaces;
see the Propositions 3.10–3.13 and Theorem 3.14. These form a preparation for the
sequels to the current paper, but they may also serve as a motivation for the work on
the order integral later in this paper.

The link between our measures in Sect. 4 and the usual strongly σ -additive ones
in the context of Proposition 3.12 (resp. part (1) of Theorem 3.14) will be established
in Lemma 4.2 (resp. Lemma 4.3). Apart from this connection, the remainder of the
paper is independent of the current section.

We start by recalling some of the usual notions and introducing the notations that
we shall use.

If E and F are vector spaces, then L(E, F) denotes the vector space of operators
from E into F . An operator T ∈ L(E, F) between two partially ordered vector spaces
is order bounded if it maps order bounded subsets of E into order bounded subsets of
F . The order bounded operators from E into F form a vector space that is denoted by
Lob(E, F). An operator T ∈ L(E, F) is positive if T (E+) ⊆ F+, and regular if it is
the difference of two positive operators. The regular operators from E into F form a
vector space that is denoted byLr(E, F). A positive operator is order bounded, so that
Lr(E, F) ⊆ Lob(E, F) ⊆ L(E, F). If E is directed, then these three vector spaces
are all partially ordered via their positive cones Lr(E, F)+. We shall write E∼ for
Lob(E,R). If E is a Banach lattice, then E∼ coincides with the norm dual E∗ of E .

Order completeness properties of partially ordered vector spaces can be inherited
by spaces of operators between them. For example, if E is a directed partially ordered
vector space that has the Riesz decomposition property, and if F is a Dedekind com-
plete vector lattice, then the spacesLr(E, F) andLob(E, F) coincide and areDedekind
complete vector lattices; see [6, Theorem 1.59]. In particular, they are monotone com-
plete partially ordered vector spaces. The latter statement is also a consequence of
the following result. We are not aware of a reference for it, even though the type of
argument in it is well known; see [5, proof of Theorem 1.19], for example.

Proposition 3.1 Let E be a directed partially ordered vector space, let F be a mono-
tone complete (resp. σ -monotone complete) partially ordered vector space, and let V
be a linear subspace of L(E, F) containing Lr(E, F).
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Let {Tλ}λ∈� be an increasing net (resp. Let {Tn}∞n=1 be an increasing sequence) in
V . Then {Tλ}λ∈� (resp. {Tn}∞n=1) is bounded from above in V if and only if, for all
x ∈ E+, {Tλx}λ∈� (resp. {Tnx}∞n=1) is bounded from above in F. In this case, {Tλ}λ∈�

(resp. {Tn}∞n=1) has a supremum T in V . For x ∈ E+, it is given by T x = ∨
λ∈� Tλx

(resp. T x = supn≥1 Tnx).
In particular, V is a monotone complete (resp. σ -monotone complete) partially

ordered vector space.

Proof We prove the statements for the monotone completeness and the σ -monotone
completeness of V at the same time. Let {Tλ}λ∈� be an increasing net (possibly an
increasing sequence) in V .

If the net is bounded from above by an element S of V , then Tλx ≤ Sx for all
x ∈ E+, so that {Tλx}λ∈� is bounded from above in F for all x ∈ E+.

Conversely, suppose that {Tλx}λ∈� is bounded from above in F for all x ∈ E+. We
shall show that the pointwise formula for T as in the statement of the theorem actually
defines an element of V . This is then clearly the least upper bound of the net in V .

Choose any λ0 ∈ �. Using that the nets {Tλ}λ∈� and {Tλx}λ∈� for x ∈ E+ are
increasing, one easily sees, by considering the net {Tλ − Tλ0}λ≥λ0 ⊆ V+, that it is
sufficient to prove that the pointwise formula defines an element of V when Tλ ≥ 0
for all λ ∈ �.

Supposing, therefore, that {Tλ}λ∈� ⊆ V+, we define T : E+ → F+ as in the
statement of the theorem by

T x :=
∨
λ∈�

Tλx (3.1)

for x ∈ E+. Since {Tλx}λ∈� is increasing and bounded from above, the supremum in
the right hand side of Eq. (3.1) exists as a consequence of the pertinent completeness
property of F . It is clear that T (r x) = rT (x) for all r ≥ 0 and x ∈ E+. Next we show
that T is additive on E+. Fix x1, x2 ∈ E+. For all λ ∈ �, we have

Tλ(x1 + x2) = Tλ(x1) + Tλ(x2) ≤ T x1 + T x2,

so T (x1+ x2) ≤ T x1+T x2. For the reverse inequality, consider arbitrary λ1, λ2 ∈ �.
Choose λ3 ∈ � such that λ3 ≥ λ1 and λ3 ≥ λ2. Then, using that {Tλ}λ∈� is increasing,
we have

Tλ1x1 + Tλ2x2 ≤ Tλ3x1 + Tλ3x2 = Tλ3(x1 + x2) ≤ T (x1 + x2),

which easily implies that T (x1 + x2) ≥ T x1 + T x2. Hence T is additive on E+.
Next, if x ∈ E is arbitrary, we choose x1, x2 ∈ E+ such that x = x1 − x2, and we

define T x := T x1 − T x2. It is then easy to see that T is well defined and that T is
linear, so that T ∈ L(E, F). Since clearly T ≥ 0, we also have T ∈ Lr(E, F). Since
Lr(E, F) ⊆ V , we have T ∈ V , as required. ��

The underlying spaces of the monotone (σ -)partially ordered vector spaces of oper-
ators in Proposition 3.1 are themselves partially ordered vector spaces, but there also
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exist monotone complete partially ordered vector spaces of operators where this is no
longer the case. An important class of examples is provided by the following result,
which is a direct consequence of [10, Lemma I.6.4].

Proposition 3.2 Let H be a complex Hilbert space, and let L be a strongly closed
complex linear subspace of B(H). Let Lsa be the real vector space that consists of the
self-adjoint elements of L, supplied with the partial ordering that is inherited from the
usual partial ordering of the self-adjoint elements of B(H). Then Lsa is a monotone
complete partially ordered vector space.

More precisely, if {Tλ}λ∈� is an increasing net in Lsa that is bounded from above in
Lsa, then {Tλ}λ∈� converges in B(H) with respect to the strong operator topology, its
limit SOT− limλ Tλ is an element of Lsa, and is equal to the supremum

∨{Tλ : λ ∈ �}
of the Tλ in Lsa.

Remark 3.3 In view of Kadison’s anti-lattice theorem [19, Theorem 6], the space Lsa
figuring in Proposition 3.2 will not generally be a vector lattice. For example, if
dim H ≥ 2, then, by Kadison’s result, B(H)sa is not a vector lattice. The space
B(H)sa for dim H ≥ 2 also provides an example of a monotone complete partially
ordered vector space that is not Dedekind complete. It is, in fact, not even σ -Dede-
kind complete. To see this, suppose that it is σ -Dedekind complete. Since B(H)sa is
directed, every subset {T1, T2} is bounded from above, so that it then has a supremum.
Thus B(H)sa is a vector lattice, but we know this not to be the case.

Now that the monotone completeness of the above spaces of operators has been
established, we turn to normality. As a preparation, we start with the following defi-
nition.

Definition 3.4 Let E and F be partially ordered vector spaces, and let T : E → F be
a positive operator. Then T is called order continuous (resp. σ -order continuous) if
T xλ ↓ 0 in F whenever xλ ↓ 0 in E (resp. if T xn ↓ 0 in F whenever xn ↓ 0 in E).
One can, equivalently, require that T xλ ↑ T x in F whenever 0 ≤ xλ ↑ x in E (resp.
that T xn ↑ T x in F whenever 0 ≤ xn ↑ x in E). A general operator in Lr(E, F)

is order continuous (resp. σ -order continuous) if it is the difference of two positive
order continuous operators.We shall writeLoc(E, F) (resp.Lσoc(E, F)) for the order
continuous (resp. σ -order continuous) operators from E into F .

It is easy to see that the sum of two positive order continuous (resp. σ -order continu-
ous) operators is again a positive order continuous (resp. positive σ -order continuous)
operator, and it follows that Loc(E, F) (resp. Lσoc(E, F)) is a linear subspace of
Lr(E, F). If E is directed, then it is a partially ordered vector space with the posi-
tive order continuous operators (resp. the positive σ -order continuous operators) as its
positive cone, which is generating by definition. We shall write E∼

oc forLoc(E,R) and
E∼

σoc for Lσoc(E,R). It is the space E∼

oc that will be of help in the context of Riesz
representation theorems for vector-valued positive maps. It has (E∼

oc)
+, the positive

order continuous functionals, as its generating positive cone.

Remark 3.5 If E and F are vector lattices, where F is Dedekind complete, then the
above notion of order continuous operators agrees with the usual one in the literature.
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To see this, recall that T : E → F is order continuous in the sense of [29, p. 123]
if |T xλ| ↓ 0 in F whenever xλ ↓ 0 in E . Hence a positive T is order continuous
in the sense of [29, p. 123] precisely when it is order continuous in the sense of our
Definition 3.4. Furthermore, by [29, Lemma 84.1], T : E → F is order continuous in
the sense of [29, p. 123] if and only if T+ and T− are order continuous in the sense of
that same definition, i.e., if and only if they are positive order continuous operators in
the sense of Definition 3.4. In addition, [29, Theorem 84.2] implies that the set of all
T : E → F that are order continuous in the sense of [29, p. 123] form a vector space.
It follows that the notions of (and notations for) order continuous operators coincide
if E and F are vector lattices, where F is Dedekind complete. A similar argument
shows that this is also the case for σ -order continuous operators.

Definition 3.6 Let E be a partially ordered vector space. Then E is called normal
when, for x ∈ E , (x, x ′) ≥ 0 for all x ′ ∈ (E∼

oc)
+ if and only if x ∈ E+. We say that E

is σ -normal when, for x ∈ E , (x, x ′) ≥ 0 for all x ′ ∈ (E∼

σoc)
+ if and only if x ∈ E+.

Clearly, if E is (σ -)normal, then (E∼

oc)
+ separates the points of E .

As with order continuous operators, if E is a vector lattice, then our notion of
normality coincides with that in the literature. To see this, we include the following
result.

Lemma 3.7 Let E be a vector lattice, and let A be an order ideal of E∼. Then the
following are equivalent:

(1) A+ separates the points of E;
(2) A separates the points of E;
(3) For x ∈ E, (x, x ′) ≥ 0 for all x ′ ∈ A+ if and only if x ∈ E+.

If A = E∼, then the fact that part (2) implies part (3) can be found as [5, Theo-
rem 1.66]). The following proof is an adaptation of the proof for that case.

Proof It is clear that part (1) implies part (2), and also that part (3) implies part (1). It
remains to be shown that part (2) implies part (3).

One implication in part (3) is trivial, so we turn to the non-trivial one. Let x ∈ E
be such that (x, x ′) ≥ 0 for all x ′ ∈ A+. If x ′ ∈ A+, then [5, Theorem 1.23] shows
that there exists y′ ∈ E∼ such that 0 ≤ y′ ≤ x ′ and

(x−, x ′) = −(x, y′),

Since A is an order ideal, we have y′ ∈ A+. Hence (x, y′) ≥ 0 by assumption, and
we see that (x−, x ′) ≤ 0. On the other hand, it is clear that (x−, x ′) ≥ 0. We conclude
that (x−, x ′) = 0 for all x ′ ∈ A+, so that (x−, x ′) = 0 for all x ′ ∈ A. Then x− = 0
by the separation property of A, and therefore x ∈ E+. ��

As a consequence, a vector lattice is normal in the sense of our Definition 3.6 if
and only if E∼

oc separates the points of E , i.e., if and only if it is normal in the sense
of [1, p. 21]. For vector lattices, therefore, our notion of normality coincides with the
one in the literature.

As will become clear in [13], the importance of normality for our work on Riesz
representation theorems lies in the following observation.
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Proposition 3.8 Let E be a normal partially ordered vector space. Suppose that
{xλ}λ∈� is a net in E, and that x ∈ E.

(1) If xλ ↓, then xλ ↓ x if and only if (x, x ′) = infλ∈�(xλ, x ′) for all x ′ ∈ (E∼

oc)
+.

(2) If xλ ↑, then xλ ↑ x if and only if (x, x ′) = supλ∈�(xλ, x ′) for all x ′ ∈ (E∼

oc)
+.

Proof We prove part (1) where xλ ↓; part (2) follows from this.
If xλ ↓ x , so that xλ−x ↓ 0, and if x ′ ∈ (E∼

oc)
+, then, by definition, (xλ−x, x ′) ↓ 0.

Hence (xλ, x ′) ↓ (x, x ′), so that, in particular, (x, x ′) = infλ∈�(xλ, x ′).
Conversely, suppose that (x, x ′) = infλ∈�(xλ, x ′) for all x ′ ∈ (E∼

oc)
+.

With λ ∈ � fixed, we then have (x, x ′) ≤ (xλ, x ′), or (x − xλ, x ′) ≤ 0, for all
x ′ ∈ (E∼

oc)
+. Since E is normal, we conclude that x ≤ xλ. Hence x is a lower bound

of {xλ : λ ∈ �}.
If x̃ is a lower bound of {xλ : λ ∈ �}, and if x ′ ∈ (E∼

oc)
+ is fixed, then certainly

(x̃, x ′) ≤ (xλ, x ′) for all λ ∈ �. Hence (x̃, x ′) ≤ infλ∈�(xλ, x ′). Since the right hand
side of this inequality equals (x, x ′) by assumption, we have (x̃, x ′) ≤ (x, x ′) for all
x ′ ∈ (E∼

oc)
+. Since E is normal, we see that x̃ ≤ x .

We conclude that x = ∧{xλ : λ ∈ �}. Hence xλ ↓ x . ��
A similar proof establishes the following.

Proposition 3.9 Let E be a σ -normal partially ordered vector space. Suppose that
{xn}∞n=1 is a sequence in E, and that x ∈ E.

(1) If xn ↓, then xn ↓ x if and only if (x, x ′) = infn≥1(xn, x ′) for all x ′ ∈ (E∼

σoc)
+.

(2) If xn ↑, then xn ↑ x if and only if (x, x ′) = supn≥1(xn, x
′) for all x ′ ∈ (E∼

σoc)
+.

As mentioned in the introduction of this section, the partially ordered vector spaces
that are both monotone complete normal are a convenient context for Riesz represen-
tation theorems in terms of order integrals. We now include a few examples.

Proposition 3.10 A Banach lattice with an order continuous norm is a monotone com-
plete and normal partially ordered vector space.

Proof Let E be a Banach lattice with an order continuous norm. Then E is Dede-
kind complete; see [5, Corollary 4.10], for example.. Hence E is certainly monotone
complete. It follows easily from the fact that E∼ = E∗ and the order continuity of
the norm that E∼ = E∼

oc. Hence E∼

oc = E∗. Since E∗ separates the points of E ,
Lemma 3.7 shows that E is normal. ��
Proposition 3.11 Let E be a directed partially ordered vector space, let F be a mono-
tone complete and normal partially ordered vector space, and let V be a linear
subspace of L(E, F) that contains Lr(E, F).

Then V is a monotone complete and normal partially ordered vector space.

Proof Proposition 3.1 shows that V is monotone complete. To prove that it is normal,
we define, for x ∈ E+ and x ′ ∈ (F∼

oc )
+, the functional ϕx,x ′ : V → R by setting

(T , ϕx,x ′) := (T x, x ′) for T ∈ V . Then ϕx,x ′ is evidently positive. We claim that it is
order continuous. To see this, fix x ∈ E and x ′ ∈ (F∼

oc )
+, and suppose that Tλ ↓ 0
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in V . By Proposition 3.1, this implies that Tλx ↓ 0. Since x ′ is order continuous, it
then follows that (Tλx, x ′) ↓ 0. Hence ϕx,x ′ is order continuous, and we conclude
that ϕx,x ′ ∈ (V∼

oc )+. Finally, suppose that T ∈ V is such that (T , ϕx,x ′) ≥ 0 for all
x ∈ E+ and x ′ ∈ (F∼

oc )
+. Since F is normal, this implies that T x ≥ 0 for all x ∈ E+.

Hence T ≥ 0. This proves that V is normal. ��
The following example is a continuation of Proposition 3.2.

Proposition 3.12 Let H be a complex Hilbert space, and let L be a strongly closed
complex linear subspace of B(H). Let Lsa be the real vector space that consists of the
self-adjoint elements of L, supplied with the partial ordering that is inherited from
the usual partial ordering on B(H)sa. Then Lsa is a monotone complete and normal
partially ordered vector space.

Proof In view of Proposition 3.2, we need to prove only that Lsa is normal. To this
end, we define, for x ∈ H , the functional ϕx : Lsa → R by (T , ϕx ) = 〈T x, x〉 for
T ∈ Lsa; here 〈 · , · 〉 denotes the inner product on H . Then ϕx is clearly positive. We
claim that ϕx is order continuous. To see this, suppose that Tλ ↓ 0. By Proposition 3.2,
this implies that SOT− limλ Tλ = 0. Consequently, we have (Tλ, ϕx ) = 〈Tλx, x〉 ↓ 0.
Hence ϕx is order continuous, and we conclude that ϕx ∈ (V∼

oc )+. Finally, suppose
that T ∈ Lsa is such that (T , ϕx ) ≥ 0 for all x ∈ H . Hence 〈T x, x〉 ≥ 0 for all x ∈ H ,
so that T ≥ 0. This proves that Lsa is normal. ��

As von Neumann algebras are canonical examples of JBW-algebras (see, e.g., [3,
Definition 2.2] for a definition of the latter), the next example is somewhat related
to Proposition 3.12. We recall that any JB-algebra is partially ordered by its cone
of squares (see [3, Lemma 1.10]) and that this cone is generating; see [3, Proposi-
tion 1.28]. The following is immediate from [3, Corollary 2.17].

Proposition 3.13 A JBW-algebra is a normal and monotone complete partially
ordered vector space.

The Propositions 3.10–3.13 can be combined in variousways. The following imme-
diate result seems worth recording explicitly.

Theorem 3.14 Let E be a directed partially ordered vector space.

(1) If F is aBanach latticewith an order continuous norm, and if V is a linear subspace
of L(E, F) that contains Lr(E, F), then V is a monotone complete and normal
partially ordered vector space. In particular, Lr(E) is a Dedekind complete and
normal vector lattice for every Banach lattice E with an order continuous norm.

(2) If L is a strongly closed complex linear subspace of the bounded operators on a
complex Hilbert space, with self-adjoint part Lsa, and if V is a linear subspace of
L(E, Lsa) that contains Lr(E, Lsa), then V is a monotone complete and normal
partially ordered vector space. In particular, Lr(Lsa) is a monotone complete and
normal partially ordered vector space.

(3) If M is a JBW-algebra, and if V is a linear subspace of L(E,M) that contains
Lr(E,M), then V is a monotone complete and normal partially ordered vector
space. In particular,Lr(M) is a monotone complete and normal partially ordered
vector space.
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4 E+-valuedmeasures

After the motivational Sect. 3, we now start with the actual measure and integration
theory. The current section is concerned with the basics for measures with values in
the extended positive cone E+ of a partially ordered vector space E .

In this paper, a measurable space is a pair (X ,�), where X is a set and � is an
algebra of subsets of X ; that is, � is a non-empty collection of subsets of X that is
closed under the taking of complements and under the taking of finite unions. The
elements of � are the measurable subsets of X . It will become necessary only in
Sect. 6 to suppose that � is a σ -algebra.

The σ -additivity of a measure μ : � → R+ requires that μ
(⋃∞

n=1 	n
) =∑∞

n=1 μ(	n) in R+ whenever {	n}∞n=1 is pairwise disjoint sequence in � such that⋃∞
n=1 	n ∈ �.5 In this definition, the convergence of the series in R+ has to be

given a meaning. One possibility is to interpret it as the convergence of the sequence
of partial sums in the topology of R+ as the one-point compactification of R. This
does not admit a generalisation to maps μ : � → E+ for a general partially ordered
vector space E , since no topology need be present. If μ takes values inR+, then one
can, however, equivalently require that μ

(⋃∞
n=1 	n

) = ∨∞
N=1

∑N
n=1 μ(	n) in R+,

where the supremum is to be taken in the partially ordered setR+. Since this involves
only finite sums, topological convergence is no longer an issue and the requirement
doesmake sense for general E , provided one guarantees that the supremum in the right
hand side always exists. Thus one is led to suppose that E be σ -monotone complete.

The following definition is, therefore, a natural one. It is due to Wright; see [26,
p. 111]. We recall that the extension E of a partially ordered vector space E has been
introduced in Sect. 2.

Definition 4.1 Let (X ,�) be ameasurable space, and let E be a σ -monotone complete
partially ordered vector space. An E+-valued measure on � is a map μ : � → E+
such that:

(1) μ(∅) = 0;
(2) whenever {	n}∞n=1 is a pairwise disjoint sequence in � with

⋃∞
n=1 	n ∈ �, then

μ

( ∞⋃
n=1

	n

)
=

∞∨
N=1

N∑
n=1

μ(	n) (4.1)

in E .

Since the partial sums form a increasing sequence in E because μ(�) ⊆ E+, it
follows from part (1) of Lemma 2.5 that, for a given enumeration of the 	n , the right
hand side of equation (4.1) always exists in E . A moment’s thought shows that this
supremum is actually independent of the choice for the enumeration.

A quadruple (X ,�,μ, E), where X is a set, � is an algebra of subsets of X , E is
a σ -monotone complete partially ordered vector space, and μ : � → E+ is an E+-

5 In other sources, such μ can then be called a pre-measure; see [7, Definition I.3.1], for example.
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valued measure on �, will be called a measure space. We shall refer to the property
under part (2) of Definition 4.1 as the σ -additivity of μ.

If μ(X) ∈ E+, then we say that μ is finite, or that it is E+-valued. It will follow
from part (2) of Lemma 4.4 that then μ(	) ∈ E+ for all 	 ∈ �. If μ is not finite, i.e.,
if μ(X) = ∞, then μ is said to be infinite.

A measurable subset 	 of X is σ -finite if there exists a sequence {	n}∞n=1 in �

such that 	 ⊆ ⋃∞
n=1 	n and μ(	n) ∈ E+ for all n ≥ 1. If X is σ -finite, then we say

that μ is a σ -finite measure.
A null set is a measurable subset of X with measure zero. Ameasure space is called

complete if a subset of a null set is still a measurable subset. It will follow from part (2)
of Lemma 4.4 that a measurable subset of a null set is again a null set.

A property that a point x in X may or may not have is said to hold μ-almost
everywhere, or to hold for μ-almost all x in X , if the subset of X consisting of those
points that do not have this property is contained in a null set. It is not required that this
subset of exceptional points be measurable. If the measure is clear from the context,
we shall simply write that the property holds almost everywhere, or that it holds for
almost all x in X .

Before we proceed with the general theory, let us, by way of motivation, consider
two particular cases that we have in mind if E happens to be a space of operators. They
show that our ordered requirement for the σ -additivity of an operator-valued measure
is then the same as the classical σ -additivity in the strong operator topology.

The first case is in the context of Propositon 3.12.

Lemma 4.2 Let H be a complex Hilbert space, and let L be a strongly closed complex
linear subspace of B(H). Let Lsa be the real vector space that consists of the self-
adjoint elements of L, supplied with the partial ordering that is inherited from the
usual partial ordering on B(H)sa.

Let (X ,�) be a measurable space, let μ : � → L+
sa be a map such that μ(∅) = 0,

and let {	n}∞n=1 ⊆ � be such that
⋃∞

n=1 	n ∈ �.
Then the following are equivalent:

(1) μ
(⋃∞

n=1 	n
) = ∨∞

N=1
∑N

n=1 μ(	n) in Lsa;
(2) μ

(⋃∞
n=1 	n

)
x = ∑∞

n=1 μ(	n)x in the norm topology of H for all x ∈ H.

Proof It is immediate from Proposition 3.2 that part (1) implies part (2).
We prove that part (2) implies part (1). For each N ≥ 1, we have, for all x ∈ H ,

〈
N∑

n=1

μ(	n)x, x

〉
=

N∑
n=1

〈μ(	n)x, x〉 ≤
∞∑
n=1

〈μ(	n)x, x〉

=
〈 ∞∑
n=1

μ(	n)x, x

〉
=

〈
μ

( ∞⋃
n=1

	n

)
x, x

〉
.

We thus see that
∑N

n=1 μ(	n) ≤ μ
(⋃∞

n=1 	n
)
for all N ≥ 1. Since

∑N
n=1 μ(	n) ↑,

Proposition 3.2 shows that the sequence has a supremum in Lsa, and that this supremum
is also its SOT-limit. It is obvious from the validity of part (2) that this SOT-limit is
μ

(⋃∞
n=1 	n

)
. ��
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The second case is in the context of part (1) of Theorem 3.14.

Lemma 4.3 Let (X ,�) be a measurable space, let E be Dedekind complete Banach
lattice, let μ : � → Lr(E)+ be a map such that μ(∅) = 0, and let {	n}∞n=1 ⊆ � be
such that

⋃∞
n=1 	n ∈ �.

(1) Ifμ
(⋃∞

n=1 	n
)
x = ∑∞

n=1 μ(	n)x in the norm topology on E for all x ∈ E, then

μ
(⋃∞

n=1 	n
) = ∨∞

N=1
∑N

n=1 μ(	n) in Lr(E).

(2) If μ
(⋃∞

n=1 	n
) = ∨∞

N=1
∑N

n=1 μ(	n) in Lr(E) and if the norm on E is σ -order
continuous,6 thenμ

(⋃∞
n=1 	n

)
x = ∑∞

n=1 μ(	n)x in the norm topology of E for
all x ∈ E.

Proof We prove part (1). If x ∈ E+, then
∑N

n=1 μ(	n)x ↑. Since this increasing
sequence is norm convergent, its norm limit is also its supremum, i.e.,

∑N
n=1 μ(	n)x ↑∑∞

n=1 μ(	n)x = μ
(⋃∞

n=1 	n
)
x . This shows that

∑N
n=1 μ(	n) ↑ μ

(⋃∞
n=1 	n

)
.

We prove part (2). Let x ∈ E+. Since
∑N

n=1 μ(	n) ↑ μ
(⋃∞

n=1 	n
)
, we also have∑N

n=1 μ(	n)x ↑ μ
(⋃∞

n=1 	n
)
x . Since the norm is σ -order continuous, we see that

μ
(⋃∞

n=1 	n
)
x = ∑∞

n=1 μ(	n)x in the norm topology of E . By linearity, this is then
also true for arbitrary x ∈ E . ��

Continuing with the general theory, we collect the usual suspects in the following
result.

Lemma 4.4 Let (X ,�,μ, E) be a measure space.

(1) If 	1, . . . ,	n ∈ � are pairwise disjoint, then μ
(⋃n

i=1 	i
) = ∑n

i=1 μ(	i ) in E.
(2) If 	1,	2 ∈ � and 	1 ⊆ 	2, then μ(	1) ≤ μ(	2) in E.
(3) If 	1,	2 ∈ �, then μ(	1) + μ(	2) = μ(	1 ∩ 	2) + μ(	1 ∪ 	2) in E.
(4) If 	1,	2 ∈ �, 	1 ⊇ 	2, and μ(	2) ∈ E, then μ(	1\	2) = μ(	1) − μ(	2)

in E.
(5) If {	n}∞n=1 is a sequence in � with

⋃∞
n=1 	n ∈ �, then

μ

( ∞⋃
n=1

	n

)
≤

∞∨
N=1

N∑
n=1

μ(	n),

in E.

Proof Part (1) follows from the definitions when choosing 	k = ∅ for k ≥ n + 1.
Part (2) is immediate from part (1).
For part (3), we use the disjoint decomposition 	1 = (	1 ∩ 	2) ∪ (	1\	2) and

part (1) to see that

μ(	1) = μ(	1 ∩ 	2) + μ(	1\	2).

6 The combination of the σ -order continuity of the norm and the (σ -)Dedekind completeness implies that
the norm is even order continuous; see [22, Theorem 2.4.2]
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Similarly, we have

μ(	2) = μ(	2 ∩ 	1) + μ(	2\	1).

Hence

μ(	1) + μ(	2) = 2μ(	1 ∩ 	2) + μ(	1\	2) + μ(	2\	1)

in E . Since 	1 ∩ 	2, 	1\	2, and 	2\	1 are pairwise disjoint, and since their union
equals 	1 ∪ 	2, part (1) shows that the right hand side of the above equation equals
μ(	1 ∩ 	2) + μ(	1 ∪ 	2), as required.

For part (4), we use part (1) to see that μ(	1) = μ(	2) + μ(	1\	2). Since
μ(	2) ∈ E , it has an inverse −μ(	2) in the monoid E ; adding this inverse to both
sides yields that μ(	1\	2) = μ(	1) − μ(	2), as required.

For part (5), we let 	̃1 = 	1 and 	̃n = 	n\⋃n−1
k=1 	k for n ≥ 2. Then, using

part (2), we see that

μ

( ∞⋃
n=1

	n

)
= μ

( ∞⋃
n=1

	̃n

)
=

∞∨
N=1

N∑
n=1

μ(	̃n) ≤
∞∨
N=1

N∑
n=1

μ(	n).

��
We continue with a first rudimentary form of the monotone convergence theorem;

see Theorem 6.9 for the latter.

Proposition 4.5 Let (X ,�,μ, E) be a measure space. If {	n}∞n=1 is a increasing
sequence in � such that

⋃∞
n=1 	n ∈ �, then μ(	n) ↑ μ

(⋃∞
n=1 	n

)
in E.

Note that, since μ(	n) ↑ in E ,
∨∞

n=1 μ(	n) does indeed exists in E by part (1) of
Lemma 2.5.

Proof Let us first suppose that
∨∞

n=1 μ(	n) ∈ E . In this case, μ(	n) ∈ E for all
n ≥ 1. Set 	̃1 := 	1 and 	̃n := 	n\	n−1 for n ≥ 2. Then {	̃n}∞n=1 is a pairwise
disjoint sequence in� such that

⋃∞
n=1 	̃n = ⋃∞

n=1 	n ∈ �. Sinceμ(	̃n) = μ(	n)−
μ(	n−1) for n ≥ 2 by part (4) of Lemma 4.4, we see that

μ

( ∞⋃
n=1

	n

)
= μ

( ∞⋃
n=1

	̃n

)

=
∞∨
N=1

N∑
n=1

μ(	̃n)

=
∞∨
N=2

N∑
n=1

μ(	̃n)

=
∞∨
N=2

[
μ(	1) +

N∑
n=2

(μ(	n) − μ(	n−1))

]
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=
∞∨
N=2

μ(	n)

=
∞∨
N=1

μ(	n).

If
∨∞

n=1 μ(	n) = ∞, then certainly

∞∨
n=1

μ(	n) ≥ μ

( ∞⋃
n=1

	n

)
.

On the other hand, by the monotonicity of the measure, we obviously have μ(	n) ≤
μ(

⋃∞
n=1 	n) for all n ≥ 1. Hence also

∞∨
n=1

μ(	n) ≤ μ

( ∞⋃
n=1

	n

)
.

��
Naturally, Proposition 4.5 implies a counterpart for decreasing sequences of mea-

surable subsets. It is a rudimentary form of the dominated convergence theorem; see
Theorem 6.13 for the latter.

Proposition 4.6 Let (X ,�,μ, E) be a measure space.
If {	n}∞n=1 is a decreasing sequence in�withμ(	1) ∈ E such that

⋂∞
n=1 	n ∈ �,

then μ(	n) ↓ μ
(⋂∞

n=1 	n
)
in E.

Proof Set	 := ⋂∞
n=1 	n . Since	1\	n ↑ ⋃∞

n=1(	1\	n) = 	1\	, Proposition 4.5,
combined with part (4) of Lemma 4.4 and part (6) of Lemma 2.3, shows that

μ(	1) = μ(	) + μ(	1\	)

= μ(	) +
∞∨
n=1

μ(	1\	n)

= μ(	) +
∞∨
n=1

(μ(	1) − μ(	n))

= μ(	) + μ(	1) +
∞∨
n=1

(−μ(	n))

= μ(	) + μ(	1) −
∞∧
n=1

μ(	n)

in E . Since μ(	1) and
∧∞

n=1 μ(	n) have an inverse in E , we can now conclude that∧∞
n=1 μ(	n) = μ(	). ��
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The final result of this section is a generalisation of the Borel-Cantelli lemma. We
refer to [8, Exercise 1.2.89] for the classical result for a probability measure. Note,
however, that our measure need not be finite. This is the reason of the appearance of a
finiteness condition in part (2) that is automatically satisfied for probability measures.

Lemma 4.7 (Borel-Cantelli lemma) Let (X ,�,μ, E) be a measure space, and let
{	n}∞n=1 be a sequence in �. Suppose that 
k := ⋃∞

n=k 	n ∈ � for all k ≥ 1, and
that 
 := ⋂∞

k=1 
k = ⋂∞
k=1

⋃∞
n=k 	n ∈ �.

(1) If
∨∞

N=1
∑N

n=1 μ(	n) ∈ E, then μ(
) = 0.
(2) If μ

((⋃∞
n=1 	n

) \
) ∈ E, then μ(
) ≥ x in E for all x ∈ E with the property
that μ(	n) ≥ x for all n ≥ 1.

Note that in part (2) it is not asserted that μ(
) is finite.

Proof We start by proving part (1). It is clear from the fact that
 ⊆ 
k and Lemma 4.4
that

μ(
) ≤ μ(
k) ≤
∞∨
N=k

N∑
n=k

μ(	n) (4.2)

in E for all k ≥ 1.
Furthermore, for all k ≥ 2, we have

∞∨
N=1

N∑
n=1

μ(	n) =
∞∨
N=k

N∑
n=1

μ(	n)

=
∞∨
N=k

(
k−1∑
n=1

μ(	n) +
N∑

n=k

μ(	n)

)

=
k−1∑
n=1

μ(	n) +
∞∨
N=k

N∑
n=k

μ(	n)

in E . Since
∨∞

N=k
∑N

n=k μ(	n) is finite for all k ≥ 2, combination with Eq. (4.2)
yields that

k−1∑
n=1

μ(	n) ≤
∞∨
N=1

N∑
n=1

μ(	n) − μ(
)

in E for all k ≥ 2. Hence

∞∨
N=1

N∑
n=1

μ(	n) ≤
∞∨
N=1

N∑
n=1

μ(	n) − μ(
)
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in E . Since
∨∞

N=1
∑N

n=1 μ(	n) is finite, we see that μ(
) ≤ 0, and we conclude that
μ(
) = 0.

We turn to part (2). Since clearly μ(
k) ≥ μ(	k) ≥ x for all k ≥ 1, we have

∞∧
k=1

μ(
k) ≥ x, (4.3)

where we note that the infimum in the left hand side exists since μ(
k) ↓.
Since 
k\
 ↓ ∅ and since μ(
1\
) = μ

(⋃∞
n=1 	n\


) ∈ E by assumption,
Propositon 4.6 implies that

∞∧
k=1

μ(
k\
) = 0. (4.4)

Combining Eqs. (4.3) and (4.4) with part (2) of Lemma 2.4, we see that

μ(
) = μ(
) +
∞∧
k=1

μ(
k\
) =
∞∧
k=1

(μ(
) + μ(
k\
)) =
∞∧
k=1

μ(
k) ≥ x

in E . ��

5 E+-valued outer measures

One of the Riesz representation theorems for positive operators in [13] is established
using vector-valued outer measures. The present short section, which will not be used
in the later sections of the present paper, contains the necessary preparations for this.
It is a modest modification of [4, Section 14].

Throughout this section, X is a set and E is a σ -monotone complete partially
ordered vector space.

We begin with our definition of an E+-valued outer measure.

Definition 5.1 A map μ∗ : 2X → E+ is called an E+-valued outer measure if

(1) μ∗(∅) = 0;
(2) μ∗(	1) ≤ μ∗(	2) in E for all 	1,	2 ∈ 2X such that 	1 ⊆ 	2;
(3) for every sequence {	n}∞n=1 of subsets of X ,

μ∗
( ∞⋃
n=1

	n

)
≤

∞∨
N=1

N∑
n=1

μ∗(	n)

in E .

The combination of the parts (1) and (3) shows that μ∗ is not only σ -sub-additive,
but also finitely sub-additive.
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As in the real case, a measure can be found from an outer measure. The proofs need
only minor modifications.

Definition 5.2 A subset 	 of X is called μ∗-measurable if, for all 
 ⊆ X ,

μ∗(
) = μ∗(
 ∩ 	) + μ∗(
 ∩ 	c) (5.1)

in E .

We let � denote the collection of all μ∗-measurable subsets of X . Obviously,
∅, X ∈ �. and equally obviously � is invariant under the taking of complements. We
shall proceed to show that � is a σ -algebra, and that the restriction of μ∗ to � is an
E+-valued measure.

Lemma 5.3 Let 	1,	2 be subsets of X such that 	1 ∈ � and 	1 ∩ 	2 = ∅. Then,
for any subset 
 of X,

μ∗(
 ∩ (	1 ∪ 	2)
) = μ∗(
 ∩ 	1) + μ∗(
 ∩ 	2)

in E.

Proof Using that 	1 is μ∗-measurable and that (	1 ∪ 	2) ∩ 	c
1 = 	2, we see that,

for any 
 ⊆ X

μ∗(
 ∩ (	1 ∪ 	2)
) = μ∗( [
 ∩ (	1 ∪ 	2)] ∩ 	1

) + μ∗( [
 ∩ (	1 ∪ 	2)] ∩ 	c
1

)
= μ∗(
 ∩ 	1) + μ∗(
 ∩ 	2).

��
Applying Lemma 5.3 for 
 = X yields the following.

Corollary 5.4 Let 	1,	2 be subsets of X such that 	1 ∈ � and 	1 ∩ 	2 = ∅. Then
μ∗(	1 ∪ 	2) = μ∗(	1) + μ∗(	2) in E.

Theorem 5.5 Let X be a set, let E be a σ -monotone complete partially ordered vector
space, and let μ∗ : 2X → E+ be an E+-valued outer measure.

Then the set � of μ∗-measurable subsets of X is a σ -algebra. Furthermore, the
restriction of μ∗ to � is an E+-valued measure on �.

Proof We start by proving that� is a σ -algebra. We have already observed that ∅ ∈ �

and that � is invariant under the taking of complements, so it remains to be shown
that � is invariant under the taking of countable unions.

We show first that � is invariant under the taking of finite unions. Let 	1,	2 in
�. Set 	 := 	1 ∪ 	2. Using the μ∗-measurability of 	1 for the first and the fourth
equality, and that of 	2 for the third equality, we have, for any 
 ⊆ X ,

μ∗(
 ∩ 	) + μ∗(
 ∩ 	c) = μ∗( [
 ∩ 	] ∩ 	1
) + μ∗( [
 ∩ 	] ∩ 	c

1

)
+ μ∗( [


 ∩ 	c] ∩ 	1
) + μ∗( [


 ∩ 	c] ∩ 	c
1

)
= μ∗(
 ∩ 	1) + μ∗( [


 ∩ 	c
1

] ∩ 	2
)
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+ μ∗(∅) + μ∗( [

 ∩ 	c

1

] ∩ 	c
2

)
= μ∗(
 ∩ 	1) + μ∗(
 ∩ 	c

1)

= μ∗(
)

in E . Hence 	1 ∪ 	2 ∈ �, as desired. It follows that � is closed under the taking of
finite unions.

Now suppose that {	n}∞n=1 is a sequence in�. We are to show that
⋃∞

n=1 	n isμ∗-
measurable. Replacing	n with	n\⋃n

k=1 	k for n ≥ 2, which we now already know
to be μ∗-measurable, we may and shall suppose that the 	n are pairwise disjoint. Set
� := ⋃∞

n=1 	n , and �N := ⋃N
n=1 	n for N ≥ 1; then the �N are μ∗-measurable.

Using the μ∗-measurability of �N in the first step, the monotonicity of μ∗ in the
second step, and Lemma 5.3 and the fact that � is closed under the taking of finite
unions in the third step, we see that, for all N ≥ 1 and 
 ⊆ X ,

μ∗(
) = μ∗(
 ∩ �N ) + μ∗(	 ∩ �c
N )

≥ μ∗(
 ∩ �N ) + μ∗(	 ∩ �c)

=
N∑

n=1

μ∗(
 ∩ 	n) + μ∗(	 ∩ �c)

in E . Since this is true for each N ≥ 1, a combination with the σ -sub-additivity of μ∗
implies that, for any 
 ⊆ X ,

μ∗(
) ≥
∞∨
N=1

N∑
n=1

μ∗(
 ∩ 	n) + μ∗(
 ∩ �c)

≥ μ∗
( ∞⋃
n=1

(
 ∩ 	n)

)
+ μ∗(
 ∩ �c)

= μ∗(
 ∩ �) + μ∗(
 ∩ �c)

≥ μ∗(
)

in E . Hence � ∈ �, as desired.
We shall now show that μ∗ is σ -additive on �. Let {	n}∞n=1 be a pairwise disjoint

sequence in�. Themonotonicity ofμ∗ and the finite additivity ofμ∗ on� that follows
from Corollary 5.4 show that, for all N ≥ 1,

μ∗
( ∞⋃
n=1

	n

)
≥ μ∗

(
N⋃

n=1

	n

)

=
N∑

n=1

μ∗(	n)
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in E . Hence μ∗ (⋃∞
n=1 	n

) ≥ ∨∞
N=1

∑N
n=1 μ∗(	n). Since the reverse inequality

holds by the σ -sub-additivity of μ∗, we see that μ∗ is σ -additive on �. ��
The following basic property carries over as well from the real case. It implies

that the restriction of μ∗ to the μ∗-measurable subsets of X is a complete E+-valued
measure.

Lemma 5.6 Let 	 be a subset of X such that μ∗(	) = 0. Then 	 is μ∗-measurable.

Proof If μ∗(	) = 0, then, for any subset 
 of X ,

μ∗(
) ≤ μ∗(
 ∩ 	) + μ∗(
 ∩ 	c) ≤ μ∗(	) + μ∗(
) = μ∗(
).

��

6 Integration with respect to an E+-valuedmeasure

In this section, we define the order integral with respect to E+-valued measures. After
that, we proceed to establish the three basic convergence theorems: the monotone
convergence theorem (see Theorem 6.9), Fatou’s lemma (see Theorem 6.12), and the
dominated convergence theorem (see Theorem 6.13). The analogues of the classical
L 1- and L1-spaces are introduced and some of their vector lattice properties are
investigated; see Proposition 6.14 and Theorem 6.17.

6.1 Order integrals

Let (X ,�,μ, E) be a measure space, where � is now a σ -algebra and not merely an
algebra, E is a σ -monotone complete partially ordered vector space, andμ : � → E+
is an E+-valuedmeasure. In this section,we shall introduce an integral on suitable real-
valued functions that corresponds to these data.7 For someof the convergence theorems
involving non-negative functions, such as the monotone convergence theorem, it is, in
fact, more convenient (and more natural) to also allow functions taking values in the
extended positive real numbers. This will, therefore, be our starting point.

While introducing some notation at the same time, we now start with the usual
definitions and elementary results, referring to, e.g., [7, p. 49–52] for details.

We supplyR+ with the topology of the one-point compactification ofR+, and we
let M (X ,�;R+) denote the set of �–Borel-measurable functions f : X → R+. A
function f : X → R+ is �–Borel-measurable if and only if {x ∈ X : f (x) < r} ∈ �

for all (finite) r ∈ R+. The set M (X ,�;R+) contains the pointwise sum, product,
supremum, and infimum in R+ of two of its elements, and it is invariant under the
pointwise action ofR+. Every at most countable subset { fn n ≥ 1} ofM (X ,�;R+)

has a supremum and an infimum in M (X ,�;R+), which is given by its pointwise
supremum resp. infimum in R+. Hence the notation fn ↑ f can be used to express a
pointwise property inR+ as well as a fact in the partially ordered setM (X ,�;R+).

7 The Lemmas 6.1 and 6.2 are actually still valid when � is an algebra and μ is finitely additive.

123



Order integrals Page 25 of 39    32 

An element ϕ of M (X ,�;R+) is an elementary function if it takes only finitely
many values, which are all finite. When S is a subset of X , then we let χS denote
its indicator function, so that ϕ can (non-uniquely) be written as a finite sum ϕ =∑n

i=1 riχ	i for some n ≥ 1, r1, . . . , rn ∈ R+, and	1, . . . ,	n ∈ �. Here the ri are all
finite, but it is allowed thatμ(	i ) = ∞ for someof the	i .We letE (X ,�;R+) denote
the set of elementary functions. It contains the pointwise sum, product, supremum,
and infimum inR+ of two of its elements, and it is invariant under the pointwise action
of R+.

If ϕ = ∑n
i=1 riχ	i is an elementary function, where the 	i have been chosen to

be pairwise disjoint, then we define its order integral, which is an element of E+, by

∫ o

X
ϕ dμ :=

n∑
i=1

riμ(	i ),

where riμ(	i ) refers to the action of R+ as monoid homomorphisms on E . We
have added a superscript to indicate that the integral that we shall introduce for more
general functions is defined using order properties. In contexts where E is, in fact, a
partially ordered Banach space, integrals with respect to vector measures can then also
be defined by using norm convergence rather than the ordering; this notation keeps
the distinction clear. We shall return to the connection between these two types of
measures and their integrals in Sect. 7.

The facts that μ is finitely additive and that R+ acts as monoid homomorphisms
on E imply that the integral does not depend on the choice for the pairwise disjoint
	i . The proof of this is exactly as the proof of [7, Lemma 10.2] for E = R. These
two facts, combined with the fact that (rs)x = r(sx) for all r , s ∈ R+ and x ∈ E ,
also yield the following result, where the equalities and the inequality are in E .

Lemma 6.1 Let (X ,�,μ, E) be ameasure space, where� is a σ -algebra. Let ϕ, ψ ∈
E (X ,�;R+), and let r ≥ 0. Then:

(1)
∫ o
Xrϕ dμ = r

∫ o
Xϕ dμ;

(2)
∫ o
X (ϕ + ψ) dμ = ∫ o

Xϕ dμ + ∫ o
Xψ dμ;

(3) if ϕ ≤ ψ , then
∫ o
Xϕ dμ ≤ ∫ o

Xψ dμ.

It follows from this that, forϕ ∈ E (X ,�;R+),
∫ o
Xϕ dμ = ∑n

i=1 riμ(	i )whenever
ϕ = ∑n

i=1 riχ	i for not necessarily disjoint	i ∈ �. The proofs for all this are exactly
as in [7, p. 55–56].

We shall define the order integral of an arbitrary f ∈ M (X ,�;R+) in the natural
way. To know that it is well defined, we need the following preparatory result. The
proof is similar to that of [7, Theorem 11.1] for the real case, but a comparison will
show that it is still not a mere translation. The proof below for the general case will, in
fact, enable one to argue that it is the Archimedean property of the real numbers that
underlies the well-definedness of the integral also in this case, and not the continuity
of the multiplication in the real numbers, as might be a possible interpretation of the
proof of [7, Theorem 11.1].
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Lemma 6.2 Let (X ,�,μ, E) be a measure space, where � is a σ -algebra. Let ϕ ∈
E (X ,�;R+) and let {ϕn}∞n=1 ⊆ E (X ,�;R+) be such that ϕn ↑ and ϕ ≤ supn≥1 ϕn

pointwise inR+. Then

∫ o

X
ϕ dμ ≤

∞∨
n=1

∫ o

X
ϕn dμ

in E.

Proof We can write ϕ = ∑m
i=1 riχ	i for some ri ∈ R+ and 	i ∈ �. Let ε be fixed

such that 0 < ε < 1. For n ≥ 1, set 
n := {x ∈ X : ϕn(x) ≥ (1−ε)ϕ(x)}. Then 
n is
measurable and
n ↑ X , sinceϕ ≤ supn≥1 ϕn andϕn ↑. This implies that
n∩	i ↑ 	i

for i = 1, . . . ,m, and then Proposition 4.5 shows that μ(	i ∩ 
n) ↑ μ(	i ) in E for
i = 1, . . . ,m. Since ϕn ≥ (1 − ε)χ
nϕ, Lemma 6.1 shows that

∫ o

X
ϕn dμ ≥ (1 − ε)

∫ o

X
χ
nϕ dμ (6.1)

for n ≥ 1. Furthermore,

∫ o

X
χ
nϕ dμ =

∫ o

X

m∑
i=1

riχ
nχ	i dμ =
∫ o

X

m∑
i=1

riχ
n∩	i dμ =
m∑
i=1

riμ(
n ∩ 	i ).

Since
n∩	i ↑ 	i for i = 1, . . . ,m, part (7) of Lemma 2.3 and part (2) of Lemma 2.4
then yield that

∞∨
n=1

∫ o

X
χ
nϕ dμ =

∞∨
n=1

m∑
i=1

riμ(
n ∩ 	i ) =
m∑
i=1

ri

∞∨
n=1

μ(
n ∩ 	i )

=
m∑
i=1

riμ(	i ) =
∫ o

X
ϕ dμ.

Combining this with Eq. (6.1), we see that

∞∨
n=1

∫ o

X
ϕn dμ ≥ (1 − ε)

∫ o

X
ϕ dμ.

in E . If
∫ o
Xϕ dμ = ∞, then we take ε = 1/2 to see that

∨∞
n=1

∫ o
Xϕn dμ = ∞; we then

have equality in the lemma. If
∫ o
Xϕ dμ is finite, then we can write

∞∨
n=1

∫ o

X
ϕn dμ −

∫ o

X
ϕ dμ ≥ −ε

∫ o

X
ϕ dμ.
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Since this is true for every ε such that 0 < ε < 1, this implies that

∞∨
n=1

∫ o

X
ϕn dμ −

∫ o

X
ϕ dμ ≥ −

∞∧
k=2

1

k

∫ o

X
ϕ dμ.

Since E is Archimedean, the right hand side is zero. This concludes the proof. ��
Suppose now that � is a σ -algebra, and let f ∈ M (X ,�;R+). There exists

a sequence {ϕn}∞n=1 ⊆ E (X ,�;R+) such that ϕn ↑ f pointwise in R+; see [9,
Proposition 2.1.7], for example.We define the order integral of f , which is an element
of E+, by setting

∫ o

X
f dμ :=

∞∨
n=1

∫ o

X
ϕn dμ.

Since
∫ o
Xϕn dμ ↑, the σ -monotone completeness of E guarantees that this supremum

exists in E ; see part (1) of Lemma 2.5. To show that this definition is independent of the
choice for the sequence {ϕn}∞n=1, let {ψn}∞n=1 ⊂ E (X ,�;R+) be a second sequence
such that ψn ↑ f . Then ϕk ≤ f = supn≥1 ψn pointwise in R+ for all k ≥ 1, so that
Lemma 6.2 shows that

∫ o
Xϕk dμ ≤ ∨∞

n=1

∫ o
Xψn dμ in E . Hence

∨∞
k=1

∫ o
Xϕk dμ ≤∨∞

n=1

∫ o
Xψn dμ in E . The reverse inequality is likewise true, and we conclude that∫ o

X f dμ is well defined as an element of E+.
The integral has the usual properties as in the next result.We include the easy proofs

for the sake of completeness. Given the Lemmas 2.3 and 2.4, the proof is analogous
to that for the real case.

Lemma 6.3 Let (X ,�,μ, E) be ameasure space, where� is aσ -algebra, let f1, f2 ∈
M (X ,�;R+), and let r1, r2 ∈ R+. Then:
(1)

∫ o
X (r1 f1 + r2 f2) dμ = r1

∫ o
X f1 dμ + r2

∫ o
X f2 dμ in E;

(2) If f1 ≤ f2 pointwise inR+, then
∫ o
X f1 dμ ≤ ∫ o

X f2 dμ in E.

Proof Choose a sequence {ϕn}∞n=1 ⊆ E (X ,�;R+) such that ϕn ↑ f1 pointwise in
R+, and a sequence {ψn}∞n=1 ⊆ E (X ,�;R+) such that ψn ↑ f2 pointwise in R+.
Then r1ϕn + r2ψn ↑ r1 f1 + r2 f2 pointwise in R+, so that part (1) follows from
the definition of the integral, combined with part (7) of Lemma 2.3 and part (2) of
Lemma 2.4.

Since, for all n ≥ 1, ϕn ≤ f2 = supn≥1 ψn pointwise in R+, Lemma 6.2 yields
that

∫ o
Xϕn dμ ≤ ∨∞

n=1

∫ o
Xψn dμ = ∫ o

X f2 dμ. Hence
∫ o
X f1 dμ = ∨∞

n=1

∫ o
Xϕn dμ ≤∫ o

X f2 dμ, which is part (2). ��
The importance of the Archimedean property of E—and then also that of the real

numbers—is again illustrated in the proof of part (1) of the following result.

Lemma 6.4 Let (X ,�,μ, E) be a measure space, where � is a σ -algebra, and let
f ∈ M (X ,�;R+) be such that

∫ o
X f dμ is finite. Then:
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(1) f is almost everywhere finite-valued;
(2) the subset {x ∈ X : f (x) > 0} is σ -finite.

Proof We prove part (1). For n ≥ 1, set 	n := {x ∈ X : f (x) ≥ n inR+}. Then
nχ	n ≤ f , so that nμ(	n) = ∫ o

Xnχ	n dμ ≤ ∫ o
X f dμ by part (2) of Lemma 6.3.

Hence μ(	n) ≤ 1/n
∫ o
X f dμ for all n ≥ 1. From {x ∈ X : f (x) = ∞} = ⋂∞

n=1 	n ,
we see that μ{x ∈ X : f (x) = ∞} ≤ 1/n

∫ o
X f dμ for all n ≥ 1. Since

∫ o
X f dμ is

finite, the Archimedean property of E then implies that μ{x ∈ X : f (x) = ∞} ≤ 0,
which shows that μ{x ∈ X : f (x) = ∞} = 0.

For part (2), set 
n := {x ∈ X : f (x) ≥ 1/n inR+} for n ≥ 1. Then one sees
similarly that μ(
n) ≤ n

∫ o
X f dμ, which is finite. Since {x ∈ X : f (x) > 0} =⋃∞

n=1 
n , part (2) is clear. ��
Lemma 6.5 Let (X ,�,μ, E) be a measure space, where � is a σ -algebra. Let f ∈
M (X ,�;R+). Then the following are equivalent:

(1)
∫ o
X f dμ = 0;

(2) f (x) = 0 for almost all x ∈ X.

Proof Choose a sequence {ϕn}∞n=1 ⊂ E (X ,�;R+) such that ϕn ↑ f pointwise in
R+.

Suppose that part (1) holds. Then
∫ o
Xϕn dμ = 0 for all n ≥ 1 by part (2) of

Lemma 6.3. For the elementary functions ϕn , however, it is a direct consequence of
the definition of their integrals that then μ({x ∈ X : ϕn(x) �= 0}) = 0. Since the set
{x ∈ X : f (x) �= 0} can be written as the union

⋃∞
n=1{x ∈ X : ϕn(x) �= 0}, the

σ -sub-additivity of μ then implies that μ({x ∈ X : f (x) �= 0} = 0. Hence part (1)
implies part (2).

Suppose that part (2) holds. Since 0 ≤ ϕn(x) ≤ f (x) for all x ∈ X , we see that
ϕn(x) = 0 for almost all x ∈ X . For the elementary functions ϕn , however, it is a direct
consequence of the definition of their integrals that then

∫ o
Xϕn dμ = 0 for all n. Since∫ o

Xϕn dμ ↑ ∫ o
X f dμ, it follows that

∫ o
X f dμ = 0. Hence part (2) implies part (1). ��

Corollary 6.6 Let (X ,�,μ, E) be a measure space, where � is a σ -algebra. Let
f1, f2 ∈ M (X ,�;R+) and suppose that f1(x) = f2(x) for almost all x ∈ X. Then∫ o
X f1 dμ = ∫ o

X f2 dμ in E.

Proof Set 	 := {x ∈ X : f1(x) �= f2(x)}. Then 	 is a measurable subset of measure
zero. There exists g ∈ M (X ,�;R+) such that f1 = g + f1χ	 and f2 = g + f2χ	.
Then Lemma 6.3 and Lemma 6.5 show that

∫ o
X f1 dμ and

∫ o
X f2 dμ are both equal to∫ o

X g dμ. ��
We shall now define the order integral on a space of finite-valued measurable func-

tions that need not be positive. We shall write M (X ,�;R) for the vector lattice of
allR-valued �–Borel measurable functions on X andM (X ,�;R+) for its positive
cone of all positive measurable functions. A function f : X → R+ is measurable in
the present sense precisely if it is measurable in the earlier sense as a map from X into
R+.

We letL 1(X ,�,μ;R) denote the set of all f ∈ M (X ,�;R) such that
∫ o
X | f | dμ

is finite, and write L 1(X ,�,μ;R+) for the set of all positive measurable f with
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finite integral. It follows from Lemma 6.3 that L 1(X ,�,μ;R) is an order ideal of
M (X ,�;R+); its positive cone isL 1(X ,�,μ;R+).

For f ∈ L 1(X ,�,μ;R), we choose f1, f2 ∈ L 1(X ,�,μ;R+) such that f =
f1 − f2, and we define the order integral of f as

∫ o
X f dμ := ∫ o

X f1 dμ − ∫ o
X f2 dμ. It

is an element of E . Invoking Lemma 6.3, the usual arguments show that this is well
defined, and that it defines a positive operator fromL 1(X ,�,μ;R) into E .

We single out the following result for reference purposes. This triangle inequality
for the order integral in the case of vector lattices is easily verified by splitting a
function into its positive and negative parts.

Lemma 6.7 Let (X ,�,μ, E) be a measure space, where � is a σ -algebra and
E is a σ -Dedekind complete vector lattice. Then

∣∣∫ o
X f dμ

∣∣ ≤ ∫ o
X | f | dμ for f ∈

L 1(X ,�,μ;R).

Returning to general σ -monotone complete partially ordered vector spaces that
need not be vector lattices, we set

N (X ,�,μ;R) := { f ∈ M (X ,�;R) : f (x) = 0 for almost all x ∈ X}.

Lemmas 6.5 and Lemma 6.3 imply that N (X ,�,μ;R) ⊆ L 1(X ,�,μ;R) and
that

∫ o
X f dμ = 0 for f ∈ N (X ,�,μ;R), and that

∫ o
X f1 dμ ≤ ∫ o

X f2 dμ when
f1, f2 ∈ L 1(X ,�,μ;R) are such that f1 ≤ f2 almost everywhere.
For monotone complete E , we shall return to the vector lattice properties of

N (X ,�,μ;R) and L 1(X ,�,μ;R) in Sect. 6.3 after the monotone convergence
theorem will have been established in Sect. 6.2. For the moment, we conclude this
section with the following result. It involves the σ -order continuity of an operator from
Definition 3.4.

Proposition 6.8 Let (X ,�,μ, E) be a measure space, where � is a σ -algebra and
μ is finite, let F be a σ -monotone complete partially ordered vector space, and let
T : E → F be a σ -order continuous positive operator. Set

μT (	) := T (μ(	))

for 	 ∈ �. Then (X ,�,μT , F) is a measure space.
Suppose that f ∈ M (X ,�;R+) is such that

∫ o
X f dμ ∈ E+ is actually finite. Then∫ o

X f dμT ∈ F+ is also finite, and

T

(∫ o

X
f dμ

)
=

∫ o

X
f dμT . (6.2)

Suppose that f ∈ L 1(X ,�,μ;R). Then f ∈ L 1(X ,�,μT ;R) and Eq. (6.2)
holds.

Proof It is immediate from the σ -order continuity of T that μT is an F+-valued
measure.
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The validity of equation (6.2) is clear for elementary functions. The validity for gen-
eral f ∈ M (X ,�;R+) then follows from the definition of the order integral and the
σ -order continuity of T . This, in turn, implies the statement for f ∈ L 1(X ,�,μ;R).

��

6.2 Convergence theorems

We shall now establish the three basic convergence theorems in the general context
and start with the monotone convergence theorem.

Theorem 6.9 (Monotone convergence theorem) Let (X ,�,μ, E) be ameasure space,
where � is a σ -algebra. Let { fn}∞n=1 ⊆ M (X ,�;R+) and f ∈ M (X ,�;R+) be

such that fn(x) ↑ f (x) inR+ for almost all x ∈ X. Then

∫ o

X
fn dμ ↑

∫ o

X
f dμ

in E.

Proof In view of Lemma 6.5, we can, by redefining all fn and f to be zero on a
measurable subset of measure 0, suppose that fn(x) ↑ f (x) inR+ for all x ∈ X . For
each n ≥ 1, let {ϕn

i }∞i=1 be a sequence in E (X ,�;R+) such that ϕn
i ↑ fn pointwise in

R+ as i → ∞. Set ψn := ∨n
i=1 ϕi

n for n ≥ 1. Then ψn ∈ E (X ,�;R+) for all n ≥ 1
and ψn ↑ f pointwise in E . Hence

∫ o
X f dμ = ∨∞

n=1

∫ o
Xψn dμ by definition. On the

other hand, since, for all n ≥ 1,ψn ≤ fn pointwise in E , we have
∫ o
Xψn dμ ≤ ∫ o

X fn dμ
for all n ≥ 1. Hence

∫ o
X f dμ ≤ ∨∞

n=1

∫ o
X fn dμ in E . As the reverse inequality is clear,

the proof is complete. ��
Just as Proposition 4.5 implies Proposition 4.6, Theorem 6.9 implies our next result.

It is a special case of the dominated convergence theorem; see part (4) of Theorem6.13.

Corollary 6.10 Let (X ,�,μ, E) be a measure space, where � is a σ -algebra. Let
{ fn}∞n=1 ⊆ M (X ,�;R+) and f ∈ M (X ,�;R+) be such that fn(x) ↓ f (x) inR+
for almost all x ∈ X. If

∫ o
X f1 dμ is finite, then

∫ o

X
fn dμ ↓

∫ o

X
f dμ

in E.

Proof In view of Lemma 6.4 and Corollary 6.6, we can, after redefining all fn and
f to be zero on a suitable measurable subset of measure zero, suppose that the fn
have finite values and that fn ↓ f pointwise. Then the functions f1 − fn are well-
defined elements of M (X ,�;R+). Since

∫ o
X fn dμ is also finite for all n, we have∫ o

X ( f1 − fn) dμ = ∫ o
X f1 dμ − ∫ o

X fn dμ for all n ≥ 1. Similarly,
∫ o
X ( f1 − f ) dμ =∫ o

X f1 dμ − ∫ o
X f dμ. Since ( f1 − fn) ↑ ( f1 − f ), an application of Theorem 6.9

shows that
(∫ o

X f1 dμ − ∫ o
X fn dμ

) ↑ (
∫ o
X f1 dμ − ∫ o

X f dμ) in E . We conclude that∫ o
X fn dμ ↓ ∫ o

X f dμ. ��
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The combination of Lemma 6.4 and Theorem 6.9 yields the following.

Proposition 6.11 Let (X ,�,μ, E) be a measure space, where � is a σ -algebra. Let
{ fn}∞n=1 ⊆ M (X ,�;R+) and f ∈ M (X ,�;R+) be such that fn(x) ↑ f (x) in

R+ for almost all x ∈ X, and suppose that
∨∞

n=1

∫ o
X fn dμ is finite. Then {x ∈ X :∨∞

n=1 fn(x) = ∞} is a measurable subset of X of measure zero.

We continue with Fatou’s lemma.

Theorem 6.12 (Fatou’s lemma) Let (X ,�,μ, E) be a measure space, where � is a
σ -algebra and E is σ -Dedekind complete.

If { fn}∞n=1 is a sequence inM (X ,�;R+), then

∫ o

X
lim inf
n→∞ fn dμ ≤

∞∨
n=1

∞∧
k=n

∫ o

X
fk dμ

in E.

The σ -Dedekind completeness is necessary to guarantee that
∧∞

k=n

∫ o
X fk dμ exists

for all n ≥ 1; σ -monotone completeness is no longer sufficient here.

Proof For n ≥ 1, set gn := infk≥n fk . Then 0 ≤ gn ≤ fk all k ≥ n, so that Lemma 6.3
implies that

∫ o

X
gn dμ ≤

∧
k≥n

∫ o

X
fk dμ (6.3)

in E for all n ≥ 1.
Applying Theorem 6.9 to the increasing sequence gn ↑ lim infn≥1 fn , and using

equation (6.3), we then see that

∫ o

X
lim inf
n→∞ fn dμ =

∞∨
n=1

∫ o

X
gn dμ

≤
∞∨
n=1

∞∧
k=n

∫ o

X
fk dμ

in E . ��
We conclude with the dominated convergence theorem.

Theorem 6.13 (Dominated convergence theorem) Let (X ,�,μ, E) be a measure
space, where � is a σ -algebra and E is σ -Dedekind complete.

Let { fn}∞n=1 be a sequence inM (X ,�;R), and let f ∈ M (X ,�;R) be such that
fn(x) → f (x) for almost all x in X.
If there exists g ∈ M (X ,�;R+) such that

∫ o
X g dμ is finite, and such that, for all

n ≥ 1, | fn(x)| ≤ g(x) inR+ for almost all x in X, then:
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(1) fn ∈ L 1(X ,�,μ;R) for all n ≥ 1;
(2) f ∈ L 1(X ,�,μ;R);
(3)

∧∞
n=1

∨∞
k=n

∫ o
X | fk − f | dμ = 0;

(4)

∫ o

X
f dμ =

∞∨
n=1

∞∧
k=n

∫ o

X
fk dμ =

∞∧
n=1

∞∨
k=n

∫ o

X
fk dμ.

Proof In view of Lemma 6.5, we may, by redefining all fn, f , and g to be zero on a
measurable subset of measure zero, suppose that g ∈ M (X ,�;R+), that | fn(x)| ≤
g(x) for all x ∈ X , and that fn(x) → f (x) for all x ∈ X . Since then also | f |(x) ≤ g(x)
for all x ∈ X , the fn and f are in L 1(X ,�,μ;R).

We turn to part (3). Since 2g − | fn − f | ≥ 0 pointwise, Theorem 6.12 shows that

∫ o

X
2g dμ =

∫ o

X
lim inf
n≥1

(2g − | fn − f |) dμ

≤
∞∨
n=1

∞∧
k=n

∫ o

X
(2g − | fn − f |) dμ

=
∫ o

X
2g dμ −

∞∧
n=1

∞∨
k=n

∫ o

X
| fn − f | dμ,

where the final equality is valid since the integrals
∫ o
X (g − | fn − f |) dμ, ∫ o

X g dμ,
and

∫ o
X | fn − f | dμ all lie in the finite order interval [0, 2∫ o

X g dμ] of E . Cancelling
the finite element

∫ o
X2g dμ, we see that

∧∞
n=1

∨∞
k=n

∫ o
X | fn − f | dμ ≤ 0. Since the

reverse inequality is obvious, the proof of part (3) is complete.
We turn to part (4).
Since g + fn ≥ 0 for all n ≥ 1, Fatou’s lemma shows that

∫ o

X
(g + f ) dμ =

∫ o

X
lim inf
n≥1

(g + fn) dμ

≤
∞∨
n=1

∞∧
k=n

∫ o

X
(g + fn) dμ

=
∫ o

X
g dμ +

∞∨
n=1

∞∧
k=n

∫ o

X
fn dμ,

from which we see that

∫ o

X
f dμ ≤

∞∨
n=1

∞∧
k=n

∫ o

X
fn dμ. (6.4)
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Since g − fn ≥ 0 for all n ≥ 1, Fatou’s lemma shows that

∫ o

X
(g − f ) dμ =

∫ o

X
lim inf
n≥1

(g − fn) dμ

≤
∞∨
n=1

∞∧
k=n

∫ o

X
(g − fn) dμ

=
∫ o

X
g dμ −

∞∧
n=1

∞∨
k=n

∫ o

X
fn dμ,

from which we see that

∞∧
n=1

∞∨
k=n

∫ o

X
fn dμ ≤

∫ o

X
f dμ. (6.5)

Combining equations (6.4) and (6.5) with Lemma 2.2, we have

∞∧
n=1

∞∨
k=n

∫ o

X
fn dμ ≤

∫ o

X
f dμ ≤

∞∨
n=1

∞∧
k=n

∫ o

X
fn dμ ≤

∞∧
n=1

∞∨
k=n

∫ o

X
fn dμ,

which completes the proof of part (4). ��

6.3 L 1L 1L 1-spaces andL1-spaces

In this section, we collect some vector lattice properties of L 1(X ,�,μ;R) and its
quotient space L1(X ,�,μ;R) that will be defined below.

Proposition 6.14 Let (X ,�,μ, E) be a measure space, where � is a σ -algebra.

(1) L 1(X ,�,μ;R) is an order ideal of the vector latticeM (X ,�;R). As a conse-
quence, it is a σ -Dedekind complete vector lattice.

(2) The positive operator f �→ ∫ o
X f dμ from L 1(X ,�,μ;R) into E is σ -order

continuous.
(3) N (X ,�,μ;R) is a σ -order ideal of L 1(X ,�,μ;R).

Proof It was already observed in Sect. 6.2 that L 1(X ,�,μ;R) is an order ideal of
M (X ,�;R), and then it inherits the σ -Dedekind completeness of M (X ,�;R).

It follows from Corollary 6.10 that the order integral is σ -order continuous.
We have N (X ,�,μ;R) = { f ∈ L 1(X ,�,μ;R) : ∫ o

X | f | dμ = 0} by
Lemma 6.5. Hence N (X ,�,μ;R) is the null ideal of the order integral on
L 1(X ,�,μ;R). Since this is a σ -order continuous operator, it now follows that
N (X ,�,μ;R) is a σ -ideal of L 1(X ,�,μ;R). ��

We shall now introduce the generalisation of the classical L1-space to the vector-
valued case.
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Since N (X ,�,μ;R) is an order ideal ofL 1(X ,�,μ;R), the quotient space

L1(X ,�,μ;R) := L 1(X ,�,μ;R)/N (X ,�,μ;R)

is again a vector lattice when it is supplied with the partial ordering that is defined
by the image of the positive cone L 1(X ,�,μ;R+) of L 1(X ,�,μ;R) under the
quotient map. The quotient map is then a vector lattice homomorphism.We shall write
[ f ] for the image of f ∈ L 1(X ,�,μ;R) under the quotient map. In Theorem 6.17,
we shall give sufficient conditions on E for L1(X ,�,μ;R) to be Dedekind complete.
For this, we need preparations that are of some independent interest.

We say that partially ordered vector space has the countable sup property when,
for every net {xλ}λ∈� ⊆ E+ and x ∈ E+ such that xλ ↑ x , there exists an at most
countably infinite set of indices {λn : n ≥ 1} such that x = supn≥1 xλn . In this case,
there also always exist indices λ1 ≤ λ2 ≤ · · · such that xλn ↑ x .8 For vector lattices,
our countable sup property is equivalent to what is usually called the countable sup
property in that context; namely, that every subset that has a supremum contains an
at most countably infinite subset with the same supremum. In some sources, a vector
lattice with this property is then said to be order separable. As usual, we shall say
that a positive operator between two partially ordered vector spaces is strictly positive
when the intersection of its kernel with the positive cone of the domain is {0}. The
proof of our next result is inspired by [30, p. 65–66].

Lemma 6.15 Let E be a σ -Dedekind complete vector lattice, let F be a partially
ordered vector space, and let T : E → F be a strictly positive σ -order continuous
operator. Suppose that S is a non-empty subset of E that is bounded above in E, and
that {tn}∞n=1 is a sequence in S such that

(1) S is closed under the taking of finite suprema;
(2) sup T (S) and sup{T (tn) : n ≥ 1} both exist in F and are equal.

Then sup S exists in E. Moreover, if we set s1 := t1, s2 := t1 ∨ t2, s3 := t1 ∨ t2 ∨ t3,
…, then {sn}∞n=1 is a sequence in S such that sn ↑ sup S in E and T (sn) ↑ sup T (S)

in F. Consequently, T (sup S) = sup T (S).

Proof Since sn ∈ S and sn ≥ tn for n ≥ 1, it is clear that T (sn) ↑ sup T (S). Because
{sn}∞n=1 is an increasing sequence in the bounded above set S, there exists an s∞ ∈ E
such that sn ↑ s∞ in E . Hence T (sn) ↑ T (s∞), so that T (s∞) = sup T (S).

We claim that s∞ is an upper bound for S. To see this, take s ∈ S. Since s ∨ sn ↑
s ∨ s∞, we have sup{T (s ∨ sn) : n ≥ 1} = T (s ∨ s∞). Using that s ∨ sn ∈ S for
n ≥ 1, we have

sup T (S) ≥ sup{T (s ∨ sn) : n ≥ 1}
= T (s ∨ s∞)

≥ T (s∞)

= sup T (S).

8 Strictly speaking, it would be better to call this property the monotone countable sup property. We have
refrained from doing so to keep the terminology somewhat simpler.
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It follows that T (s ∨ s∞ − s∞) = 0. Since T is strictly positive, this implies that
s∞ ≥ s, as desired.

Let u be an upper bound for S. Then certainly u ≥ sn for n ≥ 1, so that u ≥ s∞.
We conclude that s∞ = sup S. This completes the proof. ��

The following is an easy consequence of Lemma 6.15. The special case where F
is a vector lattice follows from [5, Exercise 1.4.2.a].

Proposition 6.16 Let E be a σ -Dedekind complete vector lattice, let F be a partially
ordered vector space that is monotone complete and has the countable sup property,
and let T : E → F be a strictly positive σ -order continuous operator.

Then E is Dedekind complete and has the countable sup property. Moreover, T is
order continuous.

Proof Let S be a non-empty subset of E that is bounded above. Set S∨ := {s1 ∨
· · · sk : k ≥ 1, s1, . . . , sk ∈ S}. Then sup S∨ exists by Lemma 6.15. Hence E is
Dedekind complete. Lemma 6.15 also supplies a sequence {s∨

n }∞n=1 in S∨ such that
s∨
n ↑ sup S∨ = sup S. This implies that E has the countable sup property.
To show that T is order continuous, take a non-empty upward directed subset

S of E that is bounded above. Using the final statement in Lemma 6.15, we have
T (sup S) = T (sup S∨) = sup T (S∨). Because S is upward directed, the subsets
S∨ and S of E are interlaced in the partial ordering on E . Since T is positive, the
same is true for their images T (S∨) and T (S) in the partial ordering on F . Hence
sup T (S∨) = sup T (S). This completes the proof. ��

We now come to the vector lattice properties of L1(X ,�,μ;R).

Theorem 6.17 Let (X ,�,μ, E) be a measure space, where � is a σ -algebra.
The quotient map from L 1(X ,�,μ;R) onto L1(X ,�,μ;R) is a σ -order con-

tinuous vector lattice homomorphism, and L1(X ,�,μ;R) is a σ -Dedekind complete
vector lattice. The map Iμ : L1(X ,�,μ;R) → E, defined by setting Iμ([ f ]) :=∫ o
X f dμ for [ f ] ∈ L1(X ,�,μ;R), is well defined, linear, strictly positive, and σ -

order continuous.
If E ismonotone complete and has the countable sup property, thenL1(X ,�,μ;R)

is a Dedekind complete vector lattice with the countable sup property. Moreover, Iμ
is then order continuous.

Proof Since we know from part (3) of Proposition 6.14 that N (X ,�,μ;R) is a σ -
order ideal ofL 1(X ,�,μ;R), it follows from [21, Theorem 18.11] that the quotient
map is σ -order continuous. Since an increasing sequence in L1(X ,�,μ;R) and an
upper bound of it can be lifted to L 1(X ,�,μ;R), the σ -Dedekind completeness
of L 1(X ,�,μ;R) and the σ -order continuity of the quotient map then show that
L1(X ,�,μ;R) is σ -Dedekind complete.

It is clear that the operator Iμ can be defined on L1(X ,�,μ;R) and that it is strictly
positive. Its σ -order continuity is easily seen to follow from Corollary 6.10.

An appeal to Propositon 6.16 yields the remainder of the statements. ��
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7 Comparison with positive vector measures and their integrals

Let (X ,�) be a measurable space, where � is a σ -algebra, and suppose that E is a σ -
monotone complete Banach space with a closed positive cone. In this section, we shall
discuss the relation between the measures in the present paper and vector measures in
the classical sense, as well as the relation between the corresponding integrals.

We recall that a classical (as we shall call it for the sake of discussion) vector
measure with values in E is a map μ : � → E such that μ(∅) = 0 and

μ

( ∞⋃
n=1

	n

)
=

∞∑
n=1

μ(	n), (7.1)

whenever {	n}∞n=1 is a pairwise disjoint sequence in �. Here the series in the right
hand side of Eq. (7.1) is convergent in the norm of E . As is well known, the fact that
complex measures are bounded (see [23, Theorem 6.4], for example), when combined
with the uniform boundedness principle, implies that a vectormeasure is automatically
norm bounded on �. This makes clear that the integral that is canonically defined on
the elementary functions extends by continuity to a norm-to-norm continuous classical
E-valued integral on the bounded measurable functions on X .

Obviously, there is no classical vector measure that can be an analogue of an infinite
E+-valued measure in our sense. It is meaningful, however, to ask for the relation
between E+-valued measures in the sense of our Definition 4.1 and classical E+-
valued vector measures.9 To clarify this, we start by observing that, for a net {xλ}λ∈�

in E and an element x of E , the facts that xλ ↑ and that xλ → x in norm imply that
also xλ ↑ x . This follows readily from the hypothesis that E+ be closed. It is then
immediate that a classical E+-valued vector measure is also an E+-valued measure
in our sense. When the norm on E has the property that ‖x − xn‖ → 0 for every
sequence {xn}∞n=1 in E+ and x ∈ E+ such that xn ↑ x , then the converse also holds,
so that the two notions coincide. When the norm on the Banach space E fails to be
σ -monotone order continuous in the sense as just described, then it can actually occur
that there exists an E+-valued measure in our sense that is not a classical E+-valued
vector measure. As an example, we take E = �∞, and we let {en}∞n=1 denote the
sequence of standard unit vectors in it. For X we takeN, and for � we take the power
set ofN. For 	 ∈ �, we set μ(	) := ∨

n∈	 en . Then μ is an (�∞)+-valued measure
in our sense, but it is not a classical vector measure. Indeed, the terms of the series in
the aspired equality μ(N) = ∑∞

n=1 μ({n}) = ∑∞
n=1 en do not even converge to zero

in norm.
Because �∞ can be embedded isometrically as a Banach lattice into the regular

operators on �p for 1 ≤ p ≤ ∞, this example also shows that the two types of
measures do not even coincide when they are required to be operator-valued, which
is one of our important classes of applications of the results of the current paper in
[12, 13]. The reader may at this point wish to recall the Lemmas 4.2 and 4.3, pointing

9 Classical, not necessarily positive, vector measures with values in a Banach lattice are the subject of [16,
Chapter III] and [18, Chapter IV].
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out the role of the strong operator topology rather than the uniform topology for our
operator-valued measures.

To continue our discussion, we take E = �∞ and X = N again, and we let� be the
power set ofN again.We define themapμ : � → E+ by settingμ(	) := ∑

n∈	 en/n
for 	 ∈ �. Then μ is an E+-valued measure in our sense, as well as a classical E+-
valued vector measure. It is easy to see—by using the automatic continuity of positive
operators between Banach lattices, for example—that the classical �∞-valued integral
on theBanach lattice of all bounded functions onN coincideswith our order integral on
that space. The space of positive functions that are order integrable is, however, larger
than the bounded functions on N. The unbounded function f0 : N → R+, defined
by setting f0(n) := n for n ∈ N, is order integrable. Indeed, the elementary positive
functions ϕn : N → R+ for n ≥ 1, defined by setting ϕn(k) := k when 1 ≤ k ≤ n
and ϕn(k) := 0 when k > n, increase pointwise to f0 and the sequence

{∑n
k=1 ek

}∞
n=1

of their order integrals has
∨∞

n=1 en as its supremum. Of course, there are natural
Banach space methods to attempt to extend the domain of the classical integral with
respect to the classical vector measure μ. A possible approach is to consider those
functions f : N → R+ for which there is a sequence {ϕn}∞n=1 of bounded functions
on N such that ϕn → f pointwise and such that the sequence

{∫
Nϕn dμ

}∞
n=1 of

classical integrals is a Cauchy sequence in �∞. One would then have to verify that
the limit of this sequence is independent of the choice of the ϕn , or perhaps restrict
oneself to those f for which is the case. Variations on this are also possible. One
can, for example, require that the ϕn be elementary functions, or start with positive
functions and approximate these from below with positive elementary functions. Such
Banach space approaches will, however, never lead to the definition of an integral
for f0. Indeed, the sequence {ϕn}∞n=1 above consists of positive elementary functions
and approximates f0 from below, which is arguably the best approximation one could
wish for. The sequence {∑n

k=1 ek}∞n=1 of their classical integrals is, however, not a
Cauchy sequence. We thus see that, even when a set map is an E+-valued measure
in our sense as well as a classical E+-valued vector measure, it can still happen that
the associated order integral is intrinsically more comprehensive than the associated
classical integral.

The example in the preceding paragraph can only exist because the norm on �∞
is not σ -monotone order continuous. Indeed, suppose that the σ -monotone complete
partially ordered Banach space E with a closed positive cone has a σ -monotone order
continuous norm, and that μ : � → E+ is a set map. The fact that, for a sequence
{xn}∞n=1 in E+ and an element x of E+, xn ↑ x if and only if xn → x in norm,
does not only imply that μ is a classical vector measure if and only if it is an E+-
valued measure in our sense. It also guarantees that the extension procedure of the
domain of the classical integral, using a pointwise approximation of a positive function
from below by elementary functions, is, indeed, possible and yields the same set of
integrable functions on which the two integral also agree. Since the norms on partially
ordered Banach spaces of operators are typically not σ -monotone order continuous,
this observation does usually not apply there.
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