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Abstract

In this paper, which is a culmination of our previous research efforts, we provide a general framework
for studying mixing profiles of non-backtracking random walks on dynamic random graphs generated
according to the configuration model. The quantity of interest is the scaling of the mixing time of the
random walk as the number of vertices of the random graph tends to infinity. Subject to mild general
conditions, we link two mixing times: one for a static version of the random graph, the other for a class
of dynamic versions of the random graph in which the edges are randomly rewired but the degrees are
preserved. With the help of coupling arguments we show that the link is provided by the probability
that the random walk has not yet stepped along a previously rewired edge.

To demonstrate the utility of our framework, we rederive our earlier results on mixing profiles for
global edge rewiring under weaker assumptions, and extend these results to an entire class of rewiring
dynamics parametrised by the range of the rewiring relative to the position of the random walk. Along
the way we establish that all the graph dynamics in this class exhibit the trichotomy we found earlier,
namely, no cut-off, one-sided cut-off or two-sided cut-off.

For interpolations between global edge rewiring, the only Markovian graph dynamics considered here,
and local edge rewiring (i.e., only those edges that are incident to the random walk can be rewired),
we show that the trichotomy splits further into a hexachotomy, namely, three different mixing profiles
with no cut-off, two with one-sided cutoff, and one with two-sided cut-off. Proofs are built on a new
and flexible coupling scheme, in combination with sharp estimates on the degrees encountered by the
random walk in the static and the dynamic version of the random graph. Some of these estimates require
sharp control on possible short-cuts in the graph between the edges that are traversed by the random
walk.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

* Corresponding author.
E-mail address: o.nagy@math.leidenuniv.nl (O. Nagy).

https://doi.org/10.1016/j.spa.2022.07.009
0304-4149/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).


http://www.elsevier.com/locate/spa
https://doi.org/10.1016/j.spa.2022.07.009
http://www.elsevier.com/locate/spa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2022.07.009&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:o.nagy@math.leidenuniv.nl
https://doi.org/10.1016/j.spa.2022.07.009
http://creativecommons.org/licenses/by/4.0/

L. Avena, H. Giildas, R. van der Hofstad et al. Stochastic Processes and their Applications 153 (2022) 145-182

MSC: 05C81; 37A25; 60K37; 82C27

Keywords: Configuration model; Random rewiring; Random walk; Mixing time; Cutoff

1. Introduction

In the present paper we generalise and extend the techniques developed in [2,3] to cover
a class of random graph dynamics that satisfy mild regularity conditions. Our core result is a
generic link between the mixing times on the static and the dynamic random graph. Subject
to mild conditions on the degrees of the vertices and the dynamics of the underlying graph,
we show that, up to an error that vanishes as the number of vertices tends to infinity, the total
variation distance to the stationary distribution on the dynamic random graph is given by the
total variation distance on the static random graph multiplied by the probability that the random
walk has not yet stepped along a previously rewired edge. Phrased in symbols, we show that

DPN) = Prg(t > ) DI) + 0s(1), o

where x is the starting vertex of the random walk, £ is the starting configuration of the random
graph, Diy; (t) and D;tf};(t) are the total variation distance between the distribution of the random
walk at time ¢ and the stationary distribution for the dynamic, respectively, the static random
graph, and 7 is the first time the random walk crosses a rewired edge. The latter acts as
a randomised stopping time and plays a central role in our analysis. The error term in the
equation above is uniform in ¢ over the considered timescale. This result is stated precisely in
Theorem 1.4.

We emphasise that our approach is no longer tied to one specific random graph dynamics.
In fact, we present a general framework that can be applied to a large class of random graph
dynamics for which the degree structure is preserved, including dynamics that depend on the
position of the random walk and dynamics that are non-Markovian. To do so we use a coupling
that works well for non-backtracking random walks. We show that (1) holds under general
conditions that appear to be the weakest possible, and that can be verified in specific examples.

To showcase our framework, we identify the scaling of the random walk mixing time for
three choices of the dynamics where the rewiring is done in a certain range around the current
position of the random walk. Depending on the speed and the range of the rewiring, the mixing
time may exhibit no cut-off, one-sided cut-off or two-sided cut-off, a trichotomy that was also
found in earlier work (see Section 1.5 for an extensive literature overview). Interestingly, for
a class of dynamics that interpolate between local and global (the “near-to-global” dynamics
introduced in Section 1.3), we observe a hexachotomy — six subregimes (see Fig. 3), two of
which include critical crossover times where the mixing profile changes shape.

From a technical point of view it is amusing to note that we are able to establish our previous
results from [2,3] under weaker assumptions, despite the fact that we are no longer using
techniques that are tailor-made to global dynamics. Furthermore, we believe that near-to-global
dynamics is interesting in its own right, not only thanks to its six different mixing subregimes,
but also due to a non-trivial challenge of dealing with the influence of so-called ‘“shortcuts”
(see Section 4.3).

1.1. Model and notation

It is convenient to describe our model in terms of half-edges. Write V to denote the vertex
set of the graph, |V| =: n the number of vertices, and deg(v) the degree of vertex v € V. To
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each vertex v € V we associate deg(v) half-edges, forming the set H, = {hi}?i‘gl(v). The set of
all half-edges is H := | J,.y H,. We denote the vertex v for which h € H, by v(h) € V. If
x,y € Hy,, x # vy, then we write x ~ y and say that x and y are siblings of each other. Using
| X| to denote the cardinality of set X, we define the degree of a half-edge & € H as

degyy(h) = |{h; € Hug: hi # h}| = deg(v(h)) — 1. b

Since |H| = ), deg(v), |H| is even by construction. We identify an edge with a pair
of half-edges. A configuration is a map &€ : H — H with the property that £(h) # h and
&(&(h)) = h for all h € H. In other words, configurations are pairings of half-edges. The set
of all configurations on H is denoted by Conf,, and the uniform distribution on Conf; is
denoted by Ucons,. With a slight abuse of notation, we will use the same symbol & to denote
the set of pairs of half-edges forming &, so {x, y} € £ means that £(x) = y and £(y) = x. Note
that the graph with edges represented by & may be a multi-graph, possibly with self-loops.
A random graph corresponding to a configuration where the half-edges are paired uniformly
at random is called the configuration model (see [10], [24, Chapter 7]). The quantities above
depend on n, but this dependence will be mostly suppressed from the notation.

We study Markov chains {(X;, C/)};en,» Where X; € H denotes the non-backtracking
random walk component and C, € Conf corresponds to the evolution of the underlying
graph. The evolution is chosen in such a way that it does not change the degree sequence
of the graph (and consequently does not change the stationary distribution of the random walk
on the graph), and can be visualised by breaking up pairs of half-edges and pairing them again,
both according to prescribed rules. At each time ¢ € N, we first update the configuration and
then let the walk move.

Remark 1.1 (Notation). Note that (X;_;, C;_y) is the state just before the transition at time ¢,
while (X;, C,) is the state just after the transition at time .

Our main result concerns the total variation distance between the distribution of the random
walk component and the stationary uniform distribution on the set of half-edges Uy, defined
as

D) = [Pes(X € ) = UnOllry. 3)

Here, the total variation distance between two probability measures © and v on the same
finite state space S is defined by

1 1
I = vl = 5 316 = vl = 5 Y [u(0) — vl = suplu(A) —v(A)l.  (4)

xe§ xeS

We are concerned with the behaviour of D, ¢(¢) for “typical” choices of x and &. We formalise
the notion of typicality in the following definition:

Definition 1.2 (With High Probability). Recall that n = |V| and let u = Uy X Uconfy,-
A statement that depends on the initial half-edge x and the initial configuration & is said to
hold with high probability, abbreviated whp, if the pu-measure of the set of pairs (x, &) for
which the statement holds tends to 1 as n — oo.

Another important object is the first time the random walk steps along a previously rewired
edge:
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Definition 1.3 (Randomised Stopping Time). Let R, be the set of edges being rewired at time ¢,
R, = Uf?:l Ry, and let I; denote the indicator of the event that the random walk steps along
a previously rewired edge at time ¢, i.e., [; = 1 when X,_; € R, and I, = 0 otherwise. We
define the randomised stopping time T as

T :=min{t € N: I, = 1}. (5)

Note that since rewiring happens before the random walk steps, on the event {I, = 1}, X,_;
is the position of the random walk just before it steps over an edge that has been rewired at
some time up to and including .

For x € H and & € Conf';, we denote by D;t%t(t) the total variation distance of the random
walk on the static random graph to the stationary uniform distribution Uy at time ¢, and by
P, ¢(z > t) the probability that T > ¢, both given the starting state (x, &).

1.2. Mixing for general rewiring mechanisms

The main theorem of this paper is the following statement linking the total variation distance
to the stationary distribution for the static and the dynamic version of the random graph:

Theorem 1.4 (Link Between Static and Dynamic Mixing). Suppose that t = O(logn). Subject
to Conditions 3.1 and 3.4 (see Section 3.1), the following holds whp in x and &:

d
DI(1) = Pee(r > D D) + 0p(1), ©6)
where the error term is uniform over the considered times t.

Conditions 3.1 and 3.4 are regularity conditions on degree sequence and graph dynamics,
respectively. The former is standard in the literature and ensures that the underlying graph is
sparse and that the non-backtracking random walk is well-defined. The latter, representing one
of the novelties of this article, ensures that the non-backtracking random walk is well-mixed
when it steps along a previously rewired edge and the time at which this happens does not
depend on the fine details of its past trajectory.

The proof of Theorem 1.4 is based on a coupling argument in which the random walk on
the dynamically rewired random graph is coupled to a modified random walk on the static
random graph that at certain random times makes uniform jumps. These jumps correspond
to the times at which the random walk steps along a previously rewired edge. The coupling
must be good enough to beat the errors in the comparison. A key ingredient of the coupling
is that the non-backtracking random walk on the configuration model is whp self-avoiding on
the scale of the mixing time.

Note that while (X;, C;);cn is Markov, any of the marginals (X,);cn, (C;);en need not be.
The framework we present in this paper makes no assumptions about (C;);cy being Markov.
This is demonstrated in Section 4, where “global-to-global” rewiring is the only considered
mechanism for which (C,);cn is Markov, while “near-to-global” and “local-to-global” rewiring
correspond to a non-Markovian graph evolution.

1.3. Application to specific rewiring mechanisms

We next consider three choices of random rewiring, referred to as local-to-global, near-to-
global and global-to-global, controlled by two parameters: (1) r,,, representing the radius of the
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ball around the current location of the random walk in which edges are allowed to be rewired
with an edge that is drawn uniformly at random from the set of all edges; (2) «,, representing
the probability that an edge in this ball is rewired per unit of time. By rewiring we mean
breaking up two pairs of chosen edges into four half-edges and tying these up at random (for
details, see Section 4).

At every unit of time a subset of the edges is rewired. The rewiring of each edge is always
with an edge that is chosen uniformly at random from the set of all edges. For the subset of
edges that is rewired we consider three choices:

e Local-to-global (r, = 1):
The edge that corresponds to the current position of the random walk has probability «,,
to be rewired.

e Near-to-global (1 < r, < rmax):
All the edges in the r,-ball around the current position of the random walk have
probability ¢, to be rewired, independently of each other.

o Global-to-global (r, = riy.x):
All the edges have probability «, to be rewired, independently of each other.

Here, 7,y is the maximal radius (see (12)), provided that the graph is connected (which happens
whp under the conditions that will be stated below).

Global-to-global rewiring was considered in [2,3], while local-to-global rewiring was
considered in an unpublished chapter of the doctorate thesis [22]. In the present paper, however,
we prove results under weaker assumptions. For an overview of previous work, see Section 1.5.
Near-to-global rewiring is new and turns out to hold surprises:

Theorem 1.5 (Scaling of Cross-Rewired Time). Suppose that lim,,_, , o, = 0 andt = O(logn).
Subject to Condition 3.1(R1) and (R3), the following hold whp in x and &:
(A) For local-to-global rewiring defined in Section 4.2:
Pt >t)=o0p(l)+e7 ¢ ¢ €(0,00), t=|c/ay,]. @)
(B) For near-to-global rewiring defined in Section 4.3, subject to Condition 3.5:
(a) If lim,,_, » oz,,r,% = 00, then
Pre(r>0)=o0s(1)+e 2 ce(0,00), 1=l|c/vanl ®)
(b) If lim,,_, a,,r,% = B € (0, 00), then

—Bc%/2
e s c e (0,1],
IPX,S(T > 1) =op(l) + { e,ﬁ(chl)/z’ ce El, Ol), = |cral, 9
(c) If lim,,_, o oe,,rf =0, then
Ps(t >1t)=o0p(1)+e°, ¢ €(0,00), t = |c/anr,]. (10)

(C) For global-to-global rewiring defined in Section 4.4:

Prs(r > 1) = o0p(1) +e 72, ¢ e (0, 00), t =/t ]. (11)

Note that the tail probability P, :(z > ¢) exhibits a three-way split for near-to-global
rewiring, with an additional crossover at time ¢ = r, when lim,_, anrrf = B € (0, ).
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Condition 3.5 says that the empirical degree distribution converges to a limit as n — 00,
and so do its first and second moments. It implies that whp the radius (i.e., the typical distance
between vertices) of the random graph is

logn

Fmax = [1 + 02(1)] (12)

logv’
where v is the size-biased mean of the limiting empirical degree distribution [25, Theorem
7.1], which is assumed to satisfy v € (1, co). Thus, for near-to-global rewiring we can only
choose
1

logv’

Condition 3.5 is needed for Theorem 1.5(B) only. The fact that it is not needed for
Theorem 1.5(C) weakens the conditions in [2,3]. We expect Theorem 1.5(B) to fail with-
out Condition 3.5. Namely, when the degree distribution has infinite variance, graph distances
are of smaller order than logn, and in fact are of order loglogn under an appropriate power-
law assumption on the empirical degree distribution [15,25,27,28]. In the latter setting, for
r, = clogn we expect near-to-global rewiring to behave similarly as global-to-global rewiring.

In order to apply Theorem 1.4, we need to also control Difag‘(t). For this we use the following
result from [6], which requires additional regularity conditions stronger than Condition 3.1 (see
Appendix B for further details):

rm=[p+oM)]logn, p €0, pma)s Pmax = (13)

Theorem 1.6 (Scaling of Static Mixing Time). Subject to (B.3) and Condition B.1, the following
holds whp in x and &:

Dt = |

where c, € (0, 00) is the constant defined in (B.3).

1 —op(l), if t=|clogn], c <cs,

op(1), if t=|clogn], c¢>c,, (14)

Combining Theorems 1.4—1.6 we end up with the following results:

Corollary 1.7 (Scaling of Dynamic Mixing Time for Local-to-Global Rewiring). Consider the
local-to-global rewiring defined in Section 4.2. Suppose that lim,_, ., «,, = 0 and t = O(logn).
Subject to Condition 3.1(R1), Condition B.1 and (B.3), the following hold whp in x and &:

(1) If lim,— o0 @, logn = oo, then
DY (Le/anl) = os(1) +¢7¢, ¢ € [0, 00). (15)
2) If lim,— o ¢, logn = y € (0, 00), then

dyn . e 7, cel0,cy),
D, (|_c lognj) =op(1) + { 0. ¢ € (¢, 00). (16)
3) If lim, a0y logn = 0, then
dyn _ 17 cc [Oa C*)a
D (Lclogn]) = ox(1) + { 0. cclc.o0). (17)

Corollary 1.8 (Scaling of Dynamic Mixing Time for Near-to-Global Rewiring). Consider the
near-to-global rewiring defined in Section 4.3. Suppose that lim,_, o, a, = 0 and t = O(logn).
Subject to Condition 3.1(R1), Condition 3.5, Condition B.1 and (B.3), the following hold whp
in x and &:
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(D) If lim,— o 0tpry logn = 0o and
(a) lim,,_, anr,% = oo, then

DY (le//an)) = ox(D) + 7%, ¢ € [0, 00). (18)

(b) lim,,_, oo oznr,% = B € (0, 00), then
2

@ﬁkmﬂ=w®+{i%ﬁm’g§%£) (19)
(c) lim,,_, o oznr,f =0, then
DX (Le/aurn)) = 0p(1) + e, ¢ € [0, 00). (20)
2) If lim, oo a1y logn = y € (0, 00) and
(b) lim,,_, o oznr,% = B € (0, 00), then
i e:(V")z_/zﬁ ,  cel0,B/y],
DX (lelogn]) = 0p() +§ e @P2 ¢ (B/y. c), @1
0, ¢ € (¢4, 00).
(c) lim,_, o oznr,% =0, then
Di?;(Lc log nj) =op(1) + { g?”", E 2 E(c);’c;l,)' (22)
(3) If lim,— o a1, logn = 0 and
(c) lim,,_, oznr,f =0, then
D (etoend) =or0+ | £ (0, @

Corollary 1.9 (Scaling of Dynamic Mixing Time for Global-to-Global Rewiring). Consider
the global-to-global rewiring defined in Section 4.4. Suppose that lim, oo, = 0 and t =
O(logn). Subject to Condition 3.1(R1), Condition B.1 and (B.3), the following hold whp in x
and &:

(D) If lim,— o oty (log n)* = oo, then
DI (Le/v/an]) = 0:(1) +e2. ¢ € [0, 00). (24)
(2) If lim,_, o a,(logn)®> = y € (0, 00), then

—yc?/2
€ ’ C e [O’ C*)’ (25)

dyn _
%Awmw%wwn{o’ el

(3) If lim,_, o a,(logn)*> = 0, then

17 C e [Oa C*)a

Df,yg(Lc logn]) = o0x(1) + { 0, c€(cy, 00). (26)

Note that the dynamic mixing time exhibits a trichotomy that distinguishes between fast
dynamics (regime (1)), moderate dynamics (regime (2)) and slow dynamics (regime (3)). There
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Ddyn(t)
tagn
Regime (1): (15).
Ddyn(t)
Cax t/logn
Regime (2): (16).
Ddyn(t)
Cx t/logn

Regime (3): (17).

Fig. 1. Trichotomy of D¥"(r) for local-to-global rewiring (Corollary 1.7).

is no cut-off for fast dynamics, one-sided cut-off (at ¢ = c¢,) for moderate dynamics, and
two-sided cut-off (at ¢ = c,) for slow dynamics.

Note that near-to-global rewiring exhibits an even richer structure with a hexachotomy. See
Figs. 1-3 for the various scaling shapes (where the indices x and & are suppressed).

Remark 1.10 (Role of Condition 3.4). Corollaries 1.7-1.9 do not mention Condition 3.4
explicitly, even though this is needed for Theorem 1.4. The reason is that the three rewiring
mechanisms under consideration satisfy Condition 3.4, as shown in Section 4.

1.4. Discussion

1. Each of the three choices of rewiring shows a trichotomy between fast dynamics (o, 1, >
1/logn), moderate dynamics (o,r, =< 1/logn) and slow dynamics («,r, < 1/logn), with
r, = 1 for local-to-global rewiring, 1 < r, < rma.x for near-to-global rewiring and r, = rmax
for global-to-global rewiring. For fast dynamics the mixing time is of smaller order than logn,
which is the mixing time on the static random graph, and so speed-up occurs. For moderate and
slow dynamics the mixing time is of order log n, and so no speed-up occurs. The one-sided cut-
off for moderate dynamics shows that there is a competition between static and dynamic. For
fast dynamics only Conditions 3.1 and 3.4 are needed, while for moderate and slow dynamics
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Ddyn(t)
NCTY
Regime (1): (24).
Ddyn(t)
Cx t/logn
Regime (2): (25).
Ddyn(t)
Ck t/logn

Regime (3): (26).

Fig. 2. Trichotomy of DY"(¢) for global-to-global rewiring (Corollary 1.9).

Ddyn(t) deyn(t)
b/ £ o t/logn
Regime 1(a): (18). Regime 2(b): (21).
Ddyn(t) Ddyn(t)
1 t/rn Cx t/logn
Regime 1(b): (19). Regime 2(c): (22).
DAyn (1) pdyn(y)
tanrn Cx t/logmn
Regime 1(c): (20). Regime 3(c): (23).

Fig. 3. Hexachotomy of D%"(r) for near-to-global rewiring (Corollary 1.8). The red lines indicate a crossover in
the shape of the curve. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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(B.3) and Condition B.1 are needed as well. For fast dynamics the scaling does not depend on
the choice of degrees, subject to the mild regularity imposed by Condition 3.1. On other hand,
for moderate and slow dynamics it does, because the constant ¢, equals the limit as n — oo
of the empirical average of the logarithm of the degrees of the half-edges.

2. Whereas for local-to-global and global-to-global rewiring the trichotomy controls the scaling,
for near-to-global rewiring several subregimes show up. In particular, crossovers in the mixing
time occur at critical values of the scaling parameter ¢ (see (19) and (21)). These arise from a
crossover in the cross-rewired time that appears as soon as t < r, (see (9)). What happens is
that all edges on the r,-future of the path can be rewired before the random walk reaches them,
but only until time ¢ —r,: for any time s € (¢ —r,, t] only t —s edges are left on the future path
until time ¢. The extra condition in Condition 3.5 ensures that whp the r,-balls carried around
by the random walk do not overlap significantly, i.e., short-cuts of length < r, are negligible
until time ¢t = O(logn).

3. Regime (2b) for near-to-global rewiring corresponds to p = B/y. Subject to Condition 3.5
we have

1
— =" p*(m)logm, 27)

C
* meN

with

p*(m) = %(m +Dpm+1), meNy,  N=) mp(m). (28)

meN

where p(m) = lim,_, o p,(m) with p, = % ZUEV ddeg(v) the empirical degree distribution (see
(2), Theorem B.2 and (B.3); Condition B.1, which is needed for Theorem B.2, implies that
p(1) = p(2) = 0). By Jensen’s inequality,

Z p*(m)logm < log <Z p*(m) m> = logv. (29)

meN meN

Consequently, ¢, > pmax (see (13), (40) and (B.3)), with equality if and only if p is a point

mass. Thus, the cut-off threshold c, exceeds the maximal value of the radius, as shown in
Fig. 3.

4. The coupling of the random walk on the dynamically rewired random graph to the modified
random walk is implicit in the proof of the main theorem in [3]. There the main idea was
that the path probabilities for the two random walks coincide for self-avoiding paths, and it
was shown that the two random walks are with high probability self-avoiding. The crucial
observation was that, on a typical configuration drawn according to the configuration model,
the random walks are self-avoiding with high probability. The particular form of Condition 3.4
was motivated by this observation, and suggests that the same results may hold when the initial
graph is drawn according to some other distribution, on which non-backtracking random walks
are typically self-avoiding.

5. The graph regularity conditions in Condition 3.4 are mild, but can be violated. Consider
for example a modification of the local-to-global rewiring in which the probability «, of the
half-edge X,_; being rewired at time ¢ depends on a specific choice of X;_i, e.g. a,(X,—1) =
1/degy(X,_;). This would lead to a violation of Condition 3.4(D1). Condition 3.4(D2) can be
violated by a graph rewiring mechanism that at each time gives preferential treatment to some
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half-edges. For example, fix a set of half-edges F with |F| < n, and define a “local-to-F”
graph dynamics where the edge that might get rewired at time ¢ with {X,_|, C,_(X,-1)} is
chosen from the set of edges generated by the configuration C,_; such that each edge contains
at least half-edge from F. This obviously results in a violation of the Condition 3.4(D2).

6. The scaling regimes considered in Theorem 1.5, Corollaries 1.7-1.9 and Figs. 1-3 are chosen
so as to end up with non-trivial scaling profiles. Apart from conditions on ¢ in terms of o, and
ry, there is also the implicit condition that # = O(logn). However, since the probability that
T > t is monotone decreasing in both «, and r,, we get trivial scaling profiles outside these
regimes.

1.5. Previous work

The past decade has witnessed much activity towards understanding processes — both
random and deterministic — on dynamic networks [1,7,17,18,20,21,29,31,34,38]. Research is
motivated not only by mathematical interest, but also by numerous applications in computer
science and data science. One of the emerging efforts is concerned with the study of mixing
times of random walks on dynamic networks, and how they compare with those of random
walks on static networks. The present paper fits within this line of research.

In [2] we introduced a version of a dynamic configuration model in which a fraction of the
edges gets rewired at each step of the random walk according to a global-to-global rewiring
mechanism. We obtained an expression for the mixing time of a non-backtracking random walk
under conditions that guarantee a locally tree-like structure of the graph and fast dynamics.
In [3] we extended our results to moderate and slow dynamics. In particular, we obtained
a trichotomy for the mixing time of non-backtracking random walks, of the type as stated
in Corollary 1.9. In the current paper, however, we achieve this trichotomy under weaker
assumptions.

Trichotomies were also found in subsequent work. The closest to our setting is [13], where
the authors consider a dynamic directed version of the configuration model. Contrary to our
setting, for the directed graph the rewiring no longer preserves the stationary measure, and
the analysis in [13] is restricted to a rewiring mechanism in which all the edges are freshly
resampled at each step of the random walk. Two trichotomies are derived for the worst-case
total variation distance, respectively, for the joint Markov process given by the graph and the
random walk and for the non-Markov process given by the random walk marginal. Trichotomies
can also emerge in the presence of other random mechanisms that do not directly change the
graph. This is well illustrated in [14,37,38], where crossovers were established for random
walks on random graphs with various PageRank-like transitions. Results are analogous to
Theorem 1.4, with the role of the randomised stopping time t replaced by the first time the
walk gets “teleported” by a PageRank-like transition.

Mixing studies for random walks on dynamic random graphs started with [33], which
considered random walks on dynamic percolation clusters on a d-dimensional discrete torus,
i.e., a stochastic version of percolation where edges appear and disappear independently at
a given rate. In [33] and subsequent works [23,32], mixing times were identified for several
parameter regimes controlling the rates of the random walk and the random graph dynamics.
Similar results were obtained for dynamic percolation on the complete graph [35,36]. One of
the main difficulties with the dynamic percolation setting is that the stationary distribution of
the random walk changes over time, which explains why results tend to be restricted to specific
parameter regimes.
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Some further advances were achieved in [4,35], where general bounds on mixing times,
and other quantities such as hitting, cover and return times, were derived for certain classes
of evolving graphs under proper expansion assumptions. Typically, random walk mixing on a
dynamic graph is faster than on a static graph, although [4] contains some (artificial) examples
where the dynamics makes the mixing slower. Speed-up of mixing times for general Markov
chains was recently analysed in [16], which also contains an overview of related results.

Unlike for dynamic graphs, mixing times of random walks on static random graphs form a
well-established subject. For the present paper it is important to note the work in [6,9,30], where
(two-sided) cut-offs on time scale log n were established for both simple and non-backtracking
random walks on a fairly general class of sparse undirected random graphs with good expansion
properties. More recently, similar results were obtained for static random graphs with directed
edges [11,12] or with a community structure [5].

1.6. Outline

The remainder of this paper is organised as follows. In Section 2 we define the random
walk and the random graph dynamics. In Section 3 we prove Theorem 1.4. In Section 4
we prove Theorem 1.5. In Appendix A we show that the joint Markov chain of random
walk and dynamically rewired random graph is irreducible, aperiodic and doubly-stochastic.
In Appendix B we recall the precise form of Theorem B.2. In Appendix C we identify the
general form of the transition matrix for rewirings and prove that the stationary distribution for
the class of “anything-to-global” rewirings is the uniform distribution on H.

2. Random graph dynamics and random walk

In this section we set up the model. In Section 2.1 we give a general description of the
rewiring mechanism for the random graph (specific choices will be considered in Section 4).
In Section 2.2 we define the non-backtracking random walk. In Section 2.3 we define the joint
process of random graph and random walk.

2.1. Random graph dynamics

We consider a general class of graph dynamics in which some edges are randomly rewired at
each unit of time according to a prescribed rule. First a subset of edges to be rewired is chosen
randomly, then these edges are broken into half-edges, and afterwards the resulting half-edges
are paired randomly according to a prescribed distribution. The set of half-edges involved in
the rewiring at time ¢ € N is denoted by R;.

Suppose that X,_; = x and C,_; = &. Then, at time ¢, the above dynamics gives rise to a
distribution Q. (&, -) on Conf . In [2,3] a specific choice of dynamics was considered in which
0, (&, -) did not actually depend on x. In such a situation, the configuration component forms
a Markov chain itself.

2.2. Random walk

We consider a non-backtracking random walk on a dynamic random graph in which some
edges are rewired at each step. By non-backtracking we mean that the random walk cannot
traverse the same edge fwice in a row. Since in our model the underlying graph is dynamic

156



L. Avena, H. Giildas, R. van der Hofstad et al. Stochastic Processes and their Applications 153 (2022) 145-182

Fig. 4. The random walk moves from half-edge X; to half-edge X1, one of the siblings of the half-edge &(X;)
that X; is paired to.

and the edges change over time, the random walk is more conveniently defined as a random
walk on the set of half-edges H. Recall that at time # € N we update the configuration to C; = &
and only then let the random walk make a move. Then the random walk moves according to
the transition probabilities
1 .
Pex, y) = | T if é(x).’vy and §(x) # y, (30)
0 otherwise.

More descriptively, when the random walk is on a half-edge x and the graph is in configuration
&, the random walk moves to one of the siblings of the half-edge that the current half-edge
x is paired with, chosen uniformly at random (see Fig. 4). The transition probabilities are
symmetric with respect to the pairing given by &, i.e., P:(x, y) = P:(&§(y), £(x)). In particular,
the transition matrix is doubly stochastic, and so the uniform distribution on H, denoted by
Uy, is the stationary distribution for the random walk process:

2.3. Joint process

The law of the joint Markov chain (X,, C;),cn, starting from initial half-edge x = X, and
initial configuration & = Cy, is given by the conditional probabilities

qug(X[:Z, CZZC | Xt—l =y’ Cl—l =77)= Qy(ns f)P{()’,Z), IGN, (31)
with
Pre(Xo=x,Co=§) =1, (32)

where the transition probabilities Q,(-, -) remain to be chosen. While the joint process is
Markov, the marginal processes X = (X )ey and C = (C;);eny need not be Markov.
Consequently, the total variation distance [Py ¢(X; € -) — Ug(-)|lrv is not guaranteed to be
decreasing in ¢, even when it converges to 0.

We emphasise that at each time step the graph evolution happens first and only then the
random walk makes a move.

Furthermore, note that when the graph dynamics does not depend on the random walk,
ie, Ox(,) = 0,(,-) for all x,y € H, the uniform distribution Uy is the stationary
distribution for the random walk, i.e., for all £ € Confy and t € N,

1
; EP“(X’ €)= Un(). (33)

This can easily be seen by noting that the random walk conditioned on a realisation of the graph
dynamics is a time-inhomogeneous Markov chain for which Uy is the stationary distribution.

157



L. Avena, H. Giildas, R. van der Hofstad et al. Stochastic Processes and their Applications 153 (2022) 145-182

3. Proof of the main theorem

In this section we build up the apparatus that is required to prove Theorem 1.4. In Section 3.1
we formulate the regularity conditions for the graph and its evolution. In Section 3.2 we
introduce the modified random walk, which lives on the static random graph. In Section 3.3 we
propose a coupling of the modified random walk and the dynamically rewired random walk. In
Section 3.4 we analyse the errors in the coupling. In Section 3.5 we use the coupling to prove
Theorem 1.4.

3.1. Regularity conditions

In the formulation of Theorem 1.4 we refer to certain regularity conditions, which we lay
out next. The first set of conditions concerns the degrees of the graph:

Condition 3.1 (Regularity of Degrees).

R1) |H| = On) as n — oo.
(R2) max,ecy deg(v) =: dmax = 0(n/(logn)?) as n — oo.
(R3) deg(v) =2 forallve V.

Condition 3.1(R1) ensures that the graph is sparse, and together with Condition 3.1(R2)
guarantees that the paths of the random walk are with high probability self-avoiding on relevant
time scales (see Lemma 3.9). Condition 3.1(R3) is a consistency condition ensuring that the
non-backtracking random walk is well-defined.

As stated in the introduction, Condition 3.1 is standard in the literature, unlike the
forthcoming Condition 3.4. To state this new condition, we require further notation.

Definition 3.2 (Dynamic Self-Avoidance).
(1) For s,t € N with s < ¢, define [s,] := {s,...,t} and [f] := [1,¢] = {1, ..., t}. For

reN t,...,t, e Nwitht; <--- <t <t — 1, introduce a set of times
T :={t,....1}, (34
and sequences of half-edges
X[0,0-1] = (X0, -+ Xr—1) s X[0,0—1] = (X0, -+ -, Xy—1) » (35)
fp=(E %), Fpp= G %)

The sequences xjo ;—1], X[0,1—1], X} are called dynamically self-avoiding with respect to T
if the sequences of vertices

(v(x0), - -5 V(X—1)) » (U()Etl,l), B U()Etyfl)) ’ (U()E]), B U(ir)) s (36)

are all distinct.

(2) Recall from Definition 1.3 that I, is the indicator of the event that the random walk steps
along a previously rewired edge at time ¢. Let DSA(T, x(0.,—1], X[0..1], X[}, X[]) be the
event that (see Fig. 5):

— X[0.r—1]» X[0.r—1], X[r] are dynamically self-avoiding with respect to 7.
—Ig=1forseTand Iy =0fors e[t —1]\T.
- Co(xy) = x5 fors =0,...,t — 1, where Cy is the configuration at time t = 0.
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ftlfl .\\ L1 T,

) N
T —1
Tty—1 5
2L Ty
Tt -+e
P~
Tty Ty L2

Fig. 5. Illustration of the event DSA(T, xjo,—1], X[0,—1], X[+], X+]) and the role of the sequences in Definition 3.2.
Dashed black lines show the pairing in the initial configuration, while dashed green lines show the pairings that
are seen by the random walk. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

- Cy(xy_) =% fori=1,...,r.
- Co(x)=x;fori=1,...,r.
- X, =x;,fors=0,...,t—1.

When the event DSA(T, xjo,,—1}, X[0,.—1], X[r], X[s]) Occurs, we say that the random walk
on the dynamic random graph has a dynamically self-avoiding history up to time t. We
call xjo,—1] good when degy(x;) < (log n)**¢ for 0 <i <t — 1 and some ¢ > 0 fixed,
i.e., for all half-edges in the sequence xjo,—; the degree is O((log n)>*te). A sequence
Xjo.r—1) that is not good is called bad.

Remark 3.3 (Interpretation of Sequences). On the event DSA(T, xj0.—11, Xj0.1—1] X[r]s X[r])s
the sequences in Definition 3.2 have the following interpretation:

o T ={t,....,t,} Ct—1]:
times when the random walk steps along a previously rewired edge,

® xp0,—1] = (X0, -+ s X—1):
half-edges the random walk visits up to time ¢ — 1.
® X[0,1—1] == (Xg, ..., X—1):
half-edges x; that are paired with half-edges x; € xjo,—1; in the initial configuration.
[ .f[r] = (J?], . ,XAr)Z
half-edges that are paired with x;_; at times i € T.
) )Z[r] = ()Z], . ,fr)I
half-edges that are paired with Xy, ..., X, in the initial configuration.

With these definitions in hand, we can now state the conditions on the random graph
dynamics:

Condition 3.4 (Regularity of Graph Dynamics). Recall that I, is the indicator of the event that
a random walk steps over a rewired edge at time t (see Definition 1.3). For all t = O(logn)
and all T ={ty,...,t,} C [t — 1] the following conditions hold (note that I, is random given

(Is)0<s<r)-'
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(D1) For all X[0,1—11» )z[(),,_]], )?[,], f[r] and V[0,t—1]> 57[0,,_1], }A)[r], y[r] that describe dynamically
self-avoiding histories with respect to T,
|P(1, = 1| DSA(T, x(0,1-11, X0.1-11, X171+ K1)
- P |
=PI, = 1| DSAT, yjo.-11» Yi0.-11» ir1s Jor))| = 0(iogn )

where the bound is uniform in the histories.
(D2) For all x(0,¢-11, X[0.t—1], X[1» X[r] that describe dynamically self-avoiding histories with
respect to T,

(37

IP(Ci(xi-1) € - | DSA(T, X{0,1-11, Fjo,i-135 %1 Kp) VL = 1D = Un Ol = o),
(38)
where the bound is uniform in the histories.

In case (D1) and (D2) cannot be verified for all sets of sequences that describe a dynamically
self-avoiding history with respect to T, the following suffices:

(D3) If (D1) and (D2) hold for x:-1, X{0,i—1]> X{r1» X(r) and yjo,i—11, Y0,-11» Yir1> Yir) that
describe dynamically self-avoiding histories with respect to T for which xj;—1) and
Y[0.:—1] are good, but not necessarily hold for those histories for which xo ;_1) and yo ;-1
are bad, then the path Xo of the random walk on the dynamic random graph traced
until time t satisfies:

P (X{0,—1) is bad) = o(-). (39)

logn

Part (D1) states that the times at which the random walk steps over a rewired edge are
almost independent of the fine details of the random walk, provided it has a good dynamically
self-avoiding history. Part (D2) states that a random walk with a good dynamically self-avoiding
history is close to being mixed right after it steps over a rewired edge. The error terms of order
o(1/logn) are chosen such that we can carry out the estimates in Lemma 3.9. Part (D3) ensures
that good dynamically self-avoiding histories are typical.

To identify the scaling of the mixing time for near-to-global rewiring in Corollary 1.8, we
need an extra regularity condition:

Condition 3.5 (Regularity of Degree Distribution). Let p, = },Zvev Sdeg(v) denote the
empirical degree distribution. We require that:

(R1%) lim,,—, o, py = p, pointwise for some probability distribution p on N.
(R2¥) iMoo Yy ery mPa(m) = 3, mp(m) < o0.
(R3*) liMy— 00 3 ey M2 Pa(m) = Y, oy m? p(m) < 0.

The size-biased mean minus one of p is

b Y ey m(m — 1) p(m) 40)

e mp(m)
and is assumed to satisfy v > 1.

We may interpret v as the average forward degree of a uniformly chosen half-edge, which
plays the role of the mean offspring in the branching-process approximation of the local limit
of the configuration model. In view of Condition 3.1(R3), the condition v > 1 amounts to the
requirement p # §,.
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3.2. Modified random walk

We define a modified random walk, denoted by (Y;);cn, as a random walk on a static random
graph that at certain random times makes uniform jumps. Formally, we have a sequence (J;);en
of random variables adapted to a filtration (F;),cn, taking values in {0, 1} according to a pre-
specified distribution on {0, 1N, For fixed r € N, J, is seen as the indicator of the event that
the modified random walk makes a uniform jump at time ¢. The law of the modified random
walk (Y;);en on & that starts from the initial half-edge x = Y, which is adapted to (F;)en, is
given by the conditional probabilities

POY, = 2| Yoy = 3y = e i = )

(RO ifji=o, @1)
:P;gd(Yt=z|Yt_1=y, Jo=j) = f(y ) . ].t teN,
TH if j, =1,

with
Pro(Yo=x)=1. (42)

Note that, according to the definition, neither (J;);cn nor the pair (Y;, J;);en needs to be Markov,
but (Y;);en is Markov conditionally on a realisation of (J;);en-.

Uniform jumps of the modified random walk can be rephrased in the following form. Let
Y/ be a uniformly chosen half-edge, independent of the random walk path and the jump times.
If J; = 1, then we choose a uniform sibling of ¥}, say y, and set ¥; = y. Since Y, is uniform
and one of its siblings is chosen uniformly at random, the resulting half-edge is distributed
uniformly on H. Even though Y/ is already a half-edge chosen uniformly at random, working
with its sibling (which is also a half-edge chosen uniformly at random) will come in handy in
the coupling argument in Section 3.3.

As an analogue of 7, we define o to be the first time that the modified random walk makes
a uniform jump, i.e.,

o:=inf{t e N: J, = 1}. 43)
3.3. Coupling of modified and dynamically rewired random walk

We couple the law P, (X, € -) of the random walk on the dynamic random graph, with
initial half-edge x and initial configuration &, to the law IP’)‘}‘,‘gd(Yt € -) of the modified random
walk. We want the coupled random walks to stick together as much as possible. When the
two random walks make different steps, we say that the coupling of the two random walks
has failed. Until the coupling fails, the times at which the random walk on the dynamically
rewired graph makes a step over a previously rewired edge correspond to the times at which
the modified random walk makes a uniform jump.

Definition 3.6 (Coupling to a Modified Random Walk). Let X, be a non-backtracking random
walk starting in the initial state (x, &), where x € H, & € Confy, and Y, be a modified random
walk on & starting in x. First, define a sequence of auxiliary random sets (A,),cy,. Call A, the
set of active half-edges at time . Let Ay be the set consisting of the initial half-edge of the
random walk and its siblings, i.e., Ag = Hyy).

Define the coupling of the non-backtracking random walk X, and the modified random walk
Y, at any time ¢ € N by the following rules:
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1. The coupling is successful, unless it has been declared failed.

2. If £(X,_;) or any of its siblings belong to A,_;, then declare the coupling as failed.

3. If degy(X,—1) > (log n)*>¢ (recall that n := |V]), then declare the coupling as failed.
If Condition 3.4(D3) is not needed, then this rule is suspended (see Remark 3.7 for
further details).

4. If the coupling has not yet failed, then maximally couple the distribution of I,
conditionally on the history of the random walk and the rewired edges seen by the
random walk, to the distribution of J;, conditionally on the values of the indicators
Ji, ..., Ji—1. The following three outcomes are possible:

(a) If the coupling of the conditional distributions of I, and J, is successful and
I, = J, = 0, then create A; as a union of £(X,_;) and all its siblings with A,_;.
Let the random walk on a dynamic graph make a move and set Y, := X,.

(b) If the coupling of the conditional distributions of I, and J; is successful and
I, = J, = 1, then maximally couple the distribution of C,(X,_), i.e., the half-edge
paired with X,_; in configuration C,, conditionally on the history of the random
walk and I; = 1, to the distribution of Y/:

i. If the coupling of C,;(X,_;) and Y, is successful, and neither C;(X;_;) nor
any of its siblings is already contained in A;_;, then add &(X;_;) and all
its siblings, along with C;(X,;_;) and all its siblings, to A,_; in order to
obtain A,. Phrased in symbols:

A=A UEX,_DUlhe H: h ~§(X;_1)}
UC(X,_DUfhe H: h~ Ci(X,-1)}. (44)
Let the random walk on the dynamic graph make a move, and set ¥, := X,.
ii. Otherwise, declare the coupling as failed.

(c) If the coupling of the conditional distributions of I, and J; is not successful,
namely if I, # J;, then declare the coupling of the two random walks as failed.

5. If the coupling has failed let X; and Y; evolve independently.
Remark 3.7 (Failure of the Coupling After a High-Degree Half-Edge is Encountered). In
Lemma 3.9 we will see that failure of the coupling as described in rule 3 of Definition 3.6 is

needed only when Condition 3.4(D3) comes into play. This will only happen for one of the
three examples in Section 4, namely, near-to-global.

3.4. Failures in the coupling

Remark 3.8 (Possible Failures). At each time ¢t € N, the random walk and the coupled
modified random walk try to avoid stepping on the active half-edges A;_;. The coupling of
these two random walks fails in four cases described in Definition 3.6:

L. In step 4(b)ii:

A. if the coupling of C,(X,_;) and Y] is not successful,
B. if the two random walks step over a half-edge in A;_;.

II. In step 4(c), if the coupling of /, and J; is not successful.
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III. In step 2, if the pair of X;_; in the starting configuration is already in A;_;.
IV. In step 3, if the random walk encounters a half-edge X,_; with a high degree.

Failure cases IB and III correspond to the situation in which the random walks do not
have dynamically self-avoiding histories. Consequently, the random walks have dynamically
self-avoiding histories before the coupling of the two random walks fails. Failure case 1A
corresponds to the situation in which the conditional distribution of C,(X,_;) is too far from
the uniform distribution in total variation distance. Failure case II corresponds to the situation
in which the conditional distribution of the times at which the random walk on the dynamically
rewired graph and the conditional distribution of the times at which the modified random walk
makes uniform jumps are far from each other in total variation distance. Finally, failure case IV
corresponds to the situation when during the graph exploration the random walk encounters a
half-edge with an anomalously high degree.

The next lemma states that these failure events are unlikely up to logarithmic times when

Conditions 3.1 and 3.4 hold for the random walk on the dynamically rewired random graph:

Lemma 3.9 (Coupling Estimates). Suppose that t = O(logn), and that Conditions 3.1 and
3.4 hold for the random walk on the dynamically rewired graph. For all 1 < s < t and all
Ty =A{s1,...,8} C s — 1], fix a sequence of half-edges

Ty T, N
X10.s—11° X[0.5—11 X X1r) (45)
that describes a good dynamically self-avoiding history with respect to T (see Definition 3.2).

Consider the modified random walk for which the jump distribution has conditional distribution

P,‘I‘féd(lv =1|Jy=0fors els—1\T,Jy=1fors" €T)

=Prg (Is = 1| DSA(Ty, x(,,_1}» ’E[T&s—u”e[?]’i[?l)) (46)
Then, whp in x and &,
IPe (X, € ) = PYE(Ys € )llrv = os(1), (47)
and, with o as defined in (43),
Pe(t > 1) = P;‘f‘gd(a > 1) + op(1). (48)

Remark 3.10 (Jump Distribution of the Modified Random Walk). Observe that (46) describes
the jump distribution of the modified random walk at any time 1 < s < ¢ for any set of
previous jump times 7 in a non-anticipating manner. If the sequence of half-edges in the
event DSA(T, x[To‘kH, )E[To‘!sfu, )E[f‘] )Z[{‘]) in the right-hand side of (46) is not compatible with
the initial state (x, &) (i.e., when the conditioning is on an event of probability zero), then we
set the right-hand side of (46) equal to zero. The proof below uses an annealing argument in
which the “mismatched” events play no role.

Proof of Lemma 3.9. Let Pi?;ple denote the law of the coupling of the two non-backtracking
random walks described in Section 3.2 with Xg = x and Cy = &. Also, use F € N to denote
the time at which this coupling fails. Due to Condition 3.1(R3), these random walks are always
well-defined. Since the two random walks agree up to the time F, that is until the coupling
fails, we have
P s (X, € ) — PPU(Y, € )iy < PPE(F < 1), (49)
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So, in order to prove the claim it suffices to show that, whp in x and &,
PPE(F < 1) = 0s(1). (50)

To achieve this, we use an annealing argument on the initial graph and the initial location.
Recall that 4 = Uy X Ucoys,,, and let

P = 3 e, B s
x,&

We will show that
PeOPe(F < 1) = o(1) (52)

by exploring the initial configuration using the paths of the random walk and its coupled
modified random walk until the coupling fails at time F.

1. At time s = 0, choose a half-edge x € H uniformly at random. Set Xy = Yy = x and
Ag = Hyy), the subset of H consisting of x and its siblings.

2. At time s € N, first explore the half-edge to which X;_; = Y,_; is paired in the
initial configuration &, then let the coupled random walks evolve in accordance with
Definition 3.6, and update A accordingly.

This exploration process covers the part of the graph seen by the random walks, along with
the parts affected by the rewiring at the positions of the random walks, and stops as soon as
the coupling of the two random walks fails.

We will carry out the proof in a setting where Conditions 3.4(D1) and (D2) hold. At the
end of the proof we will briefly comment on the changes required when Condition 3.4(D3)
comes into play.

Suppose that the coupling of the two random walks has not failed before time s. Failure at
time s can occur in the following three cases (see also Remark 3.8):

1. The coupling of I; and J; fails in step 4(c) of Definition 3.6.

2. The coupling of C;(X,_;) and Y fails in step 4(b)ii of Definition 3.6.

3. The random walks jointly step over a half-edge that lies in A;_; in either step 4(b)ii or
step 2 of Definition 3.6.

For case 1, we note that, since the distribution of J; for the modified random walk is given
by (46), Condition 3.4(D1) implies that the probability of coupling failure is o(1/logn).

For case 2 we note that, by Remark 3.8, before the coupling of the two random walks
fails, the random walk has a dynamically self-avoiding history. By Condition 3.4(D2), the total
variation distance between the conditional distribution of Cy(X,_;) and the uniform distribution
Uy is o(1/logn). Since Y] is also distributed uniformly on H, the probability of the event in
case 2 is o(1/logn).

For case 3, we first need an upper bound on the size of A;_;. Each time we explore the
initial configuration, we add at most dy,x half-edges to the set of active half-edges. In case
a rewiring occurs, then we add at most 2dy,,x half-edges to the set of active half-edges. This
gives us the following crude bound:

|AS—1| =< 3Sdmax' (53)
For a fail event in step 4(b)ii, we see that the probability that C;(X,_1) € A, is smaller than
|As—1 | 3Sdmax

H] +o(1/logn) < W-FO(l/lOg”)v 54)
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since the random walk has a dynamically self-avoiding history before the coupling of the two
random walks fails (see Remark 3.8), so the total variation distance between the conditional
distribution of C,(X;_;) and the uniform distribution Uy is o(1/logn), by Condition 3.4(D2).
For a fail event in step 2, we see that the probability that Co(X,_1) € A;_; is smaller than
|AS71 | < 3s dmax
|H| —4s+4 ~ |H| —4s +4°
since up to time s we form at most 2s — 2 pairs in Cy, of which s — 1 on the random walk
path and an additional s — 1 if rewiring occurs at each step up to time s.
The above estimates give us

(55)

6 dmax 1
POW(F — g | Fos—1) < —> +0< ) (56)
|H| —4s + 4 logn
Taking a union bound up to time ¢, and using that by assumption ¢t = O(logn), dnx =

o(n/(log n)?) (Condition 3.1(R2)) and |H| = O(n) (Condition 3.1(R1)), we get

3t(t + Ddmax
POP(F <) < ———— % 4 o(1) = o(1). 57
(F=n= H — 41 (1) =o(1) (57)
Since this bound holds for the annealed quantity P®“(F < ¢), using Markov inequality
we get for the quenched probabilities the desired claim that

couple(F < t) — 0[[»(1) (58)

In case we rely on Condition 3.4(D3), a fourth possible failure of the coupling shows
up, namely, if the random walk encounters a half-edge of degree larger than (logn)>*¢. The
probability of this failure is o(1/logn) by Condition 3.4(D3). The estimates for the other
possible failures carry over, because if the coupling did not fail at some time s due to a meeting
with a high-degree half-edge, then the random walk path traced up to time s is good and we
can apply the same arguments as above.

Finally, note that events {t > t} and {o > t} can be expressed as finite unions of events
of the type {X; € -} or {Y; € -}, respectively. Since (47) bounds the total variation distance
between P, (X, € -) and ]P’m"d(Y, € -), the claim in (48) follows. [

3.5. Link between dynamic and static

In this section we prove Theorem 1.4. Recall from Section 3.2 that for any fixed T =
{ti,...,t,} C [f], the modified random walk conditionally on the event J(T) = {J;, =
Ofors € [t{]\T,J; = 1fors € T} is a time-inhomogeneous Markov chain that makes
random-walk steps at times s € [¢] \ 7 and jumps to half-edges chosen uniformly at random
at times s € T.

We start by two observations about Pm%d Conditionally on T C [t] being non-empty, we
know that o < ¢ by definition (recall Eq. (43)), and so the random walk at time 7 on a graph
satisfying Condition 3.1 is well-mixed for any starting x € H,& € Confy. Expressed in
symbols, this means that

PrY, e lo <t) =Un(). (59)

On the other hand, since the modified random walk up to time ¢ conditionally on the event
{o > t} is the same as the random walk on the static graph, for any x € H and § € Conf,
we have

IPYEY, € - 1o > 1) = UnClly = DY) (60)
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Now we just combine our previous results. Using the triangle inequality twice, we obtain
IPYEY: € ) = Un(- >||w <PY¥0 > DIPYEY €| 0 > 1) = UnO)llv
PYEo < DIPYEY: € [0 <1) = UnQOlhv, (61)
and

IPPY(Y, € ) = UnOlly = PiYo > DIPYYY, € - |0 > 1) = Un()llr

— PYYYo < nIPYE(Ys € - 10 < 1) = UnCOllv. (62)
Inserting (59) and (60) into the previous two inequalities, we get the equality
IPYE(Y, € ) = UnOllv = PYE o > DY@, (63)
Using Lemma 3.9, we see that, whp in x and &,
DL =Pre(r > DY) + 0s(1), (64)

which concludes the proof of Theorem 1.4. [

4. Applications of the general framework

In Section 4.1 we introduce three choices of rewiring. In Sections 4.2—4.4 we identify, for
each of these choices, the scaling of the probability that the random walk does not step along
a previously rewired edge, which settles Theorem 1.5.

In Appendix A we show that each of the three choices of rewiring leads to an irreducible
and aperiodic joint Markov chain for the random walk and the random graph.

4.1. Three choices of rewiring

We explore rewirings that fit into a larger scheme of random graph dynamics, namely, where
the decision of which edges to rewire depends on their distance to the current position of the
random walk.

Definition 4.1 (Sets of Edges to Be Rewired). Recall that the configuration £ is a pairing of
all the half-edges (which induces a set of edges) and H is the set of all half-edges. By abuse
of notation, in Section 1.1 we introduced the expression {a, b} € &, a, b € H, to mean that the
half-edges a, b form an edge in the configuration &. For any & € Confy, h € H and r, € N,
define the following sets of edges:

Localg (h) == {{h, g} € &},

keH:P(Xiy,=k|X_1 =h, & fixed) > 0 for 0 < p < ry, (65)

Nearg, ) =8y i — e

In words, Localg(h) is the edge to which the half-edge / belongs and Near; ., () are the
edges that can be reached after r, — 1 steps by the non-backtracking random walk when
the graph is in configuration & (and is not evolving). Obviously, Nearg ;(h) is equivalent to
Localg (h). For an illustrative example see Fig. 6.

With the above notation we can define the dynamics:

Definition 4.2 (Random Walk with (K,)-to-(L;) Rewiring). Recall that X,_; is the position of
the random walk before the transition at time ¢t and C,_; is the configuration of the random
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Fig. 6. Tllustration of the sets in Definition 4.1. The red box denotes the current position of the random walk. The
red edge forms the local set, which is also the near set with r, = 1. The red and green edges form the near set
with r, = 2. The red, green and orange edges form the near set with r, = 3. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

graph before an update at time 7. Let (K;),cn , (L;);en be sequences of sets of edges, which can
be different at each time 7. Define the random walk with (K;)-to-(L;) rewiring as the following
process:

1. At each time ¢ € N, for each edge e € K, draw a Bernoulli random variable Z{ with

parameter «,, independently of everything else.

2. (a) If Z; =1, then select edge e for rewiring.

(b) If Z{ = 0, then edge e will not be rewired.
Write R, to denote the set of edges that get rewired at time 7.

3. (a) If |R;| = |L;\ Ry, then break-up all the edges in R; U L, into half-edges and
re-pair them at random. More formally, pick %|Rt U L,| different half-edges (the
half-edges forming R; U L,) and order them randomly. Also order randomly the
half-edges not chosen in the previous step. The new pairing is generated by pairing
the successive elements from the first and the second ordered sets described above.

(b) Otherwise, for every e € R,, choose ¢’ € L, \ R, uniformly at random without
replacement. Denote the set of all edges ¢’ chosen in the previous step by R;.
Break up R; into half-edges and order them randomly. Do the same with R;. Just
as in (a), the new pairing is given by the successive elements of the first and the
second ordered set.
The new pairing of half-edges obtained in either (a) or (b) above is the new graph
configuration C;.
4. The random walk moves from X;_; to X, on the evolved graph C;.

Remark 4.3 (Sets of Edges Generated from a Configuration). When in the sequel we write
L, =& € Confy, we mean that the set of edges L, is generated by the configuration &, which
is a pairing of the entire set of half-edges H.

4.2. Local-to-global rewiring

In this section we focus on a rewiring mechanism that is called local-to-global. Using
the language of Definition 4.2, this would be a rewiring with K; = Localc, ,(X;_1) (see
Definition 4.1) and L; = C,_; (see Remark 4.3). Observe that the set K, is explicitly dependent
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on the position of the random walk X,_, before the transition at time ¢ occurs. For &, n € Conf
and x € H, define
1 .
—— if = and =2,
OF(E, ) = | 12 E(n().C)) n(&(x)) &\ nl 66)
0 otherwise.
Then the transition matrix for the random graph from configuration & to configuration n when
the random walk is at position x equals

0.6, m =0 —a)lE )+ @05 E, 0, (67)

where 1(§,n7) = 1 if n = §, and I(§,7n) = O otherwise, i.e., I is the identity matrix. The
first term of (67) captures the situation when rewiring does not happen and the graph remains
the same. On the other hand, the off-diagonal symmetric matrix QX(&, ) in the second term
represents the possible evolution of the graph by local-to-global rewiring. Note that the only
possible transitions between graph states are those where the two configurations & and 5 differ
in exactly two pairs of half-edges. The condition £(n(x)) = n(€(x)) in (66) says that rewiring
always happens at the position of the random walk. The value m comes from the fact that
at time ¢ the rewiring mechanism can choose to pair the half-edge X, to any half-edge chosen
randomly from H \ {X,_;, C,_;(X,_)}, which is a set of size |H| — 2.

Since fo is symmetric for all x € H, we see that the measure Uc,ns,,, defined by

UCoan )= V¢ e Coan (63)

|Conf |

is the stationary distribution for QF for any x € H. This implies that Uconsy, 1s also the
stationary distribution for Q, for all x € H.

Remark 4.4 (Symmetry of Transition Matrix for Graph Dynamics). Local-to-global rewiring
is one of the examples where the transition matrix is symmetric. Symmetry does not hold
generally, even within the restricted class of “something-to-global” rewirings. Still, for such
rewirings the transition matrices are always doubly stochastic. For more details see Appendix C.

Using this fact, we have the following result for the joint Markov chain:

Proposition 4.5 (Stationary Distribution). For any o, € [0, 1], Uy X Ucopy,, is the stationary
distribution for the random walk with local-to-global rewiring with parameter o,,.

Proof. Recall from Section 2.2 that P, is the transition matrix for the non-backtracking random
walk on the graph 7. Since Uy is stationary for P, for any n € Confy, and Uc,yy,, is stationary
for O, for any x € H, it follows that for any y € H and n € Confy,

DY Un@Ucony ) Prs(Xy =y, Cr = 1)

xeH &eConf gy

=Y Y Un(@)Ucons, (&) Qx(€, mPy(x, )

xeH &eConf gy

=Y Un@) Py(x.y) Y Ucony (&) QulE. 1)

xeH &eConf gy

= Uconryy 1) Y_ Un(¥)Py(x, ¥) = Uconsy MU (y). O
xeH

(69)
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It is not obvious that the joint Markov chain is irreducible and aperiodic. In Appendix A
we show that this is nonetheless the case when «,, € (0, 1), and so the distribution of the joint
Markov chain at time ¢ converges to Uy X Ucoyy,, as t — 00. An important implication is that
the distribution of the random walk alone at time ¢ converges to Uy as t — oo. Indeed, for
any x € H, £ € Confy and ¢t € N, we have

Dfi,yg‘(r) < Py (X, Cr) € ) = Un X Ucons, llrv, (70)

and since the right-hand side tends to 0 as t — oo, D;iy; () also tends to 0 as t — o0. On the
other hand, this argument does not automatically imply that Df?’; (t) is non-increasing in ¢.

We are now ready to prove the scaling results stated in Theorem 1.5(A) and Corollary 1.7:

Proof of Results in Theorem 1.5(A) and Corollary 1.7. For fixed + = O(logn), fix some
T ={n,...,t,} C [t — 1] and some x[o,_1}, X[0.1—1]» X[} and X[, that describe a dynamically
self-avoiding history with respect to 7. Conditionally on the event DSA(T, x{0,—1}, X[0.1—1]>
X[r1> X[r])> X¢—1 cannot have been rewired before time ¢. Indeed, by construction the half-edges
that are rewired before time 7 are x;, 1, ..., X, —1, Xtj—1, ..., X—1, X1, ..., % and Xy, ..., X,
while x,_; is not equal to any of these. So we have

P(I, = 1| DSA(T, x{0,—1} X[0.-11 X1r] Xir1))
_ (e

Since this holds for any choice of xjo 1}, X[0—1}, X[r] and X[}, Condition 3.4(D1) holds with
zero error. As a consequence, Condition 3.4(D1) is trivially satisfied. Moreover,

= 1| DSA(T, x(0,—1, X[0,0-11, Xir]> K1) = . (71)

P(Ci(x;—1) € - | DSA(T, x10,1—11, X10,0—11, X1, Xp) 0L = 1) = Unnix,_y.c0 151y (72)

because after rewiring the half-edge x,_; cannot end up being paired with itself or the half-edge
it was paired with before. This gives
2
|H|
Since this holds for any choice of x[o,—1], X0.;—1}, X,] and X}, Condition 3.4(D2) holds with
error O(1/n).
On the other hand, the event {t = t} is the same as the event {min{s € N : R; = 1} = ¢},

since when a rewiring occurs the random walk steps over a rewired edge with probability 1.
This implies that, for any x and &,

HP(Cr(xt—l) € - | DSA(T, x(0,1-15, X0.1-11» Xprps X)) N {I; = 1)) — UH(‘)HTV (73)

Pre(t > 1 | SA®) = (1 — @) = e HHeMlant, (74)

where SA(r) is the event that the random walk is self-avoiding until time ¢. The first equality
comes from the requirement that none of the edges the random walk steps over until time ¢
gets rewired, the second equality uses that lim,_, o, o, = 0. Since

lim P, ¢(SA()) =1 whp uniformly in 7 = O(logn), (75)
n—o00

we obtain the scaling in Theorem 1.5(A). (The proof of (75) was given in [3, Lemma 3.1]
for global-to-global rewiring, but easily carries over to local-to-global and near-to-global
rewiring.) Given Condition 3.1(R1), we can use Corollary B.4, which combined with (B.3)
yields Corollary 1.7. O
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4.3. Near-to-global rewiring

In this section we focus on near-to-global rewiring. In view of Definition 4.2, this is a
rewiring with K; = Nearc, ,,,,,(X;_1) (recall Definition 4.1) and L; = C;_; (see Remark 4.3)
at any time . Just like in the previous example, this is also a rewiring mechanism where the
sets K, are dependent on the current position of the random walk.

The layout is the same as in the previous section, the main difference being the presence of
the additional parameter r, that controls the size of the set of edges that are being considered
for rewiring at each unit of time. We will see that this parameter controls the trichotomy. We
only consider r, = O(logn), since the expected diameter of the configuration model is of
order logn (see (12) and [25,26]). For r, = o(logn) the behaviour is dominated by the local
properties of the graph dynamics and is similar to that for the local-to-global rewiring studied
in Section 4.2. On the other hand, once r, = ©(logn) we get a significant contribution from
a certain “boundary term” in the computation of the tail probability P(z > ¢ | SA(¢)), and we
find a behaviour that is more similar to the global-to-global rewiring studied in Section 4.4.

First, we claim that the random walk is again irreducible and aperiodic:

Proposition 4.6 (Irreducibility and Aperiodicity). Non-backtracking random walk with near-
to-global rewiring is aperiodic and irreducible.

Proof. In Appendix A we show that the joint Markov chain with local-to-global rewiring
is irreducible and aperiodic. Since near-to-global rewiring admits all the transitions that are
admitted for local-to-global rewiring, the proof carries over. [

Next, we claim that the stationary distribution is again uniform:

Proposition 4.7 (Stationary Distribution). For any a,, € [0, 1] and r, = O(logn), Uy X Ucoyg,
is the stationary distribution for the random walk with near-to-global rewiring with parameters
Uy, Ty

Proof. Apply Proposition C.2 to establish that Uc,yy, is stationary for the chosen graph
dynamics. After that the rest of the proof carries over from Proposition 4.5. [J

We are now ready to prove Theorem 1.5(B) and Corollary 1.8. First we settle Condi-
tion 3.4(D2) for good histories. After that we identify the asymptotics of P(t > ¢ | SA(¢)) and
settle Condition 3.4(D1) for good histories. Both are tricky because they force us to investigate
the possible occurrence of short-cuts in the configuration (see Fig. 7). The key ingredient in
the proof is that short-cuts are unlikely when ¢t = O(logn) and r,, < (1 — €)pmax logn for some
& > 0, which requires the error term in Condition 3.4(D1). We finally settle Condition 3.4(D3).
At the end we put the pieces together and wrap up the proof.

Proof of Condition 3.4(D2). Because the rewiring is done with the global set, we have

P(Ci(x,—1) € - | DSA(T, x(0,1—1, X011 X1 Xp) NI = 13) = Uiy 1.6h 10 ps (76)

and, just as in (73),

- A~ 2
[P(Cuti) & - | DSACT, 0,11 T, 0, 5 0 U = 1) = Un )| = e )
Thus, Condition 3.4(D2) is satisfied. [
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Fig. 7. Illustration of shortcuts for the near-to-global rewiring with r, = 3. A non-backtracking random walk starts
on half-edge X and moves along the dotted red path. Green crosses denote edges that might be rewired in the
first step of the rewiring. Note that green crosses are not only on edges that contain the half-edges X; and X»,
but also on the edge that contain the half-edge Xs, which will be stepped over after more than (r, — 1) steps.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Identification of P(t > ¢ | SA(r)). On the event SA(t), for 1 < k <[ < t, let ;] be the
indicator of the event that there is a short-cut of length < r,, between the half-edges V1s1ted by
the random walk at times k and [, i.e., a connection not running along the path of the random
walk itself. Abbreviate SH™ (1) = (S;})1<k<i<.. Then, for any x, &,

P, (v >t | SA(t), SH™ (1))

)+ i1 ! oy (78)
1_[ (1-—«a )Z/ IS SR 1_[ (11—« )Z, 1 20 S
i=1 i=(t—rp)++1

This equality comes from the requirement that from time 1 until time (¢ — r,); none of the r,
half-edges on the future path must be rewired, while from time (¢ —r,,);. + 1 until time ¢ none
of the r, half-edges on the future path until time t must be rewired. Rewrite (78) as

1
Px,g(‘[ >t | SA(t), SHrn(t)) — (1 _ an)(ffrn)#—rn"’z[t*(t*rn)-#][t*(t*rn)-%—*1]

. (79
X (1 - an)x 'l(r)’
with
(t—rp)+ i+rp i—1 toi—1
o= 3 Y 3sie Y YT
i=1 I=i+1 k=1 i=(t—rp)++1 I=i+1 k=1
t (80)
_ Z( )3 s,:y).
i=1 ke(0, i)
le(i, tA(i+rn)]
The first factor in (79) equals
exp(—[1 + o(D] La,7?), t <ry,
p(—[1 4 o()] 5,1%) < 1)

eXp(_[l+0(1)]05n["n(t—"n)+%r,%])v r=ry,

and produces the scaling in Theorem 1.5(B) (recall (75)). We therefore need to show that the
second factor in (79) is negligible. For this it suffices to show the following:
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Lemma 4.8 (Bound on Number of Short-Cuts). Subject to Condition 3.5, x"(t) = 0 whp
uniformly in t = O(logn) and r, < (1 — €)pmax logn for some ¢ > 0.

Proof. Recall that SA(¢) is the event that the random walk is self-avoiding until time ¢.
Consider the ball B;(x) of radius ¢ around the starting point x of the random walk. Recall
that, conditionally on SA(z), (2) implies that the probability for the random walk to choose a
t-step self-avoiding path consisting of half-edges & = (ho, ..., h;—1) in B;(x) equals

t—1 1

—. 82
0 deg (h;) 82)

Condition on /. Note that SA(z) is equivalent to the event that all half-edges in h are distinct,
which we assume from now on.

It is helpful to distinguish between disjoint short-cuts and non-disjoint short-cuts. A disjoint
short-cut between two half-edges h; and h; is a short-cut that does not use any of the other
half-edges in h. Not all short-cuts are disjoint. Indeed, a disjoint short-cut gives rise to other
short-cuts that are counted in Y, _, _, S;", which we call non-disjoint. For example, for r,, > 2,
if there is a disjoint short-cut of one edge between h; and h, 4, then there necessarily is a
short-cut between h; and h;,5 also. The point is that x7(#) = O precisely when there are no
disjoint short-cuts. We must also bring the graph dynamics into the picture.

We call a disjoint short-cut a disjoint (s, i, j, k)-short-cut when the r,-neighbourhood of the
random walk at time s creates a disjoint short-cut consisting of k edges between h; and A ;.
This is only possible when s <i < s 4 r, and k < r,, since otherwise &; would not be in the
r,-neighbourhood of the random walk at time s, and when j > i 4r,, since otherwise the path
of k-edges would not be a short-cut.

We aim to show that, for r, < (1 —¢&)pmax logn and ¢ > 0, the probability that there exists a
disjoint (s, i, j, k)-short-cut vanishes as n — oo. To do so, we rely on the first-moment method.
We make crucial use of the fact that the configuration model is the stationary distribution under
our graph dynamics. This implies that, conditionally on A, all other half-edges at time s are
paired uniformly at random, so that we can use configuration model estimates. Given #, the
expected number of disjoint (s, i, j, k)-short-cuts is bounded by (see [25, Proposition 7.4])

degy (h;)degy (h)) k-1

n

[1+o(1)]

(83)
with

6y =0, — 0(ogn), T =v, % (84)
where v, is the size-biased mean of the empirical degree distribution p, (recall (40)), £,
is the sum of the degrees (= number of half edges), and the error term o(1) is uniform
in k < Clogn. The quantities in (84) introduce corrections that come from the fact that,
conditionally on h, only a subset of size e, of the half-edges is randomly paired at time s. Due
to Condition 3.5, the sum over 1 < k < r, < (1 — &)pmax logn of this expression is bounded
by (max;<;< deg(h;))*>n=¢/? for n large enough. Thus, for 7, < (1 — &)pmax logn, by a union
bound over 1 < i, j < t, the probability that there exists a disjoint short-cut before time ¢ is
bounded by

2
rnt2<lrr<1?§t degH(h,-)> n=¢"2, (85)
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Since t = O(logn), we can use an annealing argument to show that, subject to Condition 3.5,
max<;<, degy(h;) < 12 whp. Indeed, let fzi denote the half-edge to which A; is paired, so that
degy (hiy1) = deg H(ﬁi). Then, the distribution of deg H(ﬁi) is the size-biased degree distribution
minus 1. By Condition 3.5, the mean of this size-biased distribution is uniformly bounded, so
that by the Markov inequality the probability that degy (h;+1) > B is at most C/B for any
B > 0 and some C < oo. Hence the probability that max;<;<, degy (h;) > 2 is at most
Ct/t? = o(1).

Since r,, t = O(logn), we conclude that the probability that " (¢) > 0 is whp at most

rat®n™/% = o(1), (86)
as required. [J

We can now complete the identification of P(z > ¢ | SA(z)). By Lemma 4.8, P, ¢(r >
t | SA(@), SH™(t)) is asymptotically equal to the expression in (81) whp, uniformly in
rn < (1 — €)pmax logn and t = O(logn). Taking the expectation w.r.t. SH” (¢), we get that the
same is true for Py z(v > ¢ | SA(r)). Taking the expectation w.r.t. x, £ as well, we conclude
that the same is true for P(r > ¢ | SA(r)), as required. [

Proof of Condition 3.4(D1). For all paths that describe a dynamically self-avoiding history
with respect to T C [t — 1], the probability that at time ¢ the random walk steps along a rewired
edge is

P(I, = 1| DSA(T, x{0,1—11, (0,0~ 11> X115 Xir1) = But + €nt (T, X(0,0= 115 X0.-11, X117 Xpr1)
(87)

with (recall ¢, from (34))
By =1—(1—a) " (33)

being the probability that the rth edge is rewired when it is in the range of the random walk
path, and &, (T, X[0.;—1}, X[0.1—1]» X[r]> X[r]) = O is the contribution due to short-cuts. Note that
Bn.: is independent of (T, x[o.,—1}, X[0.r—1]> X[r]> X[r])> SO that to verify Condition 3.4(D1), we
only need to bound Sn'r(T, X[0,r—1]» )E[(),;_]], )2[,], )Z[r]).

To identity ¢, (T, X[0,1—1]5 X[0,i—1] )2[,], f[r]), we write

et (T, X10,—11, X[0,0=11> X1 X[r1) (89)
=(- ,Bn,t)E[[l — (1 — o, )" O1 | DSA(T, X{0.1-17, X0.1-11, f[r],f[r])],

with
(t—=rn)+

X =Y sy, (90)
k=1

where ¢, (T, Xj0..—1], X[0..—1], X[+]» X[]) 18 the probability that the rth edge is rewired due to a
short-cut that puts it in the r,,-neighbourhood of the location of the random walk at some time
k < t—r,, but is not rewired due to a rewiring on the path of the random walk. The crux of the
argument is to show that the event DSA(T, x[0.;—1], Xj0..—17, X[, A1) affects a negligible amount
of half-edges. After that we are in a situation where we can once again apply configuration
model estimates, as in (83).

The event DSA(T, x0.1—11, X[0.r1], X[r], X[;]) implies certain restrictions on the pairing of
half-edges for every s € [0, ¢ — 1]. These restrictions can be of two kinds: they can pair two
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half-edges with certainty or with a probability that depends on the fine details of the rewiring
dynamics. In the near-to-global case these probabilities are generally close to 1. Denote by H;
the (partially) random set of half-edges that are paired by the event DSA(T, x(0.+—1}, Xj0.r—1],
X[r1, X)) at times. The following observation is crucial:

Lemma 4.9 (Random Pairings Outside H). Conditionally on DSA(T, x{0.:—11, X[0.t11, X[r]»
Xir1), the half-edges in H \ H; are paired and rewired randomly at any time s € [0,t — 1].
Furthermore, H; C H', where H' = (x[0,1—17 U Xj0.r—1] U X[;] U X[19)-

Proof. Since the graph is initially drawn according to the configuration model, and the
configuration model is the stationary distribution of the graph dynamics, we see that on the
set H \ H; the pairing is uniformly at random. Because the paired half-edges in H are fixed,
they do not affect the half-edges in H \ Hy. Let us clarify the possible restrictions implied by
DSA(T, X[0,r—1]» )E[(),,,l], f[r], )~C[r]) at time s:

1. Edges already traversed by the random walk can get stuck in the configuration seen
by the random walk. More formally, edges {X,, C,(X,)} with ¢ < s need not be a
part of the near-set Nearc, , r, (Xp-1) for any time p > s. This concerns half-edges in
X[0.1—11> Xj0.1—1] and Xy}

2. Edges that are traversed at time g with ¢ > s and ¢ ¢ T must not get rewired before
the random walk crosses them. This concerns half-edges in xjo;—1; and Xjo ;—1j-

3. Edges that are traversed at time ¢ with ¢ > s and ¢ € T can (but need not) get rewired
before the random walk crosses them. If they get rewired just before the random walk
crosses them and near-sets at times < ¢ do not contain X,, then {x,, X,} and {%,, X}
must remain paired until time g. This concerns half-edges in xo ,—1}, X[0.,1], X[r] and
X[r]-

Observe that only the edges that consist of half-edges in xjo ;—17, X[0.,—17, X[r]» X[} can be fixed.
If we take the union of all these half-edges H’, we get a crude upper estimate on H; that is
valid for all s € [0, — 1]. O

Next we estimate the number of half-edges that are influenced by the restrictions implied
by DSA(T, xj0,— 13> X{0.r— 17> X{r]» Xpr)):

Lemma 4.10 (Estimate of Influenced Half-Edges). Conditionally on DSA(T, xj0.1-1], X0.1—1]
Xir1, X7, Hs satisfies the estimate |H,| = O(¢) for any s € [0,1 — 1].

Proof. In view of Lemma 4.9, it suffices to bound the number of half-edges in the sequences
X[0.41]» X[0.t—1]> X[r]> X[r], Namely, |[H'| = O(t). The sequences xjo,—1; and X[o,—j each contain
t — 1 half-edges by definition. The numbers of half-edges in %, and X|,; depend on the set
T C [t — 1] of times when the random walk steps over a rewired edge. Pick T = [t — 1] to
see that X|,; and X[,; both contain at most + — 1 half-edges. Summing the four contributions,
we see that indeed |H'| = O@). O

We are now ready to apply configuration-model estimates:

Lemma 4.11 (Bound on Number of Short-Cuts). Subject to Condition 3.5, conditionally
on DSA(T, x(0.1-11, X10.1—175 X1, K1)y X2(#) = O whp uniformly in t = O(logn), r, <
(1 —_ s)pmax IOgI’lfOV some & > O, and X[(),t_l],)z[()’t_l],)’e[r], )’E[r].

174



L. Avena, H. Giildas, R. van der Hofstad et al. Stochastic Processes and their Applications 153 (2022) 145-182

Proof. Observe that x/*(¢#) > 0 implies the existence of a (s, i, j, k)-short-cut at some time
s € [0,t — 1]. In Lemma 4.8 we proved a result about rarity of these shortcuts where we
assumed only Condition 3.5. The statement of the current lemma furthermore assumes that the
event DSA(T, X[0,6—1]» i[O,l—l]a )’C\[r], i[r]) occurs.

In Lemma 4.9 we have shown that at any time s € [0, r — 1] the conditioning on DSA(T,
X[0.1—1]» X[0.1—1]» X[r]» X[r]) only affects the pairing of some half-edges in H;. In Lemma 4.11 we
gave an estimate of | H| for any s € [0, r — 1]. These two results bring us into the same setting
as we had in the proof of Lemma 4.8, namely, we see that configuration model estimates hold
(recall (83)). Therefore, by the same argument as above, given that r,, t = O(logn), we once
again claim that the probability of x;”(¢) > 0 is at most

r,,t2<1<m<atxldegH(x )) —e/2, 1)
Since Condition 3.4(D1) concerns sequences xjo,—1] that are good, we have

 max_ deg;; (x;) < (logn)*™, 92)
and so

rat*((logn)*)*n =/ = o(1), (93)

as required. Note that x/"(t) < x'(¢) (compare (80) and (90)). O

Now we see that the contribution of the &, (T, X[o.;—17, X[0.r—11> X[r], X[) term in (87) is
O(n~¢/?) and therefore Condition 3.4(D1) holds. O

Proof of Condition 3.4(D3). Observe that, for t = O(logn),
P (Xjo,—1is bad) =P (31 <i <t: degy(X;) > (logn)***)
< Z P (degy(X;) > (logn)**¢)

1<i<[
Z E[degy (Xi)]
T 5, (og ~(logn)?*e %94)
max<;<; E[degy (X;)]
- (log n)2+s

1
=0 <(10g,,)1+5) ’

where we use that max; ;< E[deg,(X;)] is finite by Condition 3.5. Since ¢ > 0, Condi-
tion 3.4(D3) follows. [

Completion of the Proof of Theorem 1.5(B) and Corollary 1.8. We already verified
Condition 3.4, and have shown that P(z > r | SA(z)) is asymptotically equal to the expression
in (81). Furthermore, by (75), SA(¢) occurs whp, uniformly in ¢ = O(logn). This completes
the proof of Theorem 1.5(B). Finally, given Condition 3.1(R1), we can again use Corollary B.4,
which combined with (B.3) yields Corollary 1.8. O

4.4. Global-to-global rewiring

In this section we focus on global-to-global rewiring. This choice was already explored
in [2,3], with the minor difference that in the present paper the parameter «,, is the probability
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that an edge gets rewired per unit of time, while in [2,3] it was the fraction of edges that get
rewired per unit of time. This difference has no impact on the scaling of the mixing times.
Global-to-global rewiring corresponds to the choice K; = L, = C,_; (see Remark 4.3) for all
t in Definition 4.2. Unlike for the previous examples, now the rewiring is independent of the
position of the random walk, so the graph dynamics becomes Markovian.

As before, the use of Corollary B.4 depends on Condition 3.1(R1). The proof of Theo-
rem 1.5(C) uses that for all x and &,

t
P, :(r > t | SA®)) = ]_[(1 — o) =exp(—[1 + o(1)] Jaut?). (95)
i=1
The first equality comes from the requirement that up to time ¢ each of the half-edges on
the future path of the random walk up must not get rewired. We thus obtain the scaling in
Theorem 1.5(C) (again recall (75)). Given Condition 3.1(R1), we can again use Corollary B.4,
which combined with (B.3) yields Corollary 1.9.
Irreducibility and aperiodicity of the rewiring was settled in [2]. The fact that the stationary
distribution is the configuration model is settled by Proposition C.2, in combination with an
argument analogous to Proposition 4.5. It remains to establish Condition 3.4.

Proposition 4.12 (Regularity of Graph Dynamics for Global-to-Global Rewiring). Global-to-
global rewiring satisfies the graph-dynamics regularity conditions formulated in Condition 3.4.

Proof. Since any edge can get rewired at any time, we have
P(1, = 1| DSA(T, x(0,—1}: Xj0.1-11 Xr1» X)) = a1y, (96)

where we use that the edge crossed at time ¢ has had exactly ¢ opportunities to get rewired.
Since this holds for any choice of xy9 -1}, Xo0.;—1]» X[ and X[,;, Condition 3.4(D1) follows
with zero error. Moreover, since a half-edge can get rewired to any half-edge except itself and
its current pair, we know that P(C,(x,—1) € - | DSA(T, xj0.1—1}, Xj0.11], Xr15 X71) N {L; = 1}) is
the uniform distribution on H \ {x;_;, C;—1(x;—1)}, which gives
2
|H|
Since (97) holds for any choice of xjg ;—17, X[0.r—17> X[r]» X1, Condition 3.4(D2) also follows. [

HP(Ct(xtfl) € - | DSA(T, x(0,i-11, Xj0.1— 11, Xprps X)) N I = 1)) — UH(')HTV 97

Remark 4.13 (Comparison with Previous Results). The proof in [2,3] required a condition
analogous to Condition 3.5, while in the present proof this is no longer needed.
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NNV IS

Fig. A.8. The configuration &.

Fig. A.9. Move from half-edge x on a self-loop to half-edge 1 in &. The red colour indicates the position of the
walk. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Appendix A. Irreducibility and aperiodicity of local-to-global dynamics

In this section we show that the random walk with local-to-global rewiring is irreducible
and aperiodic. This ensures that the total variation distance D, ¢(f) converges to 0 as t — o0
for fixed x € H, & € Confy and «, € (0, 1). Our proof builds on the proof of irreducibility of
the switch chain on multigraphs given in [19].

Proposition A.1 (Irreducibility and Aperiodicity). The random walk with local-to-global
rewiring (X;, C¢):en (see Section 4.2) is irreducible and aperiodic for any initial state (x, &) €
H x Confy and any choice of o, € (0, 1).

Proof. Let V = {vy,...,v,} and assume that deg(v;) < deg(v;) < --- < deg(v,). Identify
the set of half-edges H with [|H|] = {1,...,|H]|}, such that the half-edges 1, ..., deg(v;)
are associated to vy, the half-edges deg(v;) + 1, ..., deg(v;) + deg(vy) to v, and so on. Let
vi,..., vy € V be the odd-degree vertices. We fix a configuration & € Confy such that
each vertex has the maximum number of self-loops, i.e., each vertex v € V with even degree
has %deg(v) self-loops, each vertex v € V with odd degree has %(deg(v) — 1) self-loops, and
there is exactly one edge between every pair of odd-degree vertices vj,_,, vy, fori =1,...,k
(see Fig. A.8). We will show that the pair (1, &) € H x Confy is accessible from any pair
(x,&) € H x Confy by allowed moves for the random walk with local rewiring.

First we show that, for any x € H, (1, &) is accessible from (x, &), by considering two
different scenarios:

1. Suppose that x is on a self-loop and &(x) = x'. We first move to (1, &) from (1, &)
by rewiring the half-edges x, x’, 1,2 where &, and & agree on all the edges except that
&(1) = x" and &(2) = x. After that we again move to (1, &) from (1, &) by rewiring
1,2, x,x" (see Fig. A.9).

2. Suppose that x is not on a self-loop, i.e., it is on an edge between two odd-degree
vertices. We first move to (x/, &) without rewiring, where x’ € H is on a self-loop.
After that we apply the procedure in item 1 to (x', &).

Next, we show that for any (x,&) € H x Confy with £ # & we have access from (x, &)
to (y, &), for some y € H. To do this, we show that we can move from (x, &) to some
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Fig. A.10. Moving from (x, £) to (y,n) by using a cycle. The red colour indicates the position of the walk. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

(y,n) € H x Conf g such that the configuration 7 has more edges in common with &, than &
has, i.e., |£ N&| < |n N &, by considering the two scenarios:

1. Suppose that x is on an edge that is not in &, i.e., £(x) # &y(x). Then we move to (y, 1)
by rewiring the half-edges x, £(x), &)(x), §(§o(x)), where & and n agree on all the edges
except that 7(x) = §(x) and n(§(x)) = §(5o(x)) and y ~ §o(x). Since n(x) = &o(x), we
have [§ N &l < InN&| — 1.

2. Suppose that x is on an edge that is in &, i.e., £(x) = &y(x). Let y € H be a half-edge
such that £(y) # &(y), E(x) = x’ and &(y) = y’. Since deg(v) > 2 for all v € V,
in the graph given by £ there is a cycle of edges {y, y'}, {y1, ¥}, ..., {vk., ¥k} with
v(y') = v(y1), v(yg) = v(y) and v(y)) = v(yi41) fori =1,..., K — 1. Let n € Confy
be the configuration that agrees with & on all the edges except that n(x) = y’ and
n(y) = x', so that the edges {yi, ¥{}, ..., {yk., Yk} are present in 7 as well as in &. First
we move from (x, &) to (v, ) by rewiring x, x’, y, y'. Then we make K moves, from
(yi,n) to (Yit1,n) fori =1,..., K, where yx,; = y without rewiring. After that we
move from (y, n) to (y, &) by rewiring x, x’, y, y’, and finally we traverse the cycle
again without rewiring to reach (y, &) from (y;, &) (see Fig. A.10). Now y is on an edge
that is not in &y, so by applying the procedure in item 1 we can increase the number of
edges we have in common with &.

By applying these procedures, we can reduce the number of edges that are not in &. So, we
can go from any (x,&) € H x Confy to (y, &) for some y € H, and then apply the above
procedure to reach (1, &).

To show that we can access an arbitrary state (x,§) from (1, &), we first note that we
can access (y, &), for any y, from (1, &) by relabelling the half-edges and using the first
argument above. Then we see that we can access (x, &) from (y, &) for any y by using the
above strategy of reducing the edges and using the cycles to move around. Hence, the Markov
chain is irreducible. Since, by traversing the self-loop without rewiring, we can reach (1, &)
from itself in one step, we see that the Markov chain is also aperiodic.

Appendix B. Cut-off in the static setting

In order to use the results of [6] we need to assume the conditions stated there:
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Condition B.1 (Additional Regularity of Degrees).

(R1#%) dpoy := max,ey deg(v) = n°D as n — oo.

(R2%#%)
A (loglog |H|)* A2 1
S=ol——), =o|—], n— oo,
A log [H]| A3v/Aq Vl1og |H|
where
M= T N pp— T — 3" llog(degy (@) = 1i[". m =23,
zeH zeH

(R3**) deg(v) >3 forallveV.

relax them via a truncation argument [8]. Condition B.I(R3” *) ensures that the random walk
does not behave deterministically and that the configuration model is connected whp. Note that
(R1#%) and (R3**) are considerably more stringent than (R2) and (R3) in Condition 3.1.

As shown in [6], the following holds:

Theorem B.2 (Scaling of Static Mixing Time). Subject to Condition B.1,

D) = {1 —op(l), if l?m .supn_>Oo t/e < 1, (B.1)
op(1), if liminf, o 1/255% > 1,
where
8= [1 4+ op(1)] ;™ logn Ve e (0,1), (B.2)
with 1/c;? = W Y . log(deg(2)) € (0, 00).
If, in addition,
lim ™ = c,, (B.3)

n—0o0

then Theorem B.2 yields Theorem 1.6.

Remark B.3. We are aware of the fact that Condition B.1 is in [6] used to prove a much
stronger statement than Theorem B.2 that is related to an exact computation of the cut-off
window. Therefore, if we are interested only in proving Theorem B.2, weaker conditions might
suffice.

Combining Theorems 1.4 and B.2, we obtain the following corollary:

Corollary B.4 (Link Between Static and Dynamic). Suppose t = O(logn). Subject to Con-
dition 3.1(R1), Condition 3.4 and Condition B.1, the following holds whp in x and &:

D) = {Px,g(r > 1) +op(l), if limsup, . 1/6% < 1, B4

os(1), if iminf, o0 /158 > 1.

mix
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Appendix C. Transition matrix for (K;)-to-(L,) rewiring

Recall Definition 4.2, where we have introduced the general class of rewirings considered
in this paper. In this appendix we provide a general expression for the transition matrix of the
graph dynamics. Furthermore, we explore the conditions required for this transition matrix to
be doubly stochastic.

Proposition C.1 (Transition Matrix for (K;)-to-(L;) Rewiring). The transition matrix for the
rewirings in Definition 4.2 is

[K¢
Okt = »_(L—a) @) > of~h (€.
k=0 {eq,....ex €Ky

The matrix element Q)[g’ _)L’(n, &) that represents the rewiring of the edges in the set X that
realises the transition from graph state n to graph state & is given by

1 if & is accessible from n
OY (. &) = { 2X TG (Lol = |L N K| —i) by rewiring all edges in X,
0 otherwise.

(C.2)
Observe that the matrix given by (C.1) is a sum of multiple terms. Let us explain the meaning
of these terms through the example of the general term

(1 — o) e Z QL (C3)

.....

First, the factor (1 — an)‘K”’k represents the probability of |K,| — k edges not getting rewired,
and its counterpart o* represents the probability of k edges getting rewired. The sum runs over
all k-tuples from K,, and the matrix Q ,,,, ) represents the possible rewiring of the k-tuples
of edges we are summing over.

The Markov chain transition matrix must be stochastic. Let us check this by an explicit
computation. Take an arbitrary graph state 7. In the row that lists the probabilities of all the
possible transitions from 71, we get the following contributions:

TR (R [ a1 = TISPLEIED

£cConfy k] 2k Hf:_(;(|Lz| —|L; N K| —1)
|Kt] C4
= (1 — o) K1 k(lK,|> €4
=0

=[(1 —a,) +a,]* = 1.

The combinatorial factor ("Ii") counts the different ways of choosing k-tuples from K,. Since
the entries in Q§’_>L’(r], &) are chosen to be the reciprocal of the number of accessible states,
it is not surprising that they sum up to 1. The factor 2¥ comes from the ability to break up an
edge into two ordered sets of half-edges.

Observe that the matrix defined by (C.1) has a “binomial” structure, but that it is not of the
form

05t =[] (0 -l + e 0f). (€5)
eeX
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Clearly, (C.5) would be correct if we would draw e’ € R; in Definition 4.2 with replacement,
when the state space for the rewiring of | X| edges would have size 21X ]_[li'l(lL,| —|L; N K;]).
In the current setting, where we draw e’ without replacement, the state space for the rewiring
of | X| edges is smaller, namely, size 2X! I—[Lilo_l(|Lt| —|L; N K| — i), due to the removal of
already drawn edges.

While we have seen that the transition matrix is stochastic, it is doubly stochastic only
subject to additional conditions. For the purpose of this paper we need the following fact:

Proposition C.2 (Double Stochasticity of (K;)-to-Global Rewiring Transition Matrix). The
transition matrix given in (C.1) is doubly stochastic for L, = &, in the sense that edges in L,
are generated by pairing & of the whole set of half-edges H (recall Remark 4.3).

Proof. The proof is by explicit computation. Choose an arbitrary graph state £ and count the
contributions to the sum over the row corresponding to transitions leading to &:

IK:| k—1 .
_ K i—o ([H| = 2|K;| — 2i)
> Qkor, (1,8 =) (1—a)! "a’,ﬁ(' k") knk:? - —. (C.6)
EeConfy k=0 2 1_[;=0(|Lt| —|L; N K| —1)

The term (|H| — 1 — (2| K| — 1) — 2i) is based on the following observation. We are counting
possible pairs of half-edges where we see a difference in £ compared to 7. This way we get
the whole set of half-edges | H |, without the considered half-edge itself and without all but one
half-edge in K;. Rewiring cannot create an edge between half-edges that gave rise to K, and
the term —1 arises from the one half-edge from K, the considered half-edge is paired with in
&. The term —2i again arises because we are drawing without replacement. Now observe that
2|L,| = |H| and L, N K, = K,. Apply the binomial theorem to get the claim. [J

References

[1] J. Augustine, G. Pandurangan, P. Robinson, Distributed algorithmic foundations of dynamic networks, ACM
SIGACT News 47 (2016) 69-98.

[2] L. Avena, H. Giildas, R. van der Hofstad, F. den Hollander, Mixing times of random walks on dynamic
configuration models, Ann. Appl. Probab. 28 (4) (2018) 1977-2002.

[3] L. Avena, H. Giildag, R. van der Hofstad, F. den Hollander, Random walks on dynamic configuration models:
A trichotomy, Stochastic Process. Appl. 129 (9) (2019) 3360-3375, http://dx.doi.org/10.1016/j.spa.2018.09.010.

[4] C. Avin, M. Koucky, Z. Lotker, Cover time and mixing time of random walks on dynamic graphs, Random
Struct. Algorithms 52 (2018) 576-596.

[5] A. Ben-Hamou, A threshold for cutoff in two-community random graphs, Ann. Appl. Probab. 30 (4) (2020)
1824-1846.

[6] A. Ben-Hamou, J. Salez, Cutoff for nonbacktracking random walks on sparse random graphs, Ann. Probab.
45 (3) (2017) 1752-1770.

[7] P. Berenbrink, G. Giakkoupis, A.-M. Kermarrec, F. Mallmann-Trenn, Bounds on the voter model in dynamic
networks, in: 43rd International Colloquium on Automata, Languages, and Programming, Vol. 55, ICALP
2016, 2016, pp. 146:1-146:15.

[8] N. Berestycki, R. van der Hofstad, J. Salez, In preparation.

[9] N. Berestycki, E. Lubetzky, Y. Peres, A. Sly, Random walks on the random graph, Ann. Probab. 46 (1)
(2018) 456-490.

[10] B. Bollobds, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs,
European J. Combin. 1 (4) (1980) 311-316.

[11] C. Bordenave, P. Caputo, J. Salez, Random walk on sparse random digraphs, Probab. Theory Related Fields
170 (3) (2018) 933-960.

[12] C. Bordenave, P. Caputo, J. Salez, Cutoff at the “entropic time” for sparse Markov chains, Probab. Theory
Related Fields 173 (1) (2019) 261-292, http://dx.doi.org/10.1007/s00440-018-0834-0.

181


http://refhub.elsevier.com/S0304-4149(22)00174-0/sb1
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb1
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb1
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb2
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb2
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb2
http://dx.doi.org/10.1016/j.spa.2018.09.010
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb4
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb4
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb4
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb5
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb5
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb5
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb6
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb6
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb6
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb7
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb7
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb7
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb7
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb7
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb9
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb9
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb9
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb10
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb10
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb10
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb11
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb11
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb11
http://dx.doi.org/10.1007/s00440-018-0834-0

L. Avena, H. Giildas, R. van der Hofstad et al. Stochastic Processes and their Applications 153 (2022) 145-182

[13]
[14]
[15]

[16]
[17]

[18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]
[32]

[33]
[34]

[35]

[36]
[37]

[38]

P. Caputo, M. Quattropani, Mixing time trichotomy in regenerating dynamic digraphs, Stochastic Process.
Appl. 137 (2019) 222-251.

P. Caputo, M. Quattropani, Mixing time of PageRank surfers on sparse random digraphs, Random Struct.
Algorithms 59 (3) (2021) 376-406.

F. Caravenna, A. Garavaglia, R. van der Hofstad, Diameter in ultra-small scale-free random graphs, Random
Struct. Algorithms 54 (3) (2019) 444-498, http://dx.doi.org/10.1002/rsa.20798, 3938775.

S. Chatterjee, P. Diaconis, Speeding up Markov chains with deterministic jumps, 2020, arXiv:2004.11491.
A.E.F. Clementi, R. Silvestri, L. Tervisan, Information spreading in dynamic graphs, Distrib. Comput. 28
(2015) 55-73.

C. Cooper, Random walks, interacting particles, dynamic networks: Randomness can be helpful, in: A.
Kosowski, M. Yamashita (Eds.), Structural Information and Communication Complexity, Vol. 6796, in: Lecture
Notes in Computer Science, Springer, Berlin, Heidelberg, 2011, pp. 1-14.

R.B. Eggleton, D.A. Holton, The graph of type (0, co, co) realizations of a graphic sequence, in: A.F.
Horadam, W.D. Wallis (Eds.), Combinatorial Mathematics VI, Springer, 1979, pp. 41-54.

D. Figueiredo, P. Nain, B. Ribeiro, E. de Souza e Silva, D. Towsley, Characterizing continuous time random
walks on time varying graphs, ACM SIGMETRICS Perform. Eval. Rev. 40 (2012) 307-318.

G. Giakkoupis, T. Sauerwald, A. Stauffer, Randomized rumor spreading in dynamic graphs, in: Automata,
Languages, and Programming, Springer Berlin Heidelberg, 2014, pp. 495-507.

H. Giildag, Exploration on and of networks, PhD thesis, Leiden University, 2019, http://hdl.handle.net/1887/
74479.

J. Hermon, P. Sousi, A comparison principle for random walk on dynamical percolation, Ann. Probab. 48 (6)
(2020) 2952-2987, http://dx.doi.org/10.1214/20-AOP1441.

R. van der Hofstad, Random Graphs and Complex Networks, Vol. 1, in: Cambridge Series in Statistical and
Probabilistic Mathematics, Cambridge University Press, 2016.

R. van der Hofstad, Random Graphs and Complex Networks, Vol. 2, in: Cambridge Series in Statistical and
Probabilistic Mathematics, Cambridge University Press, 2022+, (in press).

R. van der Hofstad, G. Hooghiemstra, P. Van Mieghem, Distances in random graphs with finite variance
degrees, Random Struct. Algorithms 27 (1) (2005) 76-123.

R. van der Hofstad, G. Hooghiemstra, D. Znamenski, Distances in random graphs with finite mean and infinite
variance degrees, Electron. J. Probab. 12 (2007) 703-766.

R. van der Hofstad, J. Komjithy, When is a scale-free graph ultra-small? J. Stat. Phys. 169 (2) (2017)
223-264, http://dx.doi.org/10.1007/s10955-017-1864-1, URL https://doi-org.dianus.libr.tue.nl/10.1007/s10955-
017-1864-1.

F. Kuhn, R. Oshman, Dynamic networks: Models and algorithms, ACM SIGACT News 42 (2011) 82-96.
E. Lubetzky, A. Sly, Cutoff phenomena for random walks on random regular graphs, Duke Math. J. 153 (3)
(2010) 475-510.

M. Othon, P.G. Spirakis, Elements of the theory of dynamic networks, Commun. ACM 61 (2018) 72-81.
Y. Peres, P. Sousi, J.E. Steif, Mixing time for random walk on supercritical dynamical percolation, Probab.
Theory Related Fields 176 (3) (2020) 809-849, http://dx.doi.org/10.1007/s00440-019-00927-z.

Y. Peres, A. Stauffer, J.E. Steif, Random walks on dynamical percolation: mixing times, mean squared
displacement and hitting times, Probab. Theory Related Fields 162 (3) (2015) 487-530.

A.D. Sarma, A.R. Molla, G. Pandurangan, Distributed computation in dynamic networks via random walks,
Theoret. Comput. Sci. 581 (2015) 45-66.

T. Sauerwald, L. Zanetti, Random walks on dynamic graphs: mixing times, hitting times, and return
probabilities, in: 46th International Colloquium on Automata, Languages,and Programming, Vol. 132, ICALP
2019, 2019, pp. 93:1-93:15.

P. Sousi, S. Thomas, Cutoff for random walk on dynamical Erd6s—Rényi graph, Ann. Inst. H. Poincaré Probab.
Statist. 56 (4) (2020) 2745-2773, http://dx.doi.org/10.1214/20- AIHP1057.

D. Vial, V. Subramanian, Restart perturbations for lazy, reversible Markov chains: trichotomy and pre-cutoff
equivalence, 2019, arXiv:1907.02926.

A.Q. Wang, M. Pollock, G.O. Roberts, D. Steinsaltz, Regeneration-enriched Markov processes with application
to Monte Carlo, Ann. Appl. Probab. 31 (2) (2021) 703-735.

182


http://refhub.elsevier.com/S0304-4149(22)00174-0/sb13
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb13
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb13
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb14
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb14
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb14
http://dx.doi.org/10.1002/rsa.20798
http://www.ams.org/mathscinet-getitem?mr=3938775
http://arxiv.org/abs/2004.11491
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb17
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb17
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb17
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb18
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb18
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb18
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb18
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb18
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb19
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb19
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb19
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb20
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb20
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb20
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb21
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb21
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb21
http://hdl.handle.net/1887/74479
http://hdl.handle.net/1887/74479
http://hdl.handle.net/1887/74479
http://dx.doi.org/10.1214/20-AOP1441
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb24
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb24
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb24
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb25
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb25
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb25
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb26
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb26
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb26
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb27
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb27
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb27
http://dx.doi.org/10.1007/s10955-017-1864-1
https://doi-org.dianus.libr.tue.nl/10.1007/s10955-017-1864-1
https://doi-org.dianus.libr.tue.nl/10.1007/s10955-017-1864-1
https://doi-org.dianus.libr.tue.nl/10.1007/s10955-017-1864-1
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb29
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb30
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb30
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb30
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb31
http://dx.doi.org/10.1007/s00440-019-00927-z
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb33
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb33
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb33
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb34
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb34
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb34
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb35
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb35
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb35
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb35
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb35
http://dx.doi.org/10.1214/20-AIHP1057
http://arxiv.org/abs/1907.02926
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb38
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb38
http://refhub.elsevier.com/S0304-4149(22)00174-0/sb38

	Linking the mixing times of random walks on static and dynamic random graphs
	Introduction
	Model and notation
	Mixing for general rewiring mechanisms
	Application to specific rewiring mechanisms
	Discussion
	Previous work
	Outline

	Random graph dynamics and random walk
	Random graph dynamics
	Random walk
	Joint process

	Proof of the main theorem
	Regularity conditions
	Modified random walk
	Coupling of modified and dynamically rewired random walk
	Failures in the coupling
	Link between dynamic and static

	Applications of the general framework
	Three choices of rewiring
	Local-to-global rewiring
	Near-to-global rewiring
	Global-to-global rewiring

	Declaration of competing interest
	Acknowledgements
	Appendix A. Irreducibility and aperiodicity of local-to-global dynamics
	Appendix B. Cut-off in the static setting
	Appendix C. Transition matrix for (K_t)-to-(L_t) rewiring
	References


