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ABSTRACT

Background and objectives: Triglyceride (TG)-lowering LPL variants in combination
with genetic low-density lipoprotein cholesterol (LDL-C)-lowering are associated
with reduced coronary artery disease (CAD) risk. Genetic variation in the APOA5
gene encoding apolipoprotein AV (apo A-V) strongly affects TG levels, but the poten-
tial clinical impact and underlying mechanisms relative to LPL are yet to be resolved.
Here, we aimed to study the effects of APOA5 genetic variation on CAD risk and
plasma lipoproteins, separately and in combination with variation in LPL and LDL-C
through factorial genetic association analyses.

Methods: Using factorial analyses in 309,780 European-ancestry participants from
the UK Biobank, we evaluated the effects of genetically-influenced lower TG levels
via APOA5 and/or LPL with or without a background of genetically-influenced lower
LDL-C levels on CAD risk. Next, we associated the genetically-influenced lower TG
levels via APOA5 and LPL with over 100 lipoprotein measures in a combined sample
from the Netherlands Epidemiology of Obesity study (N=4,838) and the Oxford
BioBank (N=6,999).

Results: Exposure to genetically-influenced lower TG levels via APOA5 on top of
exposure to genetically-influenced lower TG via LPL and genetically-influenced
lower LDL-C levels provided the largest reduction in CAD risk (OR: 0.78 (0.73-0.82)).
Compared to genetically-influenced lower TG via LPL, genetically-influenced lower
TG via APOA5 had similar and independent effects on the lipoprotein profile, but
notably larger effect sizes.

Conclusion: Our results suggest that lower TG via APOA5 have additional beneficial

effects on CAD risk and the lipoprotein profile, which make apo A-V a potential novel
therapeutic target for CAD prevention.
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INTRODUCTION

Current guidelines for coronary artery disease (CAD) prevention focus on statins as
the first-line treatment aimed at reducing low-density lipoprotein cholesterol (LDL-
C). However, statins reduce cardiovascular risk by only approximately 20-30% (1,2).
In addition to LDL-C, elevated levels of triglycerides (TG) and TG-rich lipoproteins
(TRLs) have emerged as independent and causal risk factors for CAD (3-5).

Numerous genes have been linked to TG metabolism, among which LPL, which
encodes the lipoprotein lipase (LPL), has been shown to be play a major role (6,7).
In addition to LPL, APOA5, encoding apolipoprotein A-V (apo A-V), is an important
determinant of plasma TG levels (8-10). Apo A-V is mainly expressed in the liver
and is present on and is exchanged between TRLs and high-density lipoprotein
cholesterol (HDL-C) (11,12). Despite its low plasma concentration (=150 ng/mL)
compared with other apolipoproteins, apo A-V appears to be a potent regulator of
circulating TG levels (13). In-vivo experiments found that mice overexpressing hu-
man APOA5 had 66% lower plasma TG levels compared with controls, primarily due
to a lower TG content in VLDL particles (14,15). Reciprocally, APOA5 knockout mice
had a four-fold increase in plasma TG levels (14), and resembled apo A-V deficient
patients exhibiting type V familial hyperlipoproteinemia (10,11). Furthermore,
genome-wide association studies have identified rare and common variants in the
APOAS5 locus to be associated with TG levels (8,9,16). Despite playing a crucial role in
TG metabolism, the precise mechanism(s) through which apo A-V regulates TG levels
remain under debate. Most evidence suggests that apo A-V enhances LPL-dependent
TG lipolysis, either directly or indirectly (17,18). Other hypotheses suggest that apo
A-V regulates hepatic VLDL production, (18) or facilitates the recognition of VLDL
particles by members of the LDL receptor family and heparan sulfate proteoglycans
(19,20), thereby enhancing the clearance of these particles from the circulation.

Previously, factorial Mendelian Randomization analyses showed that genetically-
influenced lower plasma TG levels via LPL have additional beneficial effects on
reducing CAD risk on top of genetically-influenced lower LDL-C(21). As an important
TGregulator, apo A-V could therefore be an interesting additional therapeutic target
for CAD prevention. In the present study, we aimed to study APOA5 genetic varia-
tion in relation to CAD, as well as the detailed lipoprotein profile, separately and
in combination with variation in LPL and LDL-C-lowering through factorial genetic
analyses in multiple cohorts.
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MATERIALS AND METHODS

Study design and population

In this study we aimed to: (1) assess the clinical relevance of genetically-influenced
lower TG levels via APOA5 and/or LPL variants on top of genetically-influenced lower
LDL-C on CAD risk. (2) Investigate the mechanisms of apo A-V relative to LPL by
estimating the individual and combined associations with metabolomic measures
of genetically-influenced lower TG via APOA5 and genetically-influenced lower TG
via LPL.

For the first aim, we performed single instrument and factorial genetic association
analyses (Supplementary figure S1-S3) using individual-level data from 309,780
CAD cases and controls in the UK Biobank. The UK Biobank cohort is a prospective
general population cohort of 502,628 participants aged 40 to 70 years from across
the United Kingdom. For the present study, we restricted the analyses to the UK Bio-
bank participants who reported to be of European ethnicity, were unrelated (based
on the availability of kinship data), and were present in the full release imputed
genotyped datasets (N=309,780).

For the second aim, we used individual-level genetic data including 11,837 partici-
pants from a combined cross-sectional cohort of the Netherlands Epidemiology of
Obesity (NEO) and the Oxford BioBank (OBB) study to perform genetic association
analysesin 2 x 2 factorial design. The NEO study is a population-based prospective
cohort study of 6,671 men and women aged 45 to 65 years. For the present study,
we excluded participants with lipid-lowering drug use (n = 906) and/or missing data
on genotype (n = 927). Therefore, the present study population consisted of 4,838
NEO participants. The OBB is a population-based cohort of 7,185 randomly selected
healthy participants aged 30 to 50 years from Oxfordshire (UK). Individuals with
a history of myocardial infarction, diabetes mellitus, heart failure, untreated ma-
lignancy, other ongoing systemic diseases or ongoing pregnancy were not eligible
for study inclusion. Participants with lipid-lowering drug use and missing genotype
data were excluded, which resulted in a total of 6,999 participants included for the
current study.

All included studies received ethical approval by their respective medical ethics
committees (NEO was approved by the medical ethics committee of the Leiden
University Medical Center (LUMC), OBB was approved by the Oxfordshire Clinical
Research Ethics Committee (08/H0606/107+5) and UK BioBank was approved by the
North-West Multi-center Research Ethics Committee (MREC)), and all participants
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gave their written informed consent. The studies conformed to the principles out-
lined in the Declaration of Helsinki. A more detailed description of the included
studies, their designs and the genotyping platforms is provided in supplementary
methods and Supplementary table 1.

Genetic instruments and genotype groups

In NEO, OBB and UK Biobank we calculated weighted genetic scores for both
APOA5 and LPL using TG-lowering alleles. For the APOA5 genetic score we used
two variants (rs662799 and rs3135506; Extended Methods, Supplementary table 2)
that comprise most of the variation in the APOA5 locus, are in linkage equilibrium
(R>=0.003), and are strongly associated with TG levels (22). Weights for the GRS
calculation were derived from the genome-wide association study on TG levels
from the Global Lipids Genetics Consortium (GLGC) (23). Likewise, the LPL genetic
score was constructed using variants associated independently with TG levels that
were mapped to the LPL gene (rs268, rs301,rs326,rs328 and rs10096633; Extended
Methods, Supplementary table 2), which were weighted by their effect on TG levels
in the analyses from GLGC (23). Based on the calculated GRS for APOA5 and LPL, we
divided the study population based on the median values of the two GRS resulting
in 4 different study groups based on genetically-influenced apo A-V and LPL activ-
ity (2x2 factorial design, Supplementary figure S2): (1) reference group (higher TG
through APOA5 and LPL), (2) lower TG through LPL only, (3) lower TG through APOA5
only, and (4) lower TG through both APOA5 and LPL.

In UK Biobank, in addition to the APOA5 and LPL genetic scores, we calculated a
genetic LDL-C score by extracting from published genome-wide association studies
in which the UK Biobank did not contribute, the independent lead variants (p < 5 x
10°®) previously identified in relation to LDL-C levels (188 577 individuals; 15 SNPs,
Supplementary table 2) (23). Using the beta estimates of the independent lead vari-
ants, we calculated weighted LDL-C genetic risk scores (GRS) per participant. To limit
bias by pleiotropy, we did not allow overlap in independent lead variants between
LDL-C and the other lipid traits (notably HDL-C and TG) based on a p-value cut-off of
5 x 10°%, Next, based on the weighted GRS of LDL-C, LPL and APOA5, we stratified
the study population into different groups based on the median values of the three
GRS (Supplementary figure S3).
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Study outcomes

Cardiovascular disease outcomes

In UK Biobank, the clinical outcome was CAD. Information on incident CAD was
collected through information from the data provided by the NHS record systems.
Diagnoses were coded according to the International Classification of Diseases
(ICD)(24). CAD was defined as: angina pectoris (120), myocardial infarction (121 and
122), and acute and chronic ischemic heart disease (124 and 125).

NMR-based metabolomic profile

In NEO and OBB, the primary outcomes were the fasting NMR-based metabolomic
measures. In both cohorts, a high-throughput proton nuclear magnetic resonance
(NMR) metabolomics platform (25) (Nightingale Health Ltd., Helsinki, Finland) was
used to measure 159 metabolic measures (excluding ratios) at the Medical Research
Council Integrative Epidemiology Unit (MRC IEU) at the University of Bristol, Bristol,
United Kingdom, which were quantified by Nightingale library. This method provides
lipoprotein subclass profiling with lipid concentrations within 14 lipoprotein sub-
classes. Details of the experimentation and applications of the NMR metabolomics
platform have been described previously (25), as well as representative coefficients
of variations (CVs) for the metabolic biomarkers (26).

In this study, we excluded all ratios, resulting in a final number of 145 NMR-derived
metabolic measures present in both NEO and OBB cohort. Values below the detec-
tion limit were treated as missing. For all analyses, metabolic measures were inverse
rank transformed to obtain normal distributions.

Statistical analyses

Factorial genetic association analyses with CAD risk in the UK Biobank cohort
We performed three types of genetic analyses on CAD cases and controls in the UK
Biobank : 1) single instrument genetic analyses, where each dichotomized genetic
score (LDL-C, LPL and APOA5 GRS) was associated with CAD outcomes, assuming
that the other alleles were randomly distributed in the other groups Supplementary
figure S1); 2) 2 x 2 factorial genetic analyses resulting from three different combina-
tions (LDL-C-lowering and lower TG via LPL alleles, LDL-C-lowering and lower TG via
APOA5 alleles, and lower TG via both LPL and APOA5 alleles) (Supplementary figure
S2); 3) 2 x 2 x 2 factorial genetic analyses with the combination of the three genetic
scores to assess the clinical relevance of lower TG via APOA5 and LPL variants on top
of genetically-influenced lower LDL-C (Supplementary figure S3).
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Analyses in UK Biobank were performed in R (Version 3.6.1, the R Project, https://
www.r-project.org/) using logistic regression adjusted for age, sex and the first 10

principal components in unrelated individuals.

Factorial genetic association analyses with NMR-metabolomics

Using four “naturally randomized” subgroups based on LPL and APOA5 GRS, we
performed linear regression analyses to estimate the associations with NMR-based
metabolomic measures between groups using a 2 x 2 factorial design in NEO and
OBB separately. These association analyses were adjusted for age, sex and the first
four genomic principal components to correct for possible population stratification
within the separate study samples. In addition, we included in the regression model
an additive interaction term by using a product term between the continuous LPL
and APOA5 genetic scores to test whether they had additive effects on the NMR-
based metabolomics measures. Finally, these analyses were also performed for
replication purposes using non-fasting NMR-based metabolomics measures in the
UK Biobank cohort.

All analyses in the NEO and OBB cohort were adjusted for multiple testing, dividing
the alpha by 37, as this was the number of independent metabolic measures in our
study. The number of independent biomarkers was determined using the method
by Li and Ji (27). Associations were considered to be statistically significant in case
the p value was below 1.35 x 107 (i.e. 0.05/37). All results for the NEO cohort were
based on analyses weighted towards the reference BMI distribution of the general
Dutch population, and therefore apply to a population-based study without overs-
ampling of individuals with overweight or obesity. A more detailed description of
the weighting can be found elsewhere (28).

Finally, the separate results from the NEO and the OBB cohorts were meta-analyzed
using the fixed-effect model of rmeta package in R. Linear regression analyses were
carried out using STATA Statistical Software version 12.0 (Statacorp, College Station,
Texas, USA) and R version 3.6.1 (The R Project, https://www.r-project.org/). The cir-

cular plots were designed using Python version 2.7.6 (Python Software Foundation,
https://python.org/).
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RESULTS

2 Population characteristics

The UK Biobank study population investigated herein (Table 1) consisted of 309,780
participants (mean (SD): 56.8 (8.0) years of age at study inclusion), out of which
36,391 were CAD cases. Compared to the controls, the cases had a higher mean age
(61.1 (6.4) versus 56.2 (8.0) years, respectively) and a higher BMI (29.0 (5.0) and
27.2 (4.7) kg/m2 for cases and controls, respectively). In addition, the case group
consisted of more male participants compared to the control group (66 versus 43
%, respectively).

Table 1 Characteristics of the UK Biobank total study population, as well as stratified in cases and
controls

Characteristics Total Cases Controls
Number of participants 309,780 36,391 273,389
Age at inclusion, years 56.8 (8.0) 61.1(6.4) 56.2 (8.0)
Sex, % men 46 66 43
BMI (kg/m2) 27.4(4.8) 29.0 (5.0) 27.2(4.7)
Fasting serum concentrations
(mmol/L)
TG (median (IQR)) 1.49 (1.1) 1.72 (1.25) 1.46 (1.08)
Total cholesterol 5.71(1.14) 5.25(1.28) 5.77 (1.11)
LDL-cholesterol 3.47(0.87) 3.27(0.97) 3.61(0.85)
HDL-cholesterol 1.45 (0.38) 1.30(0.35) 1.47 (0.38)
LDL-C GRS (median (IQR)) 0.41(0.30) 0.39 (0.30) 0.41 (0.30)
?LPL GRS (median (IQR)) 0.09 (0.20) 0.09 (0.20) 0.09 (0.23)
APOAS5 GRS (median (IQR)) 0.86 (0.00) 0.86 (0.00) 0.86 (0.00)

In stratified analyses the number of cases and controls varies per genotype group. Values are mean (SD), unless
otherwise specified. GRS unit is in SD.

BMI, body mass index; GRS, genetic risk score; HDL, high-density lipoprotein; IQR, interquartile range; LDL, low-
density lipoprotein; TG, triglycerides

°Due to unavailability of rs301, the LPL GRS for the UK BioBank was calculated based on five variants (rs268,
rs326, rs328 and rs10096633) versus the six variants (rs268, rs301, rs326, rs328 and rs10096633) used in the
NEO and OBB cohorts.

Characteristics of the NEO study population (N=4,838) and OBB cohort (N=6,999), as
well as of the combined population are summarized in Table 2. Compared to partici-
pants from NEO, OBB participants had a lower mean age (41.6 (5.9) versus 55.5 (6.0)
years, respectively), but a similar mean BMI (25.8 (4.6) and 26.0 (4.3) kg/m?* for OBB
and NEO, respectively). Levels of TG, total cholesterol, LDL-C and HDL-C were higher
in the NEO cohort compared to the OBB cohort.
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Table 2 Characteristics of the NEO and the OBB cohort, as well as their combination

Characteristics NEO* OBB Total®
Number of participants 4,838 6,999 11,837
Age (years) 55.5 (6.0) 41.6 (5.9) 47.3(5.9)
Men (%) 42 4 43
BMI (kg/m?) 26.0 (4.3) 25.8 (4.6) 25.9 (4.5)
Fasting serum concentrations
(mmol/L)
TG (median (IQR)) 0.99 (0.71) 0.93 (0.65) 0.95 (0.67)
Total cholesterol 5.80(1.01) 5.18 (1.01) 5.43(1.01)
LDL-cholesterol 3.66 (0.94) 3.22(1.26) 3.40(1.13)
HDL-cholesterol 1.60 (0.47) 1.38 (0.42) 1.47 (0.44)
APOA5 GRS (median (IQR)) 0.86 (0.00) 0.86 (0.00) 0.86 (0.00)
LPL GRS (median (IQR)) 0.48 (0.24) 0.48 (0.24) 0.48(0.24)

Values are mean (SD), unless otherwise specified. GRS unit is in SD.

BMI, body mass index; GRS, genetic risk score; HDL, high-density lipoprotein; IQR, interquartile range; LDL, low-
density lipoprotein; TG, triglycerides.

°In NEO, results are based on analyses weighted towards the reference BMI distribution of the general Dutch
population.

®The total represents averaged results from the individual analyses in NEO and OBB cohort

Factorial genetic association analyses with CAD risk

The characteristics of the UK Biobank cohort stratified by genotype group based on
the LPL, APOA5 and LDL-C GRS are shown in Supplementary table 3. Results from
factorial genetic analyses with CAD in the UK Biobank are presented in Figure 1. The
group with lower TG via APOA5 and groups with lower TG via LPL had a similar re-
duced odds ratio for CAD risk (OR (95% Cl): 0.95 (0.92;0.97) versus 0.94 (0.91;0.97),
respectively). In addition, the effects of the genetic scores on CAD were also ad-
ditive based on the comparison between the sum of the individual effects (LPL:
OR=0.94; APOA5: OR=0.95) and the effect of both scores combined (both LPL and
APOA5: OR=0.89). Based on an approximation of the OR with RR when the outcome
incidence is <10%, the sum of the risk reduction of the individual LPL and APOA5
scores translated into 9%, which was similar to the risk reduction in the group with
both genetic exposures (11%). When combined with genetically-influenced lower
LDL-C levels, genetically-influenced lower TG via APOA5 were associated with the
same CAD risk as the genetically lower TG via LPL (OR (95% Cl):(0.83 (0.79;0.86)
versus 0.83 (0.80;0.86), respectively). The most beneficial effect on CAD risk was
observed when genetically-influenced lower TG via both LPL and APOA5 were com-
bined with genetically-influenced lower LDL-C (OR (95% Cl): (0.78 (0.73;0.82)).
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Genotype Category Proxy for TG levels LDL-C levels OR(95% Cl) Cases/Controls
(mmol/L) (mmol/L)
Single instrument genetic analyses
Higher LDL-C only Reference  1.48(1.10) 3.46 (0.83) 1 19,097/135,883
Lower LDL-C only LDL-C-lowering therapy only  1.50(1.12) 3.68(0.89) 0.88(0.86-0.90) 17,294 /137,506 —_
Higher TG via LPL only Reference  1.42(1.04) 3.56 (0.86) 1 26,091/192,940
Lower TG via LPL only LPL-enhancing therapy only ~ 1.52(1.13) 3.57(0.87) 0.94(0.91-0.97)  103,00/80,449 _
Higher TG via APOA5only Reference  1.44(1.05) 3.46 (0.83) 1 8,586/62,388
Lower TG via APOAS50nly Apo A-V-enhancing therapy only ~ 1.67(1.29) 3.61(0.89) 0.95(0.92-0.97)  27.805/211,001 —_

2x2 genetic analyses

Higher TG via LPLand higher LDL-C Reference  1.40(1.03)  3.45(0.82) 1 13,711/96,022

Lower TG via LPLand lower LDL-C LPL-enhancing therapy and LDL-C~lowering therapy  1.54(1.15) 356(0.86) 0.83(0.80-0.86)  4,914/40,588 e

Higher TG via APOASand higher LDL-C Reference  1.43(1.04) 344 (0.82) 1 4,502/30,753

Lower TG via APOA5and lower LDL-C  Apo A-V-enhancing therapy and LDL-C-lowering therapy  1.68(1.30) 372(0.92) 0.83(0.79-0.86)  13,210/105,871 —_—

Higher TG via both LPL and APOAS Reference  1.38(0.98)  3.55 (0.85) 1 6,168/44,071

Lower TG via both LPL and APOAS LPL- and Apo A-V-enhacning therapy ~ 1,70(1.31)  3.62(0.89) 0.89(0.85-093)  7,882162,132 _

2x2x2 genetic analyses
Higher TG via both APOAS and LPL Reference  1.36(0.98) 343 (0.81) 1

and higher LDL-C 3,252/21,762
Lower TG via both APOAS and LPL LPL- and Apo A-V-enhacning therapy  1.71(1.33)  3.73(0.92) 0.78(0.73-0.82) 3746/31,262 ~ ———
and lower LDL-C and LDL-C-lowering therapy

—
om o7 os oss 0w 08 ic
OR(95% CI)

Figure 1: Associations of genotype group with Coronary Artery Disease in the UK Biobank cohort. Values are
mean (SD) for LDL-C levels and median (IQR) for TG levels. GRS unit is in SD.

Confidence interval; CAD, coronary artery disease; LDL-C, low-density lipoprotein cholesterol, OR, odds ratio;
TG, triglycerides

Factorial Analyses with NMR-based metabolomic measures

The characteristics of the combined population of NEO and OBB cohorts stratified by
the dichotomized LPLand APOA5 GRS are shownin Supplementary table 4. Compared
with the reference group (genetically-influenced higher TG via both LPL and APOA5)
lower genetically-influenced TG levels via LPL only were associated with altered
levels of 8 metabolomic measures (particularly higher levels of medium-sized HDL
sub-particles; Figure 2 and Supplementary table 5), and lower genetically-influenced
TG levels via APOA5 only were associated with changed levels of 81 metabolomic
measures (particularly lower levels of all sizes of VLDL sub-particles; Figure 3 and
Supplementary table 5). Despite these observed differences, in general the effects
of the APOA5 and LPL genetic scores on the metabolomic measures showed a moder-
ate overlap R*>=0.68; Supplementary figure S4).

Compared to the same reference group, lower genetically-influenced TG levels via
both LPL and APOA5 were associated with altered levels of 86 metabolomic measures
(Figure 4and Supplementary table 5). Overall, the effects of these associations showed
an additive pattern of the individual associations of genetically-influenced lower TG
levels via APOA5 and genetically-influenced lower TG levels via LPL, but no evidence
for an interaction between these scores (p for interaction > 1.35 x 107). More specifi-
cally, the group with genetically-influenced lower TG levels via both APOA5 and LPL
was associated with lower levels of all VLDL sub-particles and most LDL sub-particles,
as well as a lower average VLDL particle size (VLDLD: beta (SE) = -0.30 (0.03), p =
2.3 x 10%). In line with these results, levels of apolipoprotein B (apoB), total serum
cholesterol, cholesterol in VLDL (VLDL-C) and cholesterol in LDL (LDL-C), were also
lower (apoB: beta (SE) = -0.28 (0.03), p = 3.6 x 10*°), whereas most HDL sub-particles,
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Figure 2: Associations of the group with genetically-influenced lower TG levels via LPL with 145
NMR-based metabolomic measures in 2 x 2 factorial analyses, in the Netherlands Epidemiology
of Obesity (NEO) study (n = 4,838) and in the Oxford Biobank (OBB) cohort (n=6,999). Group with
genetically- influenced lower TG levels via LPL compared with the reference group (genetically-
influenced higher TG levels via both LPL and APOA5). Bar heights represent the magnitude of the
beta coefficient from linear regression, which is expressed in standard deviation (SD) units. Red
bars indicate positive betas and blue bars indicate negative betas. The transparency of the bars

indicates the level of statistical significance. A p <1.35 x 107 is regarded statistical significant, as
represented by the black dots.

HDL-C and ApoA1 were higher (ApoA1: beta (SE) = 0.12 (0.03), p = 2.2 x 10°). In addi-
tion, genetically-influenced lower TG levels via both LPL and APOA5 were associated
with lower levels of total FAs (beta (SE) = -0.27 (0.06), p = 9.4 x 10™) and several

free FAs (omega-3, omega-6, monounsaturated FAs, polyunsaturated FAs and short-
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Figure 3: Associations of the group with genetically-influenced lower TG levels via APOA5 with
145 NMR-based metabolomic measures in 2 x 2 factorial analyses, in the Netherlands Epidemiol-
ogy of Obesity (NEO) study (n = 4,838) and in the Oxford Biobank (OBB) cohort (n=6,999). Group
with genetically-influenced lower TG levels via APOA5 compared with the reference group (genet-
ically-influenced higher TG levels via both LPL and APOA5). Bar heights represent the magnitude
of the beta coefficient from linear regression, which is expressed in standard deviation (SD) units.
Red bars indicate positive betas and blue bars indicate negative betas. The transparency of the

bars indicates the level of statistical significance. A p <1.35 x 107 is regarded statistical significant,
as represented by the black dots.

chain FAs), and with a higher degree of unsaturation. Replication analyses in the UK
biobank cohort confirmed these observations, despite the fact that the metabolomics
measurements were done irrespective of fasting status, which likely increased the
variability of the measurements (Supplementary figure S5).
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Figure 4: Associations of the group with genetically-influenced lower TG levels via both LPL and APOA5 with
145 NMR-based metabolomic measures in 2 x 2 factorial analyses, in the Netherlands Epidemiology of Obesity
(NEO) study (n = 4,838) and in the Oxford Biobank (OBB) cohort (n=6,999). Group with genetically-influenced
lower TG levels via both LPL and APOA5 compared with the reference group (genetically-influenced higher TG
levels via both LPL and APOA5). Bar heights represent the magnitude of the beta coefficient from linear regres-
sion, which is expressed in standard deviation (SD) units. Red bars indicate positive betas and blue bars indicate

negative betas. The transparency of the bars indicates the level of statistical significance. A p <1.35 x 107 is
regarded statistical significant, as represented by the black dots.

DISCUSSION

In this study, exposure to genetically-influenced lower TG levels via APOA5 had
additional beneficial effects on CAD risk on top of genetically-influenced lower TG
levels via LPL and genetically-influenced lower LDL-C levels. This was further sup-

ported by the independent and additive beneficial effects on the lipoprotein profile,
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of the genetically-influenced lower TG via APOA5 on top of genetically-influenced
lower TG via LPL. Therefore, our data suggests that pharmacological TG-lowering
therapy via APOA5 may have additional beneficial effects on the lipoprotein profile
and CAD risk on top of LPL-enhancement therapy as well as LDL-C-lowering therapy.

Previously, it was reported that genetically-influenced lower TG through LPL have an
additive lowering effect on CAD risk on top of genetically-influenced lower LDL-C
(21,29), which were confirmed by the beneficial effects of this combination on the
lipoprotein profile recently shown by our group (30). The results from the current
study extend these findings by suggesting that genetically-influenced lower TG
via APOA5 have similar beneficial effects on CAD risk and the lipoprotein profile as
genetically-influenced lower TG via LPL. Collectively, genetically-influenced lower
TG through APOA5 and genetically-influenced lower TG through LPL were associated
with an additively improved lipoprotein profile and CAD risk. More importantly,
exposure to genetically-influenced lower TG levels via APOA5 gave an additional
reduction in primary CAD risk on top of exposure to genetically-influenced lower TG
via LPL and genetically-influenced lower LDL-C levels. Data from other MR studies
have shown that particularly apoB may be the key trait accounting for the relation-
ship between lipoproteins and CAD (29,31). Since in our study both the APOA5 and
LPL genetic scores were associated with lower levels of VLDL sub-particles and the
LDL-C genetic score with lower levels of LDL sub-particles, these all translated to
lower levels of apoB. Thus, the observed reduction in CAD might be explained by
lower levels of apoB, which was indeed the lowest in the group with the three ge-
netic exposures. Altogether, these data suggest that apo A-V might be an attractive
therapeutic target for additional treatment to reduce CAD risk. This opens up a novel
avenue for the development of potentially effective drugs in CAD prevention, which
is of high importance given the residual risk that remains in patients already on
statin therapy (1,2). One feasible approach, given the small size of the apo A-V (39
Kda), may be an APOA5 expression construct targeted to muscle or liver.

Previously, association studies of APOAS5 variants with lipoprotein sub-particles
have been performed, although mostly with a less extensive metabolomics panel
and limited cohort size. These studies showed the strongest associations of APOA5S
variants with chylomicrons and large VLDLs (32-35), which is in line with the strong
associations of lower TG via APOA5 observed in our study. Guardiola et al. showed
that the rare TG-increasing alleles the APOA5 variants used in our study, notably
rs3135506 and rs662799, were associated with an atherogenic lipoprotein profile
(34). Similarly, in our study we showed that the TG-lowering alleles of rs3135506
and rs662799 had a lowering effect on the atherogenic TRLs, including mostly VLDL
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sub-particles. In addition, lower TG levels via APOA5 were associated with lower
levels of glycoprotein acetyls, a biomarker for inflammation (36), suggesting that
APOA5 may also play arole in atherogenesis by affecting inflammation. Sarwar et al.
(33) reported no effect of APOAS5 on LDL, which is partially in concordance with our
study, where we showed lower levels of only some of the LDL sub-particles.

To our knowledge, the present study is the first showing the effects of lower TG
via APOA5 on an extensive NMR-metabolomic panel, and its comparison with lower
TG via LPL. Overall, the effect sizes of the associations of the APOA5 alleles were
stronger compared to those of the LPL alleles. Nevertheless, the directionality
and pattern of these effects largely overlapped. In general, genetically-influenced
lower TG levels via APOA5 were predominantly associated with lower levels of VLDL
sub-particles and a smaller VLDL particle size and a lower number of particles, as
indicated by apoB levels. Total cholesterol and total TG levels were lower in both,
as well as total fatty acids. These associations could be due to enhanced TG hy-
drolysis, which is further confirmed by the higher levels of HLD sub-particles and
HDL particle size that result due to increased availability of surface components
of TG-rich particles (37). However, these increasing effects on HDL sub-particles
were higher in the group with genetically-influenced lower TG via LPL compared to
the group with genetically-influenced lower TG via APOA5. Except for the HDL sub-
particles, overall, the effect sizes of the associations with APOA5 were larger than
the effect sizes of the associations with LPL. Whether these effects are additional to
LPL-dependent TG hydrolysis via other mechanisms, we cannot conclude based on
the present findings. In addition to LPL-dependent TG hydrolysis, a role for apo A-V
in hepatic VLDL production has been suggested by previous studies in mice (18).
In addition to LPL-dependent TG hydrolysis and hepatic VLDL production, studies
have shown that apo A-V also facilitates the recognition of TG-rich VLDL particles
by the LDL receptor and heparan sulfate proteoglycans, thereby enhancing clear-
ance of these particles (20). These potential other functions of apo A-V we could not
identify nor exclude with our present study design, and need to be investigated in
future studies. Nevertheless, from these results we can conclude that LPLand APOA5
are most likely associated with clinical outcomes via the same intermediates.

Severalassumptionsand limitations of the geneticapproach usedin this study should
be considered when interpreting the results of our study. Mendelian randomization
assumes that genetic variants are associated with the outcome only through the
exposure of interest so that the results cannot be violated by (directional) pleiot-
ropy. To take this assumption into account, we chose APOA5 variants that are located
within the APOA5 gene:rs3135506 in the second exon and rs662799 located 2kb up-
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stream of the APOA5 gene. In addition, it has been previously found thatrs3135506,
also known as S19W, is a functional SNP that leads to an amino acid change, which
subsequently leads to a 50% decrease in secretion, due to diminished translocation
of apo A-V across the ER (38). Even though the effect of rs662799 on protein and
functional level is less clear, rs662799 is in LD with rs2266788 (R>=0.77), which has
been associated with APOA5 gene expression (39). Although these data support our
assumption that the observed effect on CAD via the APOA5 genetic score occurs
through apo A-V, we cannot formally exclude the possibility that alternative vari-
ants in linkage with variants in our APOA5 GRS are the actual causative variants.
Although the potential for such an alternative causative variant seems high given
that APOA5 is part of the APOA1-C3-A4-A5 gene locus, such a variant remains to be
identified. In addition, from the multitude of associations of the APOA5 genetic
score with the NMR profile (Figure 3), we cannot conclude that the effect on CAD is
mediated through the effect of apo A-V on plasma TG. As such, this analysis is not a
proper Mendelian randomization analysis testing the causative effect of TG on CAD.
Similarly, the LPL genetic score comprised variants that were in or within 10 kb of
the LPL gene itself, and were either coding variants associated with LPL function
or significant expression quantitative trait loci (40,41). This makes it likely that the
genetically-influenced lower TG via the LPL genetic score truly resulted through LPL.
But similarto APOA5, the LPL GRS is associated with a multitude of metabolitesin the
NMR profile (Figure 2). Furthermore, we attempted to minimize possible pleiotropic
effects of the LDL-C genetic score by including variants associated with LDL-C only,
hence without associations to other lipid traits. Another potential limitation of our
study is the inclusion of only two variants in the APOA5 score, which in combination
with a lower allele frequency could potentially lead to an underestimated effect
estimate. Finally, our data are pertinent only to European populations, given that
all the analyses in the NEO, OBB and UK BioBank were performed in participants of
European decent.

In summary, our study showed that genetically-influenced lower TG via APOA5
have additional beneficial effects on CAD risk and lipoprotein profile, which were
independent from and comparable to the effects of genetically-influenced lower
TG via LPL alleles. Altogether these results indicate that apo A-V is a potential novel
therapeutic target for CAD prevention to be explored in detail in future studies.
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SUPPLEMENTAL MATERIAL

EXTENDED METHODS

1 Included studies and genotyping platforms

1.1 The Netherlands Epidemiology of Obesity Study

1.1.1  Study Population

This study is part of the Netherlands Epidemiology of Obesity (NEO) study, a popu-
lation-based prospective cohort study of men and women aged 45 to 65 years. All
inhabitants from the greater area of Leiden, The Netherlands, with a self-reported
body mass index (BMI) of 27 kg/m” or higher were eligible to participate. Moreover,
inhabitants from a nearby municipality (Leiderdorp, The Netherlands) in the same
age group were asked to participate regardless of their BMI, thereby forming a popu-
lation with a reference BMI distribution. Between September 2008 and September
2012, a total of 6,671 participants were included in the study.

Participants visited the NEO study centre for extensive physical examination. Re-
search nurses used medication inventory to record current medication use. Prior
to the study visit, participants completed questionnaires at home with respect to
demographic, lifestyle, and clinical information. After an overnight fast of at least 10
hours, fasting blood samples were taken at the NEO study centre.

The NEO study was approved by the medical ethics committee of the Leiden Univer-
sity Medical Center (LUMC), and all participants gave their written informed con-
sent. The study conformed to the principles outlined in the Declaration of Helsinki.
Detailed information about the study design and data collection has been described
elsewhere'.

1.1.2  Genotyping and imputation

DNA was isolated from venous blood samples. Genotyping was performed using the
[llumina HumanCoreExome-24 BeadChip (Illumina Inc., San Diego, California, United
States of America). In the process of quality control, participants were excluded
when 1) the sample call rate was <98%, 2) there was a sex mismatch, 3) heterozygos-
ity rate was not within +3 SD of mean heterozygosity rate, 4) participants widely
diverged based on the first two principal components (PCs) (3.5 SD), 5) samples
were duplicates, and 6) concordance with another DNA sample was >0.25 (related
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individuals). Genetic variants were excluded when 1) genotype call rate was <98%,
and 2) variants were not in Hardy-Weinberg equilibrium (p-value <1x10°%). Detailed
quality control steps have been described elsewhere®. Subsequently, genotypes
were imputed to the 1000 Genome Project reference panel® (v3 2011) using IMPUTE
(v2.2) software®.

1.2 Oxford Biobank (OBB) Study

1.2.1  Study population

The OBB is a population-based cohort of randomly selected healthy participants
aged 30 to 50 years from Oxfordshire (UK). Individuals with a history of myocardial
infarction, diabetes mellitus, heart failure, untreated malignancy, other ongoing
systemic diseases or ongoing pregnancy were not eligible for study inclusion. Par-
ticipants were included between 1999 and May 2015. The OBB cohort comprises
7,185 individuals. A more detailed description of the study recruitment criteria and
population characteristics is reported elsewhere®.

1.2.2 Genotyping

For each OBB participant, 35 mL aliquots of whole blood were collected and frozen
at-80°Cforisolation of genomic DNA. Genotyping was performed using the Illumina
Infinium Human Exome Beadchip 12v1 array platform for the first consecutive 5900
DNAs, and Affymetrix UK Biobank Axiom Array chip on the first consecutive 7500
participants®. In total 6,999 genotyped participants were included in the current
study.

1.3 UK Biobank cohort

1.3.1  Study Population

The UK Biobank cohort is a prospective general population cohort. Baseline assess-
ments took place between 2006 and 2010 in 22 different assessment centers across
the United Kingdom®. A total of 502,628 participants between the age of 40 and 70
years were recruited from the general population. Invitation letters were sent to eli-
gible adults registered to the National Health Services (NHS) and living within a 25
miles distance from one of the study assessment centers. The UK Biobank study was
approved by the North-West Multi-center Research Ethics Committee (MREC). Ac-
cess for information to invite participants was approved by the Patient Information
Advisory Group (PIAG) from England and Wales. All participants in the UK Biobank
study provided written informed consent. The project was completed under project
number 56340.
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1.3.2 Genotyping and genetic imputations in UK Biobank
UK Biobank genotyping was conducted by Affymetrix using a bespoke BiLEVE Axium
array for approximately 50,000 participants; the remaining participants were geno-
typed using the Affymetrix UK Biobank Axiom array. All genetic data were quality
controlled centrally by UK Biobank resources. More information on the genotyping
processes can be found online (https://www.ukbiobank.ac.uk).

Based on the genotyped SNPs, UK Biobank resources performed centralized imputa-
tions on the autosomal SNPs using the UK10K haplotype’, 1000 Genomes Phase 3 *
and Haplotype Reference Consortium reference panels®. 2

2 Selection of genetic variants

For this study, in both NEO and OBB we calculated two independent weighted
APOA5 and LPL genetic scores using TG-lowering alleles. Three common haplo-
types comprise more than 95% of all variation of APOA5 within the population and
are defined by five different variants in the APOA5 locus: rs3135506, rs662799,
rs651821, rs2072560 and rs2266788 **°. Since the last four variants are in full
linkage disequilibrium, genotypes of rs3135506 and one of the four linkage dis-
equilibrium variants are sufficient to define the three APOA5 haplotypes. For this
study we used the TG-lowering alleles of rs3135506 (rs3135506-G) and rs662799
(rs662799-A), which have been shown to be strongly associated with TG****. For
each participant, we calculated weighted APOA5 genetic TG score by summing the
number of TG-lowering alleles for each variant, weighted by their effect on TG levels
in the analyses of the Global Lipids Genetics Consortium (GLGC)*. Likewise, the LPL
genetic score was constructed using variants associated with TG levels that were
mapped to the LPL gene (rs268, rs301, rs326, rs328 and rs10096633), which were
weighted by their effect on TG levels in the analyses of the GLGC*. All variants
were independently and strongly associated with TG. More details on the selection
of these LPL variants are described by Lotta et al*®. In UK Biobank, in addition to
the APOA5 and LPL genetic scores calculated as described above, we extracted,
from published genome-wide association studies in which the UK Biobank did not
contribute, the independent lead variants (p-value<5x10°®) previously identified
in relation LDL-C levels (188,577 individuals; 15 SNPs)*. Using the beta estimates
of the independent lead variants, we calculated weighted genetic risk scores per
participant. To limit bias by pleiotropy, we did not allow overlap in independent lead
variants between LDL-C and the other lipid traits.
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Apolipoprotein A-V is a potential target for coronary artery disease: evidence from

genetic and metabolomic analyses

Supplementary table 1. Included Studies and Genotyping Platforms

Study Total No. Participants included  Genotyping Platform

NEO 4,838 Illumina HumanCoreExome-24 BeadChip

OBB 6,999 Illumina Infinium Human Exome Beadchip 12v1
&
Affymetrix UK Biobank Axiom Array

UK Biobank 309,780 Affymetrix UK Biobank Axiom array

Abbreviations: NEO, Netherlands Epidemiology of Obesity; OBB, Oxford BioBank;
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Apolipoprotein A-V is a potential target for coronary artery disease: evidence from
genetic and metabolomic analyses

APOA5 TG score

Below median Above median

Higher TG via APOAS Lower TG via APOAS alleles
alleles (Reference)

| |

CAD risk

Figure S1 Single instrument genetic analyses of TG-lowering via APOA5 alleles.
Note. The same design is used for the other two single instrument genetic analyses: TG-lowering via LPL alleles;
LDL-C-lowering.

APOA5 TG
score
’—lﬁ —Iﬁ
Below median Above median
LPL TG score LPL TG score
I 1 I 1

Below median Above median Below median Above median

2 Lower TG via 3 Lower TG via
LPL APOA5

l | l

CAD risk and NMR-based metabolomic profile

4 Lower TG via

1 Reference LPL and APOA5

Figure S2 Design of 2 x 2 factorial analyses TG-lowering APOA5 alleles and TG-lowering LPL al-
leles.

Note. The same design is used for the other 2x2 factorial analyses: TG-lowering APOA5 alleles and LDL-C-lower-
ing ; TG-lowering LPL alleles and LDL-C-lowering.
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APOA5 TG
score

LPLTG score LPLTG score

Below Above Below Above Below Above Below Above
median median median median median median median median
Reference Lower TG via both APOA5 and LPL
and lower LDL-C
| CAD risk |

Figure S3 Design of 2 x 2 x 2 factorial analyses of TG-lowering APOA5 alleles, TG-lowering LPL
alleles and LDL-C lowering alleles.
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Figure S4 The effect sizes (i.e. beta coefficients) for the associations between genetically-influ-
enced lower TG via APOA5 and LPL and 145 circulating metabolic measures in the Netherlands
Epidemiology of Obesity (NEO) and in Oxford Biobank (OBB) cohort.
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Apolipoprotein A-V is a potential target for coronary artery disease: evidence from
genetic and metabolomic analyses
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Figure S5. Associations of the genotype group with 145 NMR-based metabolomic measures in fac-
torial analyses in the UK Biobank cohort (UBB) (n = 309,780): A) LDL-C-lowering only; B) lower TG
via LPL only; C) lower TG via APOA5 only; D) LDL-C-lowering and lower TG via LPL; E) LDL-C-lower-
ing and lower TG via APOAS5; F) lower TG via both LPL and APOAS5; G) all scores combined.
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Figure S5 continued.
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Figure S5 continued.
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