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GENERAL INTRODUCTION

Cardiometabolic disease
The global rise in cardiovascular disease (CVD) and type 2 diabetes (T2D), which is 

driving much of the global noncommunicable disease (NCD) burden, has substan-

tially increased over the past decades (1-4). In 2019, the worldwide number of cases 

was 523 million for CVD and 463 million for T2D, more than double compared to 

1980-1990 (1,3).  In the same year, an estimated 17.9 million people died from CVD, 

accounting for one-third of all deaths worldwide (4).  CVD and T2D share several 

cardiometabolic risk factors including dyslipidemia, obesity, hypertriglyceridemia 

and hypertension, and thus the term cardiometabolic disease is used to encompass 

both of them (5,6).

These alarming rates of cardiometabolic disease place a heavy burden not only on 

the individuals affected and their families, but also on the whole health care system 

and economy (7). Yet, endeavors to successfully address cardiometabolic disease are 

challenging due to its complex nature. Although cardiometabolic disease  usually 

manifests itself at middle age or beyond, it is the result of a multifactorial disease 

process, where the effects of unhealthy lifestyle factors and genetic predisposi-

tion interact and accumulate with ageing (8–10). This emphasizes the importance 

of research into the effects of lifestyle and genetics as well as their interaction in 

determining cardiometabolic risk factors throughout the life course. Gaining insight 

into the dynamics of cardiometabolic risk factors at different time points in life can 

provide better preventive as well as curative strategies for CVD. In this thesis, we 

will focus on several aspects of lipid metabolism/dyslipidemia and obesity two ma-

jor players in cardiometabolic disease , at midlife as well as at different time points 

in adult life.

Lipid metabolism
Lipids including triglycerides (TG) and cholesterol are transported in the blood in 

lipoproteins. Lipoproteins consist of a hydrophobic core of non-polar lipids, con-

taining primarily cholesterol esters and TG, surrounded by a hydrophilic membrane 

consisting of phospholipids, free cholesterol, and apolipoproteins (11). Based on 

their composition and origin, lipoproteins can be divided into five major classes 

e.g. chylomicrons, very low-density lipoprotein (VLDL), intermediate-density li-

poprotein (IDL), low-density lipoprotein (LDL) and high-density lipoprotein (HDL). 

The two later ones primarily transport cholesterol, whereas chylomicron and VLDLs 

transport dietary and liver-derived TG, respectively, to peripheral tissues (12).
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Lipoprotein metabolism is highly coordinated, and disturbances in any processes 

involved can lead to dyslipidaemia and ectopic fat deposition (13). Lipoprotein 

metabolism is partitioned in an exogenous and endogenous pathway (Figure 1), 

depending weather the TG source of origin is dietary or hepatic (14).  After a meal, 

dietary lipids are emulsified by bile acids and hydrolysed into mono-acyl-glycerol 

and free fatty acids (FAs) by the action of pancreatic lipase. The FAs, mono-acyl-

glycerol and cholesterol are then absorbed into enterocytes of the small intestine, 

where FAs are re-esterified into TG. Within these enterocytes, the TG and cholesterol 

are packaged in chylomicrons and are secreted into the lymphatic system and then 

enter into the blood circulation. Chylomicrons mainly supply dietary TG to white 

adipose tissue and are characterized by the apolipoprotein B48 (apoB48), which 

forms the backbone of the lipoprotein (15). During fasting, the liver synthesizes TG-

rich VLDL particles, which supply TG to energy demanding tissues such as muscle, 

and are characterized by the apolipoprotein B100 (apoB100)(endogenous pathway) 

(16). Once chylomicrons and VLDLs enter the blood, their core TG are hydrolysed in 

capillaries into glycerol and free fatty acids (FFAs), primarily by the enzyme lipo-

protein lipase (LPL), which is bound to the capillary endothelium of metabolically 

active tissues including adipose tissue, skeletal muscle and heart. The liberated 

FAs are consequently taken up by underlying parenchymal cells, which either use 

them directly as energy source or store them for later use. The TG-depleted and 

cholesterol-enriched chylomicron and VLDL  remnants are subsequently taken up 

by the liver (17).

Figure 1. Schematic overview of lipoprotein metabolism. FFA, free fatty acids; LDL, low-density lipoprotein; LPL, 
lipoprotein lipase; VLDL, very low-density lipoproteins
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Environmental risk factors of cardiometabolic disease
The environment we live in predisposes to many factors including unhealthy diet, 

lack of physical activity and other lifestyle choices that promote obesity and 

eventually lead to the development of CVD. Often labelled as “obesogenic”, these 

environments are the major drivers of the obesity epidemic that has spread rapidly 

worldwide in the recent decades (18,19). For example, the increased availability, 

accessibility and affordability of energy-dense foods, as well as the advanced tech-

nologies that have made housework and daily chores less demanding compared to 

past decades, have contributed to an excess caloric intake and a less active lifestyle, 

respectively (20). This results in an increased energy intake and decreased energy 

expenditure, respectively, which creates a positive energy balance, consequently 

leading to weight gain, (21) and subsequently influencing lipid levels, blood pres-

sure  and inflammation (21,22).

Another important factor that influences body’s energy balance is smoking (23–27). 

Research suggests that smoking supresses appetite and thus decreases energy 

intake (24). In addition, smoking has been shown to have a direct effect on resting 

energy expenditure, which makes the largest contribution to total energy expendi-

ture (25–27). However, despite these potentially beneficial effects on body weight, 

smoking has been shown to have adverse effects on cardiometabolic health and 

increase risk of CVD (28–32). Not only do the chemicals in cigarette smoke cause 

endothelial dysfunction (31), which leads to many cardiovascular conditions, but 

smoking also multiplies the risk of CVD by interacting with several metabolic abnor-

malities such as blood pressure, insulin resistance, and dyslipidemia (28).

Altogether, the environmental factors explain more than 70% of the chronic disease 

burden including cardiometabolic disease (33,34). This large contribution to disease 

and the fact that most environmental factors  are modifiable make lifestyle inter-

ventions the cornerstone of obesity and CVD prevention.

Genetic predisposition
Even though cardiometabolic disease is driven largely by environmental factors, 

there is a considerable part of inter-individual variability that is explained by genet-

ics. Therefore, it is of great importance for future intervention strategies to focus on 

unravelling the genes and related biological pathways involved in cardiometabolic 

disease in addition to lifestyle intervention.

Substantial evidence from twin and family studies has suggested that genetics con-

tribute 40–70% of inter-individual variability in BMI (35). In addition, dyslipidemia 
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has long been known to have a strong genetic basis (36,37). From monogenic dyslip-

idemias caused by rare mutations to more complex polygenic forms of dyslipidemia 

determined usually by common genetic variants, genetic studies have identified 

numerous genes involved in lipid metabolism (36-38). The archetypal is familial 

hypercholesterolemia (FH), an autosomal dominant monogenic disorder of elevated 

LDL-C levels that is caused by mutations in the LDL receptor (LDLR) (39). It was the 

discovery of the underlying mechanism of FH that led to the development of the 

statin drugs, which reduce LDL-C and CVD outcomes (40).

In addition, the rapid advances in genome sequencing techniques that became 

available in the beginning of 21th century (41–43) have contributed to identify-

ing numerous genetic loci involved in cardiometabolic disease as described in the 

upcoming sections.

Human genetic variation and disease: Single nucleotide 
polymorphisms and GWAS
The human genome consists of 3.2 billion base pairs, roughly 99.5% to 99.9% of 

which is identical between any two human beings (44,45). Yet, with the exception 

of identical twins, every human genome is unique due to variations in the remaining 

0.1% to 0.5% of the DNA sequence. The most common type of genetic variations are 

single nucleotide polymorphisms, (SNPs), with (minor allele) frequencies of ≥1 % in 

the population by definition (46,47). At least 10 million SNPs have been identified 

in the human genome that account for 90 % of diversity in the world (42,45). SNPs 

are located in coding and non-coding regions of the genome, and are classified as 

neutral and functional (48,49). Neutral SNPs have no effect, whereas  the functional 

ones affect different biological processes and contribute to health and disease 

(49). Up to date, a considerable number of SNPs have been linked to multifactorial 

diseases, including cardiometabolic disease, mainly via two approaches: candidate 

gene association studies and genome-wide association studies (GWAS).

In the candidate gene association studies, SNPs are chosen based on an a priori hy-

pothesis about the role of a gene or a set of genes in a certain phenotype or disease 

(50). One of the advantages of this approach is that  the SNPs are chosen on the 

basis of biological plausibility of the genes of interest for a disease (51). Candidate 

gene studies can be exploited to identify the cumulative effects of several genes 

on phenotype/disease where the effects of individual genes are small. However, 

being dependent on genes with known involvement in the disease of interest, the 

candidate gene approach is unable to identify novel genes and underlying pathways 

that influence the disease (51,52).
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The second approach, the GWAS, became available with the tremendous advances in 

genome sequencing technologies. In 2003, the DNA sequencing of the entire human 

genome was completed (43). This made it possible to develop within the same year 

the International Haplotype Mapping (HapMap) Project, which aimed to elucidate 

the common patterns of human DNA sequence variation, by using whole-genome 

sequencing data from different populations across the world (42). GWAS are a hy-

pothesis free approach that identifies associations between SNPs across the entire 

genome and a disease or trait of interest (53). The GWAS are based on the haplotype 

block structure of the genome, where each haplotype represents a set of nearby 

SNPs that are co-inherited together, and thus allowing only a few SNPs (tag SNPs) to 

uniquely identify each haplotype block. This co-inheritance leads to a non-random 

correlation between the haplotype SNP alleles in the population, known as linkage 

disequilibrium (LD) (42,54).  Using the LD concept, it is sufficient to genotype around 

500,000 tag SNPs out of the estimated 10 million identified in the human popula-

tion to identify common SNPs associated with diseases/traits (55). The consequence 

of LD is that the SNPs identified through a GWAS may not be a true casual SNP in 

relation to the trait/disease of interest. Instead the tag SNP may be in LD with a true 

biologically relevant SNP, which was previously not associated with the outcome of 

interest. Thus, differently from the hypothesis-driven candidate gene studies, the 

GWAS approach can lead to the discovery of novel genes and underlying pathways 

involved in a disease, which can in turn assist in development of potential therapies 

and drug targets (56). However, successfully discerning a true biological determi-

nant is inherently challenging as most of the identified SNPs through a GWAS map 

to non-coding regions. Consequently, in addition to replication studies performed 

to confirm the findings, follow-up validation steps are needed to ascertain and to 

functionally characterize the potential casual variants (56). Another limitation is 

that GWAS are often underpowered to detect common SNPs with modest effects on 

the complex traits, and thus explain only a small proportion of heritability (56,57). 

One solution to overcome this limitation is to use large sample size cohorts, e.g. in 

large international consortia. In addition, in order to explain more of the missing 

heritability of the complex traits/diseases, the interactions between genetic sus-

ceptibility and environmental risk factors should be studied (58).

Genetic variants as instruments in Mendelian Randomization Studies
In conventional observational epidemiology, where the association of a modifiable 

environmental exposure with a disease or trait outcome is studied, discerning a true 

causation is a major challenge for two main reasons.  First, confounding factors, 

which influence both the exposure and the outcome, can mask an actual causal as-

sociation. Although confounding can be controlled by several analytical and statisti-
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cal methods, residual confounding due to unmeasured or not accurately measured 

confounding factors often remains a concern (59). Second, in most observational 

studies (especially cross-sectional studies) reverse causality can occur, where the 

disease outcome influences the exposure (60). In longitudinal studies, which are 

observational studies that monitor a study population over an extended period of 

time, it is often possible to analyse exposures in relation to diseases that occur much 

later. Thus, the longitudinal approach is likely to suggest cause-and-effect relation-

ships. However, these studies  require a large amount of time and resources, and yet 

are prone to residual confounding (61).

One alternative solution is the randomized controlled trial (RCT), in which partici-

pants are randomly allocated to a control and treatment group and are followed over 

time to observe the effect of the treatment. Although RCTs are straightforward to 

interpret and provide strong evidence for causality, large-scale long-term RCTs are 

costly (62) and are not always feasible due to ethical issues and non-compliance 

(59). In addition, RCTs are relatively short term, while chronic diseases arise from 

lifelong cumulative effects of multiple exposures.  An approach to overcome these 

limitations of  RCTs is the Mendelian Randomization  (MR) study. In parallel with RCTs, 

MR uses genetic variants  associated with an exposure of interest as genetic instru-

ments to establish causality between the exposure and a disease/trait outcome. MR 

studies are often considered as ‘’natural RCTs’’ due to the random distribution in the 

population of the risk and non-risk alleles during gamete formation (Mendel’s Law 

of Independent Assortment), which are used to define an exposed and control group, 

respectively (63,64). This random (independent) allocation means that any other con-

founders should be equally present in the exposed (risk alleles) and control (non-risk 

alleles) group, making the MR approach in theory free of confounding. In addition, 

MR overcomes the reverse causation limitation of the conventional observational 

epidemiology since genotypes are determined at conception, and therefore are not 

influenced by disease. Finally, utilizing the open access to GWAS data, MR can be 

used as a quicker and less expensive yet powerful method to establish causality as 

compared to large-scale RCTs (65,66). Accordingly, MR can be used to anticipate the 

results of RCTs, and thus could spare unnecessary RCTs when a causal association 

is not observed. For example, contrary to results from observational studies (67), 

MR analyses showed that genetically influenced higher HDL-C levels did not protect 

against CVD (68), suggesting that a pharmacological agent boosting HDL-C levels 

would be futile in CVD interventions. On the other hand, MR can provide support-

ing evidence for the beneficial role of a potential drug in disease, as illustrated by 

Lotta et al. (69), which showed that genetically-influenced lower TG levels via LPL 

pathway lower CVD risk independently of LDL-C lowering agents. However,  when 
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translating genetic findings into pharmacological strategies, it should be realized 

that the effects of lifelong exposure measured by MR may differ from the relatively 

short-term pharmacological effects assessed by RCTs.

In order to have valid MR analyses, three strong assumptions must be met:  1) the 

genetic instrument must be associated with the exposure of interest; 2) there is no 

common causation of the genetic instrument and the outcome; 3) the genetic instru-

ment affects the outcome only through the exposure (70). A robust association of 

the SNP with the exposure can verify assumption 1. As mentioned before, random 

distribution of alleles in a population can control for confounding. However, when 

the ancestry is related to both the genotype and the outcome, genetic confounding 

by population substructure violates assumption 2. This can be typically controlled 

by excluding ethnic outliers and adjusting for population substructure using genetic 

principal components (71).  Assumption 3 is violated when pleiotropy occurs, which 

means that the SNP affects the outcome through other phenotypes in addition to the 

exposure. Therefore, a selection of a genetic instrument that is associated with the 

outcome via the exposure only is critical to satisfy this assumption.

Genetics of obesity
GWAS have enabled the identification of numerous susceptibility loci for obesity, 

with FTO gene being identified as the first and the top common identified BMI and 

obesity-susceptibility gene (72). The number of discovered obesity-susceptibility 

loci has grown dramatically since the discovery of the FTO in 2007. Among European 

populations, around 200 loci for BMI (73,74), 49 loci for waist to hip ratio (WHR) 

(75), and 10 loci for body fat percentage (76) have been identified. In the Genetic 

Investigation of ANthropometric Traits (GIANT) consortium, an international col-

laboration that seeks to identify genetic loci for anthropometric traits, a total of 97 

loci for BMI have been identified (74). In addition, these studies have used genetic 

risk scores (GRS) constructed using these 97 loci to estimate a cumulative effect of 

these obesity-susceptibility loci on BMI, and have shown that combining loci for 

BMI explains approximately 3 % of the phenotypic differences (,74). Another GWAS 

by the GIANT consortium in individuals with European ancestry identified 49 loci 

for abdominal obesity, which was defined by the WHRafter adjustment for BMI (75). 

Similar to GRS for BMI, GRS for abdominal obesity were generated on the basis of 

these findings, which have been related to increased risks of various cardiometa-

bolic diseases including T2D and coronary heart disease (CHD) (77,78).

In the search for a better understanding of genetic basis of adiposity and its links 

to cardiometabolic disease risk, a meta-analysis GWAS of body fat percentage was 



16

1

conducted in up to 100,716 individuals (76). This study identified a total 12 loci, 

of which eight were previously related to overall adiposity and four were novel.. 

Seven of the 12 loci  (TOMM40/APOE, IRS1, SPRY2, COBLL1/GRB14, IGF2BP1, PLA2G6, 

and CRCT1) had larger effects on body fat percentage than on BMI, suggestive of a 

primarily association with body fat, whereas the remaining five loci (FTO, TMEM18, 

MC4R, SEC16B, and TUFM/SH2B1) showed stronger associations on BMI than body fat 

percentage, suggesting that these variants have potential effects on both body fat 

and lean mass.

Adult body size and shape change over time, with more progressive changes occur-

ring from 20-60 years of age and following a sex-specific trend (79). Evidence from 

sex- and age-specific analyses has shown that the genetic factors play an important 

role in the age-related weight change and sexual dimorphism of body shape (80). 

For instance, 15 BMI loci had different effects in older (50 years and above) com-

pared to younger (below 50 years), but showed no sex-specific effects.  The opposite 

was observed for body shape: the effects of 44 WHR loci differed between men and 

women, but not between younger and older adults.

Genetics of lipid metabolism
Similar to obesity, GWAS on plasma lipid levels were performed in order to gain 

more insights into genetic etiology of lipid metabolism. Worldwide collaborative 

efforts in the Global Lipids Genetics Consortium (GLGC) have revealed a total of 157 

loci (including 62 novel loci) associated with lipid levels in individuals of European 

ancestry (81). Numerous genes have been linked to TG levels, among which the LPL, 

encoding the LPL protein (82), has a major role in TG metabolism. More specifically, 

increased LPL activity was associated with lower TG levels and reduced risks for 

Coronary Artery Disease (CAD) and T2D (83). In addition, in a large population-based 

Swedish cohort variants in the apolipoprotein E (APOE) and in the APOA1/A4/C3/A5 

cluster were robustly associated with changes in plasma total cholesterol and TG 

levels, respectively (84). More importantly, these identified genes had previously 

been associated with myocardial infarction and/or CAD, which clearly illustrates the 

added value of these novel lipid associations in providing additional insight into the 

pathogenesis of CVD.

Taking advantage of the MR approach, genetic studies have further investigated 

weather lipid levels have a causal role in the development of CVD. Genetically 

elevated LDL-C and TG levels have been shown to be causally associated with in-

creased risk of cardiovascular outcomes including ischemic stroke and CAD (85–87). 
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Altogether this evidence suggests that genetic variants of lipid metabolism may 

contribute the cardiovascular outcomes by moderating lipid traits.

Gene-environment interactions
The majority of cardiometabolic diseases involve multiple disease-causing fac-

tors, which makes research for preventive and curative strategies one of the most 

significant challenges that medical research faces today. In such multifactorial 

diseases, genetic and environmental factors rarely act on isolation from each other, 

but rather interact and influence each other (88). Accumulating evidence suggests 

that environmental risk factors may modify the effects of genetic factors on disease 

and on the other hand genetic variants can increase the risk of diseases in high-

risk environments (88–91). For example, the noted rise of obesity worldwide in the 

recent decades might reflect an interaction between genetics and the changing 

environmental exposures that together alter the penetrance (the proportion of 

individuals with a specific genetic variant who express the related phenotype) of 

genetic variants. Genetic factors associated with obesity may influence behavioural 

responses to environmental context by influencing appetite and stimulating food 

intake (92,93). One classical example is food intake regulation by MC4R gene, which 

controls appetite and food intake (92,94). On the other hand, environmental factors 

as well can alter the effects of genetic variants. For example, it has been shown 

that the relationship between the FTO genotype and obesity is attenuated among 

physically active individuals (95,96). Thus, the environmental changes and genetic 

variants associated with obesity may not affect all individuals equally.

In the last years new approaches, study designs and methods are emerging for ex-

ploring the gene-environment interactions in large-scale human populations. Nev-

ertheless, more future efforts are needed to clarify the interplay between genetic 

and environmental factors on cardiometabolic disease and translate these findings 

into prevention and treatment practices.

Metabolomics: A powerful tool in cardiometabolic disease
A key factor in the fight against cardiometabolic disease is gaining insights into the 

pathophysiological processes that underlie this complex disease. Metabolomics, 

which is the study of small-molecule metabolites within cells, biofluids, tissues or 

organisms, is a powerful tool for delineating mechanistic links between risk factors 

(exposures) and disease (97). Metabolites are the intermediates and end products 

of cellular metabolism, and plasma metabolite levels reflect a response to normal 

or pathological conditions (98). In this last case, the metabolites provide valuable 
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information on the metabolic disturbances linked to disease process as well as dis-

ease progression (99), and, thus, make it possible to be used as disease biomarkers.

The most commonly used analytical technologies used in metabolomics include gas 

chromatography coupled to mass spectrometry (GC-MS), liquid chromatography cou-

pled with single-stage mass spectrometry (LC-MS) and nuclear magnetic resonance 

(NMR) spectroscopy (100). The latter one has emerged as the preferred platform 

for large-scale metabolomics studies due to its fast, inexpensive, non-destructive, 

highly automatable and exceptionally reproducible quantification of circulating 

metabolites (101,102). NMR is based on the detection of certain atomic nuclei when 

exposed to an external magnetic field. Protons (1H) are often the nuclei of choice 

due to their abundance (100) . A commonly used high-throughput 1H NMR metabo-

lomics platform is the Nightingale Health metabolic biomarker platform (Nightin-

gale Health Ltd., Helsinki, Finland), which quantifies lipoprotein subclass profiling 

with lipid concentrations within 14 subclasses, abundant proteins and various low 

molecular-weight metabolites, covering both routine biomarkers and emerging 

medically relevant biomarkers (103). The biomarkers include detailed measures of 

cholesterol metabolism, fatty acid compositions, and various low-molecular weight 

metabolites, such as amino acids, ketones and glycolysis metabolites. For 14 lipo-

protein subclasses, the lipid concentrations and composition are measured in terms 

of TG, phospholipids, total cholesterol, cholesterol esters, and free cholesterol, and 

total lipid concentration within each subclass.

Cohort Studies and genetic consortia
The studies described in this thesis were performed with data from cohort studies 

and genetic consortia. The study populations and study design of these cohorts and 

consortia are summarized below.

NEO Study
To address the aims of the studies described in Chapters 2, 3 and 4 we used data 

from the Netherlands Epidemiology of Obesity (NEO) study (104).  The NEO study 

is a population-based prospective cohort study including men and women aged 

between 45 and 65 years. This cohort was designed to study pathways that lead to 

disease in persons with overweight or obesity. Therefore, from the greater area of 

Leiden, The Netherlands, all inhabitants with a self-reported body mass index (BMI) 

of 27 kg/m2 or higher were eligible to participate. In addition, inhabitants from 

one nearby municipality (Leiderdorp, The Netherlands) in the same age group were 

invited to participate regardless of their BMI, forming a reference population for BMI 

distribution. In total, 6,671 participants were included from September 2008 until 
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September 2012. At baseline, participants completed questionnaires with respect 

to demographic, lifestyle, and clinical information and went an extensive physical 

examination, including anthropometric measurements and blood sampling.

Doetinchem cohort
The studies in Chapters 5 and 6 were performed in the The Doetinchem Cohort 

Study (DCS). DCS is a prospective population-based cohort of  7769 men and women 

aged 20-59 years living in Doetinchem, a small town in the north-eastern part of 

the Netherlands (105). At baseline (1987–1991: round 1), 20,155 people aged 20–59 

years were invited to visit the municipal health centre to participate in the ‘Monitor-

ing Project on Cardiovascular Disease Risk Factors’. This project, which is the origin 

of the DCS, was aimed at providing prevalence estimates of cardiovascular disease 

risk factors, such as smoking, blood pressure and serum cholesterol levels. The 

protocol was extended, because the focus broadened from cardiovascular to other 

chronic diseases such as cancer, diabetes, musculoskeletal disorders and COPD. Due 

to extension of the protocol, with similar budget, not all 12 405 participants in the 

MP-CVDRF could be re-invited. Instead, a random sample of in total 7769 of the 

respondents at baseline was invited for second examination (1993–1997: round 2, 

mean age: 46 years). This random sample, which is considered the basis of the DCS, 

was invited for follow-up examinations every 5 years. The response rates varied 

between 75% and 80% in all rounds. Demographic characteristics, medical his-

tory of chronic diseases, medication use, and lifestyle factors were collected using 

standardized questionnaires. Trained staff performed standardized measurements 

of anthropometric traits (height, weight, waist circumference), blood pressure and 

blood sampling during a visit to the municipal health service.

Oxford Biobank study
In addition to the NEO study, in Chapters 2, 3 and 4 we used individual data from 

the Oxford BioBank (OBB) study. The OBB is a population-based cohort of randomly 

selected healthy participants of 7,185 individuals aged 30 to 50 years from Oxford-

shire (UK), included between 1999 and May 2015 (106). The primary goal of the OBB 

is investigating the physiological consequences of genetic mechanisms of chronic 

non-communicable diseases, including T2D and CVD, and to explore potential 

therapeutic targets in the prevention and treatment of these diseases. Participants 

with a history of several diseases including myocardial infarction, diabetes mellitus, 

heart failure, untreated malignancy, other ongoing systemic diseases or ongoing 

pregnancy were not eligible for study inclusion. At baseline (Stage 1), all partici-

pants had questionnaire-based assessments on demographic characteristics, medi-

cal history of chronic diseases and potential disease risk factors or confounders in 
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disease pathology, such as physical activity, smoking and alcohol intake. In addition, 

participants underwent an extensive baseline physical examination including a 

broad range of metabolic-, CVD- and obesity-related phenotypes based on blood 

plasma phenotyping, genetic biomarkers, anthropometric measurements and body 

composition assessment using dual-energy X-ray absorptiometry (DXA).  Subse-

quently, based on a research question of interest, selected participants wereinvited 

for a second visit (recall) (Stage 2).

UK Biobank Cohort
In addition to the analyses in the NEO and OBB cohort, in Chapter 4 we performed 

some analyses using individual data from the UK BioBank cohort. The UK Biobank 

cohort is a prospective general population cohort. Baseline assessments took place 

between 2006 and 2010 in 22 different assessment centers across the United King-

dom (107). A total of 502,628 participants between the age of 40 and 70 years were 

recruited from the general population. Invitation letters were sent to eligible adults 

registered to the National Health Services (NHS) and living within a 25 miles distance 

from one of the study assessment centers. The UK Biobank study was approved by 

the North-West Multi-center Research Ethics Committee (MREC). Access for informa-

tion to invite participants was approved by the Patient Information Advisory Group 

(PIAG) from England and Wales. All participants in the UK Biobank study provided 

written informed consent.

Genetic consortia
For the MR studies used in Chapters 3, 4 and 6, we used publically available summary 

data from the genetic consortia GLGC and GIANT. In general, the aim of genetic con-

sortia is to collect data from a large number of genotyped cohorts to perform GWAS 

on the outcome of interest, and subsequently combine the results in a meta-analysis 

to find robust effect estimates. GLGC was set up to perform a GWAS meta-analyses 

on concentrations of LDL-C, HDL-C, TG and total cholesterol (81). This meta-analysis 

was based on 188,577 individuals of European ancestry from 60 different studies.  

The GIANT consortium is an international collaboration that seeks to identify genetic 

loci associated with anthropometric traits including BMI, height, and traits related to 

waist circumference (such as WHR adjusted for BMI, or BMI adjusted for WHR). The 

largest BMI GWAS performed by GIANT comprised up to 339,224 individuals from 

125 studies of mainly European ancestry populations (74).

Objectives and outline of this thesis
A better understanding of the underlying pathophysiology of cardiometabolic 

disease and the long-term and cumulative exposure of its risk factors over the life 
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course can lead to new insights in treatment and prevention approaches of this dis-

ease. Therefore, in the first part of this thesis we focus on the genetic determinants 

of lipid metabolism as atherogenic dyslipidemia is a major component of cardio-

metabolic disease and consequently of CVD.   In the second part of the thesis, we 

study the age-related changes of cardiometabolic risk factors over the life course 

across four generations.

Part I –GENETIC DETERMINANTS OF LIPID METABOLISM
The first objective of this thesis is to gain insight into the genetics and thus underly-

ing mechanisms of lipid metabolism during both fasting and postprandial states. 

Specifically, in Chapter 2 we aim to identify genetic variants that determine the post-

prandial TG response to a mixed meal, independently from fasting TG levels. In order 

to gain further insight into the pathophysiology of the postprandial TG response, in 

Chapter 2 we also describe the effects of the identified genetic variants on post-

prandial responses of NMR-based metabolomics. As shown in Chapter 1, in addition 

to statins that lower LDL-C, new therapies that enhance LPL-mediated clearance of 

TG are in development for CVD prevention. Using MR approaches, recent studies 

have suggested that drugs that enhance LPL-mediated lipolysis are likely to provide 

additional cardiovascular benefits in addition to existing LDL-C–lowering agents. 

Using a similar approach, in Chapter 3, we aim to gain insights into the underlying 

mechanisms behind these observed effects, by assessing the causal associations 

between genetically-influenced TG levels via LPL alleles and fasting NMR-based 

lipoprotein and metabolite measures on a background of genetically-determined 

lower LDL-C. Several LPL modulators have been shown to affect circulating TG levels 

the risk of CVD, but the effects of LPL and its modulators on the detailed lipoprotein 

profile have never been studied in depth. Elucidation of these specific effects can 

provide insight in the therapeutic potential of LPL modulators in reducing CVD risk. 

Therefore, in Chapter 4, we aim to investigate the role of apolipoprotein A-V , a 

natural activator of LPL and potent TG regulator, on lipid metabolism. We provide 

in this chapter detailed insight into the effects of genetically-influenced TG levels 

by apolipoprotein A5 (APOA5) gene alone as well as in combination with genetically-

influenced TG levels via LPL alleles on the NMR-based lipoprotein profile in the NEO 

study.

Part II – CARDIOMETABOLIC AND GENETIC RISK PROFILES OVER THE 
LIFE COURSE IN DIFFERENT GENERATIONS OF MEN AND WOMEN
Utilizing the long follow-up of nearly 30 years of the Doentichem cohort, in the 

second part of the thesis we take the opportunity to assess the age-related changes 

of anthropometric measures of obesity and associated cardiometabolic risk factors 
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across four generations (Chapter 5). As introduced in Chapter 1, obesity results from 

a complex interplay of genetics, environment and behavior.  Thus, in order to fully 

understand the mechanisms that underpin this complex trait,  in Chapter 6 we aim 

to investigate the temporal aspect of the genetic basis of obesity and its interac-

tion with the changing obesogenic environment, by performing GWAS analyses on 

longitudinal measures of body weight at specific age groups from 30-70 years.

Finally, in Chapter 7, the general discussion, the main findings of this thesis and their 

implications for future preventive and therapeutic strategies for cardiometabolic 

disease are discussed.
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