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ARTICLE OPEN

Polygenic risk modeling for prediction of epithelial ovarian
cancer risk

© The Author(s) 2021

Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of
Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS
construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to
individual level genotype data and a Bayesian framework with continuous shrinkage, “select and shrink for summary statistics” (S4),
to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting
of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and
validated the best models in three populations of different ancestries: prospective data from 198,101 women of European
ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2
pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-
mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38
(95% CI: 1.28–1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08–1.19, AUC: 0.538) in
women of East Asian ancestries; 1.38 (95% CI: 1.21–1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI:
1.29–1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35–1.64, AUC: 0.624) in BRCA2 pathogenic variant
carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer
prevention programs.
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INTRODUCTION
Rare variants in known high and moderate penetrance suscept-
ibility genes (BRCA1, BRCA2, BRIP1, PALB2, RAD51C, RAD51D and
the mis-match repair genes) account for about 40% of the
inherited component of EOC disease risk [1, 2]. Common
susceptibility variants, reviewed in Kar et al. and Jones et al.,
explain about 6% of the heritability of EOC [1, 3]. Polygenic risk
scores (PRS) provide an opportunity for refined risk stratification in
the general population and in carriers of rare moderate or high
risk alleles.
A PRS is calculated as the weighted sum of the number of risk

alleles carried for a specified set of variants. The best approach to
identify the variant set and their weights to optimize the
predictive power of a PRS is unknown. A common approach
involves selecting a set of variants that reach a threshold for
association based on the p-value for each variant with or without
pruning to remove highly correlated variants [4, 5]. More complex
machine learning approaches that do not assume variant
independence have also been used [6, 7], but these methods
have produced only modest gains in predictive power for highly
polygenic phenotypes [6, 8]. Penalized regression approaches
such as the lasso, elastic net and the adaptive lasso have also been
used with individual level data [9], but a major drawback is the
computational burden required to fit the models [9, 10].
We present novel, computationally efficient PRS models using

two approaches: (1) penalized regression models including the

lasso, elastic net and minimax concave penalty (MCP) for use with
individual genotype data; and (2) a Bayesian regression model
with continuous shrinkage priors for use where only summary
statistics are available—referred to as the “select and shrink with
summary statistics” (S4) method. We compare these models with
two commonly used methods, stepwise regression with p-value
thresholding and LDPred.

MATERIALS (SUBJECTS) AND METHODS
Model development study population
EOC is a highly heterogeneous phenotype with five major
histotypes for invasive disease—high-grade serous, low-grade
serous, endometrioid, clear cell, and mucinous histotype. The
mucinous histotype is the least common and its origin is the most
controversial with up to 60% of diagnosed cases of mucinous
ovarian cancer often being misdiagnosed metastasis from non-
ovarian sites [11]. Therefore, in this study, we performed PRS
modeling and association testing for all cases of invasive, non-
mucinous EOC. We used genotype data from 23,564 invasive non-
mucinous EOC cases and 40,138 controls with >80% European
ancestries from 63 case-control studies included in the Ovarian
Cancer Association Consortium (OCAC) for model development.
The distribution of cases by histotype was high-grade serous
(13,609), low-grade serous (2,749), endometrioid (2,877), clear cell
(1,427), and others (2,902). Sample collection, genotyping, and
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quality control have been previously described [12]. Genotype
data were imputed to the Haplotype Reference Consortium
reference panel using 470,825 SNPs that passed quality control.
Of the 32 million SNPs imputed, 10 million had imputation r2 > 0.3
and were included in this analysis.

Model validation study populations
We validated the best-fitting PRS models developed in the OCAC
data in 657 prevalent and incident cases of invasive, non-
mucinous EOC and 198,101 female controls of European
ancestries from the UK Biobank. Samples were genotyped using
either the Affymetrix UK BiLEVE Axiom Array or Affymetrix UK
Biobank Axiom Array (which share 95% marker content), and then
imputed to a combination of the Haplotype Reference Con-
sortium, the 1000 Genomes phase 3 and the UK10K reference
panels [13]. We restricted analysis to genetically confirmed
females of European ancestries. We excluded individuals if they
were outliers for heterozygosity, had low genotyping call rate
<95%, had sex chromosome aneuploidy, or if they were duplicates
(cryptic or intended) [12]. All SNPs selected in the model
development phase were available in the UK Biobank.
We investigated transferability of the best-fitting PRS models to

populations of non-European ancestries using genotype data from
females of East Asian and African ancestries genotyped as part of
the OCAC OncoArray Project [14, 15]. Women of East Asian
ancestries—2,841 non-mucinous invasive EOC and 4,828 controls
—were identified using a criterion of >80% Asian ancestries. This
included samples collected from studies in China, Japan, Korea,

and Malaysia as well as samples collected from women of Asian
ancestry in studies conducted in the US, Europe and Australia [14].
Similarly, women of African ancestries—368 cases of non-
mucinous invasive EOC and 704 controls—mainly from studies
conducted in the US, were identified using a criterion of >80%
African ancestries as described previously [15].
We also assessed the performance of the best-fitting PRS

models in women of European ancestries (>80% European
ancestries) with the pathogenic BRCA1 and BRCA2 variants from
the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA).
We used genotype data from 18,915 BRCA1 (2,053 invasive EOC
cases) and 12,337 BRCA2 (717 invasive EOC cases) pathogenic
variant carriers from 63 studies contributing to CIMBA [16].
Genotyping, data quality control measures, intercontinental
ancestries assessment and imputation to the HRC reference panel
are as described for the OCAC study population.

STATISTICAL ANALYSIS
Polygenic risk models
For all PRS models, we created scores as linear functions of the
allele dosage in the general form PRSi ¼

Pp
j xijβj where genotypes

are denoted as x (taking on the minor allele dosages of 0, 1, and
2), with xij representing the ith individual for the jth SNP (out of p
SNPs) on an additive log scale and βj represents the weight—the
log of the odds ratio—of the jth SNP. We used different
approaches to select and derive the optimal weights, βj, in
models as described below.

Fig. 1 PRS model development using penalized regression and LDPred Bayesian approach. Shown in the left panel is the two-stage
approach with five-fold cross validation used for individual level genotype data while the right panel shows the LDPred approach used for
summary level data.
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Penalized logistic regression models
A penalized logistic regression model for a set of SNPs aims to
identify a set of regression coefficients that minimize the
regularized loss function given by

plr x; λ; κð Þ ¼
x � λsign xð Þ= 1� κð Þ if xj j< λ=κ and xð Þj j> λ

x if xj j � λ
κ

0 if xð Þj j< λ

8><
>:

where x is the effect estimate of a SNP, λ is the tuning parameter
and κ is the threshold (penalty) for different regularization paths. λ
and κ are parameters that need to be chosen during model
development to optimize performance. The lasso, elastic net, MCP,
and p-value thresholds are instances of the function with different
κ values. We minimized the winner’s curse effect on inflated effect
estimates for rare SNPs by penalizing rarer SNPs more heavily than
common SNPs. Details are provided in the Supplementary
Methods.
We used a two-stage approach to reduce computational burden

without a corresponding loss in predictive power. The first stage was
a SNP selection stage using a sliding windows approach, with 5.5Mb
data blocks and a 500 kb overlap between blocks. SNP selection was
performed for each block and selected SNPs were collated. Single SNP
association analyses were then run, and all SNPs with a χ2 test statistic
of less than 2.25 were excluded. The 2.25 cutoff was arbitrary and
selected to maximize computational efficiency without loss in
predictive power. Penalized regression models were applied to the
remaining SNPs using λ values of 3.0 and κ values of 0.0, 0.2, 0.4, 0.6,
0.8 and 1.0. SNPs selected in any of these models were included in
subsequent analyses. In the second stage, we fit penalized regression
models to the training dataset with λ values ranging from 3.0 to 5.5 in
increments of 0.1 iterated over κ values from −3.0 to 1 in increments
of 0.1. The lasso model (κ= 0) for each value of λ was fitted first, to
obtain a unique maximum. From the fitted maximum the κ value was
changed, and the model refitted.
We applied this two-stage approach with five-fold cross-validation

(Fig. 1). In each iteration, the data set was split into five, with one part
constituting the test data and the other four constituting the training
data. The variants and their weights from the two-stage penalized
logistic regression modeling in the training data were used to
calculate the area under the receiver operating characteristic curve
(AUC) in the test data in each iteration. AUC estimates for each
combination of λ and κ were obtained. We repeated this process for
each cross-validation iteration to obtain a mean AUC for each
combination of λ and κ. Finally, we selected the tuning and threshold
parameters from the lasso, elastic net and MCP models with the
maximum mean cross-validated AUC and fitted penalized logistic
regression models with these parameters to the entire OCAC dataset
to obtain SNP weights for PRS scores.

Stepwise logistic regression with variable P-value threshold
This model is a general PLR model with κ= 1. As with the other
PLR models, we investigated various values for λ values
(corresponding to a variable P-value threshold for including a
SNP in the model). However, we observed that the implementa-
tion of this model on individual level data was more difficult than
for other κ values because the model would sometimes converge
to a local optimum rather than the global optimum. Therefore, we
applied an approximate conditional and joint association analysis
using summary level statistics correcting for estimated LD
between SNPs, and utilizing a reference panel of 5,000 individual
level genotype OCAC data as described in Yang et al. [17]. Details
are provided in the Supplementary Methods.

LDPred
LDPred is a Bayesian approach that shrinks the posterior mean
effect size of each marker based on a point-normal prior and LD

information from an external reference panel. We derived seven
candidate PRSs assuming the fractions of associated variants were
0.001, 0.003, 0.01, 0.03, 0.1, 0.3, and 1.0 respectively using the
default parameters as detailed in Vilhjálmsson et al. [18] and an LD
reference panel of 503 samples of European ancestries from the
1000 Genomes phase 3 release with effect estimates from the
OCAC model development data.

Select and shrink using summary statistics (S4)
The S4 algorithm is similar to the PRS-CS algorithm [19]—a
Bayesian method that uses summary statistics and between-SNP
correlation data from a reference panel to generate the PRS scores
by placing a continuous shrinkage prior on effect sizes. We
adapted this method with penalization of rarer SNPs by correcting
for the standard deviation resulting in the selection of fewer SNPs.
We varied three parameters, a, b, φ, which control the degree of
shrinkage of effect estimates. Φ, the overall shrinkage parameter,
is influenced by values of a which controls shrinkage of effect
estimates around 0 and b which control shrinkage of larger effect
estimates. We generated summary statistics for each cross-
validation training set and selected the parameters that gave
the best results on average from the cross-validation and applied
these to the set of summary statistics for the complete OCAC data
set to obtain the final set of weights.

PRS based on meta-analysis of OCAC-CIMBA summary
statistics
We conducted a meta-analysis of the EOC associations in BRCA1
variant carriers, BRCA2 variant carriers and the participants
participating in OCAC (see Supplementary Methods) and con-
structed two PRS models. An S4 PRS was generated by applying
the a, b and φ parameters from the S4 model described above. A
stepwise PRS was generated by selecting all SNPs that were
genome-wide significant (p < 5 × 10−8) in the meta-analysis, along
with any independent signals in the same region with p < 10−5

from the histotype specific analyses for low-grade serous, high-
grade serous, endometrioid, clear cell ovarian cancer and non-
mucinous invasive EOC.

Polygenic risk score performance
The best lasso, elastic net, stepwise and S4 models from the model
development stage were validated using two independent data
sources: the UK Biobank data and BRCA1/BRCA2 pathogenic
variant carriers from the CIMBA. In the UK Biobank data, we
evaluated discriminatory performance of the models using the
AUC and examined the association between standardized PRS and
risk of non-mucinous EOC using logistic regression analysis. For
the CIMBA data, we assessed associations for each version of the
PRS and invasive non-mucinous EOC risk using weighted Cox
regression methods [20]. PRSs in the CIMBA data were scaled to
the same PRS standard deviations as the OCAC data, meaning that
per standard deviation hazard ratios estimated on CIMBA data are
comparable to PRS associations in the OCAC and UK Biobank data.
The regression models were adjusted for birth cohort (<1920,
1920–1929, 1930–1939, 1940–1949, ≥1950) and the first four
ancestries informative principal components (calculated sepa-
rately by iCOGS/OncoArray genotyping array) and stratified by
Ashkenazi Jewish ancestries and country. Absolute risks by PRS
percentiles adjusting for competing risks of mortality from other
causes were calculated as described in the Supplementary
Material.

Transferability of PRS scores to non-European ancestries
We implemented two straightforward approaches to disentangle
the role of ancestries on polygenic risk scoring. We selected
homogenous ancestral samples by using a high cut-off criterion of
80% ancestries and we standardized the PRSs by mean-centering
within each population. These approaches led to a more uniform
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distribution of PRSs within each ancestral population. Further
adjustments using principal components of ancestries did not
attenuate risk estimates.

RESULTS
Model development
The results for the models based on individual level genotype data
are shown in Table 1. The elastic net model had the best predictive
accuracy (AUC= 0.586). The optimal value of λ obtained from
regularization paths for the MCP model was 3.3 meaning the best
MCP model was equivalent to the lasso model. The best-fitting
model based on summary statistics was the S4 (AUC= 0.593) and
the LDPred model had the poorest performance of the methods
tested (AUC= 0.552). Therefore, the LDPred model was not
considered for further validation in other datasets. All SNPs
selected and the associated weights for each model are provided
in Supplementary Tables 1–6.

Model validation in women of European ancestries
Overall the PLR models performed slightly better in the UK
Biobank data than the model development data (Table 2). Of the
models developed using the OCAC model development data, the
association was strongest with the S4 PRS. In BRCA1 and BRCA2
variant carriers, prediction accuracy was generally higher among
BRCA2 carriers than BRCA1 carriers. Consistent with results from
the general population in the UK Biobank, the S4 PRS model also
had the strongest association and predictive accuracy for invasive

EOC risk in both BRCA1 and BRCA2 carriers. Sensitivity analyses
were conducted in which the unadjusted models for BRCA1 and
BRCA2 carriers were progressively adjusted for birth cohort and 6
principal components. There was little difference in HR estimates
and association P-values going from the unadjusted model to the
model adjusting for six principal components (Supplementary
Table 7). The PRS models developed using the OCAC-CIMBA meta-
analysis results had better discriminative ability in the UK Biobank
than the PRS models developed using only OCAC data. Compared
with the S4 PRS using only OCAC data, the S4 PRS model derived
from the meta-analysis had fewer SNPs, a stronger association
with invasive EOC risk and better predictive accuracy. Similarly, the
stepwise model from the OCAC-CIMBA meta-analysis performed
better than the stepwise model from only OCAC data, but
included more SNPs.
The observed distribution of the OR estimates within centiles of

the PRS distribution were consistent with ORs from predicted
values under the assumption that all SNPs interact multiplicatively
(Fig. 2), with all 95% confidence intervals intersecting with the
theoretical estimates for women of European ancestries. Com-
pared with women in the middle quintile, women of European
ancestry (UK Biobank) in the top 95th percentile of the lasso
derived PRS model had a 2.23-fold increased odds of non-
mucinous EOC (95% CI: 1.64 - 3.02) (Table 3).

Absolute risk of developing ovarian cancer by PRS percentiles
We estimated cumulative risk of EOC within PRS percentiles for
women in the general population (Fig. 3), by applying the odds

Table 1. Performance of different PRS models in five-fold cross-validation of OCAC data.

Model Number of SNPsa Tuning parameter for best performance AUC OR per 1 SD of PRS 95% CI

(a) Models based on individual level genotype data

Lasso 1403 λ= 3.3 0.583 1.35 1.30–1.39

Elastic net 10,797 λ= 3.3, κ=−2.2 0.586 1.36 1.31–1.40

MCP 1403 λ= 3.3 0.583 1.35 1.30–1.39

(b) Models based on summary statistics

LDPred 5,291,719 ρ= 0.001 0.552 1.21 1.13–1.29

Stepwise 22 λ= 5.4 0.572 1.30 1.26–1.34

Select and Shrink (OCAC) 27,240 a= 2.75, b= 2, φ= 3e−6 0.593 1.39 1.34–1.44

AUC area under the receiver operating characteristic (ROC) curve AUC), OR odds ratio, SD standard deviation, PRS polygenic risk score, CI confidence interval,
NA not applicable.
aNumber of SNPs in PRS model run on full OCAC data set after selection of model parameters.

Table 2. External validation of PRS models in European populations using data from UK Biobank and CIMBA.

Model (data set) SNPs UK Biobank CIMBA BRCA1 carriersa CIMBA BRCA2 carriersa

AUC OR 95% CI AUC HR 95% CI AUC HR 95% CI

(a) PRS models based on OCAC data

Lasso (OCAC) 1403 0.587 1.37 1.27–1.48 0.573 1.27 1.21–1.34 0.627 1.48 1.33–1.63

Elastic net (OCAC) 10,797 0.588 1.36 1.26–1.47 0.583 1.32 1.26–1.39 0.617 1.47 1.33–1.63

Stepwise (OCAC) 22 0.588 1.35 1.26–1.46 0.563 1.21 1.16–1.26 0.605 1.39 1.26–1.54

Select and shrink (OCAC) 27,240 0.588 1.38 1.28–1.48 0.592 1.36 1.29–1.43 0.624 1.49 1.35–1.64

(b) PRS models based on meta-analysis of OCAC and CIMBA data

Stepwise (OCAC-CIMBA)b 36 0.595 1.39 1.29–1.50 NA NA NA NA NA NA

Select and shrink (OCAC-CIMBA) 18,007 0.596 1.42 1.32–1.54 NA NA NA NA NA NA

AUC area under the receiver operating characteristic curve, OR odds ratio, HR hazards ratio.
aEstimates are from unadjusted models.
bResults in CIMBA are overfitted as the CIMBA data was used for model development.
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ratio from the PRS models to age-specific population incidence
and mortality data for England in 2016. For BRCA1 and BRCA2
pathogenic variant carriers, we applied the estimated hazard
ratios from PRS models to age-specific incidence rates obtained
from Kuchenbaecker et al. [21]. For women in the general
population, the estimated cumulative risks of EOC by age 80 for
women at the 99th centile of the PRS distribution were 2.24%,
2.18%, 2.54%, and 2.81% for the lasso, elastic net, stepwise and S4
models, respectively. In comparison, the absolute risks of EOC by
age 80 for women at the 1st centile were 0.76%, 0.78%, 0.64%, and
0.56% for the lasso, elastic net, stepwise and S4 models,
respectively.
The absolute risks of developing EOC in BRCA1 and BRCA2

pathogenic variant carriers were considerably higher than for
women in the general population (Figs. S1 and S2). The estimated
absolute risk of developing ovarian cancer by age 80 for BRCA1
carriers at the 99th PRS centiles were 63.2%, 66.3%, 59.0%, and
68.4% for the lasso, elastic net, stepwise and S4 models,
respectively. The corresponding absolute risks for women at the
1st PRS centile were 27.7%, 25.6%, 30.8%, and 24.2%. For BRCA2
carriers the absolute risks for women at the 99th centile were

36.3%, 36.3%, 33.0%, and 36.9%; and 7.10%, 7.12%, 8.24%, and
6.92% at the 1st centile for the lasso, elastic net, stepwise and S4
models, respectively.

PRS distribution and ancestries
To investigate the transferability of the PRS to other populations,
we applied the scores to women of African (N= 1,072) and Asian
(N= 7,669) ancestries genotyped as part of the OncoArray project.
In general, the distributions of the raw PRS were dependent on
both the statistical methods used in SNP selection and ancestral
group. PRS models that included more variants had less
dispersion, such that the elastic net models had the least between
individual variation in all ancestral groups (standard deviation=
0.15, 0.19, and 0.22 for individuals of Asian, African and European
ancestries respectively), while the distributions from the stepwise
models were the most dispersed (standard deviation= 0.23, 0.27,
and 0.30 for individuals of Asian, African and European ancestries
respectively). As expected, given the variation in variant frequen-
cies by population, the distribution of polygenic scores was
significantly different across the three ancestral groups, with the
least dispersion among women of Asian ancestries and the most

Fig. 2 Association between the PLR PRS models and non-mucinous ovarian cancer by PRS percentiles. Shown are estimated odds ratios
(OR) and confidence intervals for women of European ancestries by percentiles of polygenic risk scores derived from lasso (A), elastic net (B),
stepwise (C) and S4 (D) models relative to the middle quintile.
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variation in women of European ancestries. The difference in PRS
distribution was minimized after correction for ancestry by
standardizing the PRS to have unit standard deviation using the
control subjects for each ancestral group.
High PRSs were significantly associated with risk of non-

mucinous EOC in both Asian and African ancestries (Table 4),
although the effects were weaker than in women of European
ancestries. For example, with the lasso model, the odds ratio per
unit standard deviation increment in polygenic score was 1.16
(95% CI: 1.11–1.22) in women of East Asian ancestries, 1.28 (95%
CI: 1.13–1.45) in women of African ancestries and 1.37 (95%
CI: 1.27–1.48) in women of European ancestries (p for hetero-
geneity <0.0001). Variability in effect sizes among ancestral groups
was highest for the stepwise model (I2= 92%) versus 84% and
83% for elastic net and lasso derived polygenic scores respec-
tively. The best discriminative model among women of East Asian
and African ancestries were the elastic net PRS (AUC= 0.543) and
the S4 PRS derived from OCAC-CIMBA meta-analysis (AUC=
0.596) respectively. Women of African ancestries in the top 5% of
the PRS had about two-fold increased risk compared to women in
the middle quintile (lasso OR: 1.64, 95% CI: 0.90–3.00; elastic net
OR: 1.64, 95% CI: 0.90–3.00; stepwise OR: 2.15, 95% CI: 1.17–3.95;
S4 OR: 1.80, 95% CI: 0.99–3.31) (Table 3). Effect estimates were
smaller in women of East Asian ancestries with women in the top
5% of the PRS, having about a 1.5 fold increased risk compared to
women in the middle quintile (lasso OR: 1.40, 95% CI: 1.12–1.76;
elastic net OR: 1.60, 95% CI: 1.28–2.01; stepwise OR: 1.32, 95% CI:
1.04–1.65; S4 OR: 1.32, 95% CI: 1.05–1.66) (Table 3).

DISCUSSION
Genetic risk profiling with PRSs has led to actionable outcomes for
cancers such as breast and prostate [22, 23]. Previous PRS scores for
invasive EOC risk in the general population and BRCA1/BRCA2
pathogenic variant carriers have been based on genetic variants for
which an association with EOC risk had been established at nominal
genome-wide significance [20, 24, 25]. Here, we explored the
predictive performance of computationally efficient, penalized,
regression methods in modeling joint SNP effects for EOC risk
prediction in diverse populations and compared them with
common approaches. By leveraging the correlation between SNPs
which do not reach nominal genome-wide thresholds and including
them in PRS models, the PRSs derived from penalized regression
models provide stronger evidence of association with risk of non-
mucinous EOC than previously published PRSs in both the general
population and in BRCA1/BRCA2 pathogenic variant carriers.
Recently, Barnes et al. derived a PRS score using 22 SNPs that

were significantly associated with high-grade serous EOC risk
(PRSHGS) to predict EOC risk in BRCA1/BRCA2 pathogenic variant
carriers [20]. To make effect estimates obtained in this analysis
comparable to the effect estimates obtained from the PRSHGS, we
standardized all PRSs using the standard deviation from unaffected
BRCA1/BRCA2 carriers and provide estimates which are directly
comparable to the PRSHGS in Supplementary Table 9. All PRS models
in this analysis except the Stepwise (OCAC only) had higher effect
estimates [20]. The AUC estimates from the adjusted PLR methods
implemented in this analysis, are higher than the corresponding
PRSHGS estimates for BRCA1 carriers (0.604). In BRCA2 carriers, the
AUC estimates for the lasso and S4 models did slightly better than
the PRSHGS AUC estimate (0.667), while the stepwise did slightly
worse and the elastic net estimate was comparable. The AUC
estimates for women in the general population, as estimated from
the UK Biobank, are slightly higher than estimates from previously
published PRS models for overall EOC risk by Jia et al. (AUC= 0.57)
and Yang et al. (AUC= 0.58) [25, 26].
The level of risk for women above the 95th percentile of the PRS

is similar to that conferred by pathogenic variants in moderate
penetrance genes such as FANCM (RR= 2.1, 95% CI= 1.1–3.9) andTa
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PALB2 (RR= 2.91 95% CI= 1.40–6.04) [27, 28]. The inclusion of
other risk factors such as family history of ovarian cancer, presence
of rare pathogenic variants, age at menarche, oral contraceptive
use, hormone replacement therapy, parity, and endometriosis in
combination with the PRS could potentially improve risk
stratification as implemented in the CanRisk tool (www.canrisk.
org), which currently uses a 36-SNP PRS with the potential to use
other PRS models [29, 30].
We found that the discrimination of the PRS varied by ancestry

with greater discrimination in women of European ancestries than in
women of African and East Asian ancestries. The better performance
in African than East Asian populations is in contrast to what one
would expect given human demographic history, and the
performance of PRS for other phenotypes in African populations.
This may simply be the play of chance given the small number of
samples of African ancestries. Alternatively it reflects the fact that
the allele frequencies of the PRS SNPs were more similar between
the African and European populations than they were with the East
Asian population (Supplementary Tables 10–14).
Further optimization of the models could be achieved by

varying the penalization function based on prior knowledge. For

example, varying the penalty function to select more SNPs from
genomic regions with known susceptibility variants given that
susceptibility variants tend to cluster together. Alternatively, the
penalty functions could be modified to incorporate information
about functionally active regions of the genome such a promoters,
enhancers, and transcription factor binding sites. However,
incorporating functional annotation has resulted in limited
gains in prediction accuracy for complex traits such as breast
cancer, celiac disease, type 2 diabetes, and rheumatoid
arthritis [31].
Machine/deep learning approaches are alternative ways to

constructing PRS, but methods such as the neural net, support
vector machine, and random forest have been shown to be
computationally prohibitive or produce inferior results to other
approaches [32, 33]. Other machine learning methods, such as
those based on gradient boosting do not perform well in genomic
regions where strong genetic interactions are present, for which
alternative approaches such as the LDPred may perform better
[18]. Our approach has several benefits over alternative machine
learning methods, including its simplicity, and intrinsic robustness
to minor misspecification of LD or association strength.

Fig. 3 Cumulative risk of ovarian cancer between birth and age 80 by PRS percentiles and PRS models. Shown are the cumulative risk of
ovarian cancer risk in UK women by polygenic risk score percentiles. The lasso (A) and elastic net (B) penalized regression models were
applied to individual level genotype data, while the stepwise (C) and S4 (D) models were applied to summary level statistics. Note that the
median and the mean risk differ because the distribution of the relative risk in the population is left-skewed (the log relative risk is a Normal
distribution).

Table 4. External validation of PRS models in East Asian and African Populations.

Model East Asian ancestries African ancestries

AUC OR 95% CI AUC OR 95% CI

Lasso 0.541 1.16 (1.11–1.22) 0.576 1.28 (1.13–1.45)

Elastic net 0.543 1.17 (1.12–1.23) 0.574 1.29 (1.14–1.47)

Stepwise (OCAC) 0.528 1.11 (1.06–1.16) 0.581 1.34 (1.18–1.52)

Select and shrink (OCAC) 0.538 1.14 (1.08–1.19) 0.593 1.38 (1.21–1.58)

Stepwise (OCAC-CIMBA) 0.542 1.17 (1.11–1.23) 0.594 1.37 (1.20–1.56)

Select and shrink (OCAC-CIMBA) 0.537 1.14 (1.08–1.19) 0.596 1.41 (1.23–1.61)
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In conclusion, our results indicate that using the lasso model for
individual level genotype data and the S4 model for summary
level data in PRS construction provide an improvement in risk
prediction for non-mucinous EOC over more common
approaches. Our approach overcomes the computational limita-
tions in the use of penalized methods for large-scale genetic data,
particularly in the presence of highly correlated SNPs and
when the use of cross-validation for parameter estimation is
preferred. In practical terms, the PRS provides sufficient discrimi-
nation, particularly for women of European ancestries, to be
considered for inclusion in risk prediction and prevention
approaches for EOC in the future. Further studies are required to
optimize these PRSs in ancestrally diverse populations and to
validate their performance with the inclusion of other genetic and
lifestyle risk factors.

DATA AVAILABILITY
OncoArray germline genotype data for the OCAC studies have been deposited at the
European Genome-phenome Archive (EGA; https://ega-archive.org/), which is hosted
by the EBI and the CRG, under accession EGAS00001002305. Summary statisitics for
the Ovarian Cancer Association Consortium are available in the NHGRI-EBI GWAS
catalogue (https://www.ebi.ac.uk/gwas/home) under the accession number
GCST90016665. A subset of the OncoArray germline genotype data for the CIMBA
studies are publically available through the database of Genotypes and Phenotypes
(dbGaP) under accession phs001321.v1.p1. The complete data set will not be made
publically available because of restraints imposed by the ethics committees of
individual studies; requests for further data can be made to the Data Access
Coordination Committee (http://cimba.ccge.medschl.cam.ac.uk/)

REFERENCES
1. Jones MR, Kamara D, Karlan BY, Pharoah PDP, Gayther SA. Genetic epidemiology

of ovarian cancer and prospects for polygenic risk prediction. Gynecol Oncol.
2017;147:705–13.

2. Lyra PCM, Rangel LB, Monteiro ANA. Functional landscape of common variants
associated with susceptibility to epithelial ovarian cancer. Curr Epidemiol Rep.
2020;7:49–57.

3. Kar SP, Berchuck A, Gayther SA, Goode EL, Moysich KB, Pearce CL, et al. Common
genetic variation and susceptibility to ovarian cancer: current insights and future
directions. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cospon-
sored Am Soc Prev Oncol. 2018;27:395–404.

4. Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to dis-
ease from genome-wide association studies. Genome Res. 2007;17:1520–8.

5. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, International Schi-
zophrenia Consortium. et al. Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder. Nature. 2009;460:748–52.

6. Abraham G, Kowalczyk A, Zobel J, Inouye M. Performance and robustness of
penalized and unpenalized methods for genetic prediction of complex human
disease. Genet Epidemiol. 2013;37:184–95.

7. Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian alphabet
for genomic selection. BMC Bioinformatics. 2011;12:186.

8. Szymczak S, Biernacka JM, Cordell HJ, González-Recio O, König IR, Zhang H, et al.
Machine learning in genome-wide association studies. Genet Epidemiol. 2009;33:
S51–57.

9. Privé F, Aschard H, Blum MGB. Efficient implementation of penalized regression
for genetic risk prediction. Genetics. 2019;212:65–74.

10. Mak TSH, Porsch RM, Choi SW, Zhou X, Sham PC. Polygenic scores via penalized
regression on summary statistics. Genet Epidemiol. 2017;41:469–80.

11. Perren TJ. Mucinous epithelial ovarian carcinoma. Ann Oncol Off J Eur Soc Med
Oncol. 2016;27:i53–7.

12. Phelan CM, Kuchenbaecker KB, Tyrer JP, Kar SP, Lawrenson K, Winham SJ, et al.
Identification of 12 new susceptibility loci for different histotypes of epithelial
ovarian cancer. Nat Genet. 2017;49:680–91.

13. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank
resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.

14. Lawrenson K, Song F, Hazelett DJ, Kar SP, Tyrer J, Phelan CM, et al. Genome-wide
association studies identify susceptibility loci for epithelial ovarian cancer in east
Asian women. Gynecol Oncol. 2019;153:343–55.

15. Manichaikul A, Peres LC, Wang X-Q, Barnard ME, Chyn D, Sheng X, et al. Identi-
fication of novel epithelial ovarian cancer loci in women of African ancestry. Int J
Cancer. 2020;146:2987–98.

16. Phelan CM, Kuchenbaecker KB, Tyrer JP, Kar SP, Lawrenson K, Winham SJ, et al.
Identification of 12 new susceptibility loci for different histotypes of epithelial
ovarian cancer. Nat Genet. 2017;49:680–91.

17. Yang J, Ferreira T, Morris AP, Medland SE, Genetic Investigation of ANthropo-
metric Traits (GIANT) Consortium, DIAbetes Genetics Replication And Meta-
analysis (DIAGRAM) Consortium. et al. Conditional and joint multiple-SNP analysis
of GWAS summary statistics identifies additional variants influencing complex
traits. Nat Genet. 2012;44:369–75. S1-3

18. Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al.
Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J
Hum Genet. 2015;97:576–92.

19. Ge T, Chen C-Y, Ni Y, Feng Y-CA, Smoller JW. Polygenic prediction via Bayesian
regression and continuous shrinkage priors. Nat Commun. 2019;10:1776.

20. Barnes DR, Rookus MA, McGuffog L, Leslie G, Mooij TM, Dennis J, et al. Polygenic risk
scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2
pathogenic variants. Genet Med Off J Am Coll Med Genet. 2020;15:576–92.

21. Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips K-A, Mooij TM, Roos-Blom M-J,
et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and
BRCA2 Mutation Carriers. JAMA. 2017;317:2402–16.

22. Mavaddat N, Michailidou K, Dennis J, Lush M, Fachal L, Lee A, et al. Polygenic risk
scores for prediction of breast cancer and breast cancer subtypes. Am J Hum
Genet. 2019;104:21–34.

23. Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al.
Association analyses of more than 140,000 men identify 63 new prostate cancer
susceptibility loci. Nat Genet. 2018;50:928–36.

24. Kuchenbaecker KB, McGuffog L, Barrowdale D, Lee A, Soucy P, Dennis J, et al.
Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction
in BRCA1 and BRCA2 Mutation Carriers. J Natl Cancer Inst. 2017;109.

25. Yang X, Leslie G, Gentry-Maharaj A, Ryan A, Intermaggio M, Lee A, et al. Eva-
luation of polygenic risk scores for ovarian cancer risk prediction in a prospective
cohort study. J Med Genet. 2018;55:546–54.

26. Jia G, Lu Y, Wen W, Long J, Liu Y, Tao R, et al. Evaluating the utility of polygenic
risk scores in identifying high-risk individuals for eight common cancers. JNCI
Cancer Spectr. 2020;4:pkaa021.

27. Song H, Dicks EM, Tyrer J, Intermaggio M, Chenevix-Trench G, Bowtell DD, et al.
Population-based targeted sequencing of 54 candidate genes identifies PALB2 as
a susceptibility gene for high-grade serous ovarian cancer. J Med Genet.
2021;58:305–13.

28. Yang X, Leslie G, Doroszuk A, Schneider S, Allen J, Decker B, et al. Cancer risks
associated with germline PALB2 pathogenic variants: an international study of
524 families. J Clin Oncol Off J Am Soc Clin Oncol. 2020;38:674–85.

29. Lee A, Mavaddat N, Wilcox AN, Cunningham AP, Carver T, Hartley S, et al. BOA-
DICEA: a comprehensive breast cancer risk prediction model incorporating
genetic and nongenetic risk factors. Genet Med Off J Am Coll Med Genet.
2019;21:1708–18.

30. Welcome to CanRisk. [cited 2021 Aug 15]. https://canrisk.org/
31. Hu Y, Lu Q, Powles R, Yao X, Yang C, Fang F, et al. Leveraging functional anno-

tations in genetic risk prediction for human complex diseases. PLoS Comput Biol.
2017;13:e1005589.

32. Gola D, Erdmann J, Müller-Myhsok B, Schunkert H, König IR. Polygenic risk scores
outperform machine learning methods in predicting coronary artery disease
status. Genet Epidemiol. 2020;44:125–38.

33. Paré G, Mao S, Deng WQ. A machine-learning heuristic to improve gene score
prediction of polygenic traits. Sci Rep. 2017;7:12665.

ACKNOWLEDGEMENTS
See Supplementary Material.

AUTHOR CONTRIBUTIONS
EO Dareng, JP Tyrer, DR Barnes, MR Jones, X Yang, KK Aben, MA Adank, S Agata, IL
Andrulis, H Anton-Culver, NN Antonenkova, G Aravantinos, BK Arun, A Augustinsson,
J Balmaña, RB Barkardottir, D Barrowdale, MW Beckmann, A Beeghly-Fadiel, J Benitez,
M Bermisheva, MQ Bernardini, L Bjorge, NV Bogdanova, B Bonanni, A Borg, JD
Brenton, A Budzilowska, R Butzow, SS Buys, H Cai, MA Caligo, I Campbell, R Cannioto,
H Cassingham, J Chang-Claude, SJ Chanock, K Chen, Y Chiew, WK Chung, KB Claes, S
Colonna, LS Cook, FJ Couch, MB Daly, F Dao, E Davies, M de la Hoya, R de Putter, J
Dennis, A DePersia, P Devilee, O Diez, Y Ding, JA Doherty, SM Domchek, T Dörk, A du
Bois, M Dürst, DM Eccles, HA Eliassen, C Engel, D Evans, PA Fasching, JM Flanagan, RT
Fortner, E Machackova, E Friedman, PA Ganz, J Garber, F Gensini, GG Giles, G
Glendon, AK Godwin, MT Goodman, MH Greene, J Gronwald, E Hahnen, CA Haiman,
N Håkansson, U Hamann, TV Hansen, HR Harris, M Hartman, F Heitz, MA Hildebrandt,

E.O. Dareng et al.

357

European Journal of Human Genetics (2022) 30:349 – 362

https://ega-archive.org/
https://www.ebi.ac.uk/gwas/home
http://cimba.ccge.medschl.cam.ac.uk/
https://canrisk.org/


E Høgdall, CK Høgdall, JL Hopper, R Huang, C Huff, PJ Hulick, DG Huntsman, EN
Imyanitov, C Isaacs, A Jakubowska, PA James, R Janavicius, A Jensen, OT Johannsson,
EM John, ME Jones, D Kang, BY Karlan, A Karnezis, LE Kelemen, E Khusnutdinova, LA
Kiemeney, B Kim, SK Kjaer, I Komenaka, J Kupryjanczyk, AW Kurian, A Kwong, D
Lambrechts, MC Larson, C Lazaro, ND Le, G Leslie, J Lester, F Lesueur, DA Levine, J Li,
JT Loud, KH Lu, J Lubi_ski, PL Mai, S Manoukian, JR Marks, R Matsuno, K Matsuo, T
May, L McGuffog, JR McLaughlin, IA McNeish, N Mebirouk, A Miller, RL Milne, A
Minlikeeva, F Modugno, M Montagna, KB Moysich, E Munro, KL Nathanson, SL
Neuhausen, H Nevanlinna, J Ngeow Yuen Yie, H Nielsen, L Nikitina-Zake, K Odunsi, K
Offit, E Olah, S Olbrecht, OI Olopade, SH Olson, H Olsson, A Osorio, L Papi, SK Park, MT
Parsons, H Pathak, I Pedersen, A Peixoto, T Pejovic, P Perez-Segura, JB Permuth, B
Peshkin, P Peterlongo, A Piskorz, D Prokofyeva, P Radice, J Rantala, MJ Riggan, HA
Risch, C Rodriguez-Antona, E Ross, M Rossing, I Runnebaum, DP Sandler, M
Santamariña, P Soucy, RK Schmutzler, V Setiawan, K Shan, W Sieh, J Simard, CF Singer,
AP Sokolenko, H Song, MC Southey, H Steed, D Stoppa-Lyonnet, R Sutphen, AJ
Swerdlow, Y Tan, MR Teixeira, S Teo, KL Terry, M Terry, M Thomassen, PJ Thompson, L
Thomsen, DL Thull, M Tischkowitz, L Titus, AE Toland, D Torres, B Trabert, R Travis, N
Tung, SS Tworoger, E Valen, AM van Altena, AH van der Hout, E Van Nieuwenhuysen,
EJ van Rensburg, A Vega, D Velez Edwards, RA Vierkant, F Wang, PM Webb, CR
Weinberg, JN Weitzel, N Wentzensen, E White, SJ Winham, A Wolk, Y Woo, AH Wu, L
Yan, D Yannoukakos, KM Zavaglia, W Zheng, A Ziogas, KK Zorn, K Lawrenson, TA
Sellers, SJ Ramus, AN Monteiro, JM Cunningham, EL Goode, JM Schildkraut, A
Berchuck, G Chenevix-Trench, SA Gayther, AC Antoniou, PD Pharoah contributed
and/or designed the work that led to this submission, acquired data, played
important roles in interpreting results, drafted or revised the manuscript, approved
the final version and agreed to be accountable for all aspects of the work.

COMPETING INTERESTS
ADF has received a research grant from AstraZeneca, not directly related to the
content of this manuscript. MWB conducts research funded by Amgen, Novartis and
Pfizer. PAF conducts research funded by Amgen, Novartis and Pfizer. He received
Honoraria from Roche, Novartis and Pfizer. AWK reports research funding to her
institution from Myriad Genetics for an unrelated project. UM owns stocks in Abcodia
Ltd. Rachel A. Murphy is a consultant for Pharmavite. The other authors declare no
conflicts of interest.

ETHICS STATEMENT
All study participants provided written informed consent and participated in research
or clinical studies at the host institute under ethically approved protocols. The studies
and their approving institutes are listed in the Supplementary Material (Ethics
Statement).

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41431-021-00987-7.

Correspondence and requests for materials should be addressed to Paul D. P.
Pharoah.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

Eileen O. Dareng 1,243, Jonathan P. Tyrer 2,243, Daniel R. Barnes 1, Michelle R. Jones3, Xin Yang 1, Katja K. H. Aben4,5, Muriel A.
Adank6, Simona Agata7, Irene L. Andrulis 8,9, Hoda Anton-Culver10, Natalia N. Antonenkova11, Gerasimos Aravantinos12, Banu K.
Arun13, Annelie Augustinsson 14, Judith Balmaña15,16, Elisa V. Bandera17, Rosa B. Barkardottir18,19, Daniel Barrowdale 1, Matthias W.
Beckmann20, Alicia Beeghly-Fadiel21, Javier Benitez22,23, Marina Bermisheva24, Marcus Q. Bernardini25, Line Bjorge26,27, Amanda Black28,
Natalia V. Bogdanova11,29,30, Bernardo Bonanni 31, Ake Borg32, James D. Brenton 33, Agnieszka Budzilowska34, Ralf Butzow 35,
Saundra S. Buys36, Hui Cai21, Maria A. Caligo37, Ian Campbell 38,39, Rikki Cannioto40, Hayley Cassingham41, Jenny Chang-Claude42,43,
Stephen J. Chanock 44, Kexin Chen45, Yoke-Eng Chiew46,47, Wendy K. Chung48, Kathleen B. M. Claes 49, Sarah Colonna36, GEMO Study
Collaborators50,51,52, GC-HBOC Study Collaborators53, EMBRACE Collaborators1, Linda S. Cook54,55, Fergus J. Couch56, Mary B. Daly57,
Fanny Dao58, Eleanor Davies59, Miguel de la Hoya 60, Robin de Putter 49, Joe Dennis 1, Allison DePersia61,62, Peter Devilee 63,64,
Orland Diez65,66, Yuan Chun Ding67, Jennifer A. Doherty68, Susan M. Domchek69, Thilo Dörk30, Andreas du Bois 70,71, Matthias Dürst72,
Diana M. Eccles73, Heather A. Eliassen74,75, Christoph Engel76,77, Gareth D. Evans78,79, Peter A. Fasching20,80, James M. Flanagan81, Renée
T. Fortner42, Eva Machackova 82, Eitan Friedman83,84, Patricia A. Ganz85, Judy Garber86, Francesca Gensini87, Graham G. Giles 88,89,90,
Gord Glendon8, Andrew K. Godwin 91, Marc T. Goodman92, Mark H. Greene 93, Jacek Gronwald94, OPAL Study Group95, AOCS
Group38,46, Eric Hahnen53,96, Christopher A. Haiman97, Niclas Håkansson98, Ute Hamann99, Thomas V. O. Hansen100, Holly R. Harris101,102,
Mikael Hartman103,104, Florian Heitz 70,71,105, Michelle A. T. Hildebrandt106, Estrid Høgdall107,108, Claus K. Høgdall109, John L. Hopper89,
Ruea-Yea Huang110, Chad Huff106, Peter J. Hulick 61,62, David G. Huntsman111,112,113,114, Evgeny N. Imyanitov115, KConFab
Investigators38, HEBON Investigators116, Claudine Isaacs117, Anna Jakubowska 94,118, Paul A. James 39,119, Ramunas Janavicius120,121,
Allan Jensen107, Oskar Th. Johannsson122, Esther M. John123,124, Michael E. Jones125, Daehee Kang126,127,128, Beth Y. Karlan129, Anthony
Karnezis130, Linda E. Kelemen131, Elza Khusnutdinova24,132, Lambertus A. Kiemeney 4, Byoung-Gie Kim133, Susanne K. Kjaer107,109, Ian
Komenaka134, Jolanta Kupryjanczyk34, Allison W. Kurian 123,124, Ava Kwong135,136,137, Diether Lambrechts 138,139, Melissa C. Larson140,
Conxi Lazaro 141, Nhu D. Le142, Goska Leslie 1, Jenny Lester129, Fabienne Lesueur 51,52,143, Douglas A. Levine58,144, Lian Li45, Jingmei
Li145, Jennifer T. Loud93, Karen H. Lu146, Jan Lubiński94, Phuong L. Mai 147, Siranoush Manoukian148, Jeffrey R. Marks149, Rayna Kim
Matsuno150, Keitaro Matsuo 151,152, Taymaa May25, Lesley McGuffog1, John R. McLaughlin153, Iain A. McNeish154,155, Noura
Mebirouk51,52,143, Usha Menon 156, Austin Miller157, Roger L. Milne 88,89,90, Albina Minlikeeva158, Francesmary Modugno159,160, Marco
Montagna7, Kirsten B. Moysich158, Elizabeth Munro161,162, Katherine L. Nathanson 69, Susan L. Neuhausen67, Heli Nevanlinna 163,

E.O. Dareng et al.

358

European Journal of Human Genetics (2022) 30:349 – 362

https://doi.org/10.1038/s41431-021-00987-7
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-0802-419X
http://orcid.org/0000-0003-0802-419X
http://orcid.org/0000-0003-0802-419X
http://orcid.org/0000-0003-0802-419X
http://orcid.org/0000-0003-0802-419X
http://orcid.org/0000-0003-3724-4757
http://orcid.org/0000-0003-3724-4757
http://orcid.org/0000-0003-3724-4757
http://orcid.org/0000-0003-3724-4757
http://orcid.org/0000-0003-3724-4757
http://orcid.org/0000-0002-3781-7570
http://orcid.org/0000-0002-3781-7570
http://orcid.org/0000-0002-3781-7570
http://orcid.org/0000-0002-3781-7570
http://orcid.org/0000-0002-3781-7570
http://orcid.org/0000-0003-0037-3790
http://orcid.org/0000-0003-0037-3790
http://orcid.org/0000-0003-0037-3790
http://orcid.org/0000-0003-0037-3790
http://orcid.org/0000-0003-0037-3790
http://orcid.org/0000-0002-4226-6435
http://orcid.org/0000-0002-4226-6435
http://orcid.org/0000-0002-4226-6435
http://orcid.org/0000-0002-4226-6435
http://orcid.org/0000-0002-4226-6435
http://orcid.org/0000-0003-3415-0536
http://orcid.org/0000-0003-3415-0536
http://orcid.org/0000-0003-3415-0536
http://orcid.org/0000-0003-3415-0536
http://orcid.org/0000-0003-3415-0536
http://orcid.org/0000-0003-1661-3939
http://orcid.org/0000-0003-1661-3939
http://orcid.org/0000-0003-1661-3939
http://orcid.org/0000-0003-1661-3939
http://orcid.org/0000-0003-1661-3939
http://orcid.org/0000-0003-3589-2128
http://orcid.org/0000-0003-3589-2128
http://orcid.org/0000-0003-3589-2128
http://orcid.org/0000-0003-3589-2128
http://orcid.org/0000-0003-3589-2128
http://orcid.org/0000-0002-5738-6683
http://orcid.org/0000-0002-5738-6683
http://orcid.org/0000-0002-5738-6683
http://orcid.org/0000-0002-5738-6683
http://orcid.org/0000-0002-5738-6683
http://orcid.org/0000-0003-4366-5099
http://orcid.org/0000-0003-4366-5099
http://orcid.org/0000-0003-4366-5099
http://orcid.org/0000-0003-4366-5099
http://orcid.org/0000-0003-4366-5099
http://orcid.org/0000-0002-7773-4155
http://orcid.org/0000-0002-7773-4155
http://orcid.org/0000-0002-7773-4155
http://orcid.org/0000-0002-7773-4155
http://orcid.org/0000-0002-7773-4155
http://orcid.org/0000-0002-2324-3393
http://orcid.org/0000-0002-2324-3393
http://orcid.org/0000-0002-2324-3393
http://orcid.org/0000-0002-2324-3393
http://orcid.org/0000-0002-2324-3393
http://orcid.org/0000-0003-0841-7372
http://orcid.org/0000-0003-0841-7372
http://orcid.org/0000-0003-0841-7372
http://orcid.org/0000-0003-0841-7372
http://orcid.org/0000-0003-0841-7372
http://orcid.org/0000-0002-8113-1410
http://orcid.org/0000-0002-8113-1410
http://orcid.org/0000-0002-8113-1410
http://orcid.org/0000-0002-8113-1410
http://orcid.org/0000-0002-8113-1410
http://orcid.org/0000-0001-9410-8941
http://orcid.org/0000-0001-9410-8941
http://orcid.org/0000-0001-9410-8941
http://orcid.org/0000-0001-9410-8941
http://orcid.org/0000-0001-9410-8941
http://orcid.org/0000-0003-4591-1214
http://orcid.org/0000-0003-4591-1214
http://orcid.org/0000-0003-4591-1214
http://orcid.org/0000-0003-4591-1214
http://orcid.org/0000-0003-4591-1214
http://orcid.org/0000-0002-8023-2009
http://orcid.org/0000-0002-8023-2009
http://orcid.org/0000-0002-8023-2009
http://orcid.org/0000-0002-8023-2009
http://orcid.org/0000-0002-8023-2009
http://orcid.org/0000-0002-8477-506X
http://orcid.org/0000-0002-8477-506X
http://orcid.org/0000-0002-8477-506X
http://orcid.org/0000-0002-8477-506X
http://orcid.org/0000-0002-8477-506X
http://orcid.org/0000-0002-0246-1471
http://orcid.org/0000-0002-0246-1471
http://orcid.org/0000-0002-0246-1471
http://orcid.org/0000-0002-0246-1471
http://orcid.org/0000-0002-0246-1471
http://orcid.org/0000-0003-4946-9099
http://orcid.org/0000-0003-4946-9099
http://orcid.org/0000-0003-4946-9099
http://orcid.org/0000-0003-4946-9099
http://orcid.org/0000-0003-4946-9099
http://orcid.org/0000-0002-3987-9580
http://orcid.org/0000-0002-3987-9580
http://orcid.org/0000-0002-3987-9580
http://orcid.org/0000-0002-3987-9580
http://orcid.org/0000-0002-3987-9580
http://orcid.org/0000-0003-1852-9239
http://orcid.org/0000-0003-1852-9239
http://orcid.org/0000-0003-1852-9239
http://orcid.org/0000-0003-1852-9239
http://orcid.org/0000-0003-1852-9239
http://orcid.org/0000-0002-2412-0352
http://orcid.org/0000-0002-2412-0352
http://orcid.org/0000-0002-2412-0352
http://orcid.org/0000-0002-2412-0352
http://orcid.org/0000-0002-2412-0352
http://orcid.org/0000-0001-8397-4078
http://orcid.org/0000-0001-8397-4078
http://orcid.org/0000-0001-8397-4078
http://orcid.org/0000-0001-8397-4078
http://orcid.org/0000-0001-8397-4078
http://orcid.org/0000-0002-5650-0501
http://orcid.org/0000-0002-5650-0501
http://orcid.org/0000-0002-5650-0501
http://orcid.org/0000-0002-5650-0501
http://orcid.org/0000-0002-5650-0501
http://orcid.org/0000-0002-4361-4657
http://orcid.org/0000-0002-4361-4657
http://orcid.org/0000-0002-4361-4657
http://orcid.org/0000-0002-4361-4657
http://orcid.org/0000-0002-4361-4657
http://orcid.org/0000-0002-2368-1326
http://orcid.org/0000-0002-2368-1326
http://orcid.org/0000-0002-2368-1326
http://orcid.org/0000-0002-2368-1326
http://orcid.org/0000-0002-2368-1326
http://orcid.org/0000-0002-6175-9470
http://orcid.org/0000-0002-6175-9470
http://orcid.org/0000-0002-6175-9470
http://orcid.org/0000-0002-6175-9470
http://orcid.org/0000-0002-6175-9470
http://orcid.org/0000-0002-3429-302X
http://orcid.org/0000-0002-3429-302X
http://orcid.org/0000-0002-3429-302X
http://orcid.org/0000-0002-3429-302X
http://orcid.org/0000-0002-3429-302X
http://orcid.org/0000-0002-7198-5906
http://orcid.org/0000-0002-7198-5906
http://orcid.org/0000-0002-7198-5906
http://orcid.org/0000-0002-7198-5906
http://orcid.org/0000-0002-7198-5906
http://orcid.org/0000-0001-5756-6222
http://orcid.org/0000-0001-5756-6222
http://orcid.org/0000-0001-5756-6222
http://orcid.org/0000-0001-5756-6222
http://orcid.org/0000-0001-5756-6222
http://orcid.org/0000-0001-7404-4549
http://orcid.org/0000-0001-7404-4549
http://orcid.org/0000-0001-7404-4549
http://orcid.org/0000-0001-7404-4549
http://orcid.org/0000-0001-7404-4549
http://orcid.org/0000-0002-7486-4974
http://orcid.org/0000-0002-7486-4974
http://orcid.org/0000-0002-7486-4974
http://orcid.org/0000-0002-7486-4974
http://orcid.org/0000-0002-7486-4974
http://orcid.org/0000-0003-1761-6314
http://orcid.org/0000-0003-1761-6314
http://orcid.org/0000-0003-1761-6314
http://orcid.org/0000-0003-1761-6314
http://orcid.org/0000-0003-1761-6314
http://orcid.org/0000-0003-3708-1732
http://orcid.org/0000-0003-3708-1732
http://orcid.org/0000-0003-3708-1732
http://orcid.org/0000-0003-3708-1732
http://orcid.org/0000-0003-3708-1732
http://orcid.org/0000-0001-5764-7268
http://orcid.org/0000-0001-5764-7268
http://orcid.org/0000-0001-5764-7268
http://orcid.org/0000-0001-5764-7268
http://orcid.org/0000-0001-5764-7268
http://orcid.org/0000-0002-6740-0901
http://orcid.org/0000-0002-6740-0901
http://orcid.org/0000-0002-6740-0901
http://orcid.org/0000-0002-6740-0901
http://orcid.org/0000-0002-6740-0901
http://orcid.org/0000-0002-0916-2976
http://orcid.org/0000-0002-0916-2976
http://orcid.org/0000-0002-0916-2976
http://orcid.org/0000-0002-0916-2976
http://orcid.org/0000-0002-0916-2976


Joanne Ngeow Yuen Yie 164,165, Henriette Roed Nielsen166, Finn C. Nielsen100, Liene Nikitina-Zake167, Kunle Odunsi168, Kenneth
Offit169,170, Edith Olah171, Siel Olbrecht172, Olufunmilayo I. Olopade 173, Sara H. Olson174, Håkan Olsson14, Ana Osorio23,175, Laura
Papi87, Sue K. Park 126,127,128, Michael T. Parsons 176, Harsha Pathak91, Inge Sokilde Pedersen 177,178,179, Ana Peixoto180, Tanja
Pejovic161,162, Pedro Perez-Segura60, Jennifer B. Permuth181, Beth Peshkin 117, Paolo Peterlongo 182, Anna Piskorz33, Darya
Prokofyeva183, Paolo Radice 184, Johanna Rantala185, Marjorie J. Riggan186, Harvey A. Risch187, Cristina Rodriguez-Antona22,23, Eric
Ross 188, Mary Anne Rossing101,102, Ingo Runnebaum72, Dale P. Sandler 189, Marta Santamariña175,190,191, Penny Soucy192, Rita K.
Schmutzler53,96,193, V. Wendy Setiawan97, Kang Shan194, Weiva Sieh 195,196, Jacques Simard 197, Christian F. Singer198, Anna P.
Sokolenko115, Honglin Song199, Melissa C. Southey88,90,200, Helen Steed201, Dominique Stoppa-Lyonnet 50,202,203, Rebecca Sutphen204,
Anthony J. Swerdlow125,205, Yen Yen Tan198, Manuel R. Teixeira 180,206, Soo Hwang Teo 207,208, Kathryn L. Terry74,209, Mary Beth
Terry210, The OCAC Consortium186, The CIMBA Consortium1, Mads Thomassen166, Pamela J. Thompson92, Liv Cecilie Vestrheim
Thomsen26,27, Darcy L. Thull211, Marc Tischkowitz 212,213, Linda Titus214, Amanda E. Toland 215, Diana Torres99,216, Britton Trabert 28,
Ruth Travis 217, Nadine Tung218, Shelley S. Tworoger 74,181, Ellen Valen26,27, Anne M. van Altena4, Annemieke H. van der Hout219, Els
Van Nieuwenhuysen172, Elizabeth J. van Rensburg 220, Ana Vega175,221,222, Digna Velez Edwards223, Robert A. Vierkant140, Frances
Wang224,225, Barbara Wappenschmidt53,96, Penelope M. Webb 95, Clarice R. Weinberg226, Jeffrey N. Weitzel227, Nicolas Wentzensen28,
Emily White102,228, Alice S. Whittemore123,229, Stacey J. Winham 140, Alicja Wolk98,230, Yin-Ling Woo 231, Anna H. Wu97, Li Yan232,
Drakoulis Yannoukakos 233, Katia M. Zavaglia37, Wei Zheng21, Argyrios Ziogas 10, Kristin K. Zorn147, Zdenek Kleibl 234, Douglas
Easton 1,2, Kate Lawrenson3,235, Anna DeFazio 46,47, Thomas A. Sellers236, Susan J. Ramus 237,238, Celeste L. Pearce239,240, Alvaro N.
Monteiro 181, Julie Cunningham 241, Ellen L. Goode241, Joellen M. Schildkraut242, Andrew Berchuck186, Georgia Chenevix-Trench176,
Simon A. Gayther 3, Antonis C. Antoniou1 and Paul D. P. Pharoah 1,2✉

1University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK. 2University of Cambridge, Centre for Cancer
Genetic Epidemiology, Department of Oncology, Cambridge, UK. 3Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
4Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands. 5Netherlands Comprehensive Cancer Organisation, Utrecht, The
Netherlands. 6The Netherlands Cancer Institute—Antoni van Leeuwenhoek hospital, Family Cancer Clinic, Amsterdam, The Netherlands. 7Veneto Institute of Oncology IOV—
IRCCS, Immunology and Molecular Oncology Unit, Padua, Italy. 8Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics,
Toronto, ON, Canada. 9University of Toronto, Department of Molecular Genetics, Toronto, ON, Canada. 10University of California Irvine, Department of Epidemiology, Genetic
Epidemiology Research Institute, Irvine, CA, USA. 11N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus. 12‘Agii Anargiri’ Cancer Hospital,
Athens, Greece. 13University of Texas MD Anderson Cancer Center, Department of Breast Medical Oncology, Houston, TX, USA. 14Lund University, Department of Cancer
Epidemiology, Clinical Sciences, Lund, Sweden. 15Vall d’Hebron Institute of Oncology, Hereditary cancer Genetics Group, Barcelona, Spain. 16University Hospital of Vall d’Hebron,
Department of Medical Oncology, Barcelona, Spain. 17Rutgers Cancer Institute of New Jersey, Cancer Prevention and Control Program, New Brunswick, NJ, USA. 18Landspitali
University Hospital, Department of Pathology, Reykjavik, Iceland. 19University of Iceland, BMC (Biomedical Centre), Faculty of Medicine, Reykjavik, Iceland. 20University Hospital
Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, Erlangen, Germany.
21Vanderbilt University School of Medicine, Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN,
USA. 22Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain. 23Spanish National Cancer Research Centre (CNIO), Human Cancer Genetics Programme, Madrid, Spain.
24Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, Ufa, Russia. 25Princess Margaret Hospital, Division of Gynecologic
Oncology, University Health Network, Toronto, ON, Canada. 26Haukeland University Hospital, Department of Obstetrics and Gynecology, Bergen, Norway. 27University of Bergen,
Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, Bergen, Norway. 28National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD,
USA. 29Hannover Medical School, Department of Radiation Oncology, Hannover, Germany. 30Hannover Medical School, Gynaecology Research Unit, Hannover, Germany. 31IEO,
European Institute of Oncology IRCCS, Division of Cancer Prevention and Genetics, Milan, Italy. 32Lund University and Skåne University Hospital, Department of Oncology, Lund,
Sweden. 33Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK. 34Maria Sklodowska-Curie National Research Institute of Oncology, Department of
Pathology and Laboratory Diagnostics, Warsaw, Poland. 35University of Helsinki, Department of Pathology, Helsinki University Hospital, Helsinki, Finland. 36Huntsman Cancer
Institute, Department of Medicine, Salt Lake City, UT, USA. 37University Hospital, SOD Genetica Molecolare, Pisa, Italy. 38Peter MacCallum Cancer Center, Melbourne, VIC, Australia.
39The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia. 40Roswell Park Cancer Institute, Cancer Pathology & Prevention, Division
of Cancer Prevention and Population Sciences, Buffalo, NY, USA. 41Division of Human Genetics, The Ohio State University, Department of Internal Medicine, Columbus, OH, USA.
42German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany. 43University Medical Center Hamburg-Eppendorf, Cancer Epidemiology Group,
University Cancer Center Hamburg (UCCH), Hamburg, Germany. 44National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Division of
Cancer Epidemiology and Genetics, Bethesda, MD, USA. 45Tianjin Medical University Cancer Institute and Hospital, Department of Epidemiology, Tianjin, China. 46The University
of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia. 47Westmead Hospital, Department of Gynaecological Oncology,
Sydney, NSW, Australia. 48Columbia University, Departments of Pediatrics and Medicine, New York, NY, USA. 49Ghent University, Centre for Medical Genetics, Gent, Belgium.
50INSERM U830, Department of Tumour Biology, Paris, France. 51Institut Curie, Paris, France. 52Mines ParisTech, Fontainebleau, France. 53Faculty of Medicine and University
Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany. 54University of New Mexico, University of New Mexico Health Sciences
Center, Albuquerque, NM, USA. 55Alberta Health Services, Department of Cancer Epidemiology and Prevention Research, Calgary, AB, Canada. 56Mayo Clinic, Department of
Laboratory Medicine and Pathology, Rochester, MN, USA. 57Fox Chase Cancer Center, Department of Clinical Genetics, Philadelphia, PA, USA. 58Memorial Sloan Kettering Cancer
Center, Gynecology Service, Department of Surgery, New York, NY, USA. 59Cambridge, Cambridge, UK. 60CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación
Sanitaria del Hospital Clínico San Carlos), Molecular Oncology Laboratory, Madrid, Spain. 61NorthShore University Health System, Center for Medical Genetics, Evanston, IL, USA.
62The University of Chicago Pritzker School of Medicine, Chicago, IL, USA. 63Leiden University Medical Center, Department of Pathology, Leiden, The Netherlands. 64Leiden
University Medical Center, Department of Human Genetics, Leiden, The Netherlands. 65Vall dHebron Institute of Oncology (VHIO), Oncogenetics Group, Barcelona, Spain.
66University Hospital Vall dHebron, Clinical and Molecular Genetics Area, Barcelona, Spain. 67Beckman Research Institute of City of Hope, Department of Population Sciences,
Duarte, CA, USA. 68University of Utah, Huntsman Cancer Institute, Department of Population Health Sciences, Salt Lake City, UT, USA. 69University of Pennsylvania, Basser Center
for BRCA, Abramson Cancer Center, Philadelphia, PA, USA. 70Ev. Kliniken Essen-Mitte (KEM), Department of Gynecology and Gynecologic Oncology, Essen, Germany. 71Dr. Horst
Schmidt Kliniken Wiesbaden, Department of Gynecology and Gynecologic Oncology, Wiesbaden, Germany. 72Jena University Hospital—Friedrich Schiller University, Department
of Gynaecology, Jena, Germany. 73University of Southampton, Faculty of Medicine, Southampton, UK. 74Harvard T.H. Chan School of Public Health, Department of Epidemiology,
Boston, MA, USA. 75Brigham and Women’s Hospital and Harvard Medical School, Channing Division of Network Medicine, Boston, MA, USA. 76University of Leipzig, Institute for
Medical Informatics, Statistics and Epidemiology, Leipzig, Germany. 77University of Leipzig, LIFE—Leipzig Research Centre for Civilization Diseases, Leipzig, Germany. 78University
of Manchester, Manchester Academic Health Science Centre, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health,
Manchester, UK. 79St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, North West Genomics Laboratory Hub,
Manchester Centre for Genomic Medicine, Manchester, UK. 80University of California at Los Angeles, David Geffen School of Medicine, Department of Medicine Division of
Hematology and Oncology, Los Angeles, CA, USA. 81Imperial College London, Division of Cancer and Ovarian Cancer Action Research Centre, Department of Surgery and Cancer,
London, UK. 82Masaryk Memorial Cancer Institute, Department of Cancer Epidemiology and Genetics, Brno, Czech Republic. 83Chaim Sheba Medical Center, The Susanne Levy
Gertner Oncogenetics Unit, Ramat Gan, Israel. 84Tel Aviv University, Sackler Faculty of Medicine, Ramat Aviv, Israel. 85Jonsson Comprehensive Cancer Centre, UCLA, Schools of
Medicine and Public Health, Division of Cancer Prevention & Control Research, Los Angeles, CA, USA. 86Dana-Farber Cancer Institute, Cancer Risk and Prevention Clinic, Boston,

E.O. Dareng et al.

359

European Journal of Human Genetics (2022) 30:349 – 362

http://orcid.org/0000-0003-1558-3627
http://orcid.org/0000-0003-1558-3627
http://orcid.org/0000-0003-1558-3627
http://orcid.org/0000-0003-1558-3627
http://orcid.org/0000-0003-1558-3627
http://orcid.org/0000-0002-9936-1599
http://orcid.org/0000-0002-9936-1599
http://orcid.org/0000-0002-9936-1599
http://orcid.org/0000-0002-9936-1599
http://orcid.org/0000-0002-9936-1599
http://orcid.org/0000-0001-5002-9707
http://orcid.org/0000-0001-5002-9707
http://orcid.org/0000-0001-5002-9707
http://orcid.org/0000-0001-5002-9707
http://orcid.org/0000-0001-5002-9707
http://orcid.org/0000-0003-3242-8477
http://orcid.org/0000-0003-3242-8477
http://orcid.org/0000-0003-3242-8477
http://orcid.org/0000-0003-3242-8477
http://orcid.org/0000-0003-3242-8477
http://orcid.org/0000-0002-9902-8040
http://orcid.org/0000-0002-9902-8040
http://orcid.org/0000-0002-9902-8040
http://orcid.org/0000-0002-9902-8040
http://orcid.org/0000-0002-9902-8040
http://orcid.org/0000-0002-2997-4701
http://orcid.org/0000-0002-2997-4701
http://orcid.org/0000-0002-2997-4701
http://orcid.org/0000-0002-2997-4701
http://orcid.org/0000-0002-2997-4701
http://orcid.org/0000-0001-6951-6855
http://orcid.org/0000-0001-6951-6855
http://orcid.org/0000-0001-6951-6855
http://orcid.org/0000-0001-6951-6855
http://orcid.org/0000-0001-6951-6855
http://orcid.org/0000-0001-6298-4111
http://orcid.org/0000-0001-6298-4111
http://orcid.org/0000-0001-6298-4111
http://orcid.org/0000-0001-6298-4111
http://orcid.org/0000-0001-6298-4111
http://orcid.org/0000-0002-0890-2418
http://orcid.org/0000-0002-0890-2418
http://orcid.org/0000-0002-0890-2418
http://orcid.org/0000-0002-0890-2418
http://orcid.org/0000-0002-0890-2418
http://orcid.org/0000-0002-6776-0018
http://orcid.org/0000-0002-6776-0018
http://orcid.org/0000-0002-6776-0018
http://orcid.org/0000-0002-6776-0018
http://orcid.org/0000-0002-6776-0018
http://orcid.org/0000-0003-0085-1190
http://orcid.org/0000-0003-0085-1190
http://orcid.org/0000-0003-0085-1190
http://orcid.org/0000-0003-0085-1190
http://orcid.org/0000-0003-0085-1190
http://orcid.org/0000-0001-6906-3390
http://orcid.org/0000-0001-6906-3390
http://orcid.org/0000-0001-6906-3390
http://orcid.org/0000-0001-6906-3390
http://orcid.org/0000-0001-6906-3390
http://orcid.org/0000-0002-5438-8309
http://orcid.org/0000-0002-5438-8309
http://orcid.org/0000-0002-5438-8309
http://orcid.org/0000-0002-5438-8309
http://orcid.org/0000-0002-5438-8309
http://orcid.org/0000-0002-4896-5982
http://orcid.org/0000-0002-4896-5982
http://orcid.org/0000-0002-4896-5982
http://orcid.org/0000-0002-4896-5982
http://orcid.org/0000-0002-4896-5982
http://orcid.org/0000-0002-0444-590X
http://orcid.org/0000-0002-0444-590X
http://orcid.org/0000-0002-0444-590X
http://orcid.org/0000-0002-0444-590X
http://orcid.org/0000-0002-0444-590X
http://orcid.org/0000-0002-7880-0628
http://orcid.org/0000-0002-7880-0628
http://orcid.org/0000-0002-7880-0628
http://orcid.org/0000-0002-7880-0628
http://orcid.org/0000-0002-7880-0628
http://orcid.org/0000-0002-0271-1792
http://orcid.org/0000-0002-0271-1792
http://orcid.org/0000-0002-0271-1792
http://orcid.org/0000-0002-0271-1792
http://orcid.org/0000-0002-0271-1792
http://orcid.org/0000-0002-1539-6090
http://orcid.org/0000-0002-1539-6090
http://orcid.org/0000-0002-1539-6090
http://orcid.org/0000-0002-1539-6090
http://orcid.org/0000-0002-1539-6090
http://orcid.org/0000-0002-9571-0763
http://orcid.org/0000-0002-9571-0763
http://orcid.org/0000-0002-9571-0763
http://orcid.org/0000-0002-9571-0763
http://orcid.org/0000-0002-9571-0763
http://orcid.org/0000-0002-6986-7046
http://orcid.org/0000-0002-6986-7046
http://orcid.org/0000-0002-6986-7046
http://orcid.org/0000-0002-6986-7046
http://orcid.org/0000-0002-6986-7046
http://orcid.org/0000-0003-2077-230X
http://orcid.org/0000-0003-2077-230X
http://orcid.org/0000-0003-2077-230X
http://orcid.org/0000-0003-2077-230X
http://orcid.org/0000-0003-2077-230X
http://orcid.org/0000-0003-0733-5930
http://orcid.org/0000-0003-0733-5930
http://orcid.org/0000-0003-0733-5930
http://orcid.org/0000-0003-0733-5930
http://orcid.org/0000-0003-0733-5930
http://orcid.org/0000-0002-8492-9102
http://orcid.org/0000-0002-8492-9102
http://orcid.org/0000-0002-8492-9102
http://orcid.org/0000-0002-8492-9102
http://orcid.org/0000-0002-8492-9102
http://orcid.org/0000-0003-1742-1066
http://orcid.org/0000-0003-1742-1066
http://orcid.org/0000-0003-1742-1066
http://orcid.org/0000-0003-1742-1066
http://orcid.org/0000-0003-1742-1066
http://orcid.org/0000-0001-7509-3510
http://orcid.org/0000-0001-7509-3510
http://orcid.org/0000-0001-7509-3510
http://orcid.org/0000-0001-7509-3510
http://orcid.org/0000-0001-7509-3510
http://orcid.org/0000-0003-4529-3727
http://orcid.org/0000-0003-4529-3727
http://orcid.org/0000-0003-4529-3727
http://orcid.org/0000-0003-4529-3727
http://orcid.org/0000-0003-4529-3727
http://orcid.org/0000-0003-2050-9667
http://orcid.org/0000-0003-2050-9667
http://orcid.org/0000-0003-2050-9667
http://orcid.org/0000-0003-2050-9667
http://orcid.org/0000-0003-2050-9667
http://orcid.org/0000-0003-2444-3247
http://orcid.org/0000-0003-2444-3247
http://orcid.org/0000-0003-2444-3247
http://orcid.org/0000-0003-2444-3247
http://orcid.org/0000-0003-2444-3247
http://orcid.org/0000-0003-0057-4744
http://orcid.org/0000-0003-0057-4744
http://orcid.org/0000-0003-0057-4744
http://orcid.org/0000-0003-0057-4744
http://orcid.org/0000-0003-0057-4744
http://orcid.org/0000-0003-0005-7798
http://orcid.org/0000-0003-0005-7798
http://orcid.org/0000-0003-0005-7798
http://orcid.org/0000-0003-0005-7798
http://orcid.org/0000-0003-0005-7798
http://orcid.org/0000-0002-8448-4801
http://orcid.org/0000-0002-8448-4801
http://orcid.org/0000-0002-8448-4801
http://orcid.org/0000-0002-8448-4801
http://orcid.org/0000-0002-8448-4801
http://orcid.org/0000-0002-8159-3025
http://orcid.org/0000-0002-8159-3025
http://orcid.org/0000-0002-8159-3025
http://orcid.org/0000-0002-8159-3025
http://orcid.org/0000-0002-8159-3025
http://orcid.org/0000-0001-7937-5443
http://orcid.org/0000-0001-7937-5443
http://orcid.org/0000-0001-7937-5443
http://orcid.org/0000-0001-7937-5443
http://orcid.org/0000-0001-7937-5443
http://orcid.org/0000-0001-8494-732X
http://orcid.org/0000-0001-8494-732X
http://orcid.org/0000-0001-8494-732X
http://orcid.org/0000-0001-8494-732X
http://orcid.org/0000-0001-8494-732X


MA, USA. 87University of Florence, Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Medical Genetics Unit, Florence, Italy. 88Cancer Council Victoria,
Cancer Epidemiology Division, Melbourne, VIC, Australia. 89The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global
Health, Melbourne, VIC, Australia. 90Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC, Australia. 91University of Kansas Medical
Center, Department of Pathology and Laboratory Medicine, Kansas City, KS, USA. 92Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Cancer
Prevention and Genetics Program, Los Angeles, CA, USA. 93National Cancer Institute, Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.
94Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland. 95QIMR Berghofer Medical Research Institute, Population Health Department,
Brisbane, QLD, Australia. 96Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Integrated Oncology (CIO), Cologne, Germany. 97University of
Southern California, Department of Preventive Medicine, Keck School of Medicine, Los Angeles, CA, USA. 98Karolinska Institutet, Institute of Environmental Medicine, Stockholm,
Sweden. 99German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg, Germany. 100Rigshospitalet, Copenhagen University Hospital, Department of
Clinical Genetics, Copenhagen, Denmark. 101Fred Hutchinson Cancer Research Center, Program in Epidemiology, Division of Public Health Sciences, Seattle, WA, USA.
102University of Washington, Department of Epidemiology, Seattle, WA, USA. 103National University of Singapore and National University Health System, Saw Swee Hock School of
Public Health, Singapore, Singapore. 104National University Health System, Department of Surgery, Singapore, Singapore. 105Humboldt-Universität zu Berlin, and Berlin Institute of
Health, Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, corporate member of Freie
Universität Berlin, Berlin, Germany. 106University of Texas MD Anderson Cancer Center, Department of Epidemiology, Houston, TX, USA. 107Danish Cancer Society Research
Center, Department of Virus, Lifestyle and Genes, Copenhagen, Denmark. 108University of Copenhagen, Molecular Unit, Department of Pathology, Herlev Hospital, Copenhagen,
Denmark. 109University of Copenhagen, Department of Gynaecology, Rigshospitalet, Copenhagen, Denmark. 110Roswell Park Cancer Institute, Center For Immunotherapy, Buffalo,
NY, USA. 111BC Cancer, Vancouver General Hospital, and University of British Columbia, British Columbia’s Ovarian Cancer Research (OVCARE) Program, Vancouver, BC, Canada.
112University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, BC, Canada. 113University of British Columbia, Department of Obstetrics and
Gynecology, Vancouver, BC, Canada. 114BC Cancer Research Centre, Department of Molecular Oncology, Vancouver, BC, Canada. 115N.N. Petrov Institute of Oncology, St.
Petersburg, Russia. 116Coordinating center: The Netherlands Cancer Institute, The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON), Amsterdam, The
Netherlands. 117Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA. 118Pomeranian Medical University, Independent Laboratory of Molecular
Biology and Genetic Diagnostics, Szczecin, Poland. 119Peter MacCallum Cancer Center, Parkville Familial Cancer Centre, Melbourne, VIC, Australia. 120Vilnius University Hospital
Santariskiu Clinics, Hematology, oncology and transfusion medicine center, Dept. of Molecular and Regenerative Medicine, Vilnius, Lithuania. 121State Research Institute Centre
for Innovative Medicine, Vilnius, Lithuania. 122Landspitali University Hospital, Department of Oncology, Reykjavik, Iceland. 123Stanford University School of Medicine, Department
of Epidemiology & Population Health, Stanford, CA, USA. 124Stanford Cancer Institute, Stanford University School of Medicine, Department of Medicine, Division of Oncology,
Stanford, CA, USA. 125The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK. 126Seoul National University College of Medicine, Department of
Preventive Medicine, Seoul, Korea. 127Seoul National University Graduate School, Department of Biomedical Sciences, Seoul, Korea. 128Seoul National University, Cancer Research
Institute, Seoul, Korea. 129University of California at Los Angeles, David Geffen School of Medicine, Department of Obstetrics and Gynecology, Los Angeles, CA, USA. 130UC Davis
Medical Center, Department of Pathology and Laboratory Medicine, Sacramento, CA, USA. 131Medical University of South Carolina, Hollings Cancer Center, Charleston, SC, USA.
132Saint Petersburg State University, Saint Petersburg, Russia. 133Sungkyunkwan University School of Medicine, Department of Obstetrics and Gynecology, Samsung Medical
Center, Seoul, Korea. 134City of Hope Clinical Cancer Genetics Community Research Network, Duarte, CA, USA. 135Cancer Genetics Centre, Hong Kong Hereditary Breast Cancer
Family Registry, Happy Valley, Hong Kong. 136The University of Hong Kong, Department of Surgery, Pok Fu Lam, Hong Kong. 137Hong Kong Sanatorium and Hospital, Department
of Surgery, Happy Valley, Hong Kong. 138VIB Center for Cancer Biology, Leuven, Belgium. 139University of Leuven, Laboratory for Translational Genetics, Department of Human
Genetics, Leuven, Belgium. 140Mayo Clinic, Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Rochester, MN, USA. 141ONCOBELL-IDIBELL-
IGTP, Catalan Institute of Oncology, CIBERONC, Hereditary Cancer Program, Barcelona, Spain. 142BC Cancer, Cancer Control Research, Vancouver, BC, Canada. 143Inserm U900,
Genetic Epidemiology of Cancer team, Paris, France. 144NYU Langone Medical Center, Gynecologic Oncology, Laura and Isaac Pearlmutter Cancer Center, New York, NY, USA.
145Genome Institute of Singapore, Human Genetics Division, Singapore, Singapore. 146University of Texas MD Anderson Cancer Center, Department of Gynecologic Oncology and
Clinical Cancer Genetics Program, Houston, TX, USA. 147Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. 148Fondazione IRCCS Istituto
Nazionale dei Tumori di Milano, Unit of Medical Genetics, Department of Medical Oncology and Hematology, Milan, Italy. 149Duke University Hospital, Department of Surgery,
Durham, NC, USA. 150University of Hawaii Cancer Center, Cancer Epidemiology Program, Honolulu, HI, USA. 151Aichi Cancer Center Research Institute, Division of Cancer
Epidemiology and Prevention, Nagoya, Japan. 152Nagoya University Graduate School of Medicine, Division of Cancer Epidemiology, Nagoya, Japan. 153Samuel Lunenfeld Research
Institute, Public Health Ontario, Toronto, ON, Canada. 154Imperial College London, Division of Cancer and Ovarian Cancer Action Research Centre, Department Surgery & Cancer,
London, UK. 155University of Glasgow, Institute of Cancer Sciences, Glasgow, UK. 156University College London, MRC Clinical Trials Unit at UCL, Institute of Clinical Trials &
Methodology, London, UK. 157Roswell Park Cancer Institute, NRG Oncology, Statistics and Data Management Center, Buffalo, NY, USA. 158Roswell Park Cancer Institute, Division of
Cancer Prevention and Control, Buffalo, NY, USA. 159Magee-Womens Research Institute and Hillman Cancer Center, Womens Cancer Research Center, Pittsburgh, PA, USA.
160University of Pittsburgh School of Medicine, Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, Pittsburgh, PA, USA.
161Oregon Health & Science University, Department of Obstetrics and Gynecology, Portland, OR, USA. 162Oregon Health & Science University, Knight Cancer Institute, Portland,
OR, USA. 163University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland. 164National Cancer Centre, Cancer Genetics Service,
Singapore, Singapore. 165Nanyang Technological University, Lee Kong Chian School of Medicine, Singapore, Singapore. 166Odense University Hospital, Department of Clinical
Genetics, Odence C, Denmark. 167Latvian Biomedical Research and Study Centre, Riga, Latvia. 168Roswell Park Cancer Institute, Department of Gynecologic Oncology, Buffalo, NY,
USA. 169Memorial Sloan Kettering Cancer Center, Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, New York, NY, USA. 170Memorial Sloan Kettering
Cancer Center, Clinical Genetics Service, Department of Medicine, New York, NY, USA. 171National Institute of Oncology, Department of Molecular Genetics, Budapest, Hungary.
172University Hospitals Leuven, Division of Gynecologic Oncology, Department of Obstetrics and Gynaecology and Leuven Cancer Institute, Leuven, Belgium. 173The University of
Chicago, Center for Clinical Cancer Genetics, Chicago, IL, USA. 174Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY, USA.
175Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain. 176QIMR Berghofer Medical Research Institute, Department of Genetics and Computational
Biology, Brisbane, QLD, Australia. 177Aalborg University Hospital, Molecular Diagnostics, Aalborg, Denmark. 178Aalborg University Hospital, Clinical Cancer Research Center,
Aalborg, Denmark. 179Aalborg University, Department of Clinical Medicine, Aalborg, Denmark. 180Portuguese Oncology Institute, Department of Genetics, Porto, Portugal.
181Moffitt Cancer Center, Department of Cancer Epidemiology, Tampa, FL, USA. 182IFOM—the FIRC Institute of Molecular Oncology, Genome Diagnostics Program, Milan, Italy.
183Bashkir State University, Department of Genetics and Fundamental Medicine, Ufa, Russia. 184Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Unit of Molecular Bases of
Genetic Risk and Genetic Testing, Department of Research, Milan, Italy. 185Karolinska Institutet, Clinical Genetics, Stockholm, Sweden. 186Duke University Hospital, Department of
Gynecologic Oncology, Durham, NC, USA. 187Yale School of Public Health, Chronic Disease Epidemiology, New Haven, CT, USA. 188Fox Chase Cancer Center, Population Studies
Facility, Philadelphia, PA, USA. 189National Institute of Environmental Health Sciences, NIH, Epidemiology Branch, Research Triangle Park, NC, USA. 190Fundación Pública Galega
Medicina Xenómica, Santiago De Compostela, Spain. 191Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago De Compostela, Spain. 192Centre Hospitalier
Universitaire de Québec – Université Laval Research Center, Genomics Center, Québec City, QC, Canada. 193Faculty of Medicine and University Hospital Cologne, University of
Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany. 194Hebei Medical University, Fourth Hospital, Department of Obstetrics and Gynaecology,
Shijiazhuang, China. 195Icahn School of Medicine at Mount Sinai, Department of Population Health Science and Policy, New York, NY, USA. 196Icahn School of Medicine at Mount
Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA. 197Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Genomic Center,
Québec City, QC, Canada. 198Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria. 199University of Cambridge, Department of Public
Health and Primary Care, Cambridge, UK. 200The University of Melbourne, Department of Clinical Pathology, Melbourne, VIC, Australia. 201Royal Alexandra Hospital, Department of
Obstetrics and Gynecology, Division of Gynecologic Oncology, Edmonton, AB, Canada. 202Institut Curie, Service de Génétique, Paris, France. 203Université Paris Descartes, Paris,
France. 204University of South Florida, Epidemiology Center, College of Medicine, Tampa, FL, USA. 205The Institute of Cancer Research, Division of Breast Cancer Research, London,
UK. 206University of Porto, Biomedical Sciences Institute (ICBAS), Porto, Portugal. 207Cancer Research Malaysia, Breast Cancer Research Programme, Subang Jaya, Selangor,
Malaysia. 208University of Malaya, Department of Surgery, Faculty of Medicine, Kuala Lumpur, Malaysia. 209Brigham and Women’s Hospital and Harvard Medical School, Obstetrics
and Gynecology Epidemiology Center, Boston, MA, USA. 210Columbia University, Department of Epidemiology, Mailman School of Public Health, New York, NY, USA. 211Magee-
Womens Hospital, University of Pittsburgh School of Medicine, Department of Medicine, Pittsburgh, PA, USA. 212McGill University, Program in Cancer Genetics, Departments of

E.O. Dareng et al.

360

European Journal of Human Genetics (2022) 30:349 – 362



Human Genetics and Oncology, Montréal, QC, Canada. 213University of Cambridge, Department of Medical Genetics, Cambridge, UK. 214Dartmouth College, Geisel School of
Medicine, Hanover, NH, USA. 215The Ohio State University, Department of Cancer Biology and Genetics, Columbus, OH, USA. 216Pontificia Universidad Javeriana, Institute of
Human Genetics, Bogota, Colombia. 217University of Oxford, Cancer Epidemiology Unit, Oxford, UK. 218Beth Israel Deaconess Medical Center, Department of Medical Oncology,
Boston, MA, USA. 219University Medical Center Groningen, University Groningen, Department of Genetics, Groningen, The Netherlands. 220University of Pretoria, Department of
Genetics, Arcadia, South Africa. 221Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain. 222Instituto de Investigación Sanitaria de Santiago de
Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain. 223Vanderbilt University Medical Center, Division of Quantitative
Sciences, Department of Obstetrics and Gynecology, Department of Biomedical Sciences, Women’s Health Research, Nashville, TN, USA. 224Duke Cancer Institute, Cancer Control
and Population Sciences, Durham, NC, USA. 225Duke University Hospital, Department of Community and Family Medicine, Durham, NC, USA. 226National Institute of
Environmental Health Sciences, NIH, Biostatistics and Computational Biology Branch, Research Triangle Park, NC, USA. 227City of Hope, Clinical Cancer Genomics, Duarte, CA, USA.
228Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 229Stanford University School of Medicine, Department of Biomedical Data Science, Stanford, CA, USA. 230Uppsala
University, Department of Surgical Sciences, Uppsala, Sweden. 231University of Malaya, Department of Obstetrics and Gynaecology, University of Malaya Medical Centre, Kuala
Lumpur, Malaysia. 232Hebei Medical University, Fourth Hospital, Department of Molecular Biology, Shijiazhuang, China. 233National Centre for Scientific Research ‘Demokritos’,
Molecular Diagnostics Laboratory, INRASTES, Athens, Greece. 234Institute of Biochemistry and Experimental Oncology, First Faculty od Medicine, Charles University, Prague, Czech
Republic. 235Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Centre, Department of Obstetrics and Gynecology, Los
Angeles, CA, USA. 236Royal Pass Road, Tampa, FL, USA. 237University of NSW Sydney, School of Women’s and Children’s Health, Faculty of Medicine, Sydney, NSW, Australia.
238University of NSW Sydney, Adult Cancer Program, Lowy Cancer Research Centre, Sydney, NSW, Australia. 239University of Michigan School of Public Health, Department of
Epidemiology, Ann Arbor, MI, USA. 240University of Southern California Norris Comprehensive Cancer Center, Department of Preventive Medicine, Keck School of Medicine, Los
Angeles, CA, USA. 241Mayo Clinic, Department of Health Science Research, Division of Epidemiology, Rochester, MN, USA. 242Emory University, Department of Epidemiology,
Rollins School of Public Health, Atlanta, GA, USA. 243These authors contributed equally: Eileen O. Dareng, Jonathan P. Tyrer. ✉email: pp10001@medschl.cam.ac.uk

GEMO Study Collaborators
Fabienne Lesueur and Noura Mebirouk

GC-HBOC Study Collaborators
Christoph Engel and Rita K. Schmutzler

EMBRACE Collaborators
Daniel Barrowdale, Eleanor Davies, Diana M. Eccles and D. Gareth Evans

KConFab Investigators
Georgia Chenevix-Trench

HEBON Investigators
Muriel A. Adank, Peter Devilee and Annemieke H. van der Hout

The OCAC Consortium
Eileen O. Dareng, Jonathan P. Tyrer, Michelle R. Jones, Katja K. H. Aben, Hoda Anton-Culver, Natalia N. Antonenkova, Gerasimos
Aravantinos, Matthias W. Beckmann, Alicia Beeghly-Fadiel, Javier Benitez, Marina Bermisheva, Marcus Q. Bernardini, Line Bjorge, Natalia
V. Bogdanova, James D. Brenton, Agnieszka Budzilowska, Ralf Butzow, Hui Cai, Ian Campbell, Rikki Cannioto, Jenny Chang-Claude,
Stephen J. Chanock, Kexin Chen, Yoke-Eng Chiew, Linda S. Cook, Fanny Dao, Joe Dennis, Jennifer A. Doherty, Thilo Dörk, Andreas du
Bois, Matthias Dürst, Diana M. Eccles, Heather A. Eliassen, Peter A. Fasching, James M. Flanagan, Renée T. Fortner, Graham G. Giles,
Marc T. Goodman, Jacek Gronwald, Christopher A. Haiman, Niclas Håkansson, Holly R. Harris, Florian Heitz, Michelle A. T. Hildebrandt,
Estrid Høgdall, Claus K. Høgdall, Ruea-Yea Huang, Chad Huff, David G. Huntsman, Anna Jakubowska, Allan Jensen, Michael E. Jones,
Daehee Kang, Beth Y. Karlan, Anthony Karnezis, Linda E. Kelemen, Elza Khusnutdinova, Lambertus A. Kiemeney, Byoung-Gie Kim,
Susanne K. Kjaer, Jolanta Kupryjanczyk, Diether Lambrechts, Melissa C. Larson, Nhu D. Le, Jenny Lester, Douglas A. Levine, Karen H. Lu,
Jan Lubiński, Jeffrey R. Marks, Rayna Kim Matsuno, Keitaro Matsuo, Taymaa May, John R. McLaughlin, Iain A. McNeish, Roger L. Milne,
Albina Minlikeeva, Francesmary Modugno, Kirsten B. Moysich, Elizabeth Munro, Heli Nevanlinna, Kunle Odunsi, Siel Olbrecht, Sara H.
Olson, Håkan Olsson, Ana Osorio, Sue K. Park, Tanja Pejovic, Jennifer B. Permuth, Anna Piskorz, Darya Prokofyeva, Marjorie J. Riggan,
Harvey A. Risch, Cristina Rodriguez-Antona, Mary Anne Rossing, Ingo Runnebaum, Dale P. Sandler, V. Wendy Setiawan, Kang Shan,
Weiva Sieh, Honglin Song, Melissa C. Southey, Helen Steed, Rebecca Sutphen, Anthony J. Swerdlow, Soo Hwang Teo, Kathryn L. Terry,
Pamela J. Thompson, Liv Cecilie Vestrheim Thomsen, Linda Titus, Britton Trabert, Ruth Travis, Shelley S. Tworoger, Ellen Valen, Anne M.
van Altena, Els Van Nieuwenhuysen, Digna Velez Edwards, Robert A. Vierkant, Frances Wang, Penelope M. Webb, Clarice R. Weinberg,
Nicolas Wentzensen, Emily White, Alice S. Whittemore, Stacey J. Winham, Alicja Wolk, Yin-Ling Woo, Anna H. Wu, Li Yan, Drakoulis
Yannoukakos, Wei Zheng, Argyrios Ziogas, Kate Lawrenson, Anna deFazio, Susan J. Ramus, Celeste L. Pearce, Alvaro N. Monteiro, Julie
M. Cunningham, Ellen L. Goode, Joellen M. Schildkraut, Andrew Berchuck, Simon A. Gayther and Paul D. P. Pharoah

E.O. Dareng et al.

361

European Journal of Human Genetics (2022) 30:349 – 362

mailto:pp10001@medschl.cam.ac.uk


The CIMBA Consortium
Daniel R. Barnes, Xin Yang, Muriel A. Adank, Simona Agata, Irene L. Andrulis, Banu K. Arun, Annelie Augustinsson, Judith Balmaña, Rosa
B. Barkardottir, Daniel Barrowdale, Bernardo Bonanni, Ake Borg, Saundra S. Buys, Maria A. Caligo, Hayley Cassingham, Wendy K. Chung,
Kathleen B. M. Claes, Sarah Colonna, Fergus J. Couch, Mary B. Daly, Eleanor Davies, Miguel de la Hoya, Robin de Putter, Allison
DePersia, Peter Devilee, Orland Diez, Yuan Chun Ding, Susan M. Domchek, Diana M. Eccles, Christoph Engel, D. Gareth Evans, Eva
Machackova, Eitan Friedman, Patricia A. Ganz, Judy Garber, Francesca Gensini, Gord Glendon, Andrew K. Godwin, Mark H. Greene, Eric
Hahnen, Ute Hamann, Thomas V. O. Hansen, Mikael Hartman, John L. Hopper, Peter J. Hulick, Evgeny N. Imyanitov, Claudine Isaacs,
Paul A. James, Ramunas Janavicius, Oskar Th. Johannsson, Esther M. John, Ian Komenaka, Allison W. Kurian, Ava Kwong, Conxi Lazaro,
Goska Leslie, Fabienne Lesueur, Jingmei Li, Jennifer T. Loud, Phuong L. Mai, Siranoush Manoukian, Lesley McGuffog, Noura Mebirouk,
Austin Miller, Marco Montagna, Katherine L. Nathanson, Susan L. Neuhausen, Joanne Ngeow Yuen Yie, Henriette Roed Nielsen, Liene
Nikitina-Zake, Kenneth Offit, Edith Olah, Olufunmilayo I. Olopade, Laura Papi, Michael T. Parsons, Harsha Pathak, Inge Sokilde Pedersen,
Ana Peixoto, Pedro Perez-Segura, Beth Peshkin, Paolo Peterlongo, Paolo Radice, Johanna Rantala, Eric Ross, Marta Santamariña, Penny
Soucy, Rita K. Schmutzler, Jacques Simard, Christian F. Singer, Anna P. Sokolenko, Dominique Stoppa-Lyonnet, Yen Yen Tan, Manuel R.
Teixeira, Mary Beth Terry, Mads Thomassen, Darcy L. Thull, Marc Tischkowitz, Amanda E. Toland, Diana Torres, Nadine Tung,
Annemieke H. van der Hout, Elizabeth J. van Rensburg, Ana Vega, Barbara Wappenschmidt, Jeffrey N. Weitzel, Katia M. Zavaglia, Kristin
K. Zorn, Thomas A. Sellers, Georgia Chenevix-Trench and Antonis C. Antoniou

E.O. Dareng et al.

362

European Journal of Human Genetics (2022) 30:349 – 362


	Polygenic risk modeling for prediction of epithelial ovarian cancer risk
	Introduction
	Materials (subjects) and methods
	Model development study population
	Model validation study populations

	Statistical analysis
	Polygenic risk models
	Penalized logistic regression models
	Stepwise logistic regression with variable P-value threshold
	LDPred
	Select and shrink using summary statistics (S4)
	PRS based on meta-analysis of OCAC-CIMBA summary statistics
	Polygenic risk score performance
	Transferability of PRS scores to non-European ancestries

	Results
	Model development
	Model validation in women of European ancestries
	Absolute risk of developing ovarian cancer by PRS percentiles
	PRS distribution and ancestries

	Discussion
	References
	Acknowledgements
	ACKNOWLEDGMENTS
	Author contributions
	Competing interests
	Ethics statement
	ADDITIONAL INFORMATION




