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ABSTRACT

Swiss-born embryologist Wilhelm His, Sr. (1831–1904) was the first scientist to study embryos using paraffin histology,
serial sectioning and three-dimensional modelling. With these techniques, His made many important discoveries in
vertebrate embryology and developmental neurobiology, earning him two Nobel Prize nominations. He also developed
several theories of mechanical and evolutionary developmental biology. His argued that adult form is determined by the
differential growth of developmental primordia. Furthermore, he suggested that changes in the growth parameters of
those primordia are responsible for generating new phenotypes during evolution. His developed these theories in his
book ‘Our Bodily Form’ (Unsere Körperform). Here, we review His’s work with special emphasis on its potential importance
to the disciplines of evolutionary developmental biology (evo-devo) and mechanobiology.
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I. INTRODUCTION

With the recent death of Leipzig anatomist Wilhelm His
[Sr.], we have seen the burial of one of the most idiosyn-
cratic of research personalities. Certainly not a trail-blazer
like Carl Gegenbaur, or a fighter like his great opponent
Ernst Haeckel, but a quiet scholar who worked with real
German thoroughness… and immersed himself with real
German sensibility in the details of phenomena… none-
theless, none of the other outstanding anatomists of the
nineteenth century was treated with such hostility –
almost hatred – as Wilhelm His. (Rawitz, 1904, p. 308)

Wilhelm His, Sr. (1831–1904) (Figs 1 and 2; Supplementary
Note S1) was a Swiss-born physician who pursued a career in
embryological and anatomical research in Basel and then Leip-
zig. Landmarks in his career are given as online Supporting
Information in Table S1. His published on a wide range of sci-
entific topics (Fig. S2). For example, he showed that the lym-
phatic system is a closed system (see Table S2 for a glossary of
terms); and he produced an early example of forensic craniofa-
cial reconstruction, using the supposed skeletal remains of Johan
Sebastian Bach (Supplementary Note S2). He alsomade impor-
tant contributions to vertebrate embryology and developmental
neurobiology, including neuron theory (Supplementary
Note S3). His’s success in anatomical research was due in part
to his ability to understand the complex three-dimensional
(3-D) relationships of structures, and how they change during
development (Fig. 3).

In recent years, several historians and biologists have dis-
cussed His’s research (e.g. Gould, 1977; Maienschein, 1991;

Nyhart, 1995; Hopwood, 1999, 2000, 2002, 2005, 2007,
2012, 2013; Richardson & Keuck, 2001; Hoßfeld &
Olsson, 2003; Brauckmann, 2006; Laubichler, Aird &
Maienschein, 2007; Richards, 2008; Dupont, 2017; Glover
et al., 2018). His is well-known for his ‘mechanical’ theories
of development. He wrote: ‘Embryology and morphology
cannot proceed independently of all reference to the general
laws of matter, – to the laws of physics and of mechanics’
(His, 1888a, p. 293). Our aims in this review are to explore
these mechanical theories; to examine how His applied
these theories to evolutionary questions; and to consider the
potential relevance of His’s theories to the modern disciplines
of evolutionary developmental biology (evo-devo) and
mechanobiology.
We start by examining His’s early research and show how

it formed the basis of theories that he would advocate for
most of his career. Then, we consider his (1875) book ‘Our
Bodily Form’, which contained new hypotheses about verte-
brate developmental mechanisms and their relationship to
evolution. Finally, we examine how His’s theories have been
received by scientists and examine them in the light of cur-
rent scientific knowledge. We should note that His’s son,Wil-
helm His Jr. was also a physician and scientist; he described
the atrioventricular bundle in the heart (Roguin, 2006;
Anderson & Mori, 2016).

II. WILHELM HIS’S EARLY RESEARCH

As a medical student, His spent three semesters at Berlin
University. During that time, he and other students were

Biological Reviews 97 (2022) 1131–1160 © 2022 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
Society.
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invited by Robert Remak, one of the lecturers, to his
home on the Unter den Linden. There, Remak had cre-
ated a makeshift embryology laboratory, and he showed
the students how to prepare chicken embryos for micro-
scopical analysis (His, 1868b, p. 50; His, 1903, p. 26).
These interactions with Remak stimulated in His an

enduring interest in early chicken development. Remak
stressed the importance of understanding the germ
layers in relation to histogenesis: the development of
mature tissues from precursor cells (Table S2). His took
up these issues in a paper entitled ‘The membranes
and cavities of the body’ (His, 1865b).

Fig. 1. Portraits of Wilhelm His. (A) 1849, portrait, aged 18, on the bowl of a pipe, from a watercolour by Hans Burckhardt;
Anatomisches Museum, Basel. Photograph M. K. Richardson. (B) Photograph, 1872; courtesy of Roger and Hugo Kurz.
(C) Photograph; courtesy of Fotosammlung 11, Universitätsbibliothek, Leipzig. An identical image in the Alan Mason Chesney
Medical Archives is inscribed: ‘G. Brokesch 1882–83 Leipzig’. (D) Painting (oil on canvas), 62 × 49 cm, signed Albert Winther,
dated 189?; Kunstbesitz der Universität Leipzig, inventory no. 1951:004, photographed by Karin Kranich; image rights: Kustodie
der Universität Leipzig (for more information, see Supplementary Note S1). (E) Undated photograph, courtesy of the History of
Medicine Collections, David M. Rubenstein Rare Book and Manuscript Library, Duke University. (F) Photograph, circa 1900
(source as B). B and F are figs 3 and 6 in Kurz (1992) from where the information provided here was taken.

Biological Reviews 97 (2022) 1131–1160 © 2022 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
Society.
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(1) Membranes and cavities

During the nineteenth century we see three great steps
in anatomy: general anatomy, associated with the name
of Bichat, the cell doctrine with that of Schwann, and
histogenesis with that of His. (Mall, 1905, pp. 144–145).

In his paper ‘Membranes and cavities’, His coined the name
‘endothelia’ for epithelia that arise from the mesoderm, and
which come to line body cavities, and the blood and lym-
phatic vessels (His, 1865b, p. 18). This paper contains highly
original speculations on developmental mechanisms. Those
speculations appear to be informed by his unpublished histo-
logical studies of chick embryos. His noted that embryonic
cavities develop from splits in the mesoderm, and suggested
that this splitting might be mediated by mechanical forces.
When a split develops, he argued, it be becomes filled with
fluid. This leads to swelling of the extracellular matrix, and
the resulting pressure is modulated by elastic fibres in the
matrix. Further, His argued that mechanical forces in the
matrix might actually influence cell behaviour:

The remarks above concern an influence of mechani-
cal moments on the development of connective tissue,
which we can call directive [richtenden]; in this case,

an indifferent tissue mass is assumed, and the special
way of developing that it experiences under given
external influences is followed. Now, mechanical influ-
ences, along with everything else that comes under the
broad concept of stimuli, can act in a determinant [bes-
timmend] way upon cell proliferation and thereby on
the formation of tissues. (His, 1865b, p. 30, his italics;
the words in square brackets are those used in the Ger-
man original)

His also speculated that ectoderm and endoderm might pro-
vide a chemical signal to the mesoderm which stimulates
growth and blood vessel development (His, 1865b, p. 33).
His challenged Remak’s view that the peripheral nervous

system develops from the mesoderm, arguing (in agreement
with data available today) that it develops from the ectoderm
(Fig. 4; Table S3; Remak, 1855, p. 44; His, 1865b; pp. 7–9).
His also disputed Remak’s view that the nephric duct arises
from the mesoderm, arguing for an ectodermal origin (the
data available today are consistent with Remak’s view). His
later changed his mind when he realised that what he had
taken to be the nephric precursor was actually the primor-
dium of the peripheral nervous system. With this primor-
dium, His had discovered the neural crest (a term later
coined by Marshall; Fig. 4; Tables S2 and S3). His (1865b,
p. 8) suggested that such disagreements about the origins of
tissues arose because of the limited resolution of the histolog-
ical techniques of the time.

(2) Improved histological techniques

Like my predecessors, I had little success in achieving a
uniform view of the genesis of the nervous system by
way of observation, and I could reach only indirect
conclusions about the developmental history of gang-
lia. The obstacle to decisive observations seemed to
lie in deficient technology, and this has kept me work-
ing to improve the technique of making sections as fine
as possible. (His, 1868b, p. v)

A lack of adequate histological techniques was recognised as
an obstacle to progress in embryology (Kölliker, 1876,
pp. 102–103; Bischoff, 1877, pp. 2–6; Balfour, 1881,
pp. 124–125; Hertwig, 1906, p. 2). The main difficulty lay
in obtaining sufficiently thin sections. For most purposes, his-
tologists cut tissue slices by hand with a razor (e.g. His, 1856,
p. 3), but young embryos are too delicate to be sectioned in
this way. Instead, they were dissected, while living, in a dish
of water or saline (Remak, 1855, p. xxxvi; Dursy, 1866,
pp. 11–14), essentially applying the dissection techniques of
gross anatomy to embryos (Hertwig, 1906, p. 2). With such
crude techniques it was impossible to resolve the details of
early development, or to adequately employ the 3-D recon-
struction techniques that His had invented (His, 1887,
pp. 383–384; Hopwood, 1999, 2000, 2002, 2012); those
techniques required an unbroken series of sections of consis-
tent thickness.

Fig. 2. Wilhelm His and other delegates at meetings (1895 and
1897) of the Anatomische Gesellschaft. (A) Basel (17–20 April,
1895), the meeting from which the ‘Basel’ Nomina Anatomica took
its name (His, 1895b). Wilhelm His: seated, front row, far right.
(B) Tübingen, 21–24 May, 1899. Wilhelm His: middle of second
row, with round-framed glasses. Images courtesy the Archive of
the Anatomische Gesellschaft. For key to sitters see Fig. S1.

Biological Reviews 97 (2022) 1131–1160 © 2022 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
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Fig. 3. Scientific illustrations by Wilhelm His. (A) Fig. B1 from Plate VII in His (1880). Reconstruction of a human embryo from
serial sections. The corresponding section numbers are shown by the scale (right). Note the semi-transparent rendering of the liver
(Lb) to reveal the intrahepatic course of the inferior vena cava. A note printed at the bottom of the plate attributes the drawings to
His. (B) Figs 78 and 79, p. 130 in His (1885). Note the use of cut-away layers to expose the endocardial tube. (C) Pen-sketch by
His, in a letter dated 20th March, 1889 to his former student Franklin Mall. His refers to a discussion between them over the
developmental origin of the thymus. From the Mall Papers (Wilhelm His), image courtesy of the Alan Mason Chesney Medical
Archives of the Johns Hopkins Medical Institutions. (D) Blackboard drawing made by His during his lecture to a meeting of the
Anatomical Society of Great Britain and Ireland at the Royal Dublin Society on June 11th, 1897. The drawing was photographed
and reproduced as fig. 1 in His (1897a). Image courtesy the Wellcome Collection.

Biological Reviews 97 (2022) 1131–1160 © 2022 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
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Fig. 4. Conflicting hypotheses of the origin of the neural crest and kidney duct. (A) Plate V, fig. 69 in Remak (1855). Transverse slice
(possibly from a fresh embryo) through the trunk of a chicken embryo viewed with transmitted light. Individual cells are not shown; the
tissue is simply block-shaded, with selected mesodermal derivatives shown in a paler shade. (B) Fig. IVa, p. 32 in Hensen (1903)
showing a transverse section with what Hensen believed to be the precursor of the nephric duct arising from a cell mass in the
ectoderm; the mass grows ventrad towards the mesoderm and then becomes detached (our boxes a and b). (C) Plate XI (III) in
His (1865a) A–D (from bottom to top) are sections from the same chicken embryo showing what His thought was the precursor of
the nephric duct (Urnierenfalte, Unf.). (D) Plate VI, fig. III (4) in His (1868b). Transvere section through a chicken embryo showing
the intermediate groove (Zr), the supposed precursor of the peripheral ganglia. (E) Plate VII, box I, figs 2, 4 in (His, 1868b). Our
box a shows detail of intermediate cord (Z); our box b shows precursors of the ganglia as an inverted pyramid of tissue
(arrowhead). Note that His’s figures show individual cells, a reflection of his improved histological techniques.

Biological Reviews 97 (2022) 1131–1160 © 2022 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
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His addressed these problems by developing a protocol
for the infiltration-embedding of embryos with paraffin
wax (van der Lem et al., 2021). Edwin Klebs had intro-
duced paraffin wax to histology (Klebs, 1867) but soon
abandoned it (Klebs, 1869, pp. 164–165) because wax
does not penetrate watery tissue. His overcame this prob-
lem by dehydrating the embryos in alcohol and clearing

them in oil of lavender, which is miscible with both alcohol
and molten wax, and therefore acts as an intermediate
reagent.

The sectioning of paraffin-embedded embryos by hand
was very time consuming (His, 1870a, p. 229). There were
several mechanical aids to sectioning then available such
as Valentin’s ‘double-knife’ (Fig. 5A, B), and Hensen’s

Fig. 5. Early microtechniques before the introduction of His’s microtome. (A, B) Valentin double-knife made by Weiss, London, c.
1860. Photograph: Science and Society Picture Library, Science Museum, London (object number A135073), Wellcome Trust loan.
(B) Detail of blades. Oschatz (1844, p. 129) stated that Valentin used a design of Purkyně’s, but Valentin denied this (Valentin, 1845,
p. 55 n.). (C, D) Hensen’s ‘section-cutter’; Key: b, blade; h, handle of chopper; l, lens; m, sub-stage mirror; s, stage. The device was
made by the instrument maker Beckmann (Hensen, 1863, p. 82 n.1). Anatomisches Museum, Basel; Photograph: M. K.
Richardson. (E) Thick tissue slice from a chicken embryo, possibly cut underwater from a fresh embryo. From fig. 1 on p. 5 of
Reichert (1861), cropped. Image courtesy of the University of Leiden, Special Collections Library.
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‘section-cutter’ (Fig. 5C, D; Hensen, 1863, p. 82; His, 1887,
p. 383). His designed his own microtome (Fig. 6) for the
free-hand sectioning of paraffin-embedded embryos. This
microtome allowed sections to be cut individually (rather
than in a ribbon; His, 1868b, p. 181) at His’s preferred
section thickness of 50 μm (His, 1887, p. 383). His’s new
workflow of infiltration embedding, sectioning and 3-D
modelling formed the basis of His’s studies on the early
embryology of vertebrates.

(3) Studies of early chicken development

In the 1860s and early 1870s, His published research on the
early embryology of sharks, teleosts and the chicken (see bib-
liography in Fick, 1904). Among these works was a mono-
graph on the early development of the chicken (His, 1868b)
that established His’s name as an embryologist (Marchand,
1905, pp. 329–330).

(a) The growth law and organ-forming regions

The entire development of the organism can be derived
from a growth lawwhich originates as a relatively simple
function of space and time. (His, 1868b, p. 220)

His’s chicken embryology monograph (His, 1868b) was partly
descriptive, partly theoretical. The theoretical part was a model
of morphogenesis based on the differential growth of embryonic
tissues. He wrote: ‘The first step in any attempt to deduce a
physical form must therefore be the search for [a] basic law of
growth’ (His, 1868b, p. 184). The values of the embryonic
growth parameters, he says, are unique to each species and
change during evolution. In our view, His’s growth law was
the first comprehensive model of morphogenesis and morpho-
logical evolution with a testable mechanism.
His measured the dimensions of chicken embryos at differ-

ent stages of development. Using tissue thickness as a proxy
for growth rate, he found gradients of growth rate in the blas-
toderm along all three anatomical axes (His, 1868b, pp. 188–
190). His mapped the gradients onto the embryo using a sys-
tem of 3-D Cartesian coordinates (His, 1867a, pp. 620–621).
The causes of tissue growth, according to His, are cell pro-

liferation, increase in cell size, cell movements where cells
slide past one another (His, 1867a, p. 618; His, 1868b,
p. 53), and changes in cell shape (His, 1868b, p. 53). The
resultant increase in the volume of the tissues creates
mechanical pressures which deform the tissues in accordance
with their inherent elasticity (His, 1868b, pp. 52–53). His fur-
ther argued that differential growth causes some regions of

Fig. 6. The microtome of Wilhelm His. (A) Front view; (B) side view of stage; (C) engraved name ‘His’ on the strut. Background
gridline spacing: 1 cm. The blade, held in the blade-holder h (fastened with wire for display purposes) is drawn downwards, the
holder steadied against the flat face of g. Between cuts, the block clamped in b is advanced under the arch of g using the
micrometer screw (m). Anatomisches Museum, Basel; photograph: M. K. Richardson.
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the blastoderm to become thicker— and therefore less elastic
— than others. As a result, tissue elasticity becomes
unequally distributed. Ultimately, the pressure of differential
growth on an unevenly elastic embryo creates tensile and
compressive forces that cause the blastoderm to fold.

His used the growth law to explain phenomena such as gas-
trulation and other morphogenetic movements (His, 1867a,
p. 621). It also provided a possible mechanism for regional
specification. His argued that the folding of the blastoderm
divides it into territories with different developmental fates
(His, 1868b, p. 197). These territories or ‘organ-forming
embryonic regions’ (His, 1875, p. 19) are similar to von Baer’s
‘primitive organs’ (epithelial tubes, etc.; von Baer, 1837,
p. 65), except that they are completely undifferentiated.

(b) The modelling of mechanical forces in development

His used clay,metal, rubber and othermaterials tomodel devel-
opment (Table S4; His, 1867a, p. 623; His, 1868b, p. 182;
His, 1894; Hopwood, 1999, 2002). He was also interested in
the geological literature on tangential pressures formed in the

Earth’s crust as it cooled, and how these might cause the land
to rise up as mountain ranges. His thought, by analogy, that
pressure established by differential growth in the embryo might
cause the folding and splitting of tissue layers [Fig. 7; His, 1894;
Hopwood, 1999, p. 470 note (n.) 16]. A similar analogy was
later drawn by (Roux, 1895a, pp. 6–7).

In addition to modelling with physical materials, His asked
Eduard Hagenbach to model development mathematically.
A theoretical, circular elastic plate, representing the blastodisc,
was transformed by specified growth parameters (His, 1868b,
pp. 191–194). According to Hagenbach’s calculations, the cir-
cular plate would be transformed into an ellipse (Brauckmann,
2006, p. 401; Hopwood, 2015, pp. 97–98).

(4) The growth law in conflict with the
biogenetic law

His did not incorporate Darwinian theory into his models of
development and evolution. He appreciated the explanatory
potential of Darwin’s ideas, but felt that they were unproven
(His, 1868b, pp. 223–224). Ultimately, His thought that

Fig. 7. Tensile and compressive forces in development. (A) Fig. 44 in His (1875) showing the formation of a split in the ventral germ layer
(Dd) of a bilaminar chicken embryo, resulting from the lateral tension produced by the faster growth of the upper layer (pp. 58–59). The loose
cells torn from the lower layer will become the lower leaf of the mesoderm. oG, epiblast; Z, cell stretched across the gap. (B) Fig. 10 in
His (1894). Sheet of clay with a sudden transition (arrow) from thick (8 mm) to thin (4 mm). In the lower illustration there is a span of
15 cm, but in the upper illustration the sheet has been pushed from the left to decrease the span to 12 cm. The result is an asymmetric
fold resembling the head fold in C. (C) Fig. 26 in His (1894), ray (Torpedo sp.) embryo showing the head fold. Original rotated 90�
anticlockwise and horizontally reflected by us. (D) Fig. 17 in His (1894; also reproduced as fig. 3 in Hopwood, 1999). A strip of leather,
forced into a curve and fixed along one side. The resultant forces throw the leather into folds resembling intersomitic clefts.
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Darwinian theory was irrelevant: all that was needed to
explainmorphological evolution were the mechanics of tissue
growth, and species-differences in the growth law
(His, 1868b, pp. 211–213). His’s agnosticism towards Dar-
winian theory is in contrast with the pro-Darwinian stance
of Ernst Haeckel.

Haeckel shared His’s desire to explain development on
‘physiological’ or physico-chemical grounds [Haeckel,
1866, volume (vol.) 1, p. 107; Haeckel, 1866, vol. 2,
p. 295]. But while His believed that the embryo contains all
causal explanations for its own development, Haeckel
believed that the causal mechanisms of development – adap-
tation and heredity – lay outside the egg, in its phylogenetic
history (Haeckel, 1866, pp. 50–60; Richards, 2008,

pp. 282–286; Abzhanov, 2013; Olsson, Levit &
Hossfeld, 2017).
His and Haeckel’s scientific differences quickly became

acrimonious (Supplementary Note S4; Spitzer, 1886;
R�adl, 1909; Maienschein, 1991; Nyhart, 1995, pp. 188–
190; Richards, 2008, pp. 280–291; Hopwood, 2015,
pp. 123–126; see Supplementary Note S5 for His’s clashes
with other scientists). It is likely that his angry exchanges with
Haeckel prompted His to write his book, ‘Our Bodily Form’, as
a riposte (Richards, 2008, p. 298). Indeed, one advertisement
for ‘Our Bodily Form’ specifically recommends it to owners of
Haeckel’s ‘Anthropogeny’ (Fig. 8A). Furthermore, His wrote
his book in just a few weeks (His, 1931, p. 25), suggesting per-
haps that he was anxious to give a quick reply to Haeckel’s

Fig. 8. (A) Advertisement for ‘Our Bodily Form’ in Gegenwart, Issue 13, March 27th, 1875, p. 208. (B) Figure on p. 45 of His (1868b)
showing lines of folding that subdivide the embryo into organ-forming regions. (C) Fig. 24 from His (1875). Fate map showing
organ-forming regions demarcated by folding of the embryo. Key: Bauch, abdomen; Brust, ventral thorax; Damm, perineum; Hals,
ventral region of neck; Hinterkopf, occipital region; Kreuz, sacral spine; Mundbucht, stomodaeum; Nacken, cervical spine; Oberkiefer,
maxilla; Rücken, thoracic spine; Scheitel, vertex; Schwanz, coccygeal region; Stirn, forehead; Unterkiefer, mandible.
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most recent attacks (Supplementary Note S4). ‘Our Bodily
Form’ contains scientific arguments against Haeckel’s phylo-
genetic approach, and personal attacks on Haeckel’s scien-
tific credibility. It also contains important new ideas about
development and evolution.

III. ‘OUR BODILY FORM’ (UNSERE
KÖRPERFORM)

Finally, prompted bymy ‘Natural History of Creation’
and ‘Anthropogeny’, His gives a general exposition of
the same in his 1875 publication ‘Our Bodily Form’,
the most important part of which is particularly
directed against me.” (Haeckel, 1875, p. 13)

His’s semi-popular book ‘Our Bodily Form’ (His, 1875; often
mis-cited as 1874; see Table S5) is of particular interest
because of its many new theories about evolution and devel-
opment. Its full title can be translated as: ‘Our Bodily Form and

the Physiological Problem of its Origin: Letters to a Natural Scientist

Friend’. A translation of the Table of Contents is provided in
Table S5. For other discussions of ‘Our Bodily Form’ see
Maienschein (1978, pp. 132–134), Maienschein (1981,
pp. 95–96), Gould (1997), Hopwood (2015), Picken (1956)
and Richards (2008). The ‘natural scientist friend’ alluded
to in the title is His’s nephew Friedrich Miescher
(His, 1897b, p. 18), who incidentally discovered DNA
(in pus that he collected from used surgical dressings;
Miescher, 1871, pp. 9, 441; His, 1897b; Dahm, 2005).

One of His’s stated goals in publishing ‘Our Bodily Form’
was to transform embryology into a new discipline of ‘phys-
iological embryology’: a quantitative science with a reduc-
tionist, mechanistic approach (His, 1903, p. 35; Mall,
1905, p. 142). He was inspired by Carl Ludwig’s transforma-
tion of physiology into a ‘new physiology’ that aimed to
explain biological phenome in terms of the underlying
chemistry and physics, and to do so using the research meth-
odology of the exact sciences: rigorously planned experi-
ments amenable to mathematical analysis (Ludwig, 1852,
1856; His, 1895c; His, 1898; R�adl, 1909, pp. 549–554;
Drischel, 1965; Frank & Weiss, 1966; Rosen, 1973;
Fye, 1986; Zimmer, 1996).

(1) Folding and elasticity of the chicken embryo

According to His, the early chicken embryo becomes demar-
cated by longitudinal and transverse folds in predictable loca-
tions (Fig. 8B, C). One of these folds is the Wolffian ridge,
named by His in honour of its discoverer Caspar Wolff
(His, 1868b, p. 88; Stephens, 1982). His argued that limb
buds arise at the points where the Wolffian ridge intersects
a transverse fold. To help his reader understand these folds,
His suggested that they try folding a piece of paper into the
form of a postal envelope, each corner representing the site
of a limb bud (Table S4).

The folding is influenced by the elasticity that, according
to His, is an intrinsic property of the chicken germinal disc
(and the teleost germinal vesicle; His, 1873b, p. 36). His’s evi-
dence for that elasticity is the histological appearance of an
elastic extracellular matrix in the embryo (His, 1865b,
p. 33). In his ‘Monograph on Calcareous Sponges’, Haeckel (1872,
p. 472 n.) denied this elasticity: ‘the germinal disc … is not
elastic!’ and criticised His for his mechanical approach to
evolution and development. In ‘Our Bodily Form’, His
responded by noting that Haeckel provided no evidence for
his denial of elasticity, and suggested resolving the issue by
taking a germinal disc from an incubated chicken egg and
placing it in a dish of serum. The disc, when prodded with
a probe, will show its elasticity by springing back into its orig-
inal shape (His, 1875, pp. 48–49). In any case, Haeckel con-
sidered his own phylogenetic approach (as embodied in the
biogenetic law), and His’s mechanical approach, to be
irreconcilable.

(2) Organ-forming regions and a fate map

His illustrated a series of ‘organ-forming regions’ using
what we might now call a fate map (Fig. 8B, C). Today, fate
maps are constructed using cell marking and other tech-
niques to track the behaviour of cells and their progeny
during development (Le Douarin & Kalcheim, 1999). By
contrast, His’s fate map is a thought-experiment in which
the definitive body regions are projected, hypothetically,
onto the early embryo. His suggested imagining the body
of a bird or mammal opened along the ventral midline
and flattened out:

If you have carried out in your mind this flattening of
the body, it will be clear that on the one hand every
point on the embryonic region of the blastoderm must
correspond to a later organ, or part of an organ, and
that on the other hand any organ that develops from
the blastoderm must have a preformed primordium
in some spatially defined region of the blastoderm.
(His, 1875, p. 19)

His later published a theoretical fate map of the neural pri-
mordium (fig. 8 in His, 1893a).

(3) Differential growth in morphogenesis and
evolution

His presented measurements from the embryos of various ver-
tebrate species (His, 1875, pp. 208–210) showing that the early
embryo is similar in dimensions in the species examined. But,
as the embryos become folded into organ-forming regions, dif-
ferent quantities of tissue are allocated to each region, and the
quantity allocated varies among species. His argued that each
primordium has its own ‘partial growth law’, and so some
regions grow faster than others (His, 1875, pp. 82–83, 152).
The brain primordium, for example, has more tissue allocated
to it than other regions and grows faster.

Biological Reviews 97 (2022) 1131–1160 © 2022 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
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The configuration which the organ finally assumes is
therefore dependent on the law of its own growth, on
its spatial relations with neighbouring parts, and on
the growth of the latter. The principle of unequal
growth, according to what has been said, also retains
its significance as a form-determining [morphogenetic]
principle in the further course of development.
(His, 1875, p. 83)

As an example, he modelled the role of unequal growth in the
formation of intersomitic clefts using a strip of leather fixed
along one side. When deformed into a curve, the leather
assumes a series of segment-like folds (Fig. 7D; His, 1875,
pp. 64–65).

(4) Germ layers and the parablast theory

In 1875, the germ layers were a battleground for diverse opin-
ions (His, 1875, p. 38; Hertwig & Hertwig, 1881, p. 117),
mainly because the available histological techniques made it
difficult to resolve the germ layers in detail. His’s improved his-
tological techniques led him to a new model of germ layer
development: the parablast theory (His, 1866a,b, 1868b;
His, 1875, pp. 41–44). This theory envisaged a dual genetic ori-
gin for the embryo, with the mesoderm largely arising from
maternal ‘parablast’ cells that migrate from the ovary into
the embryo via the white yolk (the pale-coloured yolk surround-
ing the embryo). The parablast theory has some similarities
with Reichert’s idea that the embryo develops from yolk cells

(the ‘formative yolk’; Reichert, 1840, pp. 88–96;
Reichert, 1843, pp. 23–27; Stricker, 1872, p. 1201).

(5) Concrescence theory

Thus the primitive rudiment of the body is a flat ring,
whose width and thickness is maximal at the future
head end, and minimal at the opposite end, the tail.
The two lateral halves of the ring come successively
into apposition and unite as symmetrical body halves.
(His, 1875, p. 198)

Another of His’s new ideas – concrescence – was inspired by
his studies of teleost development (His, 1874; His, 1875,
pp. 188–189; His, 1877b). His suggested that the trunk was
formed from left and right embryonic halves that fuse in
the midline (Fig. 9). This process of fusion supposedly takes
place during epiboly, and became known as ‘concrescence’
(Fig. 9; reviewed by Kopsch, 1904). In one thought experi-
ment, His imagined concrescence as if a ring of rubber tubing
were pushed inwards at one point; the resulting two-layered
indentation represents the nascent embryo and the converg-
ing halves of the germ ring (His, 1877b, p. 109, n.). A similar
idea was perhaps touched on by Lereboullet when he
described malformed pike (Esox sp.) embryos with a partial
split along the longitudinal axis (Lereboullet, 1863;
Morgan, 1895, p. 419; Kopsch, 1904, p. 6); it was possible
that the split represented the fusion line of two halves.

Fig. 9. Concrescence in salmon and cat shark embryos. (A) Figs 127–130 in His (1875). This sophisticated schematic uses semi-
transparent rendering to show the marginal ring progressing over the yolk mass during epiboly. The sequence of stages is: top left,
top right, bottom left and bottom right. (B) Fig. 126 in His (1875). Schematic illustration of concrescence in bony fish
development. Cells from the inner curvature of the germ ring (upper two arrows) contribute to lateral parts of the body; cells from
the outer curvature (lower four arrows) contribute to structures closer to the midline. According to the concrescence model, the
trunk region is formed by fusion of right and left halves, while the head and tail each consist of one mass from the outset.
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(6) Quantitative comparative embryology and a
developmental hourglass

(a) His’s ‘physiognomy’ of embryos

An identity in the external form of animal embryos, as
so often asserted, does not exist. Even at an early stage
of development, the embryos have their class and their

order characters, just as we can scarcely doubt their
species and gender, even their individual characters.
(His, 1875, p. 201)

As part of his attack on the biogenetic law, His tried to dis-
prove Haeckel’s claim that embryos of different vertebrate
species are identical in morphology during organogenetic

Fig. 10. Embryos of six amniotes. From His (1875), limb-bud stages, left lateral aspect. See a similar composite in Hopwood (2015;
fig. 7.14); as Hopwood notes, the embryos were originally on different pages. (A) Fig. 132, human; (B) Fig. 133, pig, arrow indicates the
nascent snout described by His; (C) Fig. 134, deer; (D) Fig. 135, rabbit, 14 days (d) post-fertilisation; (E) Fig. 136, guinea-pig;
(F) Fig. 137, chicken, 5 d post-fertilisation.
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Fig. 11. Schematic analysis of some of the six amniote embryos shown in Fig. 10, showing our interpretation of His’s (1875, pp. 192–
206) text. Double arrowheads indicate the images to be compared in each example. (A, B) Pairwise comparison illustrating that human
(A) and pig (B) embryos share many common characters (highlighted in green): (cf, cervical flexure; fl, forelimb; hl, hindlimb; hy, hyoid
hyomandibular groove; na, nasal pit; nl, nasolachrymal groove; op, optic Anlage; ot, otocyst; so, somites; tb, tailbud. (C, D) Comparison
of human (C) and pig (D) showing that common characters present different character states (highlighted in purple). Thus the simple
first pharangeal arch (I) in D is divided into mandibular (md) and maxillary (mx) processes in C. His (1875, p. 196) suggested that the
modest development of the human tailbud (tb) is a foreshadowing of the vestigial state of the adult coccyx. (E, F) Comparison of human
(E) and pig (F) embryos showing relatively massive development of the head, rostral to the eye (shaded blue) in the human; and the

(Figure legend continues on next page.)
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stages (reviewed by Richardson & Keuck, 2002). His com-
pared six amniote embryos at limb-bud stages (Figs 10–12)
and quantified their differences using a simple morphometric
analysis: he traced the outline of each embryo onto paper, cut
round the outlines, then weighed the cut-outs to estimate their
surface area. His analysis showed, for example, that the head
of the human embryo is massive, and its body small, compared
to the pig embryo. His noted the massive development of the
eye in the chicken embryo, suggesting that this compresses
the surrounding tissue, causing the beak to develop (Fig. 13).

(b) A developmental hourglass

His compared embryos of different species stage-by-stage
and showed that early embryos exhibit species differences
in the size and distribution of the yolk and other factors:

… the most pressing question is how, from such different
developmental starting points, do the similarities in subse-
quent [stages], and in the adult body, arise? (His, 1875, pp.
190–191)

His explained that, after these divergent early stages, the
embryo undergoes folding into organ-forming regions; the
folding releases mechanical tensions in the tissues and so
the embryo reaches an equilibrium state (His, 1875,

p. 208). The embryos of different species become more sim-
ilar in appearance, but nonetheless show the unique ‘physi-
ognomy’ of their species. As development progresses
further, the morphology of the embryos becomes increas-
ingly divergent as they develop class characters (for example,
feathers and beak in the chicken; His, 1875, p. 126). With this
analysis, he described a pattern known today as the ‘develop-
mental hourglass’ (Duboule, 1994), although His did not use
that term.

(7) Early brain development

Differential growth had been suggested as a causal factor in
brain development byReichert (1861) and later byHis (1873-
a). In ‘Our Bodily Form’, His pursued this topic by analysing
neural tube development in different vertebrates (His,
1875, pp. 93–118). His showed that rubber tubes, variously
manipulated, can adopt shapes resembling the neural tube
at different stages of development (Figs 14 and 15). The
forms produced by the tubes bear a striking resemblance to
the developing optic primordia, the rhomboid sinus, the
infundibulum and the pontine flexure, implying that
mechanical forces might play a part in neural tube
morphogenesis.

(Figure legend continued from previous page.)
relatively massive size of the trunk overlying the pleuro-peritoneal cavity in the pig (grey). (G, H) The human embryo (G) has a larger
telencephalon (te, shaded blue) than the pig (H). The nasal processes (red outline) give the nasal margin (nm) the appearance of a
rudimentary snout. The hyoid arch (hy, brown) of the pig embryo is ‘plumper’ (His, 1875, p. 195) than that of the human. (I, J, K)
The eye (op) and midbrain (me) together occupy two-thirds of the area of the head in the chick (K) but less in the human (I) and pig
(J). Yellow shading in the two mammals is mainly the lens, whereas in the chicken a large part of the optic cup in addition to the
lens is also exposed and shaded. The optic Anlage is much larger in the chicken than in the mammals.

Fig. 12. Chart summarising His’s morphometric analysis of six amniote embryos. Measurements taken from table in His (1875,
p. 201). His notes that the chicken and human embryos have relatively large heads (blue), while the deer and pig both have
relatively large pleuroperitoneal regions (pink). The dorsal trunk and limbs combined (green) are similar in relative size in all six
species.
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(a) Flexures in the early neural tube influence the form of the adult brain

His noted that the midbrain in avian and osteichthyan
embryos is relatively larger than in mammals (Fig. 15). He
argued that these size differences influence the subsequent
development of the brain and its adult form (he had made
these arguments before: His, 1873a, pp. 331–332). He
explained the relatively massive expanse of the human hemi-
spheres in terms of the strong development of the pontine
flexure, which in turn causes the hindbrain to be subducted
under the ventral aspect of the midbrain. The brain is there-
fore shortened and more readily overgrown by the hemi-
spheres (His, 1875, pp. 114–116).

(b) Each brain region ‘inherits’ a unique growth rate from its early
primordium

According to His’s earlier research (His, 1868b) the forebrain
lies at the zenith of three growth gradients. Its relatively rapid
growth continues in later stages, as though an autonomous
growth rate is ‘inherited’ from its antecedent in the neurula.

The forebrain grows so fast that it comes to bulge beyond the
rostral tip of the notochord.

(c) Evolutionary differences in the relative size of the brain regions are
established by heterochrony

His presented evidence that teleost embryos have a long mid-
brain compared to other vertebrates— and a correspondingly
small forebrain. This size difference persists in the adult. One
mechanism suggested byHis to explain this phenomenon is an
evolutionary change in developmental timing (His, 1873a, p.
331), which we would now call ‘heterochrony’ (Table S2).
For example, the pontine flexure and ‘hook flexure’ (His’s
fourth primary flexure, see Fig. 15) are prominent in the devel-
oping salmon, and develop relatively early. By contrast, in the
chicken at a similar stage, neither flexure is well developed.

(8) After ‘Our Bodily Form’
In the years following the publication of ‘Our Bodily Form’ ,
His’s major publications included a landmark study of

Fig. 13. Allometric growth and the development of the beak. Our interpretation of figures of the rostral aspect of the face and text in
His (1875, pp. 204–206). (A, B) Fig. 139, 14 day (d) rabbit; (C, D) Fig. 139, 5 d chicken; (E, F) Fig. 140, 6 d chicken. According to His, the
eye (yellow) of the chicken embryo grows enormously in size compared with that of the rabbit. As a consequence, the stomodeum (blue)
and internasal region in the chicken are laterally compressed (arrows in D), causing the nasal pits (red) to converge (arrows in F). His
argued that these changes contribute to the formation of a narrow, protruding beak. Key: nl, nasolachrymal duct.
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Fig. 14. Rubber tubes used to model the morphogenesis of the cranial neural tube. Figures fromHis (1875). (A) Fig. 85. Flexion produces
a transverse groove (gr) and two ‘ears’ (actually the optic Anlagen, arrowheads). (B) Fig. 86. When the tube is anchored at the white circle,
then pushed in the direction of the black arrows, two ‘ears’, representing the optic Anlagen (arrowheads) and an oblique groove (white
arrow) are formed. The anchorage point is the infundibulum attached to Rathke’s pouch. (C) Fig. 82 (detail). Chicken embryo, 2 d
incubation, ventral aspect of head end. The anchorage point in B is analogous to the infundibulum (white circle) in this embryo.
(D) Fig. 84. Brain of chicken embryo, 3 d incubation, right lateral aspect. The infundibulum (black circle and Tr) represents the anchor
point (white circle in B, C) which causes the bulging (curved arrow). (E) Fig. 87. A spindle-shaped hole cut in the tube gapes to form a
diamond-shaped cavity when the tube undergoes convex flexure. (F) Fig. 88. With convex flexure of the slit tube, the floor of the
aperture forms a transverse, saddle-shaped ridge (r). (G) Fig. 14; chicken embryo, end of first day; dorsal aspect. The rubber model in
E (shown in detail, left) resembles the shape of the neural Anlage where it passes from the head to neck (dashed lines). (H) Fig. 90.
Chicken embryo, day 2, dorsal aspect. The open neural plate in the lumbar region resembles the slit tube in F (shown in detail, right).
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human developmental anatomy (His, 1880, 1882a, 1885).
He also made important contributions to developmental
neurobiology, proposing a scheme of neural tube organisa-
tion in which it is divided into ‘longitudinal zones’: the roof
plate, floor plate, and side walls. The latter were subdivided
into what he called alar and basal plates (His, 1888b, p.
350; Table S2). Orr (1887, p. 329) had also alluded to the
longitudinal organisation of the neural tube (in Anolis sagrei

and other lizards) but did not provide a zonation scheme.

IV. THE INFLUENCE AND FATE OF HIS’S WORK

Prof. His has been led by his researches to
adopt peculiar views concerning the causation of

animal forms. These he has explained at some
considerable length in his great work on the
“Development of the Chick,” and elsewhere, but
they have not met with very general acceptance
(M.F., 1875)

(1) An outstanding legacy in developmental
neurobiology and descriptive embryology

‘In almost every branch of anatomy [His] has left his
mark, and during the last thirty years no one has done
so much to advance our knowledge of that subject. …
there is no one who has exercised a more powerful
influence in moulding anatomical thought in almost
all branches of that subject.’ (Cunningham, 1906, pp.
1235–1236)

Fig. 15. Comparison of brain development in three different vertebrates: (A) pike; (B) chicken (top) and frog (bottom). Figs 92, 101
and 102, respectively, in His (1875). (C, D, E) Our interpretation of His’s text (His, 1875, pp. 107–108) for the pike, chicken and frog,
respectively. The midbrain (mb) is relatively long in the pike. The pontine flexure (pf ) is massively developed in the pike, weakly
developed in the chicken and scarcely present in the frog. The massive development of the pike pontine flexure causes part of the
hindbrain (hb) to appear subducted along the ventral aspect of the midbrain. hf, hook flexure or ‘Hakenkrümung’. (F) Model
formed by pushing two ends of a slit rubber tube towards each other; subduction occurs (arrow) of part of the tube at the point of
the slit (asterisk). This configuration resembles the pontine flexure in A, and the apparent subduction of part of the hindbrain on
the ventral aspect of the midbrain (A, C; it is only ‘apparent’ because the midbrain is always rostral to the hindbrain).
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The contributions of Wilhelm His, Sr to neurobiology
(Supplementary Note S3) and descriptive embryology were
of great importance and he coined many anatomical terms
still in current use (Table S2; Swanson, 2015, p. 17). His’s
contributions to neuron theory earned him two Nobel Prize
nominations (Table S1). Minot (1890, p. 891) referred to
His’s ‘great’ monograph on chicken development (His,
1868b) and one reviewer described it as the finest work of
its kind since von Baer (Anon., 1869). His’s ‘Anatomy of Human
Embryos’ (His, 1880, 1882a, 1885) is a foundational work in
that field (O’Rahilly, 1979; Dupont, 2018, p. 2).

His’s ideas influenced Weiss’s ‘contact guidance’ theory
of neuronal target-finding (Weiss, 1955, p. 356), and his dis-
covery of the neural crest is a landmark in the history of
developmental neurobiology (Hall, 2008; Bronner &
Simoes-Costa, 2016; Dupont, 2018; Glover et al., 2018).
On the other hand, his epi-spinal spaces in the brain may
be artefacts (Woollam & Millen, 1954), and his facial recon-
struction of J. S. Bach is questionable (Supplementary
Note S2).

… [His’s] work on the development of the human
hindbrain published in 1890 provided novel ideas that
more than 100 years later form the basis for penetrat-
ing molecular investigations of the regionalization of
the hindbrain neural tube … (Glover et al., 2018,
p. S14)

His’s longitudinal scheme of the nervous system was also
highly influential, although Kingsbury (1920) argued that it
may apply only to the truncal neural tube. Recent studies
(reviewed by Puelles, Domenech-Ratio & Martinez-De-La-
Torre, 1987; Glover et al., 2018; Puelles, 2018) suggest that
His correctly identified the rostral extent of the alar-basal
boundary, but not that of the floor and roof plates (Luis
Puelles, personal communication). The ‘updated proso-
meric model’ is a synthesis of His’s concept with current
data; according to that model, the brain of all vertebrates
can be divided into His’s longitudinal zones, and several
transverse segments or neuromeres (Puelles, 2018)
(Fig. 16A, B).

In contrast to these impressive discoveries, His’s theories of
development and evolution did not have an enduring influ-
ence. This is partly because, as Mall explains, His ‘was never
inclined to develop a school nor was he anxious to have
pupils.’ (Mall, 1905, p. 150).

(2) Failure of the parablast and concrescence
theories

… after the fall of the parablast theory, the concres-
cence theory became [His’s] problem child… he dem-
onstrated concrescence using rubber and wax models
very beautifully and clearly; however, rubber and
wax are not the materials from which embryos are
composed. (Rabl, 1897, pp. xiii–xiv)

The parablast and concrescence theories were, in the early
days, highly influential. Van Beneden (1878, p. 51) referred
to the ‘famous’ parablast theory as did Fick (1904, p. 187).
Edwin Klebs developed a ‘parablastome’ theory to classify
cancers according to their supposed parablastic origin
(Klebs, 1889, pp. 573–574). As for concrescence, Rabl was
sceptical but nonetheless described it as ‘ … one of the most
important developmental theories about the structure of the
vertebrate body…’ (Rabl, 1897, p. xii). Kopsch, also a scep-
tic, argued that: ‘the epoch-making significance of His’s con-
cept consists in the extraordinarily simple way in which the
embryonic development of vertebrates and invertebrates
can now be explained by the same processes’ (Kopsch,
1904, p. 4). Concrescence was still cited in textbooks well into
the 20th century.

Both theories, however, were ultimately shown to be
false (Brauckmann, 2006). Cell-labelling experiments
were particularly important in ruling out concrescence
(Keller et al., 1991). For details of the scientific evidence
against these theories, see Supplementary Note S6.
Picken (1956) argued that the failure of the parablast and
concrescence theories may have tarnished His’s scientific
reputation.

(3) His’s mechanical developmental biology

Wilhelm His’s approach to development is often called
‘mechanical’, a word that describes: (i) causal mechanisms;
and (ii) the role of physical forces in development
(Supplementary Note S7).

My attempts to introduce some elementary mechani-
cal or physiological conceptions into embryology have
not generally been agreed to by morphologists.
(His, 1888a, p. 294)

His’s mechanical developmental biology was impor-
tant because it stimulated the study of developmental mech-
anisms, and because it provided a challenge to Haeckel’s
phylogenetic embryology (Supplementary Note S7). How-
ever, many scientists were critical because His inferred devel-
opmental mechanisms on the basis of histological studies and
modelling, and not from in vivo experiments. Oscar Hertwig
wrote: ‘ … I think more physiologically than His, who just
wants to be the representative of a physiologically-minded
histology …’ (Hertwig, 1883, p. 124).

His’s suggestion that differential growth is a major driver
of gastrulation movements was contradicted by Rhumbler’s
studies suggesting that changes in cell shape and position,
rather than growth, were important (see Table S4;
Rhumbler, 1902, pp. 422–423). Subsequent studies have
confirmed Rhumbler’s view (Keller, 2002; Heisenberg &
Bellaiche, 2013).

His suggested that neurulation was driven by pressure
from tissues surrounding the neural primordium (Alexander
Goette made similar suggestions; Goette, 1875, p. 186).
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However, Wilhelm Roux argued that the slightest variations
in the parameters of the system would then cause the embryo
to develop abnormally (Roux, 1895a, p. 242). Roux seems to
be arguing that His’s mechanism lacks what we now call
developmental precision and robustness (see Kerszberg &

Wolpert, 2007, pp. 205–206). Roux reported that surgi-
cally-isolated neural primordia of chicken embryos in culture
could still undergo normal neurulation movements, despite
having been freed from any surrounding tissues
(Roux, 1895a, pp. 247–248).

Fig. 16. (A) His’s model of longitudinal zones in the neural tube. Fig. 13 from His (1888b). (B) The ‘updated prosomeric’ model of
brain organisation. Yellow, roof plate; blue, floor plate. Fig. 8 from Puelles (2018). (C, D) Folding along elasticity boundaries as a
mechanism of early vertebrate morphogenesis (reconstructed by Dr. Fleury, based on fig. 16 in Fleury et al., 2015). A paper sticker
is placed on a rubber sheet, thereby stiffening the central area. The stretched sheet buckles around the sticker, along boundaries
between elastic and stiff regions. This demonstration is reminiscent of His’ suggestion that the early embryo has variable elasticity
and undergoes folding at unstable boundaries. (E) Vaihinger modelled the opening and closing of plant stomata by pushing and
pulling a rubber tube (fig. 8 from Vaihinger, 1941). Courtesy of Universiteitsbibliotheek Utrecht. (F, G) Manipulation of a rubber
tube (F) can create shapes resembling a scanning electron micrograph (G) of the developing cardiac tube of the chicken (fig. 5B, D
from Männer, 2004).
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(a) His and developmental mechanics (Entwicklungsmechanik)

… [to His] we owe a whole series of causal deductions.
However, we cannot deny that the applicability of this
method to making causal deductions is very limited,
and in many cases the conclusions thus obtained do
not offer the certainty which is so desirable in the case
of such fundamental questions. (Roux, 1895a, p. 30)

The developmental mechanics or Entwicklungsmechanik ofWil-
helm Roux (Maienschein, 1991) was ‘mechanics’ not in the
sense of physical forces, but in the sense of causal mechanisms
(Roux, 1895a, p. 11; R�adl, 1909, pp. 517–522; Sander,
1991; Counce, 1994). Roux praised His for establishing a
causal approach to development (Roux, 1895a, p. 244), but
complained that His did not test his hypotheses experimen-
tally (Roux, 1895b, p. 174). So, while His and Roux shared
a common interest in mechanisms, Roux was an experimen-
talist, His was not. Because of this, Roux felt that His’s expla-
nations were insufficient. For example, he argued that His’s
model of differential growth in the embryo does not explain
what causes the differential growth in the first place
(Roux, 1895a, p. 147); similar criticisms were voiced by Spit-
zer (1886, p. 211).

(b) His and the modern discipline of mechanobiology

In ‘Membranes and cavities’, His speculated about the
effects of physical forces and cell–matrix interactions in
determining cell behaviour. The modern discipline of
mechanobiology addresses such phenomena (Carter et

al., 1998; Moore, Roca-Cusachs & Sheetz, 2010; Iskratsch,
Wolfenson & Sheetz, 2014; De, Hwang & Kuhl, 2015,
p. v.; Jansen et al., 2015; Paluch et al., 2015). Mechanobiology
is a recent discipline, one of the earliest mentions of which is
in van der Meulen, Beaupre & Carter (1993).

Cells can sense forces applied to the extracellular matrix, and
the transduction of these forces can influence stem cell behav-
iour (Engler et al., 2006; Discher, Mooney & Zandstra, 2009).
There is increasing evidence that these phenomena are impor-
tant in development — as His had suggested. The application
of biomechanics to development was called ‘embryo mechan-
ics’ by Davidson, who cites ‘Our Bodily Form’ as an early work
in the field (Davidson, 2011, 2017).

Physical forces are important in modulating cell behaviour
in the developing nervous system (Van Essen, 1997;
Hilgetag & Barbas, 2005). Some recent authors have found
merit in His’s rubber tube models of neural tube develop-
ment (Sheesley et al., 2014; Edelman et al., 2016). Others have
presented evidence that mechanical forces play an important
role in the formation of gyri and sulci on the surface of the
cortex (Tallinen et al., 2016). Physical forces established by
blood flow patterns (haemodynamics) are important in the
development of the cardiovascular system (reviewed by
Stekelenburg-de Vos et al., 2003; Groenendijk et al., 2005;
Andres-Delgado & Mercader, 2016; Poelmann &
Gittenberger-de Groot, 2018). Fusion of the cardiac tubes

at the midline may be influenced by tensile forces in the
endoderm (Varner & Taber, 2012).

At least one recent paper on mechanobiology cites ‘Our
Bodily Form’ as an early work relevant to the field (Keller,
Shook & Skoglund, 2008). But other reviews of the history
of mechanobiology make no mention of His (Iskratsch
et al., 2014; Wall et al., 2018), suggesting that their authors
do not regard him as a major influence on the field.

(c) The viscoelasticity of embryos

The dispute between His and Haeckel over the elasticity of
the embryo appears to have been resolved in His’s favour.
Elasticity has been demonstrated in early chicken (Agero,
Glazier & Hosek, 2010) and Xenopus laevis (Zhou, Kim &
Davidson, 2009) embryos. One current model sees embryos
as viscoelastic, i.e. having both fluid and elastic properties.
Viscoelasticity varies at different locations in early chicken
embryos (Marrese et al., 2019). Fleury et al. (2015) modelled
the viscoelastic properties of early embryos, and how they
are deformed by physical forces. In one experiment, the
authors applied forces to a sheet of rubber with a paper
sticker fastened to it (Fig. 16C, D) and showed that bound-
aries between regions differing in elasticity were crucial
hinge-points (Fleury et al., 2015).

(4) His and evo-devo

“… comparative developmental mechanics” is a sci-
ence that lies in the future (Roux, 1895a, p. 441)

Evo-devo (evolutionary developmental biology) is a disci-
pline which came to prominence following the publication
of Ontogeny and Phylogeny by Stephen Gould (Gould, 1977)
and the cloning of homeobox genes in Drosophila and mam-
mals in 1984 (see Richardson, 2009). One of the aims of
evo devo is to explain phenotypic evolution in terms of evolu-
tionary changes in developmental mechanisms (Raff, 2000;
Swalla, 2002; Gilbert, 2003; Hall, 2003; Tickle &
Urrutia, 2017). His’s work has had little influence on the
modern discipline of evo-devo; Gould is the only reviewer
among those cited above who mentions His’s work. Never-
theless, we argue that ‘Our Bodily Form’ contains many ideas
relevant to this field.

(a) Ontogenetic allometry

Mehnert, inspired by His’s growth law and organ-forming
regions, suggested that organ primordia might function as
independent growth centres (Mehnert, 1898; pp. 76–77).
Today, such phenomena are considered under the rubric of
ontogenetic allometry: changes in the relative dimensions of
an individual or its parts during development (Gould, 1966;
pp. 587, 601–602). Eduard Hagenbach’s calculations, pub-
lished in His (1868b), are an early example of the mathemat-
ical modelling of ontogenetic allometry; His’s morphometric
analysis of six amniote embryos is another (see Figs 10–12).
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His’s suggestion that the massive growth of the eye in the
chick embryo causes the beak to develop, is an example of
ontogenetic allometry (Fig. 13; His, 1875, pp. 204–206).
Haeckel (1875, pp. 27–28) argued that it could just as easily
be the case that the beak drives development of the eye. His’s
idea, however, is more plausible, given that the eye develops
much earlier than the beak (a point suggested to us by Robert
Poelmann). Discussions of beak morphogenesis are interest-
ing in the light of a recent study of the variations in beak
shape among Darwin’s finches (Geospiza spp.; Abzhanov
et al., 2004) which found that the timing of Bmp4 expression
in the upper beak primordium might explain the ontogenic
allometry of the beak.

(b) The problem with phenetic comparisons

His’s comparison of six amniote embryos (Figs 10–12) is prob-
lematic for many reasons. The stages are not equivalent
(Fig. 10; Spitzer, 1886, p. 152), and only external characters
are considered. Additionally, His’s drawing (see Fig. 10) of
the deer embryo is problematic because of its tendentious
depiction of the acropodia (Richardson & Keuck, 2001).
Another major objection toHis’s comparison is that it is a phe-
netic comparison — a pre-cladistic approach to grouping
organisms based on their overall similarity (Cain &
Harrison, 1958, 1960; Sneath & Sokal, 1962; Vernon, 1988;
Richardson et al., 2001; Rossello-Mora & Amann, 2001). As
Spitzer (1886, p. 155) put it, His’s comparisons were based
on the ‘impression of the aesthetic similarity’ of embryos.

(c) The ‘developmental hourglass’

The influential developmental ‘hourglass’ (egg-timer) model in
evo-devo is based on phenetic comparisons and on transcrip-
tome analyses. It is a statement of the gross similarity of embryos
at different stages of development. It envisages convergence of
the external morphology of young stages towards a mid-embry-
onic, conserved stage; and then divergence in morphology as
embryos progress to postembryonic stages (reviewed by
Duboule, 1994; Richardson & Keuck, 2002). The relatively
high similarity of these mid-embryonic stages among different
species is suggested to reflect the conservation of gene regulatory
networks active at those stages (Duboule, 1994; Prud’homme,
Gompel & Carroll, 2007).

Von Baer had noted the similarity of early vertebrate
embryos, and their subsequent divergence as they develop
(von Baer, 1828, p. 221). He argued that all animals develop
from a phenotypically similar early stage (von Baer, 1828,
pp. 223–224): a vesicle, which Haeckel later equated with
his ‘blastula’ (Haeckel, 1877, p. 153). Because von Baer’s
pattern of divergence represents only the upper part of the
developmental hourglass, it has been called the developmen-
tal ‘funnel’ (Abzhanov, 2013).

It was His who first identified the hourglass pattern and Kei-
bel (1906, p. 172) confirmed this, although neither used the
term ‘developmental hourglass’. Recent transcriptomic studies
have largely confirmed the existence of a middle stage in

development where transcriptomes are relatively enriched with
conserved developmental genes (Quint et al., 2012; Tena
et al., 2014; Drost et al., 2015, 2016; Cridge, Dearden &
Brownfield, 2016; Marlétaz et al., 2018; Yanai, 2018; discussed
by Richardson, 2012).

(d) Embryonic characters in phylogenetic studies

His believed that ‘younger’ embryos show class, genus, species
and individual traits; and he tried to group the species based on
measurements of their bodily proportions (see Fig. 12;
His, 1875, p. 201). Spitzer argued that this could potentially
be used in a new classification of animals based on embryonic
characters (Spitzer, 1886, pp. 154–156) but was sceptical about
whether embryos could provide as much information as adult
stages (Spitzer, 1886, p. 155). He also argued that using His’s
approach would mean that human and chick embryos, on
the basis of their large heads, would be more closely related
to one another than to the other species considered; a conclu-
sion that would be inconsistent with known phylogenies.

(e) Quantitative methods in comparative embryology

It was, perhaps, in his views on the importance of mea-
surement for the understanding of morphogenetic pro-
cesses that His displayed the greatest originality.
(Picken, 1956, p. 1163)

His’s comparison of six amniote embryos, in which he
applied morphometrics to comparative embryology (see
Fig. 12) is a landmark in the history of evolution and develop-
ment. It attempts to supplement phenetic statements about
embryonic similarity with quantitative data on the relative
dimensions of embryonic regions. However, His’s data were
limited to three regions in six embryos at a single stage with
no replicates. Modern quantitative approaches to compara-
tive embryology are found in the study of heterochrony
(e.g. Jeffery et al., 2005; de Jong et al., 2009; reviewed by
Klingenberg, 1998; Keyte & Smith, 2014), allometry
(Klingenberg, 2016), and developmental transcriptomics.

(f ) Coordinate systems, positional information and gradients

Some of the concepts that His explored have more recently
become part of our understanding of developmental mecha-
nisms. These include such concepts as coordinate systems,
positional information gradients and cell–cell signalling.
However, His’s work on these concepts did not lead to lasting
insights, and later interest in those same subjects appears to
be independent of any influence or knowledge of His’s work.
His used a coordinate system to map loci of differential

growth, and growth gradients, in the embryo (His, 1875,
pp. 121–122; His, 1867a, p. 619; His, 1868b, p. 185). Later,
D’Arcy Thompson used x–y coordinates to map body plans
onto rubber sheets; he then stretched the sheets to model
the effects of differential growth (Thompson, 1945,
p. 1087). Driesch also considered development in terms of
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coordinates: ‘what actually will happen in each of the blas-
tula cells in any special case of development experimentally
determined depends on the position of that cell in the whole,
if the ‘the whole’ is put into relation with any fixed system of
co-ordinates … ’ (Driesch, 1908, p. 80; see also
Driesch, 1891, pp. 28–29). Another example of the use of
coordinate systems in anatomy is in its application to brain
structure (Nieuwenhuys & Puelles, 2016).

His postulated that each organ primordium adopts its own
growth law depending on its spatial relationships with its
neighbours (His, 1875, p. 83). This is a statement of how a
rapidly growing tissue might apply mechanical force to its
neighbours. An analogous suggestion was made by Schwend-
ener in his positional theory of phylotaxis based on mechan-
ical influences (Schwendener, 1878).

His proposed that cells and tissues might influence each
other via the secretion of chemicals (His, 1865b, p. 33). How-
ever, he considered gradients not in terms of concentration
gradients in chemicals, but as growth gradients. The concept
of growth gradients that His proposed does not appear to
have influenced the development of gradient theory by
Child (1928), Runnström (1914) and others (reviewed by
Spemann, 1938, pp. 318–345). Spemann stated that the con-
cept of developmental gradients ‘as far as I know, was first
proposed and confirmed by Th. Boveri’ (Spemann, 1938,
p. 318). Gradients of morphogens became a key concept in
Wolpert’s positional information model (Wolpert, 1969),
although he later modified this view (Kerszberg &
Wolpert, 2007; Wolpert, 2009).

(5) Modelling

His used a variety of physical materials in order to model
developmental processes (Table S4), and to make 3-D
models for teaching (Hopwood, 1999, 2002, 2012). Haeckel
poured scorn on His’s ‘comical’ models that used rubber
tubes and postal envelopes (Haeckel, 1875, pp. 26–27). How-
ever, many developmental biologists have used models of
various kinds (e.g. Fig. 16; Table S4): Rhumbler (1902) made
a model of the blastula out of corset stays, Vaihinger (1941)
used rubber tubes to model the biomechanics of stomatal
opening, and Männer (2004) applied forces to a rubber tube
to model cardiac looping (Fig. 16C–G; see also Taber, Lin &
Clark, 1995).

(6) The fate map and organ-forming regions

This view was formerly introduced into embryology by
His as the principle of organ-forming germ regions; it
shows affinity to the views of Weismann and Roux
(Maas, 1903, p. 65). (The ’view’ referred to was that
different regions of the early embryo develop into dis-
tinct parts of the adult)

(a) The fate map

One of His’s research goals was to establish an exact topogra-
phy of the chicken embryonic disc (His, 1877a, p. 112). His’s

map of organ-forming regions (Fig. 8) is the earliest fate map
known to us. However, it was entirely speculative; true fate
maps would only emerge from cell-labelling experiments
(Goodale, 1911; Smith, 1914; Vogt, 1929; Psychoyos &
Stern, 1996). When Rawles compared His’s fate map to her
own experimental results, she concluded: ‘while a certain
striking similarity exists between the theoretical concepts of
His and the present experimental analysis with regard to
some points, His’s scheme is based on too simple a ground
to justify detailed comparison.’ (Rawles, 1936, p. 312).

(b) Organ-forming regions and mosaicism

His’s theory of organ-forming regions was influential in dis-
cussions of mosaic development (Supplementary Note S8).
Roux wrote: ‘If a whole arises from several or many indepen-
dently differentiating parts, it is assembled, like a mosaic,
from individual parts that have been formed; I have called
this kind of development a “mosaic work”’ (Roux, 1895a,
p. 821). Roux noted that ‘His’ principle of organ-forming
germ-regions … only has a causal meaning insofar as it des-
ignates the locations of the resultant formation of manifold
interactions’ (Roux, 1895a, p. 825).

Weismann Parker & Rönnfeldt (1893) state that His’s the-
ory of organ-forming regions was the first, albeit imperfect,
expression of the predestination of cells. They argue that
His’s theory correctly suggests that the ‘differentiating princi-
ple’ of development lies within the cell itself and not in exter-
nal influences (Weismann et al., 1893, pp. 134–135). His’s
concept also influenced Wilson’s ‘germinal localisation’ the-
ory (reviewed by Kollmann, 1904; Wilson, 1904). For more
recent opinions on regulation and mosaicism, see Boiani
et al. (2019) and Stern (2006).

(c) Organ-forming regions as fields

The organ-forming regions of His are growth centres. But he
did also talk in terms of ‘fields’ demarcated by ‘boundary
markers’ in the early chick embryo (His, 1875; pp. 45–46)
as, later, did Wolpert (1969; see also Jacobson, 1983,
p. 1036). The concept of morphogenetic fields was elabo-
rated first by Alexander Gurwitsch and then by Paul Weiss
(Beloussov, Opitz & Gilbert, 1997). Today, developmental
fields are considered to be regions undergoing morphogene-
sis or pattern formation (Wolpert, 1969; De Robertis, 2009).

(7) Technical innovations

The technic of investigation made little progress, and it
is in this particular that His made a change. He had
prepared himself by a study of the embryology of the
chick and in connection with this study had worked
out a successful technic; he fixed his embryos, he had
constructed an apparatus for section cutting which,
primitive as it now seems, led the way to our modem
microtomes, and he had thought out a method of
reconstruction which has been gradually improved,
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especially by Born, into a method that is now abso-
lutely indispensable in embryological investigation.
(Keibel & Mall, 1910, p. xv)

His’s microtome was certainly not the first section cutter. In
1770, Hill described a ‘cutting engine’ designed by Cummings
for the sectioning of woody plant tissue (Hill, 1770). Adams’
microtome had a micrometer-screw advance (Adams &
Kanmacher, 1798, p. 128; Chv�atal, 2017). Chevalier used
the name ‘microtome’ for such devices (Chevalier, 1839,
p. 192). A microtome for the sectioning of animal tissue was
developed by Oschatz in Purkyně’s lab, long before the inven-
tion of paraffin embedding (Oschatz, 1844; Chv�atal, 2017).

The sections that His cut routinely were 50 μm in thickness
— far thicker than the 5–7 μm sections common today. His
was still using his microtome in his studies of human embryos
in the 1880s. But it is likely, from reading his text and tables
(His, 1880, pp. 118, 137; His, 1885, pp. 7–9) that he used
even thicker sections (up to 200 μm) for particuarly large
embryos and fetuses. Hermann Fol suggested that this was
too thick, and that it may have led to errors in interpretation
(Fol, 1884, p. 381; His, 1885, p. 11 n.). Hochstetter also ques-
tioned the reliability of His’s interpretations and criticised the
poor quality of his human embryos (Hochstetter, 1919; pp. 1,
9). On these grounds, Hochstetter argued that the fame and
influence of His’s publications on human embryology may
not be entirely deserved. Eventually, His abandoned his
own microtome in favour of the Altmann-Schanze micro-
tome which yielded sections of 20–25 μm (Anon., 1885, pp.
547–548; His, 1885, p. 7).

V. CONCLUSIONS

(1) His was a developmental anatomist and technical inno-
vator. Much of his descriptive work is now part of the
fabric of embryology, anatomy and neurobiology.

(2) His’s publications were full of new ideas about evolu-
tion, development and mechanical developmental
biology. Few of these ideas had an enduring influence,
perhaps because His never cultivated a school of fol-
lowers. Another reason is that these theories were spec-
ulations based solely on histological data and
modelling. Experimental embryology later would pro-
vide more persuasive data and more robust theories.

(3) Despite the criticism that they received, many of His’s
ideas have analogues in modern biology. They are
only analogues – independent occurrences of the same
idea. But the study of their origin and fate provides a
fascinating case study in the history of scientific ideas.
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His, W. & Rütimeyer, L. (1864). Crania Helvetica. Sammlung schweizerischer Schädelformen.
Georg, Basel.

His (Jr),W. (1931).WilhelmHis, der Anatom; ein Lebensbild. Urban& Schwarzenberg, Berlin.
Hochstetter, F. (1919). Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns.
Deuticke, Vienna and Leipzig.

Holtfreter, J. (1943). A study of the mechanics of gastrulation. Part I. Journal of
Experimental Zoology 94, 261–318.

Hopwood, N. (1999). “Giving body” to embryos. Modeling, mechanism, and the
microtome in late nineteenth-century anatomy. Isis 90, 462–496.

Hopwood, N. (2000). Producing development: the anatomy of human embryos and
the norms of Wilhelm His. Bulletin of the History of Medicine 74, 29–79.

Hopwood, N. (2002). Embryos in Wax; Models from the Ziegler Studio. Whipple Museum of
the History of Science, University of Cambridge; and The Institute of the History of
Medicine, University of Bern, Cambridge and Bern.

Hopwood, N. (2005). Visual standards and disciplinary change: normal plates, tables
and stages in embryology. History of Science 43, 239–303.

Hopwood, N. (2007). A history of normal plates, tables and stages in vertebrate
embryology. International Journal of Developmental Biology 51, 1–26.

Hopwood, N. (2012). A marble embryo: meanings of a portrait from 1900. History

Workshop Journal 73, 5–36.
Hopwood, N. (2013). Anatomist and embryo: a portrait sculpture. Lancet 381,
286–287.

Hopwood, N. (2015). Haeckel’s Embryos: Images, Evolution, and Fraud. University of
Chicago Press, Chicago.

Hoßfeld, U. & Olsson, L. (2003). The road from Haeckel: the Jena tradition in
evolutionary morphology and the origins of “evo-devo”. Biology and Philosophy 18,
285–307.

Huxley, J. & de Beer, G. (1963). The Elements of Experimental Embryology. Hafner
Publishing Company, London.

Iskratsch, T., Wolfenson, H. & Sheetz, M. P. (2014). Appreciating force and
shape-the rise of mechanotransduction in cell biology. Nature Reviews Molecular Cell

Biology 15, 825–833.

Biological Reviews 97 (2022) 1131–1160 © 2022 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
Society.

1156 Michael K. Richardson and Gerhard Keuck

 1469185x, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.12834 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [13/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Jacobson, M. (1983). Clonal organization of the central nervous system of the frog.
III. Clones stemming from individual blastomeres of the 128-, 256-, and 512-cell
stages. Journal of Neuroscience 3, 1019–1038.

Jacobson, M. (2005). Beginnings of the nervous system. In Developmental Neurobiology

(Volume 4, eds M. S. RAO and M. JACOBSON), pp. 365–413. Kluwer
Academic/Plenum, New York.

Jansen, K. A., Donato, D. M., Balcioglu, H. E., Schmidt, T., Danen, E. H. &
Koenderink, G. H. (2015). A guide to mechanobiology:where biology and physics
meet. Biochimica et Biophysica Acta 1853, 3043–3052.

Jeffery, J. E., Bininda-Emonds, O. R., Coates, M. I. & Richardson, M. K.

(2005). A new technique for identifying sequence heterochrony. Systematic Biology
54, 230–240.
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Kölliker, A. (1899). Erinnerungen aus meinem Leben. W. Engelmann, Leipzig.
Kollmann, J. (1884). Der Randwulst und der Ursprung der Stützsubstanz. Archiv für

Anatomie und Entwickelungsgeschichte 1884, 341–434.
Kollmann, J. (1904). Wilhelm His. Worte der Erinnerung gesprochen am

Begräbnistage den 4. Mai 1904. Verhandlungen der Naturforschenden Gesellschaft in Basel
15, 434–464.

Kopsch, F. (1904).Untersuchungen über Gastrulation and Embryobildung bei den Chordaten I. Die
morphologische Bedeutung des Keimhautrandes und die Embryobildung bei der Forelle. Thieme,
Leipzig.

Kunz, Y. W. (2004). Developmental Biology of Teleost Fishes. Springer, Dordrecht.
Kurz, H. (1992). Wilhelm His (Basel und Leipzig): Seine Beiträge zur Weltgeltung der Anatomie

im 19. Jahrhundert. Anatomisches Museum Basel, Basel.
Laubichler, M. D., Aird, W. C. & Maienschein, J. (2007). The endothelium

in history. In Endothelial Biomedicine, pp. 5–19. Cambridge University Press,
Cambridge.

Lawson, K. A.,Meneses, J. J. & Pedersen, R. A. (1991). Clonal analysis of epiblast
fate during germ layer formation in the mouse embryo. Development 113, 891–911.

Le Douarin, N. M. & Kalcheim, C. (1999). The Neural Crest. Cambridge University
Press, Cambridge.

Lehmstedt, M. (2003). Leipzig brennt: der Untergang des alten Leipzig am 4. Dezember 1943 in

Fotografien und Berichten. Lehmstedt, Leipzig.
Lereboullet, M. (1863). Recherches sur les monstruosités du brochet. Annales des

Sciences Naturelles (Zoologie) 20, 177–271.
Lewis, F. T. (1916). Charles Sedgwick Minot. Anatomical Record 10, 133–164.
Lonie, I. M. (1981). The Hippocratic Treatises “On Generation”, On the Nature of the Child,

“Diseases IV”. A Commentary. De Gruyter, Berlin.
Lopez-Munoz, F., Boya, J. & Alamo, C. (2006). Neuron theory, the cornerstone of

neuroscience, on the centenary of the Nobel Prize award to Santiago Ramon y Cajal.
Brain Research Bulletin 70, 391–405.

Lotze, H. (1851). Von der Mechanik der Gestaltbildung. In Allgemeine Physiologie des

koerperlichen Lebens. Book 2, Chapter 3, pp. 292–355. Weidmannsche Buchhandlung,
Leipzig.

Ludwig, C. (1852). Lehrbuch der Physiologie des Menschen, Edition (Volume 1), p. 458.
Winter, Heidelberg.

Ludwig, C. (1856). Lehrbuch der Physiologie des Menschen, Edition (Volume 2). Winter,
Heidelberg.

M.F (1875). His on morphological causation. Nature 12, 328.
Maas, O. (1903). Einführung in die experimentelle Entwicklungsgeschichte

(Entwicklungsmechanik). Bergmann, Wiesbaden.
Maienschein, J. (1978). Cell lineage, ancestral reminiscence, and the biogenetic law.

Journal of the History of Biology 11, 129–158.
Maienschein, J. (1981). Shifting assumptions in american biology: embryology,

1890–1910. Journal of the History of Biology 14, 89–113.
Maienschein, J. (1991). The Origins of Entwicklungsmechanik. In A Conceptual History

of Modern Embryology (ed. S. F. GILBERT), pp. 43–61. Springer, Boston.
Mall, F. P. (1905).WilhelmHis. His relation to institutions of learning. American Journal

of Anatomy 4, 139–161.
Malpighi, M. (1673). Dissertatio Epistolica de Formatione Pulli in Ovo. Royal Society of

London, London.
Männer, J. (2004). On rotation, torsion, lateralization, and handedness of the

embryonic heart loop: new insights from a simulation model for the heart loop of
chick embryos. Anatomical Record Part A 278, 481–492.

Marchand, F. (1905). Wilhelm His: Nekrolog gesprochen in der öffentlichen
Gesamtsitzung beider Klassen am 14. November 1904. Berichte über die

Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig.

Mathematisch-Physische Classe 56, 326–340.
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