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Hypothermic machine perfusion (HMP) has become the new gold standard in clinical
donor kidney preservation and a promising novel strategy in higher risk donor livers in
several countries. As shown by meta-analysis for the kidney, HMP decreases the risk of
delayed graft function (DGF) and improves graft survival. For the liver, HMP immediately
prior to transplantation may reduce the chance of early allograft dysfunction (EAD) and
reduce ischemic sequelae in the biliary tract. Ischemia-reperfusion injury (IRI), unavoidable
during transplantation, can lead to massive cell death and is one of the main causes for
DGF, EAD or longer term impact. Molecular mechanisms that are affected in IRI include
levels of hypoxia inducible factor (HIF), induction of cell death, endothelial dysfunction and
immune responses. In this review we have summarized and discussed mechanisms on
how HMP can ameliorate IRI. Better insight into how HMP influences IRI in kidney and liver
transplantation may lead to new therapies and improved transplant outcomes.

Keywords: hypothermic machine perfusion, ischemia-reperfusion injury, HIF, cell death, endothelial dysfunction,
immune response
INTRODUCTION

Several countries use hypothermic machine perfusion (HMP) as standard preservation method for
kidney transplantation instead of storing the organ on ice. It has been shown by several clinical
studies that HMP is superior to static cold storage (SCS), but the underlying mechanisms are still
unknown. Ischemia-reperfusion injury (IRI) is unavoidable during transplantation and is one of the
main causes for delayed graft function (DGF) (1). Since HMP is known to affect DGF, it is possible
that this positive effect is due to its influence on IRI. To gain a better insight into the effect of HMP
on ameliorating IRI. In this review we evaluated the effect of HMP on four main aspects that are
involved in the pathophysiology of IRI to gain a better insight into the effect of HMP on
ameliorating IRI. This was done by analysing studies comparing static cold storage with HMP.
org April 2022 | Volume 13 | Article 8483521
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HISTORY OF MACHINE PERFUSION

Since the early beginning of solid organ transplantation, cold
preservation has been the gold standard in kidney preservation.
Lowering the temperature of the donor organ below 10°C
decreases metabolism by approximately 90%, allowing
maintenance of donor organ viability and safe preservation.
Initially kidneys were cold perfused on a machine, but when
better organ preservation solutions were developed, simple SCS in
a box with melting ice became the standard in organ preservation
due to its simple and effective way to transport the graft. In the
past decades, due to the persistent donor kidney shortage, most
centres have increasingly been accepting older and higher risk
donor kidneys. These kidneys are from donation after circulatory
death (DCD) donors or from donors with increased co-morbidity,
i.e. hypertension, diabetes or atherosclerotic disease (2). This
change of practice often resulted in compromised function and
lower graft survival. Also, it became clear that the conventional
method of SCS did not suffice for this type of donor organs and
improved strategies in preservation appeared to be necessary. This
insight resulted in a revisit of continuous machine perfusion, now
using novel technologies in medical engineering including
oxygenation, both hypo- and normothermic temperatures and
modifications of perfusion solutions. Following initial clinical
trials demonstrating better outcomes for higher risk donor
kidneys (3), several countries have now implemented HMP as
the preferred preservation method. In 2009, the first study was
published reporting on the results of an international randomized
controlled trial with a paired kidney design. One kidney was
preserved with HMP whilst for the contralateral kidney SCS was
used. In this trial, the method of HMP overall reduced DGF from
26.5% to 20.8% and increased 1 year graft survival from 90% to
94% (4). When analyzing the different subgroups of donor types
(ECD, donation after brain death (DBD), DCD), HMP remained
superior in decreasing DGF. Subsequent clinical studies and
registry reports have been performed and confirmed the
beneficial effect of HMP over SCS. Meta-analysis showed that
HMP reduced DGF [relative risk (RR) 0.81 with 0.71-0.92 95%
confidence interval (CI)] in all deceased donor types in kidney
transplantation (DBD fixed-effects analysis with RR 0.84 with
0.69-1.03 95% CI and DCD random-effects analysis with RR of
0.80 with 0.62-1.04 95% CI) (5). A more recent meta-analysis
showed a reduced risk of delayed graft function when kidneys
were preserved with HMP versus SCS (RR 0.77, 95% CI 0.67-0.90)
as well as a trend towards improved graft survival (6). HMP was
also shown to be cost effective, because lower DGF and graft failure
rates decreased the need for a return to (chronic) dialysis.
Beneficial effects of HMP were also shown in a meta-analysis for
the liver, by a lower incidence of early allograft dysfunction (EAD),
less biliary complications and ischemic cholangiopathy, as well as
lower aspartate aminotransferase levels (7). Although short term
outcomes in kidney transplantation have improved over the last
decades, long term outcomes are still moderate with 70% of DBD
and DCD grafts failing between 5 and 10 years posttransplant (8).
Two important factors that influence long term outcome in kidney
transplantation are the quality of the graft and the
immunosuppression administered (9). HMP may potentially
Frontiers in Immunology | www.frontiersin.org 2
alter immunogenicity of the donor organ, thereby improving the
quality of the graft. Also, HMP offers a great platform for
therapeutic options to potentially reduce the amount of immune
suppressive drugs.
ISCHEMIA-REPERFUSION INJURY

Ischemia followed by reperfusion is inevitable in the context of
organ transplantation. The temporary cut-off of the donor organ
from the blood supply at the time of procurement until the
recipient operation will cause hypoxia, leading to inhibition of
the electron transport chain and subsequent lower ATP
production. Lower ATP levels will cause a shift toward
anaerobic metabolism with dysfunction of sodium-potassium,
calcium and sodium-hydrogen pumps. This will result in an
imbalance in cellular osmolarity, with as a consequence cell
swelling. Anaerobic metabolism also leads to metabolic
acidosis from the increased lactic acid levels; decrease of
antioxidative agents; and detachment of ribosomes resulting in
less protein synthesis. During reperfusion of the graft, there will
be a second wave of injury, further damaging the graft, including
the release of reactive oxygen species (ROS). The lower levels of
antioxidants are unable to neutralize the ROS, leading to cell
death. Subsequently, the innate immune system is activated by
the profound release of damage-associated molecular patterns
(DAMPs) from dying cells. A more detailed review about IRI can
be found elsewhere (10). In this review IRI is divided into three
main phases: hypoxia, reoxygenation and reperfusion. Although
all three phases can be characterized by distinct molecular
mechanisms, they are also closely interrelated (Figure 1).
INFLUENCE ON HYPOXIA INDUCIBLE
FACTOR LEVELS

The first phase of ischemia-reperfusion injury is hypoxia. When
oxygen levels are normal, hypoxia inducible factor (HIF) a
proteins (HIF-1a, HIF-2a) are rapidly produced, but also
degraded. Prolyl hydroxylases (PHD) enzymes use oxygen as a
cofactor to mark HIF - a proteins for degradation by the
proteasome (Figure 2). During hypoxia, PHD enzymes are no
longer able to trigger the break down, resulting in increasing
HIF-a levels. HIF-a translocates to the nucleus where it binds to
the HIF-1b subunit. Together the HIF protein binds to HIF
response elements on the DNA, thereby influencing many genes
that regulate angiogenesis, metabolism, cell growth and survival
(11, 12).

Most studies reported lower levels of HIF proteins (HIF-1a,
HIF-2a, HIF-3a and HIF-1b) in HMP-stored donor organs
compared with SCS (13–18). Besides lower levels of HIF
proteins, improvements on transplant outcome (less damage,
better kidney function) were also observed when HMP was
applied. However, there is a lot of variability between these
studies. Studies were performed with canine, porcine or human
organs with HMP duration varying between 3 and 24h. Organs
April 2022 | Volume 13 | Article 848352
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that were subjected to HMP or SCS were liver, limb or kidney.
Also, two studies were found where higher levels of HIF-1a and
HIF-2a (and downstream factor vascular endothelial growth
factor A) were found in HMP perfused human livers. Burlage
et al. (19) showed in a human liver model better endothelial cell
function with increased HIF-1a levels as measured by Krüppel-
like factor 2 (Klf2), endothelial nitric oxide synthase (eNOS),
nitric oxide (NO) and thrombomodulin (19). Ito et al. showed in
a human liver model that HIF-1a expression increased after
HMP (20). They also analysed HIF-1a levels in clinical liver
patients and found that higher levels were associated with
significantly better graft survival. Unfortunately, to date only
an abstract is available of this study, so details about this study
are lacking. HIF upregulation that occurs during hypoxia can be
Frontiers in Immunology | www.frontiersin.org 3
explained as a protective mechanism to better handle the
ischemic injury (20–23). Studies reporting lower levels of HIF
proteins focus more on the hypoxia part, suggesting that lower
levels of HIF mean less hypoxia. The two studies reporting higher
HIF levels can be compared at best with the studies of Guarrera
et al. (17) and Henry et al. (18) that also use a human liver model.
Unfortunately, the first study only provides an abstract and does
not include the duration of HMP, making it difficult to compare
with other studies. The study of Henry et al. provided both
clinical outcomes (beneficial for HMP with a shorter hospital
stay and a trend towards less EAD and analysis of biopsies and
serum (less oxidative stress, inflammatory markers, adhesion
molecules and cellular infiltration in the HMP group). Taking
along the previously mentioned studies that reported lower levels
FIGURE 2 | HIF proteins during normoxia and hypoxia. When oxygen levels are sufficient, PHD enzymes use oxygen as a cofactor to hydroxylate HIF-a. Next, VHL
will mark HIF-a for degradation by the proteasome. During hypoxia, HIF-a is not degraded and can translocate with HIF-1b to the nucleus where it can bind to HRE
and lead to the activation of several different genes. HIF, hypoxia inducible factor; HRE, HIF response element; PHD, prolyl hydroxylase; VHL, von Hippel Lindau.
FIGURE 1 | Stages of ischemia-reperfusion injury. Ischemia-reperfusion injury can be divided into three stages based on distinct molecular mechanisms: hypoxia,
reoxygenation and reperfusion. Cut-off of the donor organ leads to hypoxia, which leads to changes in HIF levels. During reoxygenation, reactive oxygen species lead to
massive cell death and endothelial dysfunction. When the graft is reperfused in the recipient, the immune system of the recipient can react to the graft and its immune cells
and vice versa. Arrows indicate the relations between the different mechanisms. DAMPs, damage-associated molecular patterns; HIF, hypoxia inducible factor.
April 2022 | Volume 13 | Article 848352
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of HIF, it is likely that HMP reduces the level of HIF proteins
despite the great heterogeneity between studies. Nevertheless,
these results illustrate the complexity of interpreting data on HIF
levels, next to the different molecular consequences of HIF.

As mentioned before, HIF can regulate expression levels of
many different genes. Those gene products can have
contradictory effects, making it difficult to predict the effect in
changing HIF levels. For example, HIF activation can lead to
upregulation of both pro- and anti-apoptotic genes. A study by
Ravall et al. showed that in a renal cell carcinoma cell line there
were opposing effects of HIF-1a and HIF-2a (24). When HIF-1a
was expressed, HIF-2a was suppressed and tumour growth was
inhibited. When HIF-2a was expressed, HIF-1a was suppressed
and tumour growth was increased.. HIF-1a regulates many
glycolytic enzymes and is expressed in many different tissues
whereas HIF-2a regulates more broadly hypoxia inducible genes
like cyclin D, transforming growth factor (TGF)-a and matrix
metalloprotease 2 and its expression is more regulated (25, 26).
The HIF-3a unit is less studied, but it is thought to inhibit HIF-
1a and HIF-2a (26). The expression of the different HIF proteins
can vary between different tissues, which could result in different
hypoxia responses. In the kidney HIF-1a is expressed in the
tubular epithelium, while HIF-2a is expressed in glomerular cells
and peritubular interstitial cells (27, 28). HIF-2 has been
associated with regulating erythropoietin synthesis (29).
Kapitsinou et al. showed in a mouse model that HIF-2a
endothelial inactivation resulted in increased expression of
cellular infiltration and renal injury markers (27). This was
associated with elevated Vcam1 expression. HIF-2 appears to
protect against IRI and could therefore be a potential
therapeutic target.

As stated earlier, the different phases of IRI are overlapping.
HIF activation has been linked to increased thrombotic factors
(30), fibrosis (31) and activating the innate immune cells (32). A
rat study showed the effects of changing HIF levels on cell death
and inflammation in a hepatic IRI model (33). Overexpression of
HIF-1a lead to a protective effect by reducing necrosis,
apoptosis, neutrophil infiltration and inflammatory cytokines
IL-6 and TNF-a. Inhibition of HIF-1a had the opposite effect
and aggravated the IRI injury. These results show the diversity of
effects of changing HIF levels, where the protective effect was
seen with increasing levels, whereas HMP mainly showed that a
decrease lead to better outcomes. Future studies with a paired
kidney design, where one kidney is put on HMP while the other
is preserved SCS, both with similar cold ischemia times, could
provide better insight into changing HIF levels.
INFLUENCE ON CELL DEATH

During the second phase of IRI the reoxygenation leads to the
release of ROS, leading to massive cell death. There are different
forms of cell death (i.e. necroptosis, pyroptosis, autophagy), but all
result in the release of DAMPs that can activate an immune
response. However, different forms of cell death could still lead to
different DAMPs being released, leading to a different immune
Frontiers in Immunology | www.frontiersin.org 4
response. Apoptosis is generally considered not to activate the
immune system. Macrophages that engulf apoptotic cells are
stimulated to secrete anti-inflammatory TGF-b and IL-10 (34).
Nevertheless, DAMPs can still be released during this form of
regulated cell death, as macrophages can also be stimulated to
secrete high mobility group box 1 (HMGB1), a well-known DAMP
(35, 36). Also, the release during apoptosis of oxidized
mitochondrial DNA has been shown to initiate an immune
response by activating the nucleotide binding domain and leucine
rich repeat (NLR) pyrin domain containing 3 (NLRP3) (37).
Necrosis - on the other hand - is also a form of cell death where
many DAMPs are released. Necrosis is characterized by organ
swelling and membrane rupture, leading to release of the cellular
content (10). When comparing the effects of HMP with SCS, the
amount of cell death by apoptosis and necrosis was reduced inHMP
(Figure 3) (38–45). Less cell death most likely translates to less
release of DAMPs, leading to less activation of the immune system.
Therefore this could contribute to better outcomes with
hypothermic machine perfused organs versus static cold stored
ones. The ratio of anti-apoptotic Bcl2/pro-apoptotic Bax increased
when organs were perfused with HMP versus SCS (41, 42). A higher
Bcl2/Bax ratio will prevent the occurrence of apoptosis (46).
Apoptosis is initiated from an extrinsic pathway that activates
caspase 8 and 10 or via an intrinsic pathway activating caspase 9.
Once activated, the cascade of caspases leads to a regulated
dismantling of the cell. Caspases also play a role in inflammation
by recognizing bacterial products such as lipopolysaccharide,
leading to pyroptosis and activating pro-inflammatory cytokines
by cleavage. It has been suggested that caspase 4 and 5 can directly
recognize lipopolysaccharide in the cytosol (47). Caspase 3 has been
found to be downregulated after reperfusion while caspase 12 was
found upregulated when organs were perfused with HMP versus
SCS (18, 38–40, 42, 48–51). Caspase 3 is an essential effector caspase
that plays a role in both the intrinsic and extrinsic pathway. Caspase
12, on the contrary, is known as a negative regulator of
inflammation by inhibition of caspase 1, which is responsible for
cleavage of pro-IL-1b and IL-18 to their active form (47, 52).

Most research about the effect of HMP on cell death is focused
on apoptosis and necrosis. Other forms of cell death such as
necroptosis, pyroptosis or autophagy have not yet been studied
extensively, although it is known that different forms of cell death
may activate different immune pathways. Necroptosis has been
associated with IRI in liver transplantation (53), ischemic brain
injury (54) and renal IRI (55, 56). A study performed in rabbit
kidneys showed that the expression of receptor-interacting protein
kinase 3 (RIPK3) was significantly lower in the HMP group versus
the SCS group both at the protein and mRNA level (51). The
RIPK1-RIPK3 complex is an important regulator of necroptosis by
forming the necroptosis-inducing complex called the
necrosome (57).

The influence of HMP on pyroptosis has been investigated in
liver perfusion in a rat study (58). The investigators studied the
effect of hypothermic oxygenated machine perfusion (HOPE)
following a period of SCS on the inflammasome pathway that
plays a role in pyroptosis. The HOPE group showed less
pyroptosis, likely by blocking the interaction between
April 2022 | Volume 13 | Article 848352
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thioredoxin-interacting protein and NLRP3. The role of
decreasing pyroptosis on transplant outcome was studied by
Noda et al. in lung perfusion. They showed that lung perfusion of
rat heart-lung blocks showed significantly better lung function
and lower IL-6 levels when perfused with a leukocyte filter (59).
Leukocytes trapped in the filter were analysed for cell death and
they found that 26% of the cells were pyroptotic (caspase 1
positive, 7AAD negative), 16% apoptotic (Annexin V positive,
7AAD negative) and 40% necrotic (Annexin V positive, 7AAD
positive). Administering a caspase-1 inhibitor during perfusion
to inhibit pyroptosis showed better lung function and lower
mRNA levels of proinflammatory cytokines IL-6, TNF-a and IL-
1b, comparable with perfusion with a leukocyte filter. A
limitation of this study is that only mRNA levels of cytokines
were measured instead of protein levels. Caspase 1 plays an
important role in activation and secretion of IL-1b and has also
been linked to TNF-a and IL-6 secretion from macrophages
(60).Therefore, it may be of interest to study whether the effects
of blocking pyroptosis are similar on the protein level as found to
be on the mRNA level.

The role of autophagy during IRI has also been studied in
various organs (61–63). According to van Erp et al. the degree of
autophagy in the donor can also be influenced by age and gender
(64). During the first ischemic phase, it is proposed that autophagy
acts as a protection mechanism whereas during the reperfusion
stage excessive autophagy results in cell death (65). A study in
rabbits showed higher levels of phosphorylated aldehyde
dehydrogenase 2 (ALDH2) in HMP-perfused kidneys versus SCS
(63). ALDH2 influences autophagy via expression of 4-HNE that
regulates the Akt/mTOR autophagy pathway, suggesting that under
HMP conditions, autophagy increases when compared to SCS.
Administering an ALDH2 agonist to enhance autophagy resulted
in (i) better kidney function as shown by lower serum creatinine, (ii)
lower oxidative stress levels measured by malonaldehyde and
superoxide dismutase 2, and (iii) better inflammatory profile as
Frontiers in Immunology | www.frontiersin.org 5
demonstrated by lower levels of TNF-a, IL-6 and higher levels of IL-
10. Administering an antagonist, to decrease autophagy, lead to the
opposite results. A study by Zeng et al. looked into the role of HOPE
in upregulating autophagy to alleviate liver IRI in a rat model (44).
HOPE increased expression of autophagy-related proteins and was
associated with better liver function as measured by alanine
transaminase, aspartate transaminase and lactate dehydrogenase
compared with SCS. Administration of the autophagy inhibitor 3-
MA attenuated the protective effect. Perfusion with 100% nitrogen
showed similar results as under SCS conditions, indicating that the
effect of HOPE treatment was not due to a washout during
perfusion. It also demonstrated that a minimal oxygen level is
required for the protective effect of HMP. According to Boteon et al.
autophagy is important for removal of harmful substances and
providing energy during cell stress (66). Normothermic machine
perfusion (NMP) has been suggested to increase autophagy by
maintaining normal calcium levels and by providing shear stress.
Although more research is needed to evaluate the effect of HMP on
autophagy, it is likely similar to NMP. During HMP the perfusate
contains calcium and there are also low levels of shear
stress detectable.

Another form of cell death is ferroptosis, which is iron-
dependent. Excessive amounts of iron can lead to the generation
of ROS through the Fenton reaction (67). Several studies showed
that ferroptosis could play a role in IRI in the liver and kidney (68–
70). Ferroptosis was also shown in several cell lines exposed to
continuous cold stress, therefore it could be interesting to look into
the role of ferroptosis during machine perfusion at
subnormothermic (25-35°C) or normothermic (37°C)
temperatures as well (71). Currently, no studies have looked into
the role of HMP on ferroptosis.

Most studies use a TUNEL (Terminal deoxynucleotidyl
transferase dUTP nick end labelling) assay to measure apoptosis
via detection of DNA fragmentation. However, this assay can also
detect necrosis, pyroptosis and possibly other forms of cell death
FIGURE 3 | HMP reduces several forms of cell death. Different forms of cell death can occur after ischemia-reperfusion injury. HMP has been found to have an
inhibiting effect on apoptosis and necrosis at the end of machine perfusion and after reperfusion in a NMP setting or autotransplantation (red line). The inhibiting effect
on apoptosis is via inhibition of pro-apoptotic processes and increase of anti-apoptotic factors (green line). There are studies suggesting HMP could also have an
inhibiting effect on necroptosis, pyroptosis and autophagy, but more research is needed (red dotted line). The effect of HMP on ferroptosis is yet unclear. ALDH2,
aldehyde dehydrogenase; RIPK, receptor-interacting protein kinase; TXNIP/NLRP3, thioredoxin-interacting protein/NOD-like receptor protein.
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(72–74). Knowing which forms of cell death are affected and which
are not, is also important to identify specific targets to reduce IRI. A
combination of multiple forms of cell death could also be possible.
Recently, a new protein complex was identified as the
PANoptosome (75). It drives the three main forms of
programmed cell death, namely pyroptosis, apoptosis and
necroptosis. The PANoptosome contains RIPK1, caspase 8,
NLRP3 and apoptosis-associated speck-like protein (ASC)
containing a caspase recruitment domain. Therefore, it contains
molecules that are critical for programmed cell death. The different
pathways can be activated together or separately and crosstalk
between pathways occurs (75, 76).

In conclusion, it appears that HMP reduces the amount of cell
death by decreasing apoptosis and necrosis. It is possible that
HMP also reduces other forms of cell death like necroptosis,
autophagy, pyroptosis and ferroptosis, but so far not many
studies have looked into this. The effect of HMP on cell death
will likely affect other mechanisms as well. Cell death plays an
important role in activating the innate immune system via the
release of DAMPs and caspases are critical in cleaving several
cytokines into their active form. If cell death occurs in
endothelial cells, this will disrupt the glycocalyx.
INFLUENCE ON ENDOTHELIAL
DYSFUNCTION

The endothelium plays a major role in inflammation with
leukocyte adhesion and vascular health. Multiple studies have
shown that IRI leads to the upregulation of adhesion molecules
like E-cadherin and intercellular adhesion molecule 1 (ICAM-1)
that enable leukocyte adhesion and neutrophil infiltration (77–
79). Following HMP and reperfusion, many studies showed
better endothelial function as measured by less transmigration
of immune cells (Figure 4). In addition, less fibrosis after kidney
preservation was measured by Sirius Red staining as well as by
lower levels of pro-fibrotic transforming growth factor b (39, 80–
82). A porcine model was used to study the effects of HMP on
fibrosis, with the exception of Liu et al. (82) who used a rabbit
Frontiers in Immunology | www.frontiersin.org 6
model. Fibrosis is significantly associated with chronic graft
dysfunction (11). Endothelial dysfunction has been mentioned
as an important initiator and maintainer of fibrosis (83, 84).
Therefore, we suggest that the level of fibrosis may indicate
endothelial dysfunction. P-selectin is important for the rolling of
leukocytes to ultimately invade the tissue and ICAM-1 is
important for adhesion of leukocytes to endothelial cells.
Lower expression of P-selectin and ICAM-1 were observed
when HMP was applied versus SCS (13, 17, 18, 43, 49, 85).
Reduced leukocyte rolling and adhesion with HMP was shown in
liver models in rat (49), mouse (43), dog (13) and human (17, 18,
85). Most studies showed lower expression of P-selectin and
ICAM-1 after perfusion (13, 17, 18, 85) or reperfusion (13, 43,
49), while Henry et al. (18) also showed a decrease in P-selectin
levels after transplantation. Less cellular infiltration was also
shown by a reduction in invading neutrophils and monocytes as
measured by myeloperoxidase, CD68, Ly6G and reduced levels
of monocyte chemoattractant protein-1 (18, 43, 80, 86, 87). A
reduction in cellular infiltration was seen across various
organisms (mouse, rabbit, human, pig) after perfusion, in
reperfusion models and after transplantation. This was
supported by a decrease in chemokines CXCL14 and IL-8 as
shown after perfusion in a canine or human liver (13, 18, 85).
Henry et al. (18) showed both after perfusion and transplantation
an downregulation of CXCL14 and IL-8. Endothelial-to-
mesenchymal transition (EMT) was observed less frequently as
measured by lower levels of EMT marker vimentin after
perfusion of porcine kidneys (80, 81). EMT is an important
factor that contributes to fibrosis and chronic graft failure (88). A
downregulation of the thrombotic von Willebrand-factor was
also observed after reperfusion in liver transplantation in mice or
pigs (44, 45). The vascular tone of the endothelium is important
for sufficient flow. Vasodilation can be regulated by eNOS
phosphorylation, leading to an increase in NO levels, which
were found to be upregulated after reperfusion of HMP-treated
organs (19, 89–91). This was true for both kidneys and livers and
in different organisms (pig, rat, human). For the porcine kidney
transplantation, higher levels of eNOS were also found after
transplantation (90). In conclusion, a beneficial effect of HMP on
FIGURE 4 | HMP influences several functions of the endothelium. After HMP or reperfusion (NMP or autotransplantation) there is less leukocyte trafficking compared
to SCS treated organs (red line). Also less thrombotic factors, fibrosis and EMT were observed. However, the vascular tone was improved when organs were treated
with HMP instead of SCS (green line). More studies are needed to confirm the effect of HMP on the glycocalyx (red dotted line). eNOS, endothelial nitric oxide
synthase; ICAM, intercellular adhesion molecule; Ly6G, lymphocyte antigen 6 complex locus G6D; MCP-1, monocyte chemoattractant protein-1; NO, nitric oxide;
TGF-b, transforming growth factor b; vWF, von Willebrand factor.
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endothelial integrity and function has been demonstrated at
different levels.

Many of these beneficial effects on the endothelium are most
likely caused by the activation of Klf2, which gets activated upon
flow-mediated shear stress. Besides regulation by flow, Klf2 can also
be negatively regulated by proinflammatory cytokines such as TNF-
a and H2O2 resulting from oxidative stress (92). Klf2 can regulate
many different processes in the endothelium like angiogenesis,
vascular tone, thrombosis, inflammation, immune regulation and
oxidative stress. It is known to downregulate HIF-1a, vascular
endothelial growth factor, endothelin-1, vascular cell adhesion
molecule and E-selectin, while thrombomodulin and eNOS are
some of the upregulated markers (92, 93). It has already been shown
by multiple studies that Klf2 gets upregulated during HMP by the
shear stress created from the pump (82, 94, 95). The upregulation of
eNOS phosphorylation is important for NO levels. NO is an
important vasodilator, allowing for sufficient blood flow through
the organ. Besides regulating vascular tone, NO also plays a role in
endothelial cell migration, proliferation, angiogenesis and it has
anti-inflammatory properties by inhibiting leukocyte
adherence (96).

When discussing the endothelium, another essential factor is the
glycocalyx, a thin layer consisting of proteoglycans that covers the
endothelium. This cover is important for leukocyte and platelet
adhesion, coagulation and transferring shear stress to endothelial
cells (97). The glycocalyx is also an important place where several
enzymatic reactions take place due to the docking function of the
glycosaminoglycans. Damage to the glycocalyx is a direct
consequence of IRI, as demonstrated in several studies (98–100).
A large part of the damage to the glycocalyx happens during the
reperfusion phase (101). One study looked in more detail into the
glycocalyx degradation during human liver transplantation and
found that syndecan-1, a biomarker of glycocalyx degradation,
was released during reperfusion (102). However, heparan-sulphate
levels, another biomarker for glycocalyx degradation, were lower in
effluent veins compared with portal venous blood, suggesting
binding or uptake of heparan-sulphates. This uptake might
suggest repair of the damaged graft. This is supported by a study
in kidney transplantation, where the thickness of the glycocalyx
increased in time after reperfusion (103). Therefore, it could be
beneficial to perfuse donor grafts for a longer period of time to give
the glycocalyx time to repair itself, althoughmore research is needed
to confirm this. One study in a porcine model of brain death
showed that HMP could potentially be used as a platform to restore
the glycocalyx by infusion of corline heparin conjugate, heparin
molecules that strongly bind to tissue with heparin affinity. By
labelling the heparin molecules, binding to the damaged
endothelium could be demonstrated (104). Unfortunately, no
results on function or outcome were reported.

All in all, there appear to be many functions of the endothelium
that are influenced by HMP. Most studies focussed on the
infiltration of immune cells and fibrosis and noticed a reduction
when using HMP versus SCS. Endothelial dysfunction also affects
other mechanisms of IRI. ICAM-1 has also been studied in cancer
cells, where they found that an upregulation of ICAM-1 increased
cell survival (105). For P-selectin it was found that inhibition of P-
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selectin reduced apoptosis in endotoxin-induced liver injury in a
mouse model (106). Besides leukocyte recruitment, activation of the
coagulation system can also lead to an immune response.
Components of the clotting system like fibrin can enhance
adherence of immune cells and facilitate migration (107). Cross-
talk between the complement system and the coagulation system
can further activate the immune system (108).
INFLUENCE ON INNATE IMMUNE
RESPONSE

Both the innate and adaptive immune system play an important
role in transplantation. An eligible donor-recipient match has to
be found, immunosuppressive drugs have to be taken daily and
there is the risk of allograft rejection of the donor organ. The
innate immune system plays an important role in IRI. Toll like
receptor 4 (TLR4), one of the best characterised TLRs, is able to
sense DAMPs that are released during IRI. HMBG1 is one of the
most described DAMPs and it has been found to play a role in
IRI by activating TLR4 (109). HMGB1 normally resides within
the nucleus, where it plays a role in transcription and chromatin
modelling (110). It can be actively released by immune cells like
dendritic cells or macrophages or passively released upon cell
death. Extracellular HMGB1 can bind to TLR4, TLR2 or the
receptor for advanced glycation end-products (RAGE) to
promote inflammation (110, 111). Several TLRs have been
found upregulated in ischemia, mostly TLR2 and TLR4.
Activation of TLR4 leads to increased expression of
proinflammatory cytokines and adhesion molecules, attraction
of neutrophils and macrophages, and activation of circulating
immune cells (11, 112–114). Several studies have shown that
TLR4 expression strongly correlates with renal graft dysfunction
in rats and that TLR4 knockout mice are protected against IRI
(14). Both TLR4 and HMGB1 were found to be downregulated
when comparing HMP versus SCS (Figure 5) (41, 44, 45, 51).
Besides TLR4 and HMGB1, pro-inflammatory cytokines TNF-a,
IL-1b, IL-6 and IL-2 were reported to be downregulated after
HMP treatment (17, 18, 42, 43, 45, 51, 85, 86, 91). The possibility
of further reducing pro-inflammatory cytokine levels during
HMP was shown in a study that compared porcine kidneys in
a reperfusion model with or without a cytokine filter (115).
Kidneys that were perfused with a cytokine filter showed lower
levels of IL-6 and IL-8 and higher blood flow. No effect on kidney
function based on creatinine clearance was found, but it might be
that more processes play a role in improving kidney function.
For instance, a cytokine filter is non-specific which means that
anti-inflammatory cytokines are removed as well. A shortcoming
of most studies reporting on changes in the immune system after
HMP is that many only look at pro-inflammatory cytokines
while anti-inflammatory cytokines like IL-10 are not as
often investigated.

Next to the release of DAMPs or inflammatory mediators,
molecular alterations in the donor organ following IRI can also
result in the activation of innate immunity via the complement
system. The complement system can be activated via the
April 2022 | Volume 13 | Article 848352

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Knijff et al. HMP to Ameliorate IRI
classical, lectin or alternative pathway. Activation of the
complement system by DAMPs released from IRI can lead to
the cleavage of C3 and C5 and the formation of the membrane
attack complex. Cleavage products C3a and C5a can act as
anaphylatoxins to activate immune cells (116, 117). A
complexity in complement research is that activation of the
complement system can vary between organs. IRI in the liver
leads to activation of the classical pathway, while IRI in the heart
activates the classical and lectin pathway (117). Therefore, more
studies should look into the effect of hypothermic machine
perfusion on complement activation.

Probably due to the short time of perfusion and the cold
temperature not many studies have looked into the effect of HMP
on the adaptive immune system. Several studies have looked into
the circulating cell types during machine perfusion and found large
amounts of immune cells with flow cytometry (118, 119). Although
the consequence of circulating immune cells during machine
perfusion is not clear yet, it could have a beneficial effect by
immunodepletion of the graft.

Just like the other mechanisms, immune activation also
influences the previous discussed mechanisms involved in IRI.
Jantsch et al. (120) showed that TLR activation onmouse dendritic
cells can also lead to stabilization of HIF-1a under normoxic
conditions. This increase in HIF-1a resulted in the transcription of
inflammatory target genes Ptgs2 and Nos2, whereas increase of
HIF-1a by hypoxia lead to increased transcription of HIF-1a
target genes Glut1 and Pgk1. Besides regulation by PHD, pro-
inflammatory cytokines have also been reported to regulate HIF-
1a (121). TNF-a and IL-1b have been proposed to increase HIF-
1a levels via various mechanisms at pre- and posttranscriptional
levels. However, most information is obtained from cell studies, so
further investigations in transplantation models are needed to
confirm this. Immune activation can also lead to cell death and
endothelial dysfunction. Activation of the complement system
leading to the membrane attack complex can induce cell death via
lysis (117). In an IRI mouse model it was also shown that
activation of the terminal complement pathway lead to shedding
Frontiers in Immunology | www.frontiersin.org 8
of the glycocalyx, indicated by accumulation of glycocalyx
components syndecan-1, hyaluronan and heparan sulphate (122).
INTERVENTIONS DURING HYPOTHERMIC
MACHINE PERFUSION

Machine perfusion provides an ideal platform to use for
interventions. Current interventions that are being exploited are
RNA silencing, stem cell therapy and complement blockade (123).
One study looked into the use of lentiviral vectors encoding short
hairpin RNAs that target the b2-microglobulin of the major
histocompatibility complex 1 during sub-normothermic ex vivo
rat kidney perfusion (124). They found decreased transcription
levels of b2-microglobulin and pro-inflammatory cytokine levels,
while increased levels of anti-inflammatory cytokines were found.
Genetic modification showed no additional cell death, showing
feasibility of this technique.

Mesenchymal stromal cells (MSCs) are also an emerging topic
in this field. Due to the immune modulating properties of MSCs
both the innate and adaptive immune response could be controlled.
MSCs could also be beneficial for tissue repair (125). The TRITON
study was a single centre randomized prospective study where
MSCs were infused 6 and 7 weeks after renal transplantation in
combination with reduced immunosuppressive drugs. It showed
that MSC therapy was safe and feasible and also showed higher
numbers of regulatory T cells in peripheral blood (126). Due to the
size of the MSCs they will get stuck in the lung capillaries when
given to the recipient systemically via the blood stream. Therefore,
ex vivo machine perfusion could be an attractive way to give MSC
therapy. In a renal porcine autotransplantation model it was shown
by the MePEP consortium that giving MSC therapy during NMP
was safe and feasible and MSCs ended up in the renal cortex (127).
However, in the short follow-up time of 14 days no beneficial
effects on function could be shown despite prolonged warm and
cold ischemia times. Thompson et al. (128) added multipotent
adult progenitor cells added during NMP of discarded human
FIGURE 5 | The effect of HMP on dampening the immune response. HMP has shown to reduce sensing of DAMPs and pro-inflammatory cytokines compared to
SCS (red line). Some studies suggest there might be an upregulation of anti-inflammatory cytokines and a reduction in circulating donor immune cells (green and red
dotted line). The effect of HMP on the complement system is still unknown. DAMPs, damage-associated molecular patterns; HMGB1, high-mobility group box 1;
TLR, Toll-like receptor.
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kidneys. They showed that this therapy may increase urine
production and microvascular perfusion, upregulate anti-
inflammatory cytokines and downregulate injury markers and
pro-inflammatory cytokines (128).

Activation of the complement system already occurs early-on
in deceased donors as shown by Damman et al., as elevated C5b-
9 levels were found in the plasma of deceased donors (129). The
elevated levels were also associated with biopsy-proven acute
rejection. A phase 1 study where complement is inhibited
using C1-INH is being conducted to try to decrease systemic
inflammation and DGF incidence in expanded criteria donors as
a donor pre-treatment strategy (NCT02435732). Complement
inhibitor C1-INH is a serine protease that can regulate the
classical, lectin and alternative pathway (130). Machine
perfusion could provide an ideal environment to target the
complement system specifically in the graft instead of the
whole body. The EMPIRIKAL trial was the first study to look
into the administration of complement inhibitor Mirococept at
time of transplantation to prevent DGF (ISRCTN49958194)
(131, 132). The inhibitor is given during a 15min flush of the
kidney while the organ is on ice slush. Mirococept is designed to
inhibit the complement system at the C3 level. Because the first
dose of 10mg did not show a significant difference from the
control, the study was stopped to conduct a dose study first. A
dose finding study was initiated in normothermic machine
perfused porcine kidneys showing that 80mg of Mirococept
was the optimal dose (132). It showed to be safe as minimal
washout into the circulation occurred and no detrimental effects
on flow parameters or histology were observed, opening the path
to further clinical development. In this study the inhibitor was
not given during HMP, but during a short flush. It would be
interesting to study if Mirococept, when given during HMP
where would be circulating through the organ for several hours,
could be administered in a lower dose.

NEW AREAS OF INTEREST

With HMP being implemented and clinically used in kidney and
liver preservation in several countries, research into machine
perfusion has emerged. Due to novel technology, nowadays also
ex-vivo NMP has become feasible, although its clinical
implementation is still in its infancy. The potential advantages
of NMP over HMP are its ability to restore cellular function,
upregulate protective repair mechanisms and allow better
assessment of function. At the same time it provides a platform
for cell therapy i.e. administration of mesenchymal stem cells
(133). The first clinical trial performed by Hosgood and Nicholson
et al. showed that 1-hour normothermic perfusion of human
donor kidneys with subsequent transplantation is safe and feasible
(134). Due to better assessment of human DCD kidneys, that were
declined for transplantation, this group was able to reverse that
decision and successfully transplant several kidneys, thereby
increasing the donor pool.

A topic of interest in current HMP research is the presumed
positive effect of addition of oxygen during cold machine perfusion.
Frontiers in Immunology | www.frontiersin.org 9
Due to the low temperature (approximately 10°C), the metabolism of
the graft is reduced by 90%. Initially, it was thought that addition of
oxygen was not necessary at that level of reduced metabolism and
might actually increase detrimental ROS formation. New insight
obtained by pre-clinical work in kidney and liver (135–137) showed
improved recovery of transplanted organs when oxygenated
perfusion had been used. Recently, the COMPARE trial by the
COPE consortium showed in a multicentre clinical context that
oxygenated HMP of older DCD donor kidneys was better than non-
oxygenated HMP in terms of kidney function, graft survival and
rejection rate (ISRCTN32967929) (138). The POMP trial of the
COPE consortium compared in higher-risk ECD kidneys
conventional SCS to a preservation of first SCS, then followed by a
brief period of oxygenated HMP. This large clinical study did not
detect any difference in function or survival. This suggests that a brief
period of 4.5h oxygenated HMP at the end of preservation is not
sufficient for oxygenated HMP to have beneficial effects. It might be
best to start oxygenated HMP as soon as possible after organ
procurement (139). To date, several clinical trials investigating
hypothermic oxygenated machine perfusion in liver and kidney
transplantation are ongoing.

As in many other fields, studies looking into machine
perfusion are still mainly performed in animal models.
Choosing the right animal model however is of importance to
be able to translate the newfound knowledge to the human
situation. Lerink et al. showed that there is still a big translational
gap in many preclinical IRI models (140). This was also shown in
the above mentioned EMPERIKAL trial that was first tested in a
rat model. Based on those results, the dose range for humans was
decided. However, when tested in the pig it was shown that the
human dose should have been 12 times higher than estimated
from the rat study (132). The porcine transplantation model
appears to be the best simulation of human conditions due to
similar physiology, size and immune system. Several groups have
started to use slaughterhouse pig organs to test various
aspects of organ perfusion which reduces the need for animal
house pigs n the early exploratory stages (141). In a next
step, including experimental transplantation, animal house
models will be required before phase 1 studies in humans can
be ethically justified.
SUMMARY

In conclusion, machine perfusion and in particular HMP appears
to influence many different pathways involved in IRI. The goal of
this review was to compare HMP with the old gold standard SCS.
Studies are now available including clinical evidence that HMP
has beneficial effects on outcomes such as immediate function
and survival but also on important mechanisms that are involved
in IRI: HIF levels, cell death, endothelial dysfunction and the
innate immune response. To obtain better insight in the
mechanisms of injury and repair, future studies should focus
on analysis of the effects of HMP on all four mechanisms. This
will allow the discovery of underlying relationships and clinically
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relevant pathways. It will also lead to the development of targeted
interventions to increase viability whilst possibly modulating the
graft and rendering it less immunogenic. This may help to reach
the goal to enhance function and prolong survival avoiding
chronic graft dysfunction after 5-10 years due to progressive
scarring of the transplanted organ.
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