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CHAPTER 6
A Lochs Theorem for pseudo-random
number generation with β-encoders

This chapter is joint work with Charlene Kalle and Evgeny Verbitskiy.

Abstract

The β-encoder is an analog circuit that converts an input signal x ∈ [0, 1) into a finite
bitstream b1, . . . , bm that corresponds to a representation of x in non-integer base
β ∈ (1, 2). In this chapter we study a question posed by Jitsumatsu and Matsumura
on the number of output digits from the β-encoder that are necessary to correctly
determine the first n base 2 digits of the original input x. We confirm the lower bound
established by Jitsumatsu and Matsumura, we provide an upper bound and give two
different limit results for this value, the last one of which is reminiscent of Lochs’
Theorem.
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§6.1 Introduction

Since the work [DDGV02] from 2002 by Daubechies et al. the advantages and disad-
vantages of the β-encoder as a replacement for the commonly used Pulse Code Mod-
ulation (PCM) in analog-to-digital (A/D) conversion have been considered. Given a
real number β ∈ (1, 2), the scale-adjusted β-encoder converts an analog input signal
x = x0 ∈ [0, 1) into a bitstream b1, . . . , bk of specified length k by using a circuit
consisting of an amplifier with amplification factor β, a scale adjuster with scaling
factor β − 1, and a quantiser

Qu(y) =

{
0, if y < u,

1, if y ≥ u,

with threshold value u ∈ [β − 1, 1]. The bits bn are produced iteratively by setting
xn = βxn−1 − (β − 1)bn and bn = Qu(βxn−1). This algorithm is depicted in Figure
6.1 and is set up in such a way that it provides a β-expansion of the number x

β−1 , i.e.
x can be represented as

x = (β − 1)

∞∑
n=1

bn
βn
,

and thus finite truncations b1, . . . , bk of the sequence (bn)n≥1 give bitstreams that
approximate x well. The PCM works similarly but with multiplication factor 2 and
threshold value 1 (and no scale adjuster).

x0

amplifier quantiser

scale adjuster

×β

×(β − 1)

βxn−1 bn

(β − 1)bnxn = βxn−1 − (β − 1)bn

βxn−1

Qu(·)

−

Figure 6.1: Iteration process of the scale-adjusted β-encoder.

Due to noise in the circuit the value of u fluctuates while running the iteration
process. Since each number x has an essentially unique base 2 representation, PCM is
not robust against these quantisation errors, see e.g. [DDGV06, G12]. It was proven
in [EJK90, S03] that, contrary to binary expansions, for each β ∈ (1, 2) Lebesgue
almost every x has uncountably many different β-expansions. The advantage of using
a β-encoder over PCM for A/D-conversion thus lies in the fact that if the quantisation
threshold u is chosen well inside the interval [β−1, 1], then the β-encoder can recover
from a quantisation error and still produce good approximations of the original input
signal x by shifting from one β-expansion of x to another. The robustness of the
β-encoder in the A/D-conversion process has been studied in e.g. [DDGV06, JW09,
KHTA12, KHA12, SKM+13, MIS+15].
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In recent years the β-encoder was considered as a source for random number gen-
eration, see [JMKA13, SJO15, JM16, KJ16]. An issue with this application was that
the successive bits in the output of a β-encoder are strongly correlated. Jitsumatsu
and Matsumura proposed in [JM16] to remove this dependence between bits by adding
an algorithm to the process that converts the output bits from the β-encoder into the
base 2 digits of the number it represents. A natural question asked in [JM16] is the
following: If we use u = (un)n≥1 to denote the consecutive threshold values un used
at each time step of the approximation algorithm, what is the number k(m,u, x) of
bits from the β-encoder that are necessary to obtain m base 2 digits of the num-
ber x via this process? In [JM16] the lower bound k(m,u, x) ≥ m log 2

log β was found.
The authors of [JM16] remarked that a theoretical analysis of the expected value of
k(m,u, x) is relevant as an indication of the efficiency of the proposed pseudo-random
number generator.

It is the purpose of this chapter to address the question posed in [JM16], which is
reminiscent of the considerations of Lochs in [L64] and related settings from [BDK99,
DF01] discussed in Subsection 5.1.1. Unfortunately these results as well as the results
obtained in Chapter 5 do not immediately apply to the question from [JM16] due to
the uncertainty in the threshold value u, even though as we will see below the iteration
process of the β-encoder can be described with a random dynamical system. In partic-
ular, the results of Chapter 5, which are in the context of random dynamical systems,
do not apply because fluctuations in u are assumed to be unknown. (This is discussed
at the end of Subsection 5.1.2.) Indeed, in reality we do not know, given some output
b1, . . . , bk of the β-encoder, which u1, . . . , uk resulted in this output. Nevertheless, in
our first main result of this chapter we recover the lower bound from [JM16] and we
obtain a statement on an upper bound for k(m,u, x). More precisely, we obtain the
following results. Again λ denotes the one-dimensional Lebesgue measure.

Theorem 6.1.1. Let β ∈ (1, 2) and u = (un)n≥1 ∈ [β − 1, 1]N. For all x ∈ [0, 1) and
all m ∈ N it holds that

k(m,u, x) ≥ m log 2

log β
. (6.1)

Moreover, for each ε ∈ (0, 1) there exists a constant C(ε) > 0 such that for all m ∈ N

λ
({
x ∈ [0, 1) : k(m,u, x)− m log 2

log β
> C(ε)

})
< ε. (6.2)

From these bounds we obtain the following corollary on the asymptotic behaviour
of the sequences (k(m,u, x))m≥1.

Corollary 6.1.2. For any real positive sequence (am)m∈N with limm→∞ am = ∞,
each u ∈ [β − 1, 1]N and each ε > 0 it holds that

lim
m→∞

λ
({
x ∈ [0, 1) :

1

am

∣∣∣k(m,u, x)− m log 2

log β

∣∣∣ > ε
})

= 0,

i.e. the sequence
(

1
am

(
k(m,u, x)− m log 2

log β

))
m≥1

converges to 0 in λ-probability.
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In particular, the above corollary has the following implications:
- Taking am =

√
m for eachm gives a Central Limit Theorem result where the limiting

distribution has zero variance;
- Taking am = m for each m we retrieve a limit statement in the spirit of (5.1), but
with convergence in probability instead of almost surely.

By adjusting the setup from [DF01] to suit our purposes, we obtain the stronger
result of almost sure convergence for the specific sequence (am)m≥1 with am = m for
each m that is stated in the next theorem.

Theorem 6.1.3. For each u ∈ [β − 1, 1]N it holds that

lim
m→∞

k(m,u, x)

m
=

log 2

log β
λ-a.e.

More specifically, for typical x and large m one needs approximately m log 2
log β output

bits of the β-encoder to obtain m correct base 2 digits.

The remainder of this chapter is organised as follows. In the next section we
introduce the necessary notation and preliminaries on binary and β-expansions. In the
third section we prove our main results. We conclude with some final remarks. Here
we discuss in particular what happens if not only the threshold value u but also the
values of the amplification factor β or the scaling factor β−1 fluctuate over time, a fact
that has been observed for β-encoders and discussed in e.g. [DY06, W08, DGWY10].

§6.2 Preliminaries

If A is an interval in the real line, then we write ∂A for the set containing the two
boundary points of A and we use A− and A+ to denote the lower and upper endpoint
of A, respectively.

For each m the collection of dyadic intervals of order m is given by

Dm =
{[ k

2m
,
k + 1

2m

)
: 0 ≤ k ≤ m− 1

}
.

If we write the point k
2m =

∑m
i=1

di
2i , di ∈ {0, 1}, in its binary expansion, then we see

that the interval
[
k

2m ,
k+1
2m

)
contains precisely those x ∈ [0, 1) that have d1, . . . , dm

as their first m base 2 digits. For each x ∈ [0, 1) and each m ≥ 1 there is a unique
element of Dm that contains x. We denote this by Dm(x). Then

λ(Dm(x)) = 2−m. (6.3)

Hence, each collection Dm is a partition of [0, 1) by intervals of length 2−m.

Usually A/D-converters rely on binary expansions of numbers to produce good
approximations of the input signal. The β-encoder is based on β-expansions instead.
Fix a value of β ∈ (1, 2). An expression of the form

x =
∑
i≥1

bi
βi
, bi ∈ {0, 1},
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is called a β-expansion of x, see also Example 5.7.5. One easily sees that if x has such
a β-expansion, then x ∈

[
0, 1

β−1

]
. The β-encoder as described in [JM16] considers as

input signal a number x ∈ [0, 1) and thus has rescaled the setup by a factor β − 1.
Below we briefly explain how one can get a β-expansion of a number x

β−1 for x ∈ [0, 1)

from the β-encoder given in the introduction but with varying threshold values un.

For each u ∈ [β − 1, 1] define the interval map Tu : [0, 1)→ [0, 1) by

Tu(y) =

{
βy, if y < u

β ,

βy − (β − 1), if y ≥ u
β .

The graph of such a map is shown in Figure 6.2. If we let un denote the threshold value
of the quantiser at time n, then the dynamics of the β-encoder can be represented by

xn = Tun(xn−1) = Tun ◦ · · · ◦ Tu1
(x), n ≥ 1.

For each n ≥ 1, set bn = bn(x) = 0 if βxn−1 < un and 1 otherwise. Putting x0 = x,
then for each n ≥ 1,

Tun(xn−1) = βxn−1 − (β − 1)bn,

so that

x = (β − 1)

n∑
i=1

bi
βi

+
Tun ◦ · · · ◦ Tu1

(x)

βn
.

Since Tun ◦ · · · ◦ Tu1
(x) ∈ [0, 1) for each n, we obtain that x = (β − 1)

∑∞
i=1

bi
βi .

From Figure 6.2 it becomes clear that each threshold value un must lie in the interval
[β − 1, 1] to obtain a recursive process and bits that correspond to β-expansions.

0

1

11
β

β−1
β

u
β

I(0) I(1) I1

Figure 6.2: The graph of one of the maps Tu is shown for β = 1+
√
5

2
, the golden mean. The

yellow area in the middle relates to the interval in which the threshold value u may be chosen.
At the top we see the two intervals I(0) and I(1) that are the elements of the cover I1.
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Given the first k output bits b1, . . . , bk of the β-encoder, we know that the input
signal x has to satisfy

x

β − 1
∈
[ k∑
i=1

bi
βi
,

k∑
i=1

bi
βi

+
∑
i≥k+1

1

βi

]
=
[ k∑
i=1

bi
βi
,

k∑
i=1

bi
βi

+
1

βk(β − 1)

]
.

For each b1, . . . , bk ∈ {0, 1} define

I(b1,...,bk) =
[
(β − 1)

k∑
i=1

bi
βi
, (β − 1)

k∑
i=1

bi
βi

+
1

βk

]
.

Comparable to the partitions Dm for binary expansions, we consider for each k ≥ 1

the cover Ik of [0, 1) associated to β-expansions given by

Ik = {I(b1,...,bk) : bi ∈ {0, 1}, 1 ≤ i ≤ k}.

See Figure 6.2 for an illustration of I1 = {I(0), I(1)}.

If for k ≥ 1 the first k output bits of the β-encoder for an input signal x ∈ [0, 1)

and a threshold value sequence u ∈ [β − 1, 1]N are b1, . . . , bk, then we set

Ik(u, x) = I(b1,...,bk),

since the information that the bits b1, . . . , bk give us is that x is contained in this
interval.1 Note that

λ(Ik(u, x)) = β−k. (6.4)

Furthermore,

k(m,u, x) = inf{k ≥ 1 : Ik(u, x) ⊆ Dm(x)}. (6.5)

§6.3 Proofs of the main results

In this section we prove the main results. We start with the proof of Theorem 6.1.1,
which provides bounds for the quantities k(m,u, x). This proof is inspired by the
proof of [H09, Theorem 2.3].

1This is the setting of (5.11). Indeed, defining Au,0 = [0, u
β

), Au,1 = [u
β
, 1) for each u ∈ [β− 1, 1]

and setting χ(0) = 1,χ(1) = β − 1 and I = [β − 1, 1], note that

I(b1,...,bk) =

k⋂
i=1

T−1
χ(b1)···χ(bi−1)

Aχ(bi),bi =
⋃

(ω1,...,ωk)∈Ik

k⋂
i=1

T−1
ω1···ωi−1

Aωi,bi .
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Proof of Theorem 6.1.1. Fix u = (un)n≥1 ∈ [β − 1, 1]N. For all m ∈ N and x ∈ [0, 1)

we find using (6.3) and (6.4) that

k(m,u, x)− m log 2

log β
=
k(m,u, x) log β + log λ(Ik(m,u,x)(u, x))

log β

+
− log λ(Ik(m,u,x)(u, x)) + log λ(Dm(x))

log β

+
− log λ(Dm(x))−m log 2

log β

=
1

log β
· log

(
λ(Dm(x))

λ(Ik(m,u,x)(u, x))

)
.

(6.6)

By the definition of k(m,u, x) we have Ik(m,u,x)(u, x) ⊆ Dm(x) and thus the above
yields

k(m,u, x) ≥ m log 2

log β
.

This gives (6.1).
For (6.2) let ε ∈ (0, 1) and fix some integer m ≥ 1. By the definition of k(m,u, x)

we have that Ik(m,u,x)−1(u, x) * Dm(x). Hence, the distance between x and the
nearest boundary point of Dm(x), denoted by |x − ∂Dm(x)|, is at most equal to
λ(Ik(m,u,x)−1(u, x)). Furthermore, we have

log λ(Ik(m,u,x)−1(u, x))− log λ(Ik(m,u,x)(u, x)) = log β.

Together this gives that

log
( λ(Dm(x))

λ(Ik(m,u,x)(x))

)
≤ log λ

(
Dm(x)

)
+ log β − log |x− ∂Dm(x)|. (6.7)

We slightly adjust the intervals in Dm by removing small intervals at the endpoints:
For each m ∈ N and interval J ∈ Dm, let J ′ be the interval obtained by removing
on both ends of J an interval of length ε

6 · 2
−m and let Cm =

⋃
J∈Dm J

′. Then
λ(J ′) =

(
1 − ε

3

)
· 2−m and λ(Cm) = 1 − ε

3 . For x ∈ Cm we have the bound |x −
∂Dm(x)| ≥ ε

6λ(Dm(x)). Combining this with (6.6) and (6.7) gives for each integer
m ∈ N and each x ∈ Cm that

k(m,u, x)− m log 2

log β
≤

log 6
ε

log β
+ 1.

Hence, we obtain (6.2) with constant C(ε) =
log 6

ε

log β + 1.

Theorem 6.1.1 gives bounds on the value of k(m,u, x) and immediately leads to
the statement on the asymptotics of the sequence (k(m,u, x))m≥1 from Corollary 6.1.2
that we prove next.

Proof of Corollary 6.1.2. Let (am)m≥1 be a sequence that satisfies the conditions of
the corollary. From (6.1) we get that for each x ∈ [0, 1) and m ∈ N,

1

am

(
k(m,u, x)− m log 2

log β

)
≥ 0.
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Hence, it suffices to show that for all δ, ε > 0 there exists an M ∈ N such that for all
m ≥M we have

λ
({
x ∈ [0, 1) :

1

am

(
k(m,u, x)− m log 2

log β

)
> δ
})

< ε.

This immediately follows from (6.2) by taking M ∈ N big enough such that C(ε)
am
≤ δ

for all m ≥M , which is possible because limm→∞ am =∞.

As we saw in the introduction, by choosing am = m for all m ≥ 1 Corollary 6.1.2
gives a limit statement reminiscent of Lochs’ Theorem, but with convergence in prob-
ability. Our final result, Theorem 6.1.3 which we prove next, shows that this limit
statement also holds almost surely. This proof is inspired by the proof of [DF01,
Theorem 4].

Proof of Theorem 6.1.3. Fix some u ∈ [β − 1, 1]N. It follows from (6.1) that for all
x ∈ [0, 1)

lim inf
m→∞

k(m,u, x)

m
≥ log 2

log β
.

Conversely, let ε ∈ (0, 1) and for each m ≥ 1 define k̄(m) = d(1 + ε)m log 2
log β e. Let

Pm = {x ∈ [0, 1) : Ik̄(m)(u, x) 6⊆ Dm(x)}

⊆
⋃

B∈Dm

⋃
A∈Ik̄(m) :A6⊆B

A ∩B

⊆
⋃

B∈Dm

[B−, B− + β−(1+ε)m log 2
log β ] ∪ [B+ − β−(1+ε)m log 2

log β , B+],

where B− and B+ denote the lower and upper endpoint of B, respectively. Since Dm
has β

m log 2
log β elements, we have

λ
(
Pm
)
≤ β

m log 2
log β · 2 · β−(1+ε)m log 2

log β ≤ 2 · β−ε
m log 2
log β ,

which gives that
∑∞
m=1 λ

(
Pm
)
<∞. From the Borel-Cantelli Lemma it follows that

λ
(
{x ∈ [0, 1) : x ∈ Pm for infinitely many m ∈ N}

)
= 0.

Hence,

λ
(
{x ∈ [0, 1) : ∃M ∈ N s.t. ∀m ≥M Ik̄(m)(u, x) ⊆ Dm(x)}

)
= 1,

or in other words, for Lebesgue almost all x ∈ [0, 1] there exists an M ∈ N such that
for all m ≥M it holds that k(m,u, x) ≤ k̄(m). This gives

lim sup
m→∞

k(m,u, x)

m
≤ lim sup

m→∞

k̄(m)

m
= (1 + ε)

log 2

log β
, λ-a.e.

Since ε > 0 was arbitrary, this concludes the proof.

Remark 6.3.1. Note that the first part of the previous proof holds for all x ∈ [0, 1].
It is the second part that only holds Lebesgue almost everywhere.
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§6.4 Final remarks

In practice it is not only the threshold value u that is subject to fluctuations due to
noise on the circuit, but also the amplification factor β and the scaling factor β − 1.
This issue and possible solutions to it were discussed in [DY06, W08, DGWY10]. Here
we discuss the consequences for the value k(m,u, x).

Assume that the amplification factor and scaling factor fluctuate within intervals
[βmin, βmax], [β̃min, β̃max] ⊆ (1, 2), respectively. We use β = (βn)n≥1 ∈ [βmin, βmax]N

and β̃ = (β̃n)n≥1 ∈ [β̃min, β̃max]N to denote the sequence of consecutive amplification
factors βn and scaling factors β̃n− 1, respectively. For an input value x = x0 ∈ [0, 1),
the bits bn are produced iteratively by setting xn = βnxn−1 − (β̃n − 1)bn and

bn =

{
0, if βnxn−1 < un,

1, if βnxn−1 ≥ un.

This gives, for each n,

x =

n∑
i=1

(β̃i − 1)bi∏i
j=1 βj

+
xn∏n
j=1 βj

.

Note that
∞∑
i=1

(β̃i − 1)bi∏i
j=1 βj

≤ (β̃max − 1)

∞∑
i=1

1

βimin

<∞,

so

κ := lim
n→∞

xn∏n
j=1 βj

= x−
∞∑
i=1

(β̃i − 1)bi∏i
j=1 βj

is finite.

If for k ≥ 1 the first k output bits of the β-encoder are b1, . . . , bk for an input
signal x ∈ [0, 1), an amplification sequence β ∈ [βmin, βmax]N, a scaling sequence
β̃ ∈ [β̃min, β̃max]N and a threshold sequence u ∈ [0, 1]N, then optimally (that means,
knowing the value of κ) we know that x lies in the interval

Ĩk(u,β, β̃, x) =
[
(β̃min − 1)

k∑
i=1

bi
βimax

+ κ, (β̃max − 1)

k∑
i=1

bi
βimin

+
β̃max − 1

βmin − 1

1

βkmin

+ κ
]
.

The lower and upper endpoints of the sets {Ĩk(u,β, β̃, x)} form an increasing and
decreasing sequence, respectively, so

⋂
k≥1

Ĩk(u,β, β̃, x) =
[
(β̃min − 1)

∞∑
i=1

bi
βimax

+ κ, (β̃max − 1)

∞∑
i=1

bi
βimin

+ κ
]
, (6.8)

which has length > 0 if x 6= 0 and either βmin < βmax or β̃min < β̃max or both are the
case. (Indeed, note that in case x 6= 0 there exists i ∈ N such that bi = 1.) Similar
as to (6.5), we define k(m,u,β, β̃, x) to be the number of bits from the β-encoder
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subject to noise in the amplification, the scaling and the threshold that are necessary
to obtain m base 2 digits of the number x, i.e.

k(m,u,β, β̃, x) = inf{k ≥ 1 : Ĩk(u,β, β̃, x) ⊆ Dm(x)}.

We see from (6.8) that if βmin < βmax or β̃min < β̃max, then for all x ∈ (0, 1), all
β ∈ [βmin, βmax]N, all β̃ ∈ [β̃min, β̃max]N and all u ∈ [0, 1]N there exists M > 0 such
that for all integers m > M we have

k(m,u,β, β̃, x) =∞.

In other words, the expected number of bits from the β-encoder that are necessary to
obtain m base 2 digits of the number x is infinite for large m. Hence, this indicates
that the proposed pseudo-random number generator of [JM16] is not efficient for
generating large pseudo-random numbers if the β-encoder in this process is subject
to noise in the amplification or scaling as well.
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