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CHAPTER 4
Intermittency generated by

attracting and weakly repelling fixed
points

This chapter is based on: [Z].

Abstract

In Chapter 2 for a class of critically intermittent random systems a phase transition
was found for the finiteness of the absolutely continuous invariant measure. The
systems for which this result holds are characterised by the interplay between a su-
perexponentially attracting fixed point and an exponentially repelling fixed point. In
this chapter we consider a closely related family of random systems with instead ex-
ponentially fast attraction to and polynomially fast repulsion from two fixed points,
and show that such a phase transition still exists. The method of the proof however
is different and relies on the construction of a suitable invariant set for the Perron-
Frobenius operator.
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§4.1 Introduction

For the critically intermittent random systems studied in Chapter 2 we asked in
Subsection 2.4.3 the question what happens to the absolutely continuous invariant
measure, if it exists, when the superexponential convergence to c is replaced by expo-
nential convergence to c and the exponential divergence from 0 and 1 is replaced by
polynomial divergence from 0 and 1. In this chapter we investigate this by considering
a random system that generates i.i.d. random compositions of a finite fixed number of
maps of two types: Type 1 consists of the LSV maps from (1.11) and type 2 consists of
LSV maps where the right branch is replaced by increasing branches that map ( 1

2 , 1]

to itself and for which the derivative close to 1
2 is smaller than 1. The random orbits

then converge exponentially fast to 1
2 under applications of maps of type 2, and as

soon as a map of type 1 is applied then diverge polynomially fast from 0, see Figure
4.1(a). We will show that such random systems exhibit a phase transition similar to
the ones found in Chapters 2 and 3 in the sense that it depends on the features of the
maps as well as on the probabilities of choosing the maps whether the system admits
a finite absolutely continuous invariant measure or not.

We define the class S = {Sα : α ∈ (0,∞)} where Sα is the LSV map from (1.11),
and the class R = {Rα,K : α ∈ (0,∞),K ∈ (0, 1)} where

Rα,K(x) =

{
x(1 + 2αxα) if x ∈ [0, 1

2 ],
1
2 +K(x− 1

2 ) + 2(1−K)(x− 1
2 )2 if x ∈ ( 1

2 , 1].
(4.1)

The graph of Rα,K is shown in Figure 4.1(b). The right branch of Rα,K is defined
in such a way that 1

2 and 1 are fixed points for Rα,K and that under Rα,K orbits
eventually approach 1

2 from above. The rate of this convergence to 1
2 is determined

by K. Let T1, . . . , TN ∈ S ∪ R be a finite collection. Similar as in the previous
chapters we write

ΣS = {1 ≤ j ≤ N : Tj ∈ S},
ΣR = {1 ≤ j ≤ N : Tj ∈ R},
Σ = {1, . . . , N} = ΣS ∪ ΣR.

We assume that ΣS ,ΣR 6= ∅. For each j ∈ Σ we write αj ∈ (0,∞) if Tj(x) =

x(1 + 2αjxαj ) for x ∈ [0, 1
2 ]. For j ∈ ΣR we moreover write Kj ∈ (0, 1) if Tj(x) =

1
2 +Kj(x− 1

2 ) + 2(1−Kj)(x− 1
2 )2 for x ∈ ( 1

2 , 1].

Let F be the skew product associated to {Tj}j∈Σ, i.e.

F : ΣN × [0, 1]→ ΣN × [0, 1], (ω, x) 7→ (τω, Tω1(x)), (4.2)

where τ denotes the left shift on sequences in ΣN. Let p = (pj)j∈Σ be a probability
vector with strictly positive entries representing the probabilities with which we choose
the maps from T = {Tj}j∈Σ. Let mp be the p-Bernoulli measure on ΣN. Since each
of the maps Tj (j ∈ Σ) has zero as a neutral fixed point, orbits under (T ,p) exhibit
intermittent behaviour in the sense that periods of chaotic behaviour are followed by
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Figure 4.1: In (a) we see the critically intermittent system consisting of the maps Sα and
Rα,K given by (1.11) and (4.1), respectively. The dashed lines indicate part of a random
orbit of x. In (b) the graph of Rα,K is depicted for several values of α and K.

periods of spending time near zero. The amount of time spent near zero generally
increases for larger values of pj (j ∈ ΣR), smaller values of Kj (j ∈ ΣR) and larger
values of αj (j ∈ Σ).

We set αmin = min{αj : j ∈ Σ}. Throughout this chapter we assume the following:

Assumption: αmin < 1.

Furthermore, we set

η =
∑
r∈ΣR

prK
−αmin
r ,

γ = sup{δ ≥ 0 :
∑
r∈ΣR

prK
−δ
r < 1}.

Note that if η < 1, then γ > αmin. We have the following main results.

Theorem 4.1.1. Suppose η > 1. Then no acs probability measure exists for (T ,p).

Theorem 4.1.2. Suppose η < 1.

(1) There exists a unique acs probability measure µ for (T ,p). Moreover, F is
ergodic with respect to mp × µ.

(2) The density dµ
dλ with respect to the Lebesgue measure λ is bounded away from

zero and on the intervals (0, 1
2 ] and ( 1

2 , 1] is decreasing and locally Lipschitz.
Furthermore, for each β ∈ (αmin, γ) ∩ (0, 1] there exist a1, a2 > 0 such that

dµ

dλ
(x) ≤ a1 · x−αmin−1+β , x ∈

(
0,

1

2

]
, (4.3)

dµ

dλ
(x) ≤ a2 ·

(
x− 1

2

)−1+β

, x ∈
(1

2
, 1
]
. (4.4)
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See Figure 4.2 for a plot of dµdλ . In addition to Theorem 4.1.1 we argue in Section
4.3 that if η > 1 then an infinite acs measure exists and no physical measure (see
footnote 1 on page 39) for F exists. Together with Theorem 4.1.2 this shows that the
random system undergoes a phase transition with threshold η = 1. It is not clear if
an acs probability measure exists when η = 1. We discuss this in Section 4.3 as well.
Note that if

∑
r∈ΣR

prK
−1
r < 1, then γ > 1. So in this case we can take β = 1, and

then Theorem 4.1.2(2) says that there exists a > 0 such that

dµ

dλ
(x) ≤ a · x−αmin , x ∈ (0, 1]. (4.5)

This bound is also found in [LSV99] where only one LSV map T1 ∈ S with α1 ∈ (0, 1)

is considered and no maps in R. This suggest that in case
∑
r∈ΣR

prK
−1
r < 1 the

attraction by the maps {Tj}j∈ΣR to 1
2 does not change the order of the pole of the

invariant density at zero. Note however that the density in the setting of [LSV99] is
shown to be continuous on (0, 1), which in general is not the case for the density in
the setting of Theorem 4.1.2. See Figure 4.2(b).

(a) (b)

Figure 4.2: Approximation of dµ
dλ

in case ΣS = {1}, ΣR = {2}, p1 = 7
10

and α1 = α2 = 1
2

for two different values of K2. Both pictures depict P 100(1) with P as in (4.17), where in
(a) we have taken K2 = 1

10
(so η < 1 < p2K

−1
2 ) and in (b) K2 = 6

10
(so η < p2K

−1
2 < 1).

With Theorem 4.1.2 we can derive the following result, which says that the density
dµp

dλ in L1(λ) = L1([0, 1], λ) depends continuously on the probability vector p ∈ RN
w.r.t. the L1(λ)-norm. Here we write µp for the acs probability measure that corres-
ponds to the probability vector p.

Corollary 4.1.3. For each n ∈ N, let pn = (pn,j)j∈Σ be a strictly positive probability
vector such that supn

∑
r∈ΣR

pn,rK
−αmin
r < 1 and assume that limn→∞ pn = p in

RN+ . Then

lim
n→∞

∥∥∥dµpn

dλ
− dµp

dλ

∥∥∥
L1(λ)

= 0.
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Note that the convergence in Corollary 4.1.3 is stronger than in Corollary 2.1.5
where only weak convergence for the acs measure is derived.

Let us briefly give a heuristic explanation of why the value of η determines whether
(T ,p) admits an acs probability measure or not. We do this by referring to techniques
involving inducing. First of all, as results like Kac’s Lemma, Proposition 1.2.12 and
the Young tower technique discussed in Chapter 3 indicate, given a subset Y in which
orbits stay relatively short, the expected time1 to first return to Y after leaving Y
is finite typically if and only if an acs probability measure exists. Let us now argue
for our random systems that for η < 1 (η > 1) the expected time to first return
to Y = ΣN × ( 1

2 , 1) after leaving Y is finite (infinite), thus suggesting the result of
Theorem 4.1.1 and the first part of Theorem 4.1.2. If ΣR = ∅, then our system is an
i.i.d. random LSV map and as explained in Example 1.4.3 we know that in this case
the existence of an acs probability measure depends on how long orbits stick close to
zero. As follows from the results in [BBD14, BB16, Z18, BQT21], this stickiness at
zero is governed by the LSV map with the fastest relaxation rate, i.e. having parameter
αmin. In particular, a point (ω, x) ∈ Y with x close to 1

2 typically needs of the order
(x− 1

2 )−αmin iterations under F to first return to Y as shown in [BB16, Theorem 1.1].
In this case the expected return time to Y behaves roughly as κ :=

∫ 1
1
2
(x− 1

2 )−αmindx,
which is finite if and only if αmin < 1. If ΣR 6= ∅, then the influence of the stickiness
at zero is enhanced because points in ( 1

2 , 1) close to 1
2 are sent closer to zero when

first a number of times maps from R are applied before a map from S is applied. In
this case the expected return time to Y after leaving Y behaves roughly like

∞∑
m=0

∑
r1∈ΣR

· · ·
∑

rm∈ΣR

( m∏
j=1

prj

)∫ 1

1
2

(
Trm ◦ · · · ◦ Tr1(x)− 1

2

)−αmin

dx. (4.6)

First of all, for all r ∈ ΣR and x ∈ ( 1
2 , 1) we have Tr(x) ≥ 1

2 + Kr(x − 1
2 ) and so

the quantity in (4.6) can be bounded from above by κ
∑∞
m=0 η

m. Hence, if η < 1,
then it is reasonable to expect that the expected return time to Y after leaving Y is
finite. On the other hand, if η > 1, then there exists ε > 0 small enough such that
ηε :=

∑
r∈ΣR

pr(Kr + ε)−αmin > 1 as well. Since for x ∈ ( 1
2 , 1) sufficiently close to

1
2 we have Tr(x) ≤ 1

2 + (Kr + ε)(x − 1
2 ), the quantity in (4.6) can be bounded from

below by κ̃
∑∞
m=0 η

m
ε = ∞ with κ̃ ∈ (0, κ]. Hence, if η > 1, then this suggests that

the expected return time to Y after leaving Y is infinite.

For the proof of Theorem 4.1.1 we will work out the above sketch in more detail
and obtain the result using Kac’s Lemma. On the other hand, for the proof of
Theorem 4.1.2 we will not make use of an inducing technique. The first reason is
that working out in precise detail the above sketch of bounding the expected return
time still requires additional work that is not straightforward. Secondly, as we have
seen in Subsection 2.2 and Chapter 3, inducing techniques often require the induced
transformation to satisfy certain bounded distortion conditions, which are hard to
obtain for the random systems in this chapter since the first branch of the maps Tj

1Here we mean with ‘expected’ that we take the expectation with respect to a reference measure,
which in our random system is mp × λ.
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can have positive Schwarzian derivative (namely if αj > 1). For this reason but also
because the maps Tr (r ∈ ΣR) have a discontinuity, we cannot use the method from
Subsection 2.3.2 either. Furthermore, we remark that not only in Chapters 2 and 3
but also in this chapter we cannot use the technique from Pelikan in [P84, Section 4]
discussed in Section 2.1. The main reason is that the constituent maps S and T from
Pelikan have competing behaviour at the same fixed point, whereas our systems are
characterised by the interplay between the behaviour at two different fixed points.

Instead, for the case η < 1 we show the existence of an acs probability measure
by considering a suitable set of functions that is invariant with respect to the Perron-
Frobenius operator of the random system. We will then apply the Arzelà-Ascoli
Theorem to prove that this set has a fixed point. This approach is similar to the one
in Section 2 of [LSV99] where only one LSV map is considered.

The remainder of this chapter is organised as follows. Section 4.2 concentrates on
proving Theorems 4.1.1 and 4.1.2 and Corollary 4.1.3. This chapter will be concluded
in Section 4.3 with some final remarks.

§4.2 Phase transition for the acs measure

As in Section 4.1, let T1, . . . , TN ∈ S ∪R be a finite collection, write ΣS = {1 ≤ j ≤
N : Tj ∈ S}, ΣR = {1 ≤ j ≤ N : Tj ∈ R} and Σ = {1, . . . , N} = ΣS ∪ ΣR and
assume that ΣS ,ΣR 6= ∅ and αmin < 1. Furthermore, we again denote by F the skew
product associated to T = {Tj}j∈Σ given by (4.2), let p = (pj)j∈Σ be a probability
vector with strictly positive entries and let mp be the p-Bernoulli measure on ΣN.
Also, recall that

η =
∑
r∈ΣR

prK
−αmin
r .

§4.2.1 The case η > 1

In this subsection we prove Theorem 4.1.1, namely that any acs measure for (T ,p)

must be infinite if η > 1. Throughout this subsection we use the notations for words
and compositions of the maps Tj introduced in Section 1.4. Furthermore, we will use
the following well-known results.

Let j ∈ Σ and define the sequence {xn(j)} in (0, 1
2 ] by

x1(j) =
1

2
and xn(j) = Tj |−1

[0, 12 ]

(
xn−1(j)

)
for each integer n ≥ 2.

As explained in e.g. the beginning of Section 6.2 of [Y99] there exists a constant
Cj > 1 such that for each n ∈ N

C−1
j n

− 1
αj ≤ xn(j) ≤ Cjn

− 1
αj . (4.7)
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Furthermore, we define for each ω ∈ ΣN the random sequence {xn(ω)} in (0, 1
2 ] by

x1(ω) =
1

2
and xn(ω) = Tω1 |−1

[0, 12 ]
(xn−1(τω)) for each integer n ≥ 2.

Then, for each ω ∈ ΣN and n ∈ N,

Tn−1
ω ((xn+1(ω), xn(ω)]) =

(
x2(τn−1ω),

1

2

]
. (4.8)

Letting i ∈ Σ be such that αi = αmin, it has been shown in [BBD14, Lemma 4.4] that
for each ω ∈ ΣN and n ∈ N we have

xn(i) ≤ xn(ω). (4.9)

Proof of Theorem 4.1.1. Suppose that η > 1 and that µ is an acs probability measure
for (T ,p). We will use Kac’s Lemma to arrive at a contradiction. Define

Aj =
(
x2(j), Tj |−1

[0, 12 ]

(3

4

))
, j ∈ Σ,

Bj =
(3

4
, Tj |−1

( 1
2 ,1]

(3

4

))
, j ∈ Σ,

Y =
⋃
j∈Σ

[j]× (Aj ∪Bj).

We consider the first return time map ϕY to Y under F as defined in (1.6). Since
η > 1, there exists δ > 0 small enough such that

ζ :=
∑
r∈ΣR

prM
−αmin
r ≥ 1, where Mr := Kr + 2(1−Kr) · δ ∀r ∈ ΣR. (4.10)

For each x ∈ ( 1
2 ,

1
2 + δ) we have

Tr(x) =
1

2
+
(
Kr + 2(1−Kr)

(
x− 1

2

))(
x− 1

2

)
≤ 1

2
+Mr

(
x− 1

2

)
. (4.11)

For r = (r1, . . . , rn) ∈ ΣnR we write Mr =
∏n
l=1Mrl with Mr = 1 if n = 0. Further-

more, fix t ∈ ΣR. It is easy to see that limn→∞ Tnt ( 3
4 ) = 1

2 , so there exists an integer
k ≥ 0 such that T kt ( 3

4 ) ∈ ( 1
2 ,

1
2 + δ) holds.

Let (ω, x) ∈ Y and t and k be as above. Furthermore, fix s ∈ ΣS . Suppose that

ω ∈ [u t · · · t︸ ︷︷ ︸
k times

rs] = [utkrs], for some u ∈ Σ, r ∈ ΣnR, n ≥ 0.

We then have T lω(x) ∈ ( 1
2 ,

3
4 ) for all 1 ≤ l ≤ 1 + k + n. It follows from Tω1

(x) ≤ 3
4 ,

T kt ( 3
4 ) ∈ ( 1

2 ,
1
2 + δ) and (4.11) that

T 1+k+n
ω (x) ≤ T k+n

τω

(3

4

)
≤ 1

2
+Mr

(
T kt

(3

4

)
− 1

2

)
,
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which gives

T 2+k+n
ω (x) ≤Mr

(
2T kt

(3

4

)
− 1
)

(4.12)

Fix i ∈ Σ such that αi = αmin. There exists an m ∈ N such that T 2+k+n
ω (x) ∈

(xm+1(i), xm(i)]. It follows from (4.8) and (4.9) that

ϕY (ω, x) ≥ 2 + k + n+m. (4.13)

We give a lower bound for m in terms of r. It follows from (4.7) and (4.12) that

C−1
i (m+ 1)

− 1
αi ≤Mr

(
2T kt

(3

4

)
− 1
)
.

Solving for m yields

m ≥ D1 ·M−αir − 1, (4.14)

where we defined D1 = C−αii · (2T kt ( 3
4 )− 1)−αi . Combining (4.13) and (4.14) yields∫

Y

ϕY dmp × µ ≥
∑
u∈Σ

∞∑
n=0

∑
r∈ΣnR

∫
[utkrs]×(Au∪Bu)

ϕY dmp × µ

≥
∑
u∈Σ

∞∑
n=0

∑
r∈ΣnR

mp

(
[utkrs]

) ∫
Au∪Bu

D1 ·M−αir dµ(x)

= D2 ·
∞∑
n=0

ζn,

(4.15)

where

D2 = D1 · pkt ps ·
∑
u∈Σ

puµ(Au ∪Bu) = D1 · pkt ps ·mp × µ(Y ).

Almost every orbit that starts in ΣN × [0, 1] will eventually enter ΣN × ( 1
2 ,

3
4 ), either

via
⋃
j∈Σ[j] × Aj or via

⋃
j∈Σ[j] × Bj . Hence, we have

⋃∞
n=0 F

−nY = ΣN × [0, 1]

up to some set of measure zero, i.e. Y is a sweep-out set. This together with the
F -invariance of mp × µ yields

1 = mp × µ(ΣN × [0, 1]) ≤
∞∑
n=0

mp × µ(F−nY ) =

∞∑
n=0

mp × µ(Y ).

This gives mp×µ(Y ) > 0 and so D2 > 0. Hence, from (4.15) and ζ ≥ 1 it now follows
that ∫

Y

ϕY dmp × µ =∞. (4.16)

On the other hand, since µ is a probability measure by assumption, we obtain from the
Ergodic Decomposition Theorem and Kac’s Lemma in a similar way as in Subsection
3.3.1 that ∫

Y

ϕY dmp × µ ≤ 1,

which is in contradiction with (4.16).
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§4.2.2 The case η < 1

In this subsection we will prove Theorem 4.1.2 and Corollary 4.1.3. For this we
will identify a suitable set of functions which is preserved by the Perron-Frobenius
operator P = PT ,p associated to (T ,p) being of the form as in (1.20). We will do this
in a number of steps in a way that is similar to the approach of Section 2 in [LSV99].

Suppose η < 1. On [0, 1] we define for each j ∈ Σ the functions x 7→ yj(x) and
x 7→ ξj(x) by yj(x) = (Tj |[0, 12 ])

−1(x) and ξj(x) = (2yj(x))αj . Furthermore, we define
on [0, 1] the function z(x) = x+1

2 and on ( 1
2 , 1] we define for each r ∈ ΣR the function

zr(x) = (Tr|( 1
2 ,1])

−1(x). Whenever convenient, we will just write yj for yj(x) and
similarly for ξj , z and zr. Writing pS =

∑
s∈ΣS

ps, we then have

Pf(x) =

{∑
j∈Σ pj

f(yj)
1+(αj+1)ξj

+ pS
f(z)

2 , x ∈ [0, 1
2 ]∑

j∈Σ pj
f(yj)

1+(αj+1)ξj
+ pS

f(z)
2 +

∑
r∈ΣR

pr
f(zr)

DRα,K(zr) , x ∈ ( 1
2 , 1].

(4.17)

Note that x 7→ yj(x), x 7→ ξj(x), x 7→ z(x) and x 7→ zr(x) are increasing and
continuous on (0, 1

2 ] and ( 1
2 , 1]. This in combination with the fact that Rα,K is C1 on

( 1
2 , 1] with increasing derivative gives that the set

C0 =
{
f ∈ L1(λ) : f ≥ 0, f decreasing and continuous on

(
0,

1

2

]
and

(1

2
, 1
]}

is preserved by P , i.e. PC0 ⊆ C0.

Since η < 1, we have γ = sup{δ ≥ 0 :
∑
r∈ΣR

prK
−δ
r < 1} > αmin, so (αmin, γ) is

non-empty. In the remainder of this subsection we fix a β ∈ (αmin, γ)∩ (0, 1]. We set
αmax = max{αj : j ∈ Σ} and d = αmax + 2. We need the following two lemmas.

Lemma 4.2.1. For each α > 0 the function x 7→ (1+x)d

1+(α+1)x is increasing on [0, 1].

Proof. Set

fα(x) =
(1 + x)d

1 + (α+ 1)x
, x ∈ [0, 1].

Furthermore, set g(x) = (1 + x)d and hα(x) = 1 + (α+ 1)x where x ∈ [0, 1]. Then

f ′α(x) =
hα(x)g′(x)− g(x)h′α(x)

hα(x)2
.

We have

hα(x)g′(x) = (1 + (α+ 1)x) · d(1 + x)d−1

≥ (1 + x)d · d ≥ (1 + x)d · (α+ 1)

= g(x)h′α(x),

so f ′α(x) ≥ 0 holds for all x ∈ [0, 1].
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Define for each K > 0 and b ≥ 0 the function HK,b : ( 1
2 , 1]→ R by

HK,b(x) =
(K + 2(1−K)(x− 1

2 ))b

K + 4(1−K)(x− 1
2 )

, x ∈
(1

2
, 1
]
.

Lemma 4.2.2. Let K > 0 and b ≥ 0.

(i) If b ≥ 2, then HK,b is increasing.

(ii) If b ≤ 1, then HK,b is decreasing.

Proof. Set fK(x) = K + 2(1 −K)(x − 1
2 ) and gK(x) = K + 4(1 −K)(x − 1

2 ) where
x ∈ ( 1

2 , 1]. Note that g′K(x) = 2f ′K(x). Then for x ∈ ( 1
2 , 1)

H ′K,b(x) =
gK(x) · b · fK(x)b−1f ′K(x)− fK(x)b · g′K(x)

gK(x)2

=
fK(x)b · f ′K(x)

(
b · gK(x)

fK(x) − 2
)

gK(x)2
.

If b ≥ 2, then

b · gK(x)

fK(x)
− 2 ≥ 2 · gK(x)

fK(x)
− 2 ≥ 2 · fK(x)

fK(x)
− 2 = 0

and thus H ′K,b(x) ≥ 0. This proves (i). If b ≤ 1, then

b · gK(x)

fK(x)
− 2 ≤ gK(x)

fK(x)
− 2 ≤ 2fK(x)

fK(x)
− 2 = 0

and thus H ′K,b(x) ≤ 0. This proves (ii).

We can now prove the following lemma.

Lemma 4.2.3. The set

C1 =
{
f ∈ C0 : x 7→ xdf(x) incr. on

(
0,

1

2

]
, x 7→

(
x− 1

2

)d
f(x) incr. on

(1

2
, 1
]}

is preserved by P .

Proof. Let f ∈ C1. Let x ∈ (0, 1
2 ]. Using that for each j ∈ Σ we have x = yj(1 + ξj)

and that z(x)− 1
2 = x

2 , we obtain

xdPf(x) =
∑
j∈Σ

pj

( x
yj

)d ydj f(yj)

1 + (αj + 1)ξj
+
pS
2

( x

z − 1
2

)d(
z − 1

2

)d
f(z)

=
∑
j∈Σ

pj
(1 + ξj)

d

1 + (αj + 1)ξj
· ydj f(yj) + pS · 2d−1 ·

(
z − 1

2

)d
f(z).
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Because x 7→ ξj(x) is increasing for each j ∈ Σ it follows from Lemma 4.2.1 that x 7→
(1+ξj(x))d

1+(αj+1)ξj(x) is increasing for each j ∈ Σ. Combining this with the fact that f ∈ C1,
that yj ∈ (0, 1

2 ] for each j ∈ Σ and that z ∈ ( 1
2 , 1] we conclude that x 7→ xdPf(x) is

increasing on (0, 1
2 ].

Now let x ∈ ( 1
2 , 1]. Then(

x− 1

2

)d
Pf(x) =

(x− 1
2

x

)d∑
j∈Σ

pj

( x
yj

)d ydj f(yj)

1 + (αj + 1)ξj

+
pS
2

(x− 1
2

z − 1
2

)d(
z − 1

2

)d
f(z)

+
∑
r∈ΣR

pr
DRαr,Kr (zr)

( x− 1
2

zr − 1
2

)d(
zr −

1

2

)d
f(zr).

Using again that for each j ∈ Σ we have x = yj(1 + ξj), that z− 1
2 = x

2 and also that
x− 1

2 = Kr(zr − 1
2 ) + 2(1−Kr)(zr − 1

2 )2 for each r ∈ ΣR, we obtain(
x− 1

2

)d
Pf(x) =

(
1− 1

2x

)d∑
j∈Σ

pj
(1 + ξj)

d

1 + (αj + 1)ξj
· ydj f(yj)

+
pS
2

(
2− 1

x

)d(
z − 1

2

)d
f(z)

+
∑
r∈ΣR

pr
(Kr + 2(1−Kr)(zr − 1

2 ))d

Kr + 4(1−Kr)(zr − 1
2 )

(
zr −

1

2

)d
f(zr).

Note that x 7→ (1 − 1
2x )d and x 7→ (2 − 1

x )d are positive and increasing on ( 1
2 , 1].

Combining this with Lemma 4.2.1 and Lemma 4.2.2(i) and with the fact that f ∈ C1
we conclude that x 7→ (x− 1

2 )dPf(x) is increasing on ( 1
2 , 1].

We set t1 = αmin + 1 − β and t2 = 1 − β. It follows from β ∈ (αmin, 1] that
t1 ∈ [αmin, 1) and t2 ∈ [0, 1− αmin).

Lemma 4.2.4. For sufficiently large a1, a2 > 0, the set

C2 =
{
f ∈ C1 : f(x) ≤ a1x

−t1on
(

0,
1

2

]
, f(x) ≤ a2

(
x− 1

2

)−t2
on
(1

2
, 1
]
,

∫ 1

0

fdλ = 1
}

is preserved by P .

Proof. Let f ∈ C2. First, let x ∈ ( 1
2 , 1]. For each j ∈ Σ we have yj ≤ 1

2 and thus,
using that f ∈ C1,

ydj f(yj) ≤ 2−df
(1

2

)
≤ 2−d · 2 ·

∫ 1
2

0

f(u)du ≤ 2−d+1.

Furthermore, for each j ∈ Σ we have

Tj

(1

4

)
=

1

4
(1 + 2−αj ) ≤ 1

4
(1 + 1) =

1

2
,
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which gives yj ∈ ( 1
4 ,

1
2 ]. Setting M := 2d+1 we obtain for each j ∈ Σ that

f(yj)

1 + (αj + 1)ξj
= ydj f(yj) ·

y−dj
1 + (αj + 1) · (2yj)αj

≤ 2−d+1 · 4d = M. (4.18)

It also follows from f ∈ C1 that(
z − 1

2

)d
f(z) ≤

(
1− 1

2

)d
f(1) ≤ 2−d · 2 ·

∫ 1

1
2

f(u)du ≤ 2−d+1.

Using that z ∈ ( 3
4 , 1], this gives

f(z) ≤ 2−d+1 ·
(
z − 1

2

)−d
≤ 2−d+1 ·

(3

4
− 1

2

)−d
= M. (4.19)

Combining (4.17), (4.18) and (4.19) and using that f ∈ C2 gives

Pf(x) ≤M +
pS
2
·M +

∑
r∈ΣR

pr
DRαr,Kr (zr)

· a2

(
zr −

1

2

)−t2
.

For each r ∈ ΣR we have x− 1
2 = Kr(zr − 1

2 ) + 2(1−Kr)(zr − 1
2 )2 and therefore

1

DRαr,Kr (zr)

( x− 1
2

zr − 1
2

)t2
=

(Kr + 2(1−Kr)(zr − 1
2 ))t2

Kr + 4(1−Kr)(zr − 1
2 )

,

which by Lemma 4.2.2(ii) can be bounded from above by HKr,t2( 1
2 ) = Kt2−1

r . Fur-
thermore, since t2 ≥ 0 we have (x− 1

2 )t2 ≤ 2−t2 . We obtain

Pf(x) ≤
{M(1 + pS

2 ) · 2−t2
a2

+
∑
r∈ΣR

pr ·Kt2−1
r

}
· a2 ·

(
x− 1

2

)−t2
. (4.20)

We have t2 − 1 = −β and β < γ, so∑
r∈ΣR

pr ·Kt2−1
r =

∑
r∈ΣR

pr ·K−βr < 1.

Hence, there exists an a2 > 0 sufficiently large such that the term in braces in (4.20)
is bounded by 1.

Now let x ∈ (0, 1
2 ]. Using that f ∈ C2, it follows from (4.17) that

Pf(x) ≤
∑
j∈Σ

pj
a1 · y−t1j

1 + (αj + 1)ξj
+
pS · a2

2
·
(
z − 1

2

)−t2
. (4.21)

For each j ∈ Σ we have, using that x = yj(1 + ξj) and that t1 ∈ (0, 1),

y−t1j

1 + (αj + 1)ξj
=
x−t1(1 + ξj)

t1

1 + (αj + 1)ξj
≤ x−t1(1 + t1ξj)

1 + (αj + 1)ξj
≤ x−t1 . (4.22)
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Fix an i ∈ Σ with αi = αmin. Applying for each j ∈ Σ\{i} the bound (4.22) to (4.21)
and using that z − 1

2 = x
2 yields

Pf(x) ≤
{
pi

( x
yi

)t1
· 1

1 + (αi + 1)ξi
+ (1− pi) +

pS · a2 · 2t2−1

a1
· xt1−t2

}
· a1 · x−t1 .

(4.23)

It remains to find a1 sufficiently large such that the term in braces in (4.23) is bounded
by 1. First of all, using again that x = yi(1 + ξi) and that t1 ∈ (0, 1) we get( x

yi

)t1
· 1

1 + (αi + 1)ξi
=

(1 + ξi)
t1

1 + (αi + 1)ξi
≤ 1 + t1ξi

1 + (αi + 1)ξi
. (4.24)

Furthermore, we have

xt1−t2 = xαmin = yαii (1 + ξi)
αi ≤ yαii · 2

αi = ξi. (4.25)

It follows from (4.24) and (4.25) that the term in braces in (4.23) is bounded by

pi
1 + t1ξi +

p−1
i ·pS ·a2·2t2−1

a1
· ξi · (1 + (αi + 1)ξi)

1 + (αi + 1)ξi
+ (1− pi). (4.26)

Using that 1 + (αi + 1)ξi ≤ αi + 2 we get that the numerator in (4.26) is bounded by

1 +
(
t1 +

p−1
i · pS · a2 · 2t2−1(αi + 2)

a1

)
ξi.

Taking a1 > 0 sufficiently large such that t1 +
p−1
i ·pS ·a2·2t2−1(αi+2)

a1
≤ 1 ≤ αi + 1 now

yields the result.

Lemma 4.2.5. The set C2 is compact with respect to the L1(λ)-norm.

Proof. For each f ∈ C2 let φf denote the continuous extension of (0, 1
2 ] 3 x 7→ xdf(x)

to [0, 1
2 ] and let ψf denote the continuous extension of ( 1

2 , 1] 3 x 7→ (x − 1
2 )df(x) to

[ 1
2 , 1]. Furthermore, we define A1 = {φf : f ∈ C2} and A2 = {ψf : f ∈ C2}. For each
f ∈ C2 we have, for x, y ∈ [0, 1

2 ] with x ≥ y, that

0 ≤ φf (x)− φf (y) ≤ f(x)(xd − yd) ≤ a1x
−t1 · d

∫ x

y

td−1dt

≤ a1x
d−1−t1 · d|x− y| ≤ a1 · 2−d+1+t1 · d|x− y|.

(4.27)

and for x, y ∈ [ 1
2 , 1] with x ≥ y, that

0 ≤ ψf (x)− ψf (y) ≤ f(x)
((
x− 1

2

)d
−
(
y − 1

2

)d)
≤ a2

(
x− 1

2

)−t2
· d
∫ x

y

(
t− 1

2

)d−1

dt

≤ a2

(
x− 1

2

)d−1−t2
· d|x− y| ≤ a2 · 2−d+1+t2 · d|x− y|.

(4.28)
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Also, from the definition of C2 in Lemma 4.2.4 and the fact that d > max{t1, t2}
we see that φf (0) = ψf ( 1

2 ) = 0 holds for each f ∈ C2. It follows that A1 and A2

are uniformly bounded and equicontinuous, so from the Arzelà-Ascoli Theorem we
obtain that A1 and A2 are compact in C([0, 1

2 ]) and C([ 1
2 , 1]), respectively, w.r.t. the

supremum norm.

Now let {fn} be a sequence in C2. It follows from the above that {fn} has a
subsequence {fnk} such that {φfnk } converges uniformly to some φ∗ ∈ C([0, 1

2 ]) and
{ψfnk } converges uniformly to some ψ∗ ∈ C([ 1

2 , 1]) (for this we take a suitable sub-
sequence of a subsequence of {fn}). Now define the measurable function f∗ on (0, 1]

by

f∗(x) =

{
x−dφ∗(x) if x ∈ (0, 1

2 ],

(x− 1
2 )−dψ∗(x) if x ∈ ( 1

2 , 1].

Then f∗ is continuous on (0, 1
2 ] and ( 1

2 , 1]. Moreover, {fnk} converges pointwise to
f∗. First of all, this gives f∗ ∈ C1 once we know f∗ ∈ L1(λ). Secondly, this gives
combined with

sup
k∈N

fnk(x) ≤ a1x
−t1 for x ∈

(
0,

1

2

]
, sup

k∈N
fnk(x) ≤ a2

(
x− 1

2

)−t2
for x ∈

(1

2
, 1
]

and ∫ 1
2

0

x−t1dx <∞,
∫ 1

1
2

(
x− 1

2

)−t2
dx <∞,

that f∗(x) ≤ a1x
−t1 for x ∈ (0, 1

2 ] and f∗(x) ≤ a2(x− 1
2 )−t2 for x ∈ ( 1

2 , 1], and that

lim
k→∞

‖f∗ − fnk‖1 = 0 and so
∫ 1

0

f∗dλ = 1

using the Dominated Convergence Theorem. We conclude that f∗ ∈ C2 and that f∗

is a limit point of {fn} with respect to the L1(λ)-norm.

Using the previous lemmas we are now ready to prove Theorem 4.1.2.

Proof of Theorem 4.1.2. (1) Take f ∈ C2 and define the sequence of functions {fn} by
fn = 1

n

∑n−1
i=0 P

if . Using that P preserves C2 and that the average of a finite collection
of elements of C2 is also an element of C2, we obtain that {fn} is a sequence in C2. It
follows from Lemma 4.2.5 that {fn} has a subsequence {fnk} that converges w.r.t. the
L1(λ)-norm to some f∗ ∈ C2. As is standard, we then obtain that Pf∗(x) = f∗(x)

holds for λ-a.e. x ∈ [0, 1] by noting that

‖Pf∗ − f∗‖1 ≤ ‖Pf∗ − Pfnk‖1 + ‖Pfnk − fnk‖1 + ‖fnk − f∗‖1

≤ 2‖fnk − f∗‖1 +
∥∥∥ 1

nk

nk−1∑
i=0

P i+1f − 1

nk

nk−1∑
i=0

P if
∥∥∥

1

≤ 2‖fnk − f∗‖1 +
1

nk
‖Pnkf − f‖1

≤ 2‖fnk − f∗‖1 +
2

nk
‖f‖1 → 0, k →∞.
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Hence, (T ,p) admits an acs probability measure µ with dµ
dλ ∈ C2. It follows from the

properties of C2 that dµ
dλ has full support on [0, 1], i.e. there is a version such that

dµ
dλ (x) > 0 for all x ∈ [0, 1], so we obtain from Theorem 1.2.6 that µ is the only acs
probability measure once we know that F is ergodic with respect to mp × µ. So let
A ⊆ ΣN × [0, 1] be Borel measurable such that F−1A = A. Suppose mp × µ(A) > 0.
The probability measure ρ on ΣN × [0, 1] given by

ρ(B) =
mp × µ(A ∩B)

mp × µ(A)

for Borel measurable sets B ⊆ ΣN × [0, 1] is F -invariant and absolutely continuous
with respect to mp × λ with density

dρ

dmp × λ
(ω, x) =

1

mp × µ(A)
1A(ω, x)

dµ

dλ
(x), mp × λ-a.e. (4.29)

According to Lemma 1.4.1 this yields an acs measure µ̃ for (T ,p) such that ρ = mp×µ̃.
From this we see that also

dρ

dmp × λ
(ω, x) =

dµ̃

dλ
(x), mp × λ-a.e. (4.30)

Write L for the support of dµ̃
dλ , i.e. L := {x ∈ [0, 1] : dµ̃

dλ (x) > 0}. Combining (4.29)
and (4.30) and using that dµ

dλ has full support on [0, 1], we obtain

A = ΣN × L mod mp × λ. (4.31)

Using the non-singularity of F with respect to mp × λ, we also obtain from this that

F−1A = F−1(ΣN × L) mod mp × λ. (4.32)

Combining (4.31) and (4.32) with

ΣN × L =
⋃
j∈Σ

[j]× L and F−1(ΣN × L) =
⋃
j∈Σ

[j]× T−1
j L

yields

L = T−1
j L mod λ

for each j ∈ Σ. For all i ∈ Σ with αi < 1, in particular for i ∈ Σ with αi = αmin, we
have that Ti is ergodic with respect to λ, see e.g. [Y99, Theorem 5]. In particular we
have λ(L) ∈ {0, 1}. Together with (4.31) this shows that mp × λ(A) ∈ {0, 1}. Since
µ � λ, it follows from the assumption mp × µ(A) > 0 that mp × µ(A) = 1. We
conclude that F is ergodic with respect to mp × µ.

(2) Since dµ
dλ ∈ C2, it follows that dµ

dλ is bounded away from zero, is decreasing
on the intervals (0, 1

2 ] and ( 1
2 , 1], and satisfies (4.3) and (4.4) with a1, a2 > 0 as in
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Lemma 4.2.4. Furthermore, applying the last three inequalities in (4.27) with f = dµ
dλ

yields, for x, y ∈ (0, 1
2 ] with x ≥ y,

0 ≤ dµ

dλ
(y)− dµ

dλ
(x) = y−d

(
yd
dµ

dλ
(y)− yd dµ

dλ
(x)
)

≤ y−d · dµ
dλ

(x)(xd − yd)

≤ y−d · a1 · 2−d+1+t1 · d|x− y|

and likewise applying the last three inequalities in (4.28) with f = dµ
dλ yields for

x, y ∈ ( 1
2 , 1] with x ≥ y,

0 ≤ dµ

dλ
(y)− dµ

dλ
(x) =

(
y − 1

2

)−d((
y − 1

2

)d dµ
dλ

(y)−
(
y − 1

2

)d dµ
dλ

(x)
)

≤
(
y − 1

2

)−d
· dµ
dλ

(x)
((
x− 1

2

)d
−
(
y − 1

2

)d)
≤
(
y − 1

2

)−d
· a2 · 2−d+1+t2 · d|x− y|

Hence, dµdλ is locally Lipschitz on the intervals (0, 1
2 ] and ( 1

2 , 1].

We conclude this subsection with the proof of Corollary 4.1.3.

Proof of Corollary 4.1.3. For each n ∈ N, let pn = (pn,j)j∈Σ be a strictly pos-
itive probability vector such that supn

∑
r∈ΣR

pn,rK
−αmin
r < 1 and assume that

limn→∞ pn = p in RN+ . In order to conclude that dµpn

dλ converges in L1(λ) to dµp

dλ we
will show that each subsequence of {dµpn

dλ } has a further subsequence that converges
in L1(λ) to dµp

dλ .

Let {qk} be a subsequence of {pn}, and for convenience write fk =
dµqk

dλ for each
k ∈ N. First of all, observe that from supn

∑
r∈ΣR

pn,rK
−αmin
r < 1 and limn→∞ pn =

p it follows from the proof of Lemma 4.2.4 that there exist sufficiently large a1, a2 > 0

and β ∈ (αmin, γ) sufficiently close to αmin such that C2 = C2(a1, a2, β) from Lemma
4.2.4 contains the sequence {fk}. Hence, it follows from Lemma 4.2.5 that {fk} has
a subsequence {fkm} that converges with respect to the L1(λ)-norm to some f̃ ∈ C2.
We have

‖PF,pf̃ − f̃‖1 ≤ ‖PF,pf̃ − PF,qkm f̃‖1 + ‖PF,qkm f̃ − fkm‖1 + ‖fkm − f̃‖1
≤
∑
j∈Σ

|pj − qkm,j | · ‖PTj f̃‖1 + ‖PF,qkm f̃ − PF,qkm fkm‖1 + ‖fkm − f̃‖1

≤
∑
j∈Σ

|pj − qkm,j | · ‖f̃‖1 + 2‖fkm − f̃‖1.

Since we have limm→∞ qkm = p in RN+ and limm→∞ ‖fkm − f̃‖1 = 0 we obtain that
PF,pf̃(x) = f̃(x) holds for λ-a.e. x ∈ [0, 1]. It follows from Theorem 4.1.2 that (T ,p)

admits only one acs probability measure, so we conclude that f̃ =
dµp

dλ holds λ-a.e.
Hence, {fkm} converges in L1(λ) to dµp

dλ .
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§4.3 Final remarks

Suppose η > 1. Then Theorem 4.1.1 says that no acs probability measure exists.
We claim that in fact no physical measure for F can exist in this case but that an
infinite acs measure exists with a density that has full support on [0, 1]. Indeed, for
the case that αj ≤ 1 holds for each j ∈ Σ, the existence of a σ-finite acs measure can,
regardless of the value of η, be proven by applying the same steps of the inducing
technique as in Section 2.2 for the inducing domain Y =

⋃
j∈Σ[j] × (x2(j), 1

2 ) with
x2(j) as in Subsection 4.2.1 and using that in this case the maps Tj have non-positive
Schwarzian derivative. If η > 1, this acs measure then must be infinite by Theorem
4.1.1. Furthermore, it is clear that the corresponding density must have full support
because Y is a sweep-out set. Since for an i.i.d. random LSV map the dynamics are
dominated by the LSV map with the fastest relaxation rate, the existence of such
an infinite acs measure can therefore also be expected under the conditions η > 1

and αmin < 1 without assuming αj ≤ 1 for each j ∈ Σ. Similar as in Chapters 2
and 3, Aaronson’s Ergodic Theorem [A97, Theorem 2.4.2] applied to this infinite acs
measure then yields that no physical measure for F exists if η > 1.

It does not become clear from the results of Theorems 4.1.1 and 4.1.2 if an acs
probability measure exists if η = 1. The proof of Theorem 4.1.1 does not work for
η = 1 because in this case there exists no δ > 0 such that ζ from (4.10) is at least 1,
and the proof of Theorem 4.1.2 fails for η = 1 because in this case we have γ = αmin

and therefore the set (αmin, γ) ∩ (0, 1] from which we pick β is empty. For each
δ > 0 the result and proof of Theorem 4.1.1 do however carry over if η = 1 and the
maps Tr (r ∈ ΣR) are slightly adapted such that on ( 1

2 ,
1
2 + δ) they would be linear

with derivative Kr. Indeed, in that case the bound in (4.11) can be replaced with
Tr(x) = 1

2 + Kr(x − 1
2 ) where x ∈ ( 1

2 ,
1
2 + δ). We therefore conjecture that if η = 1

then no acs probability measure exists and a possible approach is to work with a
sharper bound on the term Kr + 2(1 − Kr)(x − 1

2 ) in (4.11) that is not uniform in
x ∈ ( 1

2 ,
1
2 + δ) as opposed to the upper bound Mr in (4.11).

The proof of Theorem 4.1.2 immediately carries over to the case that ΣR = ∅ by
taking β = 1, thus recovering the result from [Z18] that a random system generated
by i.i.d. random compositions of finitely many LSV maps admits a unique absolutely
continuous invariant probability measure if αmin < 1 with density as in (4.5) for some
a > 0. To show that in case ΣR = ∅ this density is decreasing and continuous on the
whole interval (0, 1] similar arguments as in Subsection 4.2.2 can be used with the
sets C0, C1 and C2 replaced by

K0 =
{
f ∈ L1(λ) : f ≥ 0, f decreasing and continuous on (0, 1]

}
,

K1 =
{
f ∈ K0 : x 7→ xαmax+1f(x) increasing on (0, 1]

}
,

K2 =
{
f ∈ K1 : f(x) ≤ ax−αmin on (0, 1],

∫ 1

0

fdλ = 1
}

with a > 0 large enough.

This has been done in [Z18].
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It would be interesting to study further statistical properties of the random sys-
tems from Theorem 4.1.2. As discussed in Example 1.4.3 the annealed dynamics of
random systems of LSV maps are dominated by the LSV map with the fastest relax-
ation rate, namely Sαmin

, and annealed correlations decay as fast as n1−1/αmin . This
behaviour is significantly different from the behaviour of the random systems from
Theorem 4.1.2 where the annealed dynamics are determined by the interplay between
the exponentially fast attraction to 1

2 and polynomially fast repulsion from zero. We
conjecture that the random systems from Theorem 4.1.2 are mixing and that in case
ΣR = {1} the decay of annealed correlations is at least polynomially fast with degree
1− 1

αmin
·min{ log p1

logK1
, 1}.

Finally, a natural question is whether the results of Theorems 4.1.1 and 4.1.2 can
be extended to a more general class of one-dimensional random dynamical systems
that exhibit this interplay between two fixed points, one to which orbits converge
exponentially fast and one from which orbits diverge polynomially fast. First of all,
if being C1 and having 1

2 as attracting fixed point are the only conditions we put on
the right branches of the maps in R, then it can be shown in a similar way as in the
proof of Theorem 4.1.1 that (T ,p) admits no acs probability measure if∑

r∈ΣR

pr ·
(

lim
x↓ 1

2

|DTr(x)|
)−αmin

> 1

by applying Kac’s Lemma. Secondly, we used in the proofs of Lemma 4.2.3 and
Lemma 4.2.4 that 1

DRαr,Kr (zr)

( x− 1
2

zr− 1
2

)d is increasing and 1
DRαr,Kr (zr)

( x− 1
2

zr− 1
2

)t2 is de-
creasing, respectively, by means of the results on HK,b in Lemma 4.2.2. However, for
other maps that have the property that 1

2 and 1 are fixed points and that orbits are
attracted to 1

2 exponentially fast this is not true in general. Still a phase transition
is to be expected, but different techniques are needed to prove this. This is also the
case when we drop the condition that 1 is a fixed point of the maps in R, for instance
by taking Rα,K(x) = 1

2 + K(x − 1
2 ) if x ∈ ( 1

2 , 1], in which case Lemma 4.2.3 would
not hold. Thirdly, the results of Theorems 4.1.1 and 4.1.2 might carry over if we
allow the left branches to only satisfy the conditions on the left branch of the maps
{Tα : [0, 1]→ [0, 1]}α∈(0,1) considered in [M05] or Section 5 of [LSV99]. Each map Tα
then satisfies Tα(0) = 0 and DTα(x) = 1 +Cxα + o(xα) for x close to zero and where
C > 0 is some constant.
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