%k Universiteit
47 Leiden

M The Netherlands
Intermittency and number expansions for random interval maps
Zeegers, B.P.
Citation

Zeegers, B. P. (2023, February 14). Intermittency and number expansions for
random interval maps. Retrieved from https://hdl.handle.net/1887/3563041

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral thesis in
the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/3563041

License:

Note: To cite this publication please use the final published version (if applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3563041

CHAPTER

Decay of correlations for critically
imtermittent systems

This chapter is based on: [KZ22].

Abstract

For a family of random intermittent dynamical systems with a superattracting fixed
point we prove that a phase transition occurs for the existence of an absolutely con-
tinuous invariant probability measure depending on the randomness parameters and
the orders of the maps at the superattracting fixed point. In case the systems have
an absolutely continuous invariant probability measure, we show that the systems
are mixing and that correlations decay polynomially even though some of the de-
terministic maps present in the system have exponential decay of correlations. This
contrasts other known results, where random systems adopt the best decay rate of
the deterministic maps in the systems.



CHAPTER 3

3. Decay of correlations for critically intermittent systems

§3.1 Introduction

For the random systems from Chapter 2 that have an acs probability measure, one
can naturally wonder about the mixing properties and decay of correlations. In this
chapter we explore this further, but instead of the random maps from the previous
chapter we work with adapted versions. We take a subclass of the maps from Chapter
2 and replace the right branches with the right branch of the doubling map. Under
random compositions of these maps orbits then converge superexponentially fast to
% and diverge exponentially fast from 1, see Figure 3.1(a). The way in which we
have adapted the systems from Chapter 2 very much resembles the way in which the
LSV maps from (1.11) are adaptations of the standard Manneville-Pomeau maps. We
work with these adaptations because they allow us to build a suitable Young tower
and use the corresponding results, while preserving the main dynamical properties of

the maps from Chapter 2.

We describe the systems we consider in more detail. Just as in the previous chapter
we distinguish between so-called good and bad maps. We call a map T} : [0,1] — [0,1]
good if it is given by

1—2(s—2) if z€][0,3)
Ty(z) = { 2 21

3.1
27 — 1 if xel3,1] 3-1)

for some r, > 1 and denote the class of good maps by &. A map T3 : [0,1] — [0,1] is
called bad if it is given by

L_ob=1(l _ b if gefo,i
=12 am ot Eec e
2z — 1 if zels,1]

for some ¢, > 1 and we denote the class of bad maps by 8. The graphs of T, and T
are shown in Figure 3.1(b). Note that if r, = 1, then T}, is equal to the doubling map.
Furthermore, T, with r, = 2 and T}, with ¢, = 2 are on [0, %) equal to the logistic maps
x+— 4x(1 — z) and x — 2x(1 — ), respectively. One easily computes that each good
map T, and each bad map 73 have non-positive Schwarzian derivative when restricted
to [0, %) or [%, 1]. Just like in the previous chapter, let {T7,...,Tn} C B U B be a
finite collection of good and bad maps, write ¥g = {1 < j < N : T; € &} and
Yp = {1 < j <N : T; € B} for the index sets of the good and bad maps,
respectively. We assume that g, Xp # 0. We write X ={1,...,N} =Xz UXp and
let F' be the skew product associated to {7} ex given by

(3.2)

)
)

N

F 3N x0,1] = 2N x [0,1], (w,z) — (tw, T, (z)),
where again 7 denotes the left shift on sequences in V.

Let p = (p;) jex be a probability vector with strictly positive entries representing
the probabilities with which we choose the maps from 7 = {T}};ex. Furthermore, let
m, be the p-Bernoulli measure on ¥, Our first two main results establish that there
exists a phase transition for the existence of an acs probability measure for (7, p)
that is similar to the phase transition found in Chapter 2. Set 0 = ZbeZB ol
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§3.1. Introduction
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Figure 3.1: In (a) we see the critically intermittent system consisting of the maps given by
(3.1) with rg =2 and (3.2) with £, = 2. The dashed lines indicate part of a random orbit of
z. In (b) the graphs of (3.1) and (3.2) are depicted for several values of 4 and €.

Theorem 3.1.1. If 6 > 1, then no acs probability measure exists for (T,p).

Theorem 3.1.2. If 0 < 1, then there exists a unique acs probability measure p for
(T,p). Moreover, F is mizing with respect to mp X p and the density Z—’;\ is bounded
away from zero.

Since p is an acs measure, the density g—’; is a fixed point of the associated Perron-
Frobenius operator Pr p, being of the form as in (1.20). Moreover, Theorem 3.1.2 tells
that this density ‘i—’; is bounded away from zero. Using these two statements it is easy
to see that Z—’; blows up to infinity when approaching the points % and 1 from below.
See Figure 3.2 for an example.

Our second set of main results involves the decay of correlations in case 6 < 1.
Equip ¥V x [0, 1] with the metric

d((w,2), (@', y)) = 27 mnUSEZAd g —y) (33)

For a € (0,1), let H,, be the class of a-Hélder continuous functions on ¥V x [0, 1], i.e.

[7(z1) = h(z2)]

Ho = {h:ZNx[O,l] —HR‘ sup{ 21,20 € XX [0,1], 21 ;ézg} <oo}7

d(Zl, 2’2)0‘
and set
H= ] Hao
a€e(0,1)

For f € L (XN x [0,1],my x p) and h € H the correlations are defined by

Corn(f,h):/ foF”-hdmpx,u—/
SNx[0,1]

fdmpx,u/ hdmgp x p.
% [0,1] X [0,1]
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CHAPTER 3

3. Decay of correlations for critically intermittent systems
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Figure 3.2: Approximation of % in case ¥g = {1}, ¥ = {2}, p1 = % and r1 = 2 for two
different values of 2. Both pictures depict P75—?p(1 with Perron-Frobenius operator Pr p,
where in (a) we have taken la = 3 and in (b) f2 = 3.

Set liax = max{l, : b € X g} and

log 6

=_—°" 3.4
log £imax (34)

a!

The following result says that correlations decay at least polynomially fast with degree
arbitrarily close to v;. Here and in the rest of this chapter the notation f(n) = O(g(n))
means that there exists a constant C' > 0 and integer N € N such that for each integer
n > N we have f(n) < C-g(n).

Theorem 3.1.3. Assume that 0 < 1. If v € (71,0), f € L=®(=N x [0,1],mp X p1) and
h € H, then |Cor,(f,h)] = O(n").

For each b € X set

Ty = Z pj (3.5)

jEEB:ZjZKb
and let
1
72:1+max{ 08T :beEB}. (3.6)
log ¢y,
Note that
I L log 6
'yg:max{m:bezlg} §max{ o8 :bEZB} =71
log ¢y, log £

In our final result we show that, under additional assumptions on the parameters of
the random systems, the class of observables f € L (XN x [0,1],m, x ) and h € H
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§3.1. Introduction

contains functions for which the correlation decay is not faster than polynomially with
degree v2. The notation f(n) = Q(g(n)) means that there exists a constant C' > 0
and integer N € N such that for each integer n > N we have f(n) > C - g(n).

Theorem 3.1.4. Assume that 0 < 1. Furthermore, assume that vo > v — 1 if
71 < =1 and v2 > 2y, if =1 <y < 0. Let f € L>®(ZN x [0,1],mp x p) and h € H
be such that both f and h are identically zero on ¥V x ([0, 3] U [2,1]) and such that

/ fdmpxu-/ hdmgp x > 0.
¥V x[0,1] =N %[0,1]

Then

|Cor,, (f, h)| = Q(n7?).

In Section 3.4 we provide examples of values of ¢, and probability vectors p that
satisfy the conditions of Theorem 3.1.4.

The proof of Theorem 3.1.2 we present below also carries over to the case that
Y5 = 0. Applying Theorem 3.1.2 to the case that Y5 = ) and X = {g} contains one
element yields together with [LM13, Theorem 1.5] the following result on the good
maps T, € 6.

Corollary 3.1.5. For any T, : [0,1] — [0,1] € & the following hold.

(a) Ty admits an invariant probability measure fig that is mizing and absolutely
continuous with respect to Lebesgue measure \.

(b) There exists a constant a > 0 such that for each f € L*([0,1], uy) and each
function h :[0,1] = R of bounded variation we have

|Corangvltg (f7 h)‘ - 0(67(7"r7')7

where

Corn, 1,y (f, 1) :/fon'hdug—/fdug~/hdug.

This result is expected in view of the exponential decay of correlations found
for the unimodal maps from [KN92, Y92, Y98]. We see that test functions that fall
within the scope of both this corollary and Theorems 3.1.3 and 3.1.4 have exponential
decay of correlations under a single good map while under the random system with
Y5 # 0 they have polynomial decay of correlations.! This indicates that a system
of good maps loses its exponential decay of correlations when mixed with bad maps
and instead adopts polynomial mixing rates. This is different from what has been
observed for other random systems in e.g. [BBD14, BB16, BQT21|, where the random
systems of LSV maps under consideration adopt the highest decay rate from the rates
of the individual LSV maps present in the system. See Example 1.4.3.

IExamples of such test functions are Lipschitz continuous functions that vanish outside of N x
3

(39
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CHAPTER 3

3. Decay of correlations for critically intermittent systems

The remainder of this chapter is organised as follows. In Section 3.2 we list some
preliminaries. In Section 3.3 we prove Theorem 3.1.1. The method of proof for this
part is reminiscent of that in Chapter 2 in the sense that we introduce an induced
system and apply Kac’s Lemma on the first return times. In Section 3.3 we also
give estimates on the first return times and the induced map that we use later in
Section 3.4. For Theorem 3.1.2 the approach from Subsection 2.3.2 no longer works,
because we have introduced a discontinuity for the bad maps (at %) Instead we prove
Theorem 3.1.2, as well as Theorem 3.1.3 and Theorem 3.1.4, by constructing a Young
tower on the inducing domain from Section 3.3 and by applying the general theory
from [Y99] and [GO4]. This is done in Section 3.4 and is inspired by the methods from
[BBD14, BB16]. Section 3.5 contains some further results. More specifically, we show
that for a specific class of test functions the upper bound from Theorem 3.1.3 can be
improved and we obtain a Central Limit Theorem. We end with some final remarks.

§3.2 Preliminaries

We use this section first of all to give some properties of good and bad maps. Secondly,
we give the construction of a Young tower, list some of the results from [Y99, G04]
and present this in an adapted form, rephrased to our setting and only referring to
the parts that are relevant for our purposes.

§3.2.1 Properties of good and bad maps

As in Section 3.1, let 17, ..., Ty € & UB be a finite collection of good and bad maps,
and write ¥ = {1 < j <N : T, € 6} #0, X5 ={1<j< N :T; € B} #0
and ¥ = {1,...,N} = ¥g UXp. For ease of notation, we refer to the left branch
of a map T; by L;, i.e. for 2 € [0,3) we write Lj(z) = T;(z), j € £. We will use
R:[3,1] = [0,1], 2 2z — 1 to denote the right branch of the maps Tj.

Throughout this section and the next ones we use the notations for words and
compositions of the maps 7T} introduced in Section 1.4. We use the same notations
for compositions of the left branches L;, so for w € YN, n € Ny and x € [0, 1) such

12
that L, o+ 0 Ly, (z) € [0,3) for each j =1,...,n— 1 we write

x, if n=0,

3.7
L, oL, ,0---0L, (x), forn>1. (3:7)

Loy w, (x) = L (z) = {
Also in this situation we use the same notation for finite words w € X", m > 1, and
n < m. Furthermore, for any u = uy---ug € Ek, k > 0, recall that we abbreviate
Py = Hlepui and also, as in Chapter 2, let ¢, = Hle 0, if u € 3% where we
use py = 4, = 1 in case k = 0. Finally, recall the notation ¥* = (J,,, X" for the
collection of all finite words (including the empty word) with digits from ¥. Similarly
we define X7, and ¥7}.

For future reference we give two lemmas on the properties of good and bad maps.
The first one involves compositions of bad maps and implies in particular that orbits

starting in [0, %) converge superexponentially fast to % under iterations of bad maps.
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§3.2. Preliminaries

Lemma 3.2.1. For each z € [0, %) and b € ¥} we have

(i) Ly(z) = 5(1 — (1 —2z)%),
(ii) Lyt(z)=1(1— (1 —22)%").

Proof. Part (i) holds trivially if |b| = 0. Now suppose for some k > 0 that (i) holds
for all b € X% with [b| < k. Let bbyy1 € ST, Then Ly(z) € [0,3) and

Lb, ., () = %(1 —(1- 2Lb(x))%+1)

1

=3 (1 — (- 21:)%)’“7%“) - %(1 (1— 2x)é”bk'+1>.

This proves (i), and (ii) follows easily from (i). O

For g € ¢ the map Ly : [0,1) — [0,1) is invertible and for b € Lp the map
Ly : [0,%) — [0, 3) is invertible. For all j € ¥ the map Lj; is strictly increasing with
continuous and decreasing derivative and, if T} is not the doubling map (ie. j € £p
or j € ¥ with r; > 1),

max DL;(xz)=DT;(0) >1 and limDL;(z)=0.
7"6[07%) TT%

This allows us to define for each g € ¥ with r, > 1 the point z, as the point in
(0, 1) for which DLy(z,) = 1 and for each b € S5 the point x; as the point in (0, 1)
for which DLy(xp) = 1.

Lemma 3.2.2. The following hold.

(i) For each g € X it holds that L;*(3) < 1.

(i) For each g € ¥ with rg > 1 it holds that L;l(%) < xg.
(iii) For each b€ Sp it holds that Ly (1) < zy.

Proof. One can compute that

For each b € ¥ we have

_1/1 1 _ 1 _
LH(3) =302 ad m=g-g/0Y) @

Since 74 > 1 and thus 2-1/re > % for each g € ¥¢, (i) follows. Furthermore, one can
show that 271/#=1 > (g . 22)1/(1=2) and 271/% > 21/(=2) hold for all z > 1, which
give (ii) and (iii), respectively. O

(0]
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CHAPTER 3

3. Decay of correlations for critically intermittent systems

§3.2.2 Young towers

Let F be the product o-algebra on XN x [0, 1] given by the Borel o-algebra’s on both
coordinates. We call the set on which we will induce Y € F. It will be defined later
and will be such that the first return time map ¢ on Y associated to the skew product
F given by

p(w,z) =inf{n >1: F*(w,z) € Y}

satisfies p(w,x) < oo for all (w,z) € Y. The induced transformation Fy : Y — Y as
given in Subsection 1.2.1 by Fy (w,z) = F*“?)(w, x) is then well defined.

On the inducing domain Y one can construct a Young tower for F. For the
convenience of the reader we briefly give this construction, which is outlined in a
more general fashion and in more detail in [Y99]. Let P be a countable partition of
Y into measurable sets on which the first return time function ¢ is constant, called a
first return time partition. Let pp be the constant value that ¢ assumes on P. The
tower is defined by

A={(z,n) €Y x{0,1,2...} : n < p(2)}

The I-th level of the tower is A; := AN {n = I} and for each P € P let A} p =
A;Nn{z € P}. We equip A with the Borel o-algebra B and let m be the unique
measure on A that corresponds to my, X A on each level of the tower. On A define
the function

Glom) = (z,n+1), ifn+1<opy(z),
" 1 (Fy(2),0), otherwise.

Let the induced map G¥ : Ag — Aq be defined by G¥(v) = G¥*)(v), where z € Y
is such that v = (z,0). We identify G¥ with F'¥ by identifying Ay with ¥ and
using the correspondence G¥(z,0) = (F¥(z),0). The separation time is defined for
each (Zl,ll), (ZQ,ZQ) € A by S((Zl,ll), (22,12)) =0if ll # lg and otherwise letting
s((21,11), (22,12)) = s(z1, z2) be given by

s(z1,22) = inf{n >0 : (G¥)"(21,0), (G¥)"(22,0) lie in distinct Ag p, P € P}.
(3.10)
The setup from [Y99] assumes the following conditions on A and G:
(t1) ged{pp: PP} =1;
(t2) All the sets in the construction above are measurable and m(Y) < co.

(t3) For each P € P the top level A,,_; p above P is mapped bijectively onto
Ag =Y x {0} under the map G;

(t4) The partition n = {A; p : P € P, 0<1<@p — 1} generates B.
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§3.2. Preliminaries

(t5) The restrictions G¥|a, , : Do,p — Ag and their inverses are non-singular with
respect to m, so that the Jacobian J,,,G¥ with respect to m exists and is > 0
m-a.e.

(t6) There are constants C > 0 and S € (0,1) such that for each P € P and all
(2170)3 (2270) € AO,Pa

JmGLP (Zlv O)

JmG‘P(ZQ, 0)

— 1‘ < 05(G%(21,0),G%(22,0)

Under these conditions [Y99] yields the following results on the existence of in-
variant measures for the map G on the tower A and decay of correlations. Define for
all 6 € (0,1) the following function space on A:

ng{f:A%R‘sup{W:U1702€A701¢U2}<00}~ (3.11)

For v € A let ¢(v) :=inf{n >0 : G"(v) € Ag}.

Theorem 3.2.3 (Theorem 1 and 3 from [Y99]). If (t1)-(t6) hold and we have
fY @dm < 0o, then the following statements hold.?

(i) G : A — A admits an invariant probability measure v that is absolutely con-
tinuous w.r.t. m;

(i) The density 4% is bounded away from zero and is in Cg with B as in (t6).

dm
Moreover, there is a constant Ct > 0 such that for each A, p and each vy,vs €
Ap
dv
ﬁ(vl) -1 S C+ BS(Ul,Ug). (312)
%(W)

(iti) G is exact, hence ergodic and mixing.

(iv) (Polynomial decay of correlations) If, moreover, m({v € A : ¢(v) > n}) =
O(n=%) for some a > 0, then for all f € L®(A,m), all § € (0,1) and all

h e Cs,
‘/AfoG"~ﬁdu—/Ade/AﬁdV’:O(n_"‘).

We will also use [G04, Theorem 6.3] by Gouézel which, when adapted to our
setting, says the following.

Theorem 3.2.4 (Theorem 6.3 from [G04]). Let p be an invariant and mizing
probability measure for F on ¥V x [0,1]. Let f € L*°(XN x [0,1],p) and h €
LY(ZN % [0,1], p) be such that both f and h are identically zero on (XN x [0,1])\Y.
Assume that there is a § € (0,1) such that the following three conditions hold.

2The version in [Y99, Theorem 3] of statement (iv) above only states the result for § = 3. Note
however that statement (iv) for the case 0 < § < 3 follows from C5 C Cg and that if 3 < § < 1, then
the bound in (t6) where 8 is replaced by ¢ also holds and therefore [Y99, Theorem 3] can be applied
with § taking the role of 3.

7
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CHAPTER 3
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(g1) There is a constant C* > 0 such that for each n > 0 and z1, 2 € \/Z;é Fy"P,

JFSO(Zl)
1 P7‘< “Lom,
‘%%W@)—O

(92) There is a ¢ > 1 such that p(¢ >n) = O(n=%).
(93) sup{M t 21,20 €Y, 2 #£ 22} < 00.

5s(71.72)

Then there is a constant C > 0 such that

Connralf) = (0 pte>0) [ £dp [ han] < & Kelo,

k>n

where
n=¢,  if¢>2,
Ke(n) =5, if (=2,

n2

n?72, if ¢ € (1,2).

§3.3 Inducing the random map on (%, %)

§3.3.1 The induced system
Define
Q= {weX":w e X for infinitely many i € N},
- 13\ . 1
Y = {(w2) ex (5,1) L TL(w) # 5 for all n € NJ.

The set Y, which equals XN x (2, 4) up to a set of measure zero, will be our inducing
domain. Recall the definition of the first return time function

¢v:Y =N, (w,z) »inf{n>1: F'(w,z) € Y}.

For each (w,z) € Y, the following happens under iterations of F'. Firstly, T,,(z) =
R( ) (0 1). By Lemma 3.2.2 there is an a > 1 such that DT,(y) > a for all

(%) ] and g € ¥. Combining this with Lemma 3.2.1 yields by definition
of Y tha

1
k(w, x) := inf {n >1:T)(x) > 5} < 0. (3.13)
Note that wy(y,2) € L@ Then, again since (w,z) € Y, so T} (x) # % for all n € N,

l(w, z) = inf{n >0 ; TRt ¢ (; i)} < 0 (3.14)

and T @) () — Rllwa) o TE@2) (2) Thus

o(w,z) = k(w,z) + l(w,z) < o (3.15)
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§3.3. Inducing the random map on (3, 3)

for all (w,x) € Y. We will first derive an estimate for {(w, z).

For each g € X let Jy = (L, *(3), 5)- The intervals .J, are such that if T} (z) € J,

and w11 = g, then T 1 (z) > % For each b € X let J, = [y, %) with z; as defined
above Lemma 3.2.2. Define

m(w,z) :==inf{n > 1 : T} (x) € Ju, ., } < k(w,z). (3.16)
If W (w,2)+1 € La, then Tocn(w’m)ﬂ(x) > % by the definition of the intervals Jg. If
Win(w,az)+1 € 2B, then T(T(M’I)H(:c) € (3,1) by Lemma 3.2.2(iii). We then see by

Lemma 3.2.2(i) that the number m(w, ) is such that after this time any application
of a good map will bring the orbit of z in the interval (%, 1). We have the following
estimate on [.

Lemma 3.3.1. Let (w,z) € Y. Write d = Wp(w,0)+1 " Wr(w,e)—1 € Lp and g =
Wr(w,a) € Y- Then

log ((1 —2. TLH(M’I) (x))_l)
log 2

— 2.

l(w,z) > lqr,

Proof. Set y = T:)n(w’w)(a:). It follows from Lemma 3.2.1 that
T5 " (2) = Ly o Laly) = 1 = (1 - 2y)"4"s.

By definition of R, it follows that I(w, ) is equal to the minimal | € Ny such that

1
2. (1 —2y)fems > T (3.17)

Solving for | gives the lemma. O

With this estimate we can now apply Kac’s Lemma to prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Suppose p is an acs probability measure for (7, p). We first
show that x((3,2)) > 0. Since F?(Y) equals £ x [0,1] up to some set of mp x A-
measure zero and by (3.15) all (w,z) € Y have a finite first return time to Y under
F, it follows that XN x [0,1] equals |J;—, F~"Y up to some set of my, X A-measure
zero. Since p is absolutely continuous with respect to A, we obtain that

oo o0
13
_ N —n _ -2
L=mp x p(E" x[0,1]) < nzz;)mp X w(F~"Y) = ;u(<2, 4)),
from which we see that we indeed must have p((3,3)) > 0. Using the continuity of
the measure, we know there exists an a > § such that p((a,2)) > 0. Note that for

all (w,z) € X% x (a,2)NY we have

7M@) (1) > R(a). (3.18)

79
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Fix a g € S¢ and consider the subsets A, = [bg]x (a, 2)NY, b € X3, of XN x (a, 3)NY.

Set pp =Y yex, Pb- Then by (3.15), (3.18) and Lemma 3.3.1 we get )
/Lpdmpxu>z Ww,z)dmyp X p
bexy U Ab
log (1 =2 R(a))™")
() 3 o, PO
3 1 1-2-R(a
=u<<aq>>-pg-<rg- R AW
bexy bexy

M=) 08— M- T

k>0

with My = p((a,3)) - pgry - W > 0 and My = 2u((a,3)) - pg. It now
follows from @ > 1 that

/ pdmp X p = 0. (3.19)
Y

On the other hand, since p is a probability measure by assumption, we obtain from
the Ergodic Decomposition Theorem, see e.g. [EW11, Theorem 6.2], that there exists
a probability space (E,&,v) and a measurable map e — pu, with p, an F-invariant
ergodic probability measure for v-a.e. e € E, such that

/Ywdmp xuz/E (/Ysod,ue)du(e).

For each e € E for which pu. is an F-invariant ergodic probability measure we have
[y edpie = pe(X) = 1if pe(Y) > 0 by Kac’s Lemma, i.e. Lemma 1.2.13, and we have
[y wdpe = 0 if p1e(Y') = 0. This gives

/ pdmyp x p <v(E)=1,
Y

which is in contradiction with (3.19). O

§3.3.2 Estimates on the first return time

From now on we only consider the case §# < 1. We first define a first return time
partition for F to Y. For any u € ¥, g € X and s, w € ¥* write

- 13
Poagw = ([usgw] N Q) x (R0 L, 0 L,0R)™ (5, E)
and define the collection of sets

P = {Pusgw L UET, gE NG, 8w E 2*}. (3.20)

See Figure 3.3 for an illustration.
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1
1
2 -
//
0 1 3 1
2 1

Figure 3.3: Example of a first return time partition element Pysgw with |s| =2 and |w| =3
projected onto [0,1]. The yellow area indicates the inducing domain Y projected onto [0, 1].

Proposition 3.3.2. The collection P is a first return time partition of F' to Y and
for all (w,z) in a set Pysgw it holds that k(w,x) =2+ |s| and l(w,z) = |w|, so

p(w,z) =2+ |s| + |w|. (3.21)

Proof. Let (w,z) € Y. Since k(w,z),l(w,z) < oo it is clear that we can find suitable
u€X, g€ X and s,w € ¥* so that (w,z) € Pysgw, s0 P covers Y. Now fix a set
Pysgw € P. By the definition of the set (RI*!o L, o Ly o R)~!(%,2) one has for any
(W, &) € Pysgw that

Th(z) <3, 1<n<1+]s]
TH(z) >3, 2+|s| <n<1+|s|+ |wl,
T ) € (3, 9).

Hence, k(w,z) = 2+ |s| and I(w, z) = |w| for each (w,x) € Pysgw, and (3.21) follows
from (3.15). From this we immediately obtain that the sets in P are disjoint. To see
this, suppose there are two different sets Pysguw, Pasgw € P With Pusgw N Pasgw 7 0
and let (w,z) € Pysgw N Pasgw- Then without loss of generality we can assume that
[@8gw] C [usgw], where the inclusion is strict. But this would give that

plw,z) =2+ [s[+ |w| <2+ (8] + || = p(w, ),
a contradiction. O

For the estimates we give below, we split the word s into two parts s = vb, where
b specifies the string of bad digits that immediately precedes wy (). In other words,

if we write
Ag = {’U ex*: V| € Eg}
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for the set of words that end with a good digit, then for any s € ¥* there are unique
v € Ag and b € ¥} such that s = vb. Recall 7; and 2 from (3.4) and (3.6),
respectively. In the remainder of this subsection we prove the following result.
Proposition 3.3.3. Suppose 0 < 1. Then the following statements hold.

(i) [y edmp x X < oco.

(ii) mp x A >n) = O(n'~1) for any v € (11,0).

(iii) mp X A >n) = Q(nr1271),

For the proof of Proposition 3.3.3 we will first prove three lemmas. Write

s = (min{{DLg<L;1(%)) g€ EG} U {DLb(Lb—lG)) be EB})_I. (3.22)

The number % will serve below as a lower bound on the derivative of the maps 7T} in
some situation. Using Lemma 3.2.2, we see that s € (0,1).

Lemma 3.3.4. For each n € N we have

ZS]Z Z 2maxn 1—j5— kl)f Lok’

Tmax
J=0  k=0bexk, b

Pv
mln{pg g€ EG} Z Z max(n—1—k,1)¢, el
e ObeZk 2 Tmin

mp X A >n) <

mp X Mg >n) >

Proof. For P = Pybgw € P we know from Proposition 3.3.2 that the first return
time is constant on P and equal to op = 2+ |v| + |b| + |w|. Let n € N. Then

mp X M@ >n) = Z myp X A(P

P:pp>n

To obtain the desired lower bound on mp x A(¢ > n) we only consider those P =
Pivbgw € P where v = € is the empty word. From Lemma 3.2.1 we get

13 1 1 1 1
w T T Y R )]
(B™ o LgoLe)™ (55 5\~ olwl+1)6, 'ry ' )7 2 1 o(lwl+2)6, gt

(3.23)

Since R has derivative 2, we then have

13 1 1 1
|w| -1(- < _
A((R °LyolLyoR) (2’ 4)) ! <2(|w|+1>zb Ty 2(|w\+2)e;1rgl>
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and thus

mp X A(p >n)

myp([ubgw)) 1 !
. e ) )
> Z Z z:* Z 4 owl+1)6, try T g(lw|+2)6, Tyt
uET gETG b€23| |>man{n—2—[b],0}
w|>max{n—2—|b|,
D ) > 1 1
g
= — Db < -1 _—1 —1 71) (324)
QEXZ:G 4 kz—obezz:% l—max{%:Qk’O} 2(l+1)£b Tg 2(l+2)lb Tg
I N Do
> 7 -min{p, : g € ¥g} - Z Z omax{n—1-k,1}6, 'r L

k=0bexk

For the upper bound, we look for the smallest derivative to bound the length of
(R*loLyoLyoLy,oR)™Y(4,3). If v =, then from above we see

L3 ﬁ( ! L)
2°4/)) 4 \g(wl+ne, vyt o(lw+2)¢, vyt )
On the other hand, if v = vy ---v; with j > 1, then v; € ¥¢. We have
w /13 1
(R0 Ly020)7 (5.7) < (0.5):

As follows from before s from (3.22) represents the smallest possible shrinkage factor
when applying L, '. If j > 2, then by Lemma 3.2.2(i) we have L;! (L;Jl(%)) <

'Uj—l

A((R‘w‘ oLgoLyo R)_1<

L;jl,l(i)- Hence, s~!?! is a lower bound for the derivative of L, for any v € Ag on

(R®lo L, 0 Lp)~*(L,3). It then follows from (3.23) that

201
13 slvl 1 1
A( Rl oL, 0LyoL R*1<7,7>)<—( . )
(B oLgoLyo Lo o R) (5. 7) ) < 7 Grma v~ guwiog vy

Writing f(n, j, k) = max(n — 2 — j — k,0), we thus obtain that

mp X A(p > n)

Il 1 1
Pvbgw$S ( )
< _
- gezZ:G v;:c;b;]:* wzz: 4 Nolwlng eyt glwl+2)6 g
Z w|> f(n,|v],|b])
I e > 1 1
< 2N ( - _ _) 3.25
- 4;:(:) kz:%gezz:c;bezz:k pbl—f%:jk) 20416 Tyt g(42)t, Ty (329)
K Js
S ) DD e——_
T 44 9(f (nod k) + 1)y M rinax
J=0  k=0bexk
This gives the result. O

The next lemma gives estimates for the last part of the expression on the right-
hand side of the first inequality from Lemma 3.3.4 for an initial range of values of
j. The number of values j for which we obtain an upper bound for the double sum
grows logarithmically with n.
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Lemma 3.3.5. Let v € (71,0), and for each n € N define j(n) = |2 liélfgnj, Then

there exist C1 > 0 and ny € N such that for all integers n > ny and j =0,1,...,5(n)
we have

Z Z 2maxn 1—j5— kl)é ! =G .n771. (326)

Tm ax
k=0 bexk, b

Proof. We will split the sum over k in (3.26) into three pieces: 0 < k < ki(n),

ki(n) +1 < k < ka(n) and k > ka(n). To define ki(n), let a = % € (0,1).

Then for each n € N set k1(n) = LIISE;”%)J = L”lifiggenj. The values a and k1(n) are

such that @¥1(M+1 < p7 and 15 < ne. Since j(n) + ki(n) = O(logn), we can
find an Ny € N and a constant K7 > 0 such that for all integers n > Ny we have
n—1-jn)—k(n)>1and (n—1—j(n)—ki(n))- ryl > K;-n. Then, for all
n> Ny, 0<j<j(n) and 0 <k <ki(n),

max(n—1—7—k,1) >max(n—1—j(n) —ki(n),l) =n—1—j(n) — ki(n)

and fp < Elr%léf <n%forall be E%. Setting pp = ZbGEB py as before, this together

gives

& p = p
b B
Qmax n—1—j—k,1)¢, T’;}.x < Z 2(n717j(n)7k1(n))n*a7”n_u}.x
k=0 bex) k=0 (3.27)
2_K1'n1—a
S -
1—-pB

Secondly, for each n € N set ka(n) = [1(n —1—j(n))] and take an integer Ny > Ny
and constant K5 > 0 such that for all integers n > N; we have ka(n) > ki(n) +1 and
3(n—1-4j(n)) =1 > K, - n. Noting that for each d > 1 the function f on R given

by f(z) = 4% has maximal value @ < @, we obtain for all integers n > Ny,
ka(n) ka(n) /-1
_ b
Z Z max(n—1—j5—k,1)¢ rmjxi z Zpbb i k)r=l et
k=k1(n)+1bexk 2 kDG K=Ky (n)+1 beDk, (2(n—=1—j=k)rmax )b
kz(n) r
S .
b ()41 (n—1—j—k)log2
91{}1 (n)+1 r
< . . max
— 1-0 (n—1—j(n)—ka(n))log2
Tmax -1

< max
~ (1-6)K3log2 "

(3.28)
Finally, for each n > N; we have
oo ka(n)+1 Ko n
k-le___ - Pp 3.29
Z Z 2max(n 1—5— kl)fb Pimax Z Ps 1_pB 1 _pB. ( ’ )

k=kz(n)+1 bexk, k=ka(n)+1
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Combining (3.27), (3.28) and (3.29) yields

—K,n'"@ Kao-n
2 ! +pB Tmax y—1

= S gmex(nm 1kt i 1—ps (1—0)K;log2
- B

Since the first term on the right-hand side decreases superpolynomially fast in n, this
yields the existence of a constant C; > 0 and integer ny > NN; for which the statement
of the lemma holds. O

Lemma 3.3.6. There exist Co > 0 and ny € N such that for each integer n > Ny we
have

= P
b —1
>Cy-n7? 0
Z Z Qmax(nflfk,l)eglﬁ;iln =
k=0 bexh,

Proof. Let b € ¥.g be such that 7 =1+ lli’é;f: with 7, as in (3.5). For each k& € N let

Ay ={b=by-byeSh: b, > foreach j=1,...,k }.

Then ZbeAk P = 7r{f and for each b € Ay we have £, > E’g. This gives

oo oo
b p
Z Z Qmax(nflftl)c,l) T 2 Z Z 2max(nflfl;c,1) ~ip—t

b "min b "min
k=0pexk k=0becAy
3 (3.30)
e k
> -
- P Qmax(nflfk,l)éb_krr;iln ’

For cach n € N we define kg(n) — [Q2ilo8n] — [losn] ey 782 1 > pra-t

and €;k3(n) < n~!. We take N, € N and K3 > 0 such that for each integer n > N,
we have n — 1 — k3(n) > 1 and (n — 1 —k3(n)) -n~'-r_ 1 < Kj. Then we get

min

oo

k
Z T > pha(®) !
Qmax(vL—l—k,l)él:kr71 ="b 2(n—1—k3(n))é;k3(")r’l

k=0 min min

1 (3.31)

—1

min

\

> -0t

9(n—1-ks(n))n=1tr

> - 9Kz pr2—1

for each n > Ny. Combining (3.30) and (3.31) now yields the result with Cy =
T * 2~ Ks, O

Proof of Proposition 3.3.3. First of all, note that

/gpdmpx)\:Zn-mpx/\(cp:n)§2~Zmp><)\(g0>n).
%

n=2 n=1
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Since for each v < 0 we have > > n7"! < oo, (i) follows from (ii). For (ii), let
v € (1,0). It follows from Lemma 3.3.4 and Lemma 3.3.5 that for each integer
n > n; we have

C — 1 ,
P D S TS 1D S 3l
j=0 j=j(n)+1 k=0
Ch 1 ,
PO e ol T S | (O o
T R T G R R

By the definition of j(n), we have s7(™*+1 < n7Y=1 which gives (ii).

Finally, it follows from Lemma 3.3.4 and Lemma 3.3.6 that for each integer n > no

we have

i : e} C
mp X A(p >n) > min{py 946 ab-Cs -p2 L 0

§3.3.3 Estimates on the induced map

Recall that F?(w,z) = (T‘P(W’“)w,Tf(w’z)(a:)). The second part of the next lemma
shows in particular that F'¥ projected on the second coordinate is expanding.

Lemma 3.3.7. Let (w,z) €Y.

(i) For each j=1,...,0(w,z) —1 we have DTf;(:)’x)fj(Tg(x)) >

N[ =

(ii) DTE“") () > 2.

Proof. Let (w,x) € Y. Recall the definitions of k¥ = k(w,z) from (3.13), | = l(w, )
from (3.14) and m = m(w, z) from (3.16). Write3
U=wWsy: Wy €2,
d =Wm+1 " Wrg—1 € ZE)
g =wg € Xg.
Then
T2 (2) = Rl o Ly o Lgo Ly o R(x).

We have DLy(y) > 1 for all y € [0,23) and all b € Xp. For v € ¥¢g with r, > 1
we obtained in Lemma 3.2.2(ii) that #, > L;'(3) and hence DL,(y) > 1 for all
v € ¥ and y € [0,L;1(3)). It follows from the definition of m that, for each
je{l,...,m—1},

m—1
DLuj"'UnL—l(Lul"'uj—l 0 R(ZC)) = H DL’IM (Lul"‘ui—l ° R(I‘)) Z L. (332)
i=j

3We use different letters here than for the partition elements Pyybgw from P, since the subdivision
here is different (and (w, z)-dependent).
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Let g,t € ¥} be any two words such that d = gt. Using Lemma 3.2.1 we find that
for each y € [0, 3),

D(Ly o Ly)(y) = 2047,(1 — 2y)%"s 71, (3.33)
Furthermore, from (3.17) we see that
2l > %(1 — 2L, 0 R(x))*ars (3.34)
and applying Lemma 3.2.1 to L4 gives
(1 —2Lg 0 Ly 0 R(x))*"9™! = (1 — 2L, 0 R(x))‘a"s*a, (3.35)
Combining (3.33), (3.34) and (3.35) yields
D(R' oLy o0 Lt)(Lg o Ly o R(z))

= 21.20475(1 — 2Lg 0 Ly, 0 R(z))“t"s 1

> 3(1 — 2Ly 0 R(x)) 4" - 2474(1 — 2Ly, 0 R(z))'a™s"a (3.36)

1
= Slrg(1 = 2Ly 0 R(x)™",

which we can lower bound by % To prove (i), for any j € {1,...,m—1} taking g =€
(which means ¢4 = 1) and t = d we obtain using (3.32) and (3.36) that

i 1
DT (Tiz) = D(R' o Ly 0 Lg)(Ly 0 R(x)) - DLu;.uy + (Luyou, , © R()) > 5
For j € {m,...,k — 1} we take ¢ = wp41---wj and t = wj41---we—1 (s0 g = € in

case j =m and t = ¢ in case j = k — 1) and get

DTS (Th(@)) = D(R' 0 Ly o Ly)(Lq © L 0 R(x)) >

TIw

| =

by (3.36). Finally, if j € {x,...,¢(w,x) — 1}, then

DN | =

DTS@_(W@)—J' (Tij (z)) = oftl—j >

This proves (i). For (ii), we write
DT %) (z) = D(R' o Ly 0 Lg)(Lqy © R(2)) - DLy (R(x)) - DR(x).
We have DR(x) = 2 and by (3.32) with j = 1 we get DL, (R(z)) > 1. What is left is
to estimate the first factor. From (3.36) with ¢ = € and t = d we see that
1
D(R' oL, 0 La)(Ly o R(z)) > 5edrg(l — 2L, 0 R(z)) ™.

Note that by the definition of m we have L,, o R(x) € (L;l(%)7 1) if m=r—1,soif

d=c¢, and L, o R(z) € [z4,,3) if m <k — 1. In case m = k — 1 we obtain that

1 —1
Cary(1 — 2Ly o R(z))" > 1, (1 —or;! (5)) =1y 2170 > 2,
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where we used the expression for L;*(3) from (3.8) and the fact that x - 2'/* > 2 for
all z > 1. In case m < k — 1, we have

—1
Carg(1 = 2Ly 0 R(x)) ™! = €4, (1 24,) = 6,77 >0

)

where we used (3.9) and the fact that 217@=1)"" > 2 for all # > 1. Hence, in all cases

DI (2) > -

l\D\H

Recall the first return time partition P from (3.20). For P = P, g44 € P set
] ~i(13
mo(P) = (R"™ 0 L0 Ly o R) (5, Z)
and write Sp for the restriction of the map 7.2 to (P), so

Sp = T5 | nypy = R o Ly 0 Ly 0 Rlry(p)

We give two lemmas on the maps Sp, that will be useful when verifying (t6) for the
Young tower in the next section.

Lemma 3.3.8. There exists a constant C5 > 0 such that for each P € P and all
(w,x), (W', y) € P we have

Ty x \FP (W, ©

’m 1‘<03 |SP SP(y)|~

Proof. For each P € P and all (w,z), (w',y) € P we have p(w,z) = o', y) = pp
and w; = wé- for all 1 < j < ¢p. Hence, for each measurable set A C P we have

p(w,z)

mp X AM(F?(A / ( H p_l)DT“’ “:2) (1) dmy X Mw, T).

By Proposition 1.2.19 we obtain

p(w,z)

Ty x X F? (W, x) ( H Do, ) T“”(“””)()

which, for each P € P and all (w,z), (w',y) € P, gives

DSP 13)

Tmpx 2 F¥ (w, x) 1‘ B ’DTf(”’Z) x
DSp(y)

-1 = 7/ 1’ —’ —1].

Ty \F? (W', y) DT (y)

Let ¢ > 0. As compositions of good and bad maps each Sp has non-positive Schwar-
zian derivative and by Lemma 3.3.7(ii) each Sp satisfies DSp > 2. For this reason
for each P € P we can extend the domain m3(P) of Sp on both sides to an interval

Ip D mo(P) such that there exists an extension Sp:Ip — R of Sp, ie. SP|772(P)
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Sp \M( p), that has non-positive Schwarzian derivative and for which both components
of gp(Ip)\(%, %) have length at least 7. Applying for each P € P the Koebe Principle
(1.15) with I = Ip and J = mo(P) then gives a constant C5 > 0 that depends only
on ¢ such that for each P € P and each x,y € m3(P) we have

DSP(J})

Deois) " 1| < Cs-|Sp(z) — Sp(y)|.

This gives the lemma. O

Recall the definition of the separation time from (3.10). We have the following
lemma.

Lemma 3.3.9. Let (w,z),(w',y) €Y. Then
|z —y| < 275(@o)(@v), (3.37)
Furthermore, if (w,x), (W',y) € P for some P € P, then
|Sp(z) = Sp(y)| < 27 lwm FEW), (3.38)

Proof. Write n = s((w, x), (W', y)) and, for each k € {0,1,...,n — 1}, let P*) € P be
such that (F¥)*(w,z), (F¥)*(w',y) € P*). Then for each k € {0,1,...,n — 1} the
points (Spx-1)0---0Spw )(x) and (Spw-1) 0---0Spw )(y) lie in the domain 75 (P*))
of Spu, so it follows from Lemma 3.3.7(ii) together with the Mean Value Theorem
that

|Spa 00 Spw () = Spw 00 Spw (y)]

Z inf DS (k) Z 2.
|Sp-1) 0+ 0 Spw(x) = Spu-1 00 Spwo(y)| e

We conclude that
[z —y| < 27 Spo () — Spor (y)]
< <27 Spm-n 00 Spo () = Spi-ny 00 Spwo (y)| <277,
which gives the first part of the lemma. For the second part, note that if (w, z), (w', y) €
P for some P € P, then (3.38) follows by applying (3.37) to the points F¥(w,z) =
(7%Pw, Sp(z)) and F¥(w',y) = (79Pw’, Sp(y)). O

§3.4 A Young tower for the random map
§3.4.1 The acs probability measure

We are now in the position to construct a Young tower for the skew product F
according to the setup from [Y99, Section 1.1] that we outlined in Subsection 3.2.2.

As the base for the Young tower we take the set Y. The Young tower A, the I*}
levels of the tower A; and the tower map G : A — A are defined in Subsection 3.2.2,
as well as the reference measure m and the partition n on A. Following the general
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setup in [Y99], inducing the map G on Ay =Y X {0} yields a transformation G¥ on
Ay given by G¥(z,0) = G¥(*)(2,0). Recall that we identify G¥ with F¥ by identifying
Ay with Y and using the correspondence G¥(z,0) = (F¥(z),0). We check that the
conditions (t1)—(t6) from Section 3.2.2 hold for this construction.

Proposition 3.4.1. The conditions (t1)-(t6) hold for the map G on the Young tower
A defined above.

Proof. From the first return time partition P it is clear that (t1), (t2), (t3) and (t5)
hold.
For (t4) it is enough to show that the collection

\/G_"n:{EOOG_1E10~-~HG_”En cEien 1<i<n,n>0}
n>0

separates points. To show this, let (z1,l1), (22,l2) € A be two points. If z; = 29 and
Iy # 1y and P € P is such that z; € P, then A;, p,A;, p € 7 are sets that separate
(21,11) and (z2,12). Assume that z; # z2. Lemma 3.3.7(ii) implies that the map F'¥ is
expanding on Y, so there exist an N > 0 and two disjoint sets A, F € \/SZO(F‘P)_”P
such that z; € A and 29 € E. On these sets the first N first return times to Y
are constant, meaning that if K > 0 is such that G¥(z,,0) = ((F®)N(z,),0), then
Ax {1} € \/fioll G~"n and if L > 0 such that G¥(22,0) = ((F¥)"(z2),0), then
E x {ls} € \/ﬁiff G~ "n. Note that (z1,11) € A x {l1} and (22,l2) € F x {l2} and
(Ax{li})N(E x {ls}) = 0. Hence, (t4) holds.
Finally, from Lemma 3.3.8 and (3.38) we obtain that

JmeAFLP(ZI)

ImpXAT AN ] < Oy - 97 5(FP(21),F(22)) 3.39
TmgsxF?(z2) 1777 (3.39)

for each P € P and all z1,29 € P. This gives (t6) with 8 = % and the proposition
follows. O

Now Proposition 3.3.3(i) and Theorem 3.2.3 imply the existence of a probability
measure v on (A, B) that is G-invariant, exact and absolutely continuous with respect
to m with a density that is bounded (because it is in Cg) and bounded away from
zero and that satisfies (3.12). We use this to construct the invariant measure for F
that is promised in Theorem 3.1.2. Define

m: A= XN x[0,1], (2,1) = F'(2).
Then

m(G(2,0) = m(2, 1+ 1) = F*(2) = F(r(2,0)),  1<¢p(z) -1,
m(G(2,0) = 7(F7(2),0) = F9(2) = F(n(z,1)),  l=¢(z) -1

SomoG =Fom. Let p=vor! be the pushforward measure of v under 7.

Lemma 3.4.2. The probability measure p satisfies the following properties.
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(i) F is measure preserving and mizing with respect to p.
(i) p is absolutely continuous with respect to mp X A.

(i1i) We have
p(ANY)=v((ANY) x {0}), AeF.

Proof. Part (i) immediately follows from the properties of the measure v and the fact
that m o G = F o 7. For (ii), let A € F be such that m, x A(A) = 0. Using that F is
non-singular with respect to my, x A, we obtain that

m(r~1(A)) = (A N ( U FUA) x {1})) <3 mp x A(FTH(A)) =0,
>0

Since v is absolutely continuous with respect to m, it follows that p(A) = v(r~1A) =
0. For (iii) let A € F. We have

pp—1

fAany)=J | HAny)nP) x {i}.

PeP 1=0

By definition of ¢p, we have F'(z) ¢ Y for each z € P and each [ € {1,...,¢0p — 1}.
Therefore
AnY) = [JANnP) x {0} =(AnY) x {0}.
PeP O

Combining Lemma 3.4.2 with Lemma 1.4.1 yields that there exists a probability
measure p that is absolutely continuous with respect to A and such that p = m, x p.
In other words, p is an acs measure for (7,p). We will now prove Theorem 3.1.2,
which shows that p is in fact the only acs measure for (7, p).

Proof of Theorem 3.1.2. Tt follows from Lemma 3.4.2(i) that F' is mixing with respect
to mp x p. Hence, to obtain that g is the only acs probability measure for (7, p), it
suffices according to Theorem 1.2.6 to show that g—’/{ > 0 holds M-a.e. Theorem 3.2.3
asserts that there is a constant C4 > 1 such that

— <Y <o, (3.40)

u(B) =v((2x B)NY) x {0}) > ;- m(((2x B)NY) x {0}) = C; ' - A(B).

Since B wab arbitrary, we have % () > C;' for Ad-ae. z € (3,2). Recall that the
density < 9k is a fixed point of the Perron-Frobenius operator Pr , being of the form
as in (1.20). Fix some g € Xg. The map T2 \(1 B : (3,2) = (0,1) is a measurable
bijection with measurable inverse. For each T € (O 1) let y, be the unique element
in (3,3) that satisfies # = T7(y,). Furthermore, note that SUPye(L,3) DT?(y) <

2DT,(0). We conclude that for A-a.e. z € (0,1)

d —1
du() ) dﬂ( ) > p2 i) jen

Y Zp = > 0.
dX I DTF(ys) — 2DT4(0)

URPY
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This gives that Z—ﬁ is bounded away from zero and therefore that u is the unique acs
measure. O

Remark 3.4.3. Besides Theorems 3.1.1 and 3.1.2 it can also be shown that all the
results from Theorem 2.1.2 carry over. Namely, by following the same steps as in
Section 2.2 it can be shown that (7,p) admits, independent of the value of 6, a
unique (up to scalar multiplication) acs measure that is o-finite and ergodic and for
which the density is bounded away from zero, is locally Lipschitz on (0, %) and [%7 1)
and is not in L? for any ¢ > 1. This measure is infinite if § > 1 and coincides with p if
0 < 1. Similar as in Chapter 2, if # > 1, it follows from applying Aaronson’s Ergodic
Theorem [A97, Theorem 2.4.2] to this infinite measure that no physical measure (see
footnote 1 on page 39) for F' exists.

§3.4.2 Decay of correlations

Recall that for oo € (0,1) we have set H, for the set of a-Holder continuous functions
on XN x [0, 1] with metric d as in (3.3). Also recall the definition of the function spaces
Cs on A from (3.11).

Lemma 3.4.4. Let a € (0,1) and h € Ho. Then hom € Cyjga.
Proof. Since h € H,, there exists a constant C5 > 0 such that
|h(21) — h(22)| < Cs5 - d(21,29)*  for all 21,2 € 2N x [0,1]. (3.41)

From this it is easy to see that ||h]|c < 0o. Let v = (21,01),v2 = (22,l2) € A. If
Iy # 15 or if z; and 2, lie in different elements of P, then s(vy,v3) = 0 and

hom(v1) — hom(vs)] = [A(F1 (21)) — h(F'2(22))] < 2||l|oc = 2[|12]| oo QM(M(’W)d
3.42

Hence, to prove that hom € Cy /2, it remains to consider the case that 21,22 € P for
some PePandly =1y =1€{0,...,0p —1}. Write 21 = (w,x) and 25 = (', y).
Note that w; = w} for each j € {1,2,...,pp}. Hence,

2—min{i€N:wl+i;ﬁw{+i} < 92" min{ieN:wa71+i7éw:pP—1+i} < 2_3(21722).

Furthermore, it follows from the Mean Value Theorem together with Lemma 3.3.7(i)
that
|Tgv (@) — Ter (y)] _ |TH (Th(@) — THL(TE (W)
T (x) = T4 (y)] To(z) = T ()]
Combining this with (3.38) yields that

1
> .
— 2

Lx) =T < 9.9-8(F?(21),F?(22)) _ 4 .9—5(21,22)
T (x) = Ty(y) < 2-2 4.2
and hence by (3.41),
‘h(Fl(Zl)) - h(Fl(zQ))| < 05(2—3(,21,22) +4- 2—5(21,22))a = 5%Cs - g—as(z1,22)

Together with (3.42) this gives the result. O
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We now have all the ingredients to prove Theorem 3.1.3.

Proof of Theorem 3.1.3. To prove the theorem, we would like to use Theorem 3.2.3(iv),
which requires us to bound m(¢ > n), where

@: A= Ng,v—inf{n >0 : G"(v) € Ap}.
Since

{p=0}=A0 = U Ao,p,

PeP:pp>0
{95 = n} = U ALPP—WP? n>1,
PeP:pp>n
we have for each n > 0 that
m(p=n) = Z mp X A(P) =mp X A(p > n).
PeP:pp>n

It follows from Proposition 3.3.3(ii) that for each v € (v1,0) there is an M > 0 and
an N > 1 such that for each n > N,

mp X A(p >n) < M- -n L
Thus, for all n > N,
m@>n)=> m@=k <MY K'<M 0"+ M/ 2V rdx.  (3.43)
k>n k>n n

So, m(¢ > n) = O(n”). Combining Proposition 3.3.3(i), Proposition 3.4.1 and The-
orem 3.2.3(iv) now gives that for each v € (71,0), f € L>(A,v), 6 € (0,1) and
h € Cs,

’/AfoG".fzdy—/Afdy/AﬁdV’:O(nv)' (3.44)

Now, let v € (71,0), f € L=®(XN x [0,1],mp x ) and h € H. Using that mp x pu =
vor~!tand oG = F o, it then follows that

\Corn(f,h)|:‘/A(fwr)oG”-(how)du—/Afwrdz//Ahmrdz/‘.

Since h € H, it holds that h € H, for some a € (0,1), so hon € Cy/2« by Lemma
3.4.4. Since also fom € L*(A,v), we obtain the result from (3.44) with f=fom
and h = hom. O

In order to prove Theorem 3.1.4, we need the following lemma.
Lemma 3.4.5. There exists Cg > 0 such that for each P € P and z1,2z2 € P,

Ty xuF'¥(21)

< Cf - 275(21,22)'
JmPX#FSO(ZQ)

log
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Proof. From the definition of the Jacobian we see that J,,G¥?|a, = Jm,xrF¥ with
the identification of Ay and Y. Lemma 3.4.2(iii) and Lemma 1.2.20(a) give us that
for each P € P and each measurable set A C P,

mp X p(F¥(A)) = v(G¥(A x {0}))

_ /AX{O} (;l—yoG“")J G¥ dm

dv dm
= / dm(F“"( 2),0) - Ty s xF?(2) - E(Z,O) dmyp X p(z).
This gives
" dv o o dm
JmeMF (Z) dm (F ( ) O) : JmprF (Z) ' E(Z,O), z €Y,

and thus, for each z1,20 € Y,

Ty F9(

(227())
Im XHFW

+ ‘ og )
’ d:@ (217 O)
Combining Proposition 3.3.3(i), Proposition 3.4.1 and Theorem 3.2.3(ii) gives the
existence of a constant CT > 0 such that, for each A p €nand v, vy € Ay p,

F?(21),0 T ZNF'?
log ’<’log ( (=1 ‘—F‘l XX
d

(FS"( 7 m X)\Ftp

m

‘%(Ul)

dv

B oo oo
dm

Using that |log z| < max{|z — 1|,|]z~! — 1|} for all > 0, we obtain from (3.39) and
(3.45) that

10g JmPXNF ‘ < C+ 9- S(F?(z1),F?(22)) +C .9~ s(F¥(z1),F?(z2) +C+ 2= s(z1,22)
Ty xu ¥ (22
for all 21,2, € P, P € P. The lemma thus holds with Cs = 3CT + 2C5. O

Proof of Theorem 8.1.4. Let f € L®(XN x [0,1],m, x p) and b € H be such that
both f and h are identically zero on ¥V x ([0, 2] U [2,1]) and such that [ fdm, x
po [hdmg x p > 0. Let v € (y1,min{y; +1,-1}) if v < =1 and vy € (v, ) if
—1 <1 < 0. This is possible by assumption. Our strategy is to apply Theorem 3.2.4
with Y as before. For this, we verify (gl), (g2) and (g3).*

For (g3), h € H implies that h € H, for some a € (0,1) and thus how € Cy 9« by
Lemma 3.4.4. In particular this yields (g3) with § = 2. For (g2), Lemma 3.4.2(iii)
and (3.40) give

d
mpxu(go>n):/ d—ydm<C’4 mp X A(p > n).
{o>n}x{oy 1M

4More precisely, we apply Theorem 3.2.4 to versions of f and h that are also zero on (EN X
l )\Y
(3
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Together with Proposition 3.3.3(ii) this implies that
mp X (e >n) = O(n""1).

Finally, (g1) with § = 27 follows from Lemma 3.4.5 by setting C* = Cg and noting
that 2% > % Hence, we satisfy all the conditions of Theorem 3.2.4 with 6 = 27% and
¢ =1—~. Note that

nTh il -y > 2,
Ki_y(n)=¢%8"  if1-—y=2,

n?,  if1—ve€(1,2).

If v < =1, then 1 — v € (max{—72,2},1 — 1) C (2,00) and if =1 < ; < 0, then
1—ve(l—2,1-9)C(1,2). We can thus conclude from Theorem 3.2.4 that

Cor, (f,h) — (imp x u(p > k)) /fdmp x u/hdmp x u’ = 0(nf),
k>n

where € = v —11if 9 < —1 and £ = 2y if —1 <73 < 0. As above it follows from
Proposition 3.3.3(iii) combined with Lemma 3.4.2(iii) and (3.40) that m, x pu(p >
n) = Q(n72~1) and thus

> mp x ple > k) = Qn).
k>n

The result now follows from observing that yo > &. O

We provide some examples of combinations of parameters for which the conditions
of Theorem 3.1.4 hold. As before set iy, = min{l, : b € X} and pp = ZjEEB D
and set 7 = > €T 0= man P Examples that satisfy the conditions of Theorem
3.1.4 include the following.

— If ¥ g consists of one element, then y; = 7».

- If p;l/?) < émin S Emax < p§1/27 or eqUiValently émin > E?H/E?X and PB €

(023 022), then 0 < pp - bmax < £phy, 50 0 < 1 and v, < —1, and
1
o> 14+ —8PB o 951
1Oggmin
4/3 1/ 1/

~ If mg > pg° (or equivalently 7 2 < p§27r3) and lmax € [Tg Q,p];QﬂB), then
0 <pB - lnax < p]§17r3 <land @ > 7p  lyax > Uk, ie. v > —1, and

p > 14 08mE 2108 b 5 o
log £1nax log £max
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§3.5 Further results and final remarks

We can obtain more information from the results from [G04]. First of all, using the
last part of [G04, Theorem 6.3] the upper bound in Theorem 3.1.3 can be improved
for a specific class of test functions.

Theorem 3.5.1. Assume that § < 1. Let f € L=(XN x [0,1],my x p) and h € H be
such that both f and h are identically zero on XN x ([0, 1]U[2,1]) and [ hdmpxp = 0.
Let v € (71,0). Then

|Cory (f, 1) = O(n*™1).

Proof. The statement follows by applying the last part of [G04, Theorem 6.3]. For
this, (gl), (g2) and (g3) need to be verified. This is done before in the proof of
Theorem 3.1.4. O

In [GO4, Theorem 6.13] a Central Limit Theorem is derived for a specific class of
functions in H with zero integral. This result immediately carries over to our setting
and is given in the next theorem.

Theorem 3.5.2 (cf. Theorem 6.13 in [GO04]). Assume that § < 1. Let h € H
be identically zero on XN x ([0,3] U [3,1]) and with [hdmy x p = 0. Then the
sequence ﬁ ZZ;& hoF* converges in distribution with respect to my, X i to a normally

distributed random variable with zero mean and finite variance o2 given by

02:_/h2dm1’XM‘FZZ/h'hOF’Ldme/"
n=0

Furthermore, we have o = 0 if and only if there exists a measurable function
on XN x [0,1] such that ho F = o F — . Such a function v then satisfies
suthZQeym% < oo and Y(FI(z)) = ¥(z) for each z € Y and each j =
0,1,...,0(2) — 1.

Using [Y99, Theorem 4] we can also derive a Central Limit Theorem, this time for
a more general class of functions in H with zero integral but under the more restrictive
assumption that 6 < ¢!

max*
Theorem 3.5.3. Assume that 6 < (.} . Let h € H be such that [ hdmy x p = 0.
Then the sequence ﬁ ZZ;& ho F* converges in distribution with respect to mp X p

to a normally distributed random variable with zero mean and finite variance o2.

Furthermore, we have o = 0 if and only if there exists a measurable function 1 on A

such that homo G =1 oG — .

Proof. The result from [Y99, Theorem 4] gives a statement for G on A. We have
already seen that h € H implies h o7 € Cy /9« for some o € (0,1). The assumption
that 6 < ¢ implies 3 < —1. Take v € (71, —1). We saw in (3.43) that m(4 > n) =

O(n?). Tt then follows from [Y99, Theorem 4] that % ZZ;; homoGF converges in
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83.5. Further results and final remarks

distribution with respect to v to a normally distributed random variable with zero
mean and finite variance o2, with ¢ > 0 if and only if ho 7o G # 9 o G — ¢ for any
measurable function 1 on A. Since my X p=vor ! and Form =moG, we get for
any u € R that

_

n—

me/J,<\/15:z:§)hOFk§u>=I/(\/l> (hOT&')OGkSu).

n
k=0

The result now follows. O

Under an additional assumption on rmi, = min{ry : g € L} and lnin = {4 :
b € Y¥p} we can weaken the assumption that the test functions in Theorem 3.1.4,
Theorem 3.5.1 and Theorem 3.5.2 should be identically zero on N x ([0, 3] U [3,1]).
Namely, if for an integer [ > 2 we have

27" min {rmin . 91/Tmin glfl/(fm;n—l)} -1

then it suffices to assume that these test functions are identically zero on XN x ([O, %] U
[1- 21%, 1]) Indeed, in this case Lemma 3.3.7 and also Proposition 3.3.3 still carry
over if we induce the random map on (%, 1- 21%) instead, and the result then follows
by applying [G04, Theorem 6.3 and Theorem 6.13] to this induced system in the same
way as has been done in the proofs of Theorem 3.1.4, Theorem 3.5.1 and Theorem

3.5.2. The step in Lemma 3.4.5 where (3.45) is applied will then be replaced by
applying
(z

‘ ()

which can be shown using that g—’/{ is bounded away from zero and is locally Lipschitz
on [%, 1). Asremarked in Remark 3.4.3, the latter can be shown by following the same

~—

&.‘&
S

1 1
1‘§C’~|:17y7 Va:,yeb,lfﬁ}, for some C' > 0,

Q.‘Q..
>=

steps as in Section 2.2. It in particular shows that Z—‘; is bounded on [%, 1- TLL
which replaces the step in the proof of Theorem 3.1.4 where Lemma 3.4.2(iii) and
(3.40) are applied.

We can extend the results in this chapter to the following more general classes of
good and bad maps. Fix a ¢ € (0,1), and let the class of good maps & consist of
maps T, : [0,1] — [0, 1] given by

T, (z) 1l—c " (c—a), if z€]0,c),
€Tr) =
J z=c if x€le 1],

where 7, > 1, and the class of bad maps 9B consist of maps T : [0,1] — [0,1] given
by

c—c bt c—x)r, if xe€(0,0),
Ty@) =" (c—x) . [0,¢)
if z¢€lel],

1—c?

97

€ YALIVH)



CHAPTER 3

3. Decay of correlations for critically intermittent systems

where £, > 1. Again, one easily computes that each map from & U3 has non-positive

Schwarzian derivative when restricted to [0, 3) or [4, 1]. For these collections of maps

Lemma 3.2.2 carries over, replacing % with ¢ and % with ¢2, under the additional

assumptions that ¢ < ry- (1 — c)l_rf;l holds for all g € Xg, and that 1 —c¢ > Eib/(l_eb)

holds for all b € ¥ . Furthermore, Lemma 3.3.7 carries over with lower bounds
2
(l_cc) and = in (i) and (ii) instead of § and 2, respectively, under the additional

assumption that

1—c¢)? -
% . min { brélg;{rb . (1 _ C)—l/rb}’grllii/(fmm 1)} > 1.

By equipping XN with the metric dsr (w,w’) = (1 — ¢)minti€N:wiZwi} it can be shown
that under these additional conditions all the results formulated in Sections 3.1 and
3.5 carry over and are proven in the same way.

Finally, polynomial decay of correlations is expected to hold for a more general
class of good and bad maps for which random compositions show critical intermit-
tency, but the proofs may become more cumbersome. Our assumption that all maps
are identical on the interval [3,1] made it easier to find a suitable inducing domain,
but does not seem necessary. Furthermore, the linearity of this right branch and the
explicit forms of the left branches of the good and bad maps made the series in (3.24)
and (3.25) telescopic. A first step to generalise our results to a more general class
might be to require this explicit form of the left branch only close to ¢, though any
generalisations will inevitably make the calculations more complicated.
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