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CHAPTER 3
Decay of correlations for critically

intermittent systems

This chapter is based on: [KZ22].

Abstract

For a family of random intermittent dynamical systems with a superattracting fixed
point we prove that a phase transition occurs for the existence of an absolutely con-
tinuous invariant probability measure depending on the randomness parameters and
the orders of the maps at the superattracting fixed point. In case the systems have
an absolutely continuous invariant probability measure, we show that the systems
are mixing and that correlations decay polynomially even though some of the de-
terministic maps present in the system have exponential decay of correlations. This
contrasts other known results, where random systems adopt the best decay rate of
the deterministic maps in the systems.
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§3.1 Introduction

For the random systems from Chapter 2 that have an acs probability measure, one
can naturally wonder about the mixing properties and decay of correlations. In this
chapter we explore this further, but instead of the random maps from the previous
chapter we work with adapted versions. We take a subclass of the maps from Chapter
2 and replace the right branches with the right branch of the doubling map. Under
random compositions of these maps orbits then converge superexponentially fast to
1
2 and diverge exponentially fast from 1, see Figure 3.1(a). The way in which we
have adapted the systems from Chapter 2 very much resembles the way in which the
LSV maps from (1.11) are adaptations of the standard Manneville-Pomeau maps. We
work with these adaptations because they allow us to build a suitable Young tower
and use the corresponding results, while preserving the main dynamical properties of
the maps from Chapter 2.

We describe the systems we consider in more detail. Just as in the previous chapter
we distinguish between so-called good and bad maps. We call a map Tg : [0, 1]→ [0, 1]

good if it is given by

Tg(x) =

{
1− 2rg ( 1

2 − x)rg if x ∈ [0, 1
2 ),

2x− 1 if x ∈ [ 1
2 , 1],

(3.1)

for some rg ≥ 1 and denote the class of good maps by G. A map Tb : [0, 1]→ [0, 1] is
called bad if it is given by

Tb(x) =

{
1
2 − 2`b−1( 1

2 − x)`b if x ∈ [0, 1
2 ),

2x− 1 if x ∈ [ 1
2 , 1],

(3.2)

for some `b > 1 and we denote the class of bad maps by B. The graphs of Tg and Tb
are shown in Figure 3.1(b). Note that if rg = 1, then Tg is equal to the doubling map.
Furthermore, Tg with rg = 2 and Tb with `b = 2 are on [0, 1

2 ) equal to the logistic maps
x 7→ 4x(1− x) and x 7→ 2x(1− x), respectively. One easily computes that each good
map Tg and each bad map Tb have non-positive Schwarzian derivative when restricted
to [0, 1

2 ) or [ 1
2 , 1]. Just like in the previous chapter, let {T1, . . . , TN} ⊆ G ∪B be a

finite collection of good and bad maps, write ΣG = {1 ≤ j ≤ N : Tj ∈ G} and
ΣB = {1 ≤ j ≤ N : Tj ∈ B} for the index sets of the good and bad maps,
respectively. We assume that ΣG,ΣB 6= ∅. We write Σ = {1, . . . , N} = ΣG ∪ΣB and
let F be the skew product associated to {Tj}j∈Σ given by

F : ΣN × [0, 1]→ ΣN × [0, 1], (ω, x) 7→ (τω, Tω1(x)),

where again τ denotes the left shift on sequences in ΣN.

Let p = (pj)j∈Σ be a probability vector with strictly positive entries representing
the probabilities with which we choose the maps from T = {Tj}j∈Σ. Furthermore, let
mp be the p-Bernoulli measure on ΣN. Our first two main results establish that there
exists a phase transition for the existence of an acs probability measure for (T ,p)

that is similar to the phase transition found in Chapter 2. Set θ =
∑
b∈ΣB

pb`b.
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Figure 3.1: In (a) we see the critically intermittent system consisting of the maps given by
(3.1) with rg = 2 and (3.2) with `b = 2. The dashed lines indicate part of a random orbit of
x. In (b) the graphs of (3.1) and (3.2) are depicted for several values of rg and `b.

Theorem 3.1.1. If θ ≥ 1, then no acs probability measure exists for (T ,p).

Theorem 3.1.2. If θ < 1, then there exists a unique acs probability measure µ for
(T ,p). Moreover, F is mixing with respect to mp × µ and the density dµ

dλ is bounded
away from zero.

Since µ is an acs measure, the density dµ
dλ is a fixed point of the associated Perron-

Frobenius operator PT ,p being of the form as in (1.20). Moreover, Theorem 3.1.2 tells
that this density dµ

dλ is bounded away from zero. Using these two statements it is easy
to see that dµ

dλ blows up to infinity when approaching the points 1
2 and 1 from below.

See Figure 3.2 for an example.

Our second set of main results involves the decay of correlations in case θ < 1.
Equip ΣN × [0, 1] with the metric

d
(
(ω, x), (ω′, y)

)
= 2−min{i∈N :ωi 6=ω′i} + |x− y|. (3.3)

For α ∈ (0, 1), let Hα be the class of α-Hölder continuous functions on ΣN× [0, 1], i.e.

Hα =
{
h : ΣN×[0, 1]→ R

∣∣∣ sup
{ |h(z1)− h(z2)|

d(z1, z2)α
: z1, z2 ∈ ΣN×[0, 1], z1 6= z2

}
<∞

}
,

and set
H =

⋃
α∈(0,1)

Hα.

For f ∈ L∞(ΣN × [0, 1],mp × µ) and h ∈ H the correlations are defined by

Corn(f, h) =

∫
ΣN×[0,1]

f ◦ Fn · h dmp × µ−
∫

ΣN×[0,1]

f dmp × µ
∫

ΣN×[0,1]

h dmp × µ.
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Figure 3.2: Approximation of dµ
dλ

in case ΣG = {1}, ΣB = {2}, p1 = 7
10

and r1 = 2 for two
different values of `2. Both pictures depict P 50

T ,p(1) with Perron-Frobenius operator PT ,p,
where in (a) we have taken `2 = 3

2
and in (b) `2 = 3.

Set `max = max{`b : b ∈ ΣB} and

γ1 =
log θ

log `max
. (3.4)

The following result says that correlations decay at least polynomially fast with degree
arbitrarily close to γ1. Here and in the rest of this chapter the notation f(n) = O(g(n))

means that there exists a constant C > 0 and integer N ∈ N such that for each integer
n ≥ N we have f(n) ≤ C · g(n).

Theorem 3.1.3. Assume that θ < 1. If γ ∈ (γ1, 0), f ∈ L∞(ΣN× [0, 1],mp×µ) and
h ∈ H, then |Corn(f, h)| = O(nγ).

For each b ∈ ΣB set

πb =
∑

j∈ΣB :`j≥`b

pj (3.5)

and let

γ2 = 1 + max
{ log πb

log `b
: b ∈ ΣB

}
. (3.6)

Note that

γ2 = max
{ log(πb · `b)

log `b
: b ∈ ΣB

}
≤ max

{ log θ

log `b
: b ∈ ΣB

}
= γ1.

In our final result we show that, under additional assumptions on the parameters of
the random systems, the class of observables f ∈ L∞(ΣN × [0, 1],mp × µ) and h ∈ H
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contains functions for which the correlation decay is not faster than polynomially with
degree γ2. The notation f(n) = Ω(g(n)) means that there exists a constant C > 0

and integer N ∈ N such that for each integer n ≥ N we have f(n) ≥ C · g(n).

Theorem 3.1.4. Assume that θ < 1. Furthermore, assume that γ2 > γ1 − 1 if
γ1 < −1 and γ2 > 2γ1 if −1 ≤ γ1 < 0. Let f ∈ L∞(ΣN × [0, 1],mp × µ) and h ∈ H
be such that both f and h are identically zero on ΣN ×

(
[0, 1

2 ] ∪ [ 3
4 , 1]

)
and such that∫

ΣN×[0,1]

f dmp × µ ·
∫

ΣN×[0,1]

h dmp × µ > 0.

Then

|Corn(f, h)| = Ω(nγ2).

In Section 3.4 we provide examples of values of `b and probability vectors p that
satisfy the conditions of Theorem 3.1.4.

The proof of Theorem 3.1.2 we present below also carries over to the case that
ΣB = ∅. Applying Theorem 3.1.2 to the case that ΣB = ∅ and ΣG = {g} contains one
element yields together with [LM13, Theorem 1.5] the following result on the good
maps Tg ∈ G.

Corollary 3.1.5. For any Tg : [0, 1]→ [0, 1] ∈ G the following hold.

(a) Tg admits an invariant probability measure µg that is mixing and absolutely
continuous with respect to Lebesgue measure λ.

(b) There exists a constant a > 0 such that for each f ∈ L∞([0, 1], µg) and each
function h : [0, 1]→ R of bounded variation we have

|Corn,Tg,µg (f, h)| = O(e−an),

where
Corn,Tg,µg (f, h) =

∫
f ◦ Tng · h dµg −

∫
fdµg ·

∫
h dµg.

This result is expected in view of the exponential decay of correlations found
for the unimodal maps from [KN92, Y92, Y98]. We see that test functions that fall
within the scope of both this corollary and Theorems 3.1.3 and 3.1.4 have exponential
decay of correlations under a single good map while under the random system with
ΣB 6= ∅ they have polynomial decay of correlations.1 This indicates that a system
of good maps loses its exponential decay of correlations when mixed with bad maps
and instead adopts polynomial mixing rates. This is different from what has been
observed for other random systems in e.g. [BBD14, BB16, BQT21], where the random
systems of LSV maps under consideration adopt the highest decay rate from the rates
of the individual LSV maps present in the system. See Example 1.4.3.

1Examples of such test functions are Lipschitz continuous functions that vanish outside of ΣN ×
( 1
2
, 3
4

).

73



3. Decay of correlations for critically intermittent systems

C
h
a
pt

er
3

The remainder of this chapter is organised as follows. In Section 3.2 we list some
preliminaries. In Section 3.3 we prove Theorem 3.1.1. The method of proof for this
part is reminiscent of that in Chapter 2 in the sense that we introduce an induced
system and apply Kac’s Lemma on the first return times. In Section 3.3 we also
give estimates on the first return times and the induced map that we use later in
Section 3.4. For Theorem 3.1.2 the approach from Subsection 2.3.2 no longer works,
because we have introduced a discontinuity for the bad maps (at 1

2 ). Instead we prove
Theorem 3.1.2, as well as Theorem 3.1.3 and Theorem 3.1.4, by constructing a Young
tower on the inducing domain from Section 3.3 and by applying the general theory
from [Y99] and [G04]. This is done in Section 3.4 and is inspired by the methods from
[BBD14, BB16]. Section 3.5 contains some further results. More specifically, we show
that for a specific class of test functions the upper bound from Theorem 3.1.3 can be
improved and we obtain a Central Limit Theorem. We end with some final remarks.

§3.2 Preliminaries

We use this section first of all to give some properties of good and bad maps. Secondly,
we give the construction of a Young tower, list some of the results from [Y99, G04]
and present this in an adapted form, rephrased to our setting and only referring to
the parts that are relevant for our purposes.

§3.2.1 Properties of good and bad maps
As in Section 3.1, let T1, . . . , TN ∈ G∪B be a finite collection of good and bad maps,
and write ΣG = {1 ≤ j ≤ N : Tj ∈ G} 6= ∅, ΣB = {1 ≤ j ≤ N : Tj ∈ B} 6= ∅
and Σ = {1, . . . , N} = ΣG ∪ ΣB . For ease of notation, we refer to the left branch
of a map Tj by Lj , i.e. for x ∈ [0, 1

2 ) we write Lj(x) = Tj(x), j ∈ Σ. We will use
R : [ 1

2 , 1]→ [0, 1], x 7→ 2x− 1 to denote the right branch of the maps Tj .

Throughout this section and the next ones we use the notations for words and
compositions of the maps Tj introduced in Section 1.4. We use the same notations
for compositions of the left branches Lj , so for ω ∈ ΣN, n ∈ N0 and x ∈ [0, 1

2 ) such
that Lωj ◦ · · · ◦ Lω1(x) ∈ [0, 1

2 ) for each j = 1, . . . , n− 1 we write

Lω1···ωn(x) = Lnω(x) =

{
x, if n = 0,

Lωn ◦ Lωn−1
◦ · · · ◦ Lω1

(x), for n ≥ 1.
(3.7)

Also in this situation we use the same notation for finite words u ∈ Σm, m ≥ 1, and
n ≤ m. Furthermore, for any u = u1 · · ·uk ∈ Σk, k ≥ 0, recall that we abbreviate
pu =

∏k
i=1 pui and also, as in Chapter 2, let `u =

∏k
i=1 `ui if u ∈ ΣkB , where we

use pu = `u = 1 in case k = 0. Finally, recall the notation Σ∗ =
⋃
n≥0 Σn for the

collection of all finite words (including the empty word) with digits from Σ. Similarly
we define Σ∗G and Σ∗B .

For future reference we give two lemmas on the properties of good and bad maps.
The first one involves compositions of bad maps and implies in particular that orbits
starting in [0, 1

2 ) converge superexponentially fast to 1
2 under iterations of bad maps.
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Lemma 3.2.1. For each x ∈ [0, 1
2 ) and b ∈ Σ∗B we have

(i) Lb(x) = 1
2

(
1− (1− 2x)`b

)
,

(ii) L−1
b (x) = 1

2

(
1− (1− 2x)`

−1
b

)
.

Proof. Part (i) holds trivially if |b| = 0. Now suppose for some k ≥ 0 that (i) holds
for all b ∈ Σ∗B with |b| ≤ k. Let bbk+1 ∈ Σk+1

B . Then Lb(x) ∈ [0, 1
2 ) and

Lbbk+1
(x) =

1

2

(
1− (1− 2Lb(x))`bk+1

)
=

1

2

(
1−

(
(1− 2x)`b

)`bk+1

)
=

1

2

(
1− (1− 2x)`bbk+1

)
.

This proves (i), and (ii) follows easily from (i).

For g ∈ ΣG the map Lg : [0, 1
2 ) → [0, 1) is invertible and for b ∈ ΣB the map

Lb : [0, 1
2 ) → [0, 1

2 ) is invertible. For all j ∈ Σ the map Lj is strictly increasing with
continuous and decreasing derivative and, if Tj is not the doubling map (i.e. j ∈ ΣB
or j ∈ ΣG with rj > 1),

max
x∈[0, 12 )

DLj(x) = DTj(0) > 1 and lim
x↑ 1

2

DLj(x) = 0.

This allows us to define for each g ∈ ΣG with rg > 1 the point xg as the point in
(0, 1

2 ) for which DLg(xg) = 1 and for each b ∈ ΣB the point xb as the point in (0, 1
2 )

for which DLb(xb) = 1.

Lemma 3.2.2. The following hold.

(i) For each g ∈ ΣG it holds that L−1
g

(
1
2

)
≤ 1

4 .

(ii) For each g ∈ ΣG with rg > 1 it holds that L−1
g

(
1
2

)
< xg.

(iii) For each b ∈ ΣB it holds that L−1
b

(
1
4

)
< xb.

Proof. One can compute that

L−1
g

(1

2

)
=

1

2

(
1− 2−1/rg

)
(3.8)

for all g ∈ ΣG. If rg > 1, then

xg =
1

2
−
(
rg · 2rg

)1/(1−rg)
.

For each b ∈ ΣB we have

L−1
b

(1

4

)
=

1

2

(
1− 2−1/`b

)
and xb =

1

2

(
1− `1/(1−`b)b

)
. (3.9)

Since rg ≥ 1 and thus 2−1/rg ≥ 1
2 for each g ∈ ΣG, (i) follows. Furthermore, one can

show that 2−1/x−1 > (x · 2x)1/(1−x) and 2−1/x > x1/(1−x) hold for all x > 1, which
give (ii) and (iii), respectively.
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§3.2.2 Young towers
Let F be the product σ-algebra on ΣN× [0, 1] given by the Borel σ-algebra’s on both
coordinates. We call the set on which we will induce Y ∈ F . It will be defined later
and will be such that the first return time map ϕ on Y associated to the skew product
F given by

ϕ(ω, x) = inf{n ≥ 1 : Fn(ω, x) ∈ Y }

satisfies ϕ(ω, x) <∞ for all (ω, x) ∈ Y . The induced transformation FY : Y → Y as
given in Subsection 1.2.1 by FY (ω, x) = Fϕ(ω,x)(ω, x) is then well defined.

On the inducing domain Y one can construct a Young tower for F . For the
convenience of the reader we briefly give this construction, which is outlined in a
more general fashion and in more detail in [Y99]. Let P be a countable partition of
Y into measurable sets on which the first return time function ϕ is constant, called a
first return time partition. Let ϕP be the constant value that ϕ assumes on P . The
tower is defined by

∆ = {(z, n) ∈ Y × {0, 1, 2 . . .} : n < ϕ(z)}.

The l-th level of the tower is ∆l := ∆ ∩ {n = l} and for each P ∈ P let ∆l,P =

∆l ∩ {z ∈ P}. We equip ∆ with the Borel σ-algebra B and let m be the unique
measure on ∆ that corresponds to mp × λ on each level of the tower. On ∆ define
the function

G(z, n) =

{
(z, n+ 1), if n+ 1 < ϕY (z),

(FY (z), 0), otherwise.

Let the induced map Gϕ : ∆0 → ∆0 be defined by Gϕ(υ) = Gϕ(z)(υ), where z ∈ Y
is such that υ = (z, 0). We identify Gϕ with Fϕ by identifying ∆0 with Y and
using the correspondence Gϕ(z, 0) = (Fϕ(z), 0). The separation time is defined for
each (z1, l1), (z2, l2) ∈ ∆ by s((z1, l1), (z2, l2)) = 0 if l1 6= l2 and otherwise letting
s((z1, l1), (z2, l2)) = s(z1, z2) be given by

s(z1, z2) = inf{n ≥ 0 : (Gϕ)n(z1, 0), (Gϕ)n(z2, 0) lie in distinct ∆0,P , P ∈ P}.
(3.10)

The setup from [Y99] assumes the following conditions on ∆ and G:

(t1) gcd{ϕP : P ∈ P} = 1;

(t2) All the sets in the construction above are measurable and m(Y ) <∞.

(t3) For each P ∈ P the top level ∆ϕP−1,P above P is mapped bijectively onto
∆0 = Y × {0} under the map G;

(t4) The partition η = {∆l,P : P ∈ P, 0 ≤ l ≤ ϕP − 1} generates B.
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(t5) The restrictions Gϕ|∆0,P
: ∆0,P → ∆0 and their inverses are non-singular with

respect to m, so that the Jacobian JmGϕ with respect to m exists and is > 0

m-a.e.

(t6) There are constants C > 0 and β ∈ (0, 1) such that for each P ∈ P and all
(z1, 0), (z2, 0) ∈ ∆0,P ,∣∣∣∣JmGϕ(z1, 0)

JmGϕ(z2, 0)
− 1

∣∣∣∣ ≤ Cβs(Gϕ(z1,0),Gϕ(z2,0)).

Under these conditions [Y99] yields the following results on the existence of in-
variant measures for the map G on the tower ∆ and decay of correlations. Define for
all δ ∈ (0, 1) the following function space on ∆:

Cδ =
{
f̂ : ∆→ R

∣∣∣ sup
{ |f̂(υ1)− f̂(υ2)|

δs(υ1,υ2)
: υ1, υ2 ∈ ∆, υ1 6= υ2

}
<∞

}
. (3.11)

For υ ∈ ∆ let ϕ̂(υ) := inf{n ≥ 0 : Gn(υ) ∈ ∆0}.

Theorem 3.2.3 (Theorem 1 and 3 from [Y99]). If (t1)–(t6) hold and we have∫
Y
ϕdm <∞, then the following statements hold.2

(i) G : ∆ → ∆ admits an invariant probability measure ν that is absolutely con-
tinuous w.r.t. m;

(ii) The density dν
dm is bounded away from zero and is in Cβ with β as in (t6).

Moreover, there is a constant C+ > 0 such that for each ∆l,P and each υ1, υ2 ∈
∆l,P ∣∣∣∣∣ dνdm (υ1)

dν
dm (υ2)

− 1

∣∣∣∣∣ ≤ C+ βs(υ1,υ2). (3.12)

(iii) G is exact, hence ergodic and mixing.

(iv) (Polynomial decay of correlations) If, moreover, m({υ ∈ ∆ : ϕ̂(υ) > n}) =

O(n−α) for some α > 0, then for all f̂ ∈ L∞(∆,m), all δ ∈ (0, 1) and all
ĥ ∈ Cδ, ∣∣∣ ∫

∆

f̂ ◦Gn · ĥ dν −
∫

∆

f̂ dν

∫
∆

ĥ dν
∣∣∣ = O(n−α).

We will also use [G04, Theorem 6.3] by Gouëzel which, when adapted to our
setting, says the following.

Theorem 3.2.4 (Theorem 6.3 from [G04]). Let ρ be an invariant and mixing
probability measure for F on ΣN × [0, 1]. Let f ∈ L∞(ΣN × [0, 1], ρ) and h ∈
L1(ΣN × [0, 1], ρ) be such that both f and h are identically zero on (ΣN × [0, 1])\Y .
Assume that there is a δ ∈ (0, 1) such that the following three conditions hold.

2The version in [Y99, Theorem 3] of statement (iv) above only states the result for δ = β. Note
however that statement (iv) for the case 0 < δ < β follows from Cδ ⊆ Cβ and that if β < δ < 1, then
the bound in (t6) where β is replaced by δ also holds and therefore [Y99, Theorem 3] can be applied
with δ taking the role of β.
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(g1) There is a constant C∗ > 0 such that for each n ≥ 0 and z1, z2 ∈
∨n−1
k=0 F

−n
Y P,∣∣∣ log

JρF
ϕ(z1)

JρFϕ(z2)

∣∣∣ ≤ C∗ · δn.
(g2) There is a ζ > 1 such that ρ(ϕ > n) = O(n−ζ).

(g3) sup
{ |h(z1)−h(z2)|

δs(z1,z2) : z1, z2 ∈ Y, z1 6= z2

}
<∞.

Then there is a constant C̃ > 0 such that∣∣∣Corn,F,ρ(f, h)−
(∑
k>n

ρ(ϕ > k)
)∫

f dρ

∫
h dρ

∣∣∣ ≤ C̃ ·Kζ(n),

where

Kζ(n) =


n−ζ , if ζ > 2,
logn
n2 , if ζ = 2,

n2−2ζ , if ζ ∈ (1, 2).

§3.3 Inducing the random map on (1
2 ,

3
4)

§3.3.1 The induced system
Define

Ω̃ = {ω ∈ ΣN : ωi ∈ ΣG for infinitely many i ∈ N},

Y =
{

(ω, x) ∈ Ω̃×
(1

2
,

3

4

)
: Tnω (x) 6= 1

2
for all n ∈ N

}
.

The set Y , which equals ΣN× ( 1
2 ,

3
4 ) up to a set of measure zero, will be our inducing

domain. Recall the definition of the first return time function

ϕ : Y → N, (ω, x) 7→ inf{n ≥ 1 : Fn(ω, x) ∈ Y }.

For each (ω, x) ∈ Y , the following happens under iterations of F . Firstly, Tω(x) =

R(x) ∈ (0, 1
2 ). By Lemma 3.2.2 there is an a > 1 such that DTg(y) ≥ a for all

y ∈ (0, L−1
g

(
1
2

)
] and g ∈ ΣG. Combining this with Lemma 3.2.1 yields by definition

of Y that

κ(ω, x) := inf
{
n ≥ 1 : Tnω (x) >

1

2

}
<∞. (3.13)

Note that ωκ(ω,x) ∈ ΣG. Then, again since (ω, x) ∈ Y , so Tnω (x) 6= 1
2 for all n ∈ N,

l(ω, x) := inf
{
n ≥ 0 : Tκ(ω,x)+n

ω ∈
(1

2
,

3

4

)}
<∞ (3.14)

and Tκ(ω,x)+l(ω,x)
ω (x) = Rl(ω,x) ◦ Tκ(ω,x)

ω (x). Thus

ϕ(ω, x) = κ(ω, x) + l(ω, x) <∞ (3.15)
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for all (ω, x) ∈ Y . We will first derive an estimate for l(ω, x).

For each g ∈ ΣG let Jg = (L−1
g ( 1

2 ), 1
2 ). The intervals Jg are such that if Tnω (x) ∈ Jg

and ωn+1 = g, then Tn+1
ω (x) > 1

2 . For each b ∈ ΣB let Jb = [xb,
1
2 ) with xb as defined

above Lemma 3.2.2. Define

m(ω, x) := inf{n ≥ 1 : Tnω (x) ∈ Jωn+1
} < κ(ω, x). (3.16)

If ωm(ω,x)+1 ∈ ΣG, then T
m(ω,x)+1
ω (x) > 1

2 by the definition of the intervals Jg. If
ωm(ω,x)+1 ∈ ΣB , then T

m(ω,x)+1
ω (x) ∈ ( 1

4 ,
1
2 ) by Lemma 3.2.2(iii). We then see by

Lemma 3.2.2(i) that the number m(ω, x) is such that after this time any application
of a good map will bring the orbit of x in the interval

(
1
2 , 1
)
. We have the following

estimate on l.

Lemma 3.3.1. Let (ω, x) ∈ Y . Write d = ωm(ω,x)+1 · · ·ωκ(ω,x)−1 ∈ Σ∗B and g =

ωκ(ω,x) ∈ ΣG. Then

l(ω, x) ≥ `drg
log
(
(1− 2 · Tm(ω,x)

ω (x))−1
)

log 2
− 2.

Proof. Set y = T
m(ω,x)
ω (x). It follows from Lemma 3.2.1 that

Tκ(ω,x)
ω (x) = Lg ◦ Ld(y) = 1− (1− 2y)`drg .

By definition of R, it follows that l(ω, x) is equal to the minimal l ∈ N0 such that

2l · (1− 2y)`drg >
1

4
. (3.17)

Solving for l gives the lemma.

With this estimate we can now apply Kac’s Lemma to prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Suppose µ is an acs probability measure for (T ,p). We first
show that µ(( 1

2 ,
3
4 )) > 0. Since F 2(Y ) equals ΣN × [0, 1] up to some set of mp × λ-

measure zero and by (3.15) all (ω, x) ∈ Y have a finite first return time to Y under
F , it follows that ΣN × [0, 1] equals

⋃∞
n=0 F

−nY up to some set of mp × λ-measure
zero. Since µ is absolutely continuous with respect to λ, we obtain that

1 = mp × µ
(
ΣN × [0, 1]

)
≤
∞∑
n=0

mp × µ(F−nY ) =

∞∑
n=0

µ
((1

2
,

3

4

))
,

from which we see that we indeed must have µ(( 1
2 ,

3
4 )) > 0. Using the continuity of

the measure, we know there exists an a > 1
2 such that µ((a, 3

4 )) > 0. Note that for
all (ω, x) ∈ ΣN × (a, 3

4 ) ∩ Y we have

Tm(ω,x)
ω (x) ≥ R(a). (3.18)
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Fix a g ∈ ΣG and consider the subsets Ab = [bg]×(a, 3
4 )∩Y , b ∈ Σ∗B , of ΣN×(a, 3

4 )∩Y .
Set pB =

∑
b∈ΣB

pb. Then by (3.15), (3.18) and Lemma 3.3.1 we get∫
Y

ϕdmp × µ ≥
∑
b∈Σ∗B

∫
Ab

l(ω, x) dmp × µ

≥ µ
((
a,

3

4

))
·
∑
b∈Σ∗B

pbg ·
(
`brg ·

log
(
(1− 2 ·R(a))−1

)
log 2

− 2
)

= µ
((
a,

3

4

))
· pg ·

(
rg ·

log
(
(1− 2 ·R(a))−1

)
log 2

∑
b∈Σ∗B

pb`b − 2
∑
b∈Σ∗B

pb

)
= M1 ·

∑
k≥0

θk −M2 ·
1

1− pB
,

with M1 = µ((a, 3
4 )) · pgrg · log((1−2·R(a))−1)

log 2 > 0 and M2 = 2µ((a, 3
4 )) · pg. It now

follows from θ ≥ 1 that ∫
Y

ϕdmp × µ =∞. (3.19)

On the other hand, since µ is a probability measure by assumption, we obtain from
the Ergodic Decomposition Theorem, see e.g. [EW11, Theorem 6.2], that there exists
a probability space (E, E , ν) and a measurable map e 7→ µe with µe an F -invariant
ergodic probability measure for ν-a.e. e ∈ E, such that∫

Y

ϕdmp × µ =

∫
E

(∫
Y

ϕdµe

)
dν(e).

For each e ∈ E for which µe is an F -invariant ergodic probability measure we have∫
Y
ϕdµe = µe(X) = 1 if µe(Y ) > 0 by Kac’s Lemma, i.e. Lemma 1.2.13, and we have∫

Y
ϕdµe = 0 if µe(Y ) = 0. This gives∫

Y

ϕdmp × µ ≤ ν(E) = 1,

which is in contradiction with (3.19).

§3.3.2 Estimates on the first return time
From now on we only consider the case θ < 1. We first define a first return time
partition for F to Y . For any u ∈ Σ, g ∈ ΣG and s,w ∈ Σ∗ write

Pusgw := ([usgw] ∩ Ω̃)× (R|w| ◦ Lg ◦ Ls ◦R)−1
(1

2
,

3

4

)
and define the collection of sets

P =
{
Pusgw : u ∈ Σ, g ∈ ΣG, s,w ∈ Σ∗

}
. (3.20)

See Figure 3.3 for an illustration.
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Figure 3.3: Example of a first return time partition element Pusgw with |s| = 2 and |w| = 3
projected onto [0, 1]. The yellow area indicates the inducing domain Y projected onto [0, 1].

Proposition 3.3.2. The collection P is a first return time partition of F to Y and
for all (ω, x) in a set Pusgw it holds that κ(ω, x) = 2 + |s| and l(ω, x) = |w|, so

ϕ(ω, x) = 2 + |s|+ |w|. (3.21)

Proof. Let (ω, x) ∈ Y . Since κ(ω, x), l(ω, x) <∞ it is clear that we can find suitable
u ∈ Σ, g ∈ ΣG and s,w ∈ Σ∗ so that (ω, x) ∈ Pusgw, so P covers Y . Now fix a set
Pusgw ∈ P. By the definition of the set (R|w| ◦ Lg ◦ Ls ◦ R)−1( 1

2 ,
3
4 ) one has for any

(ω, x) ∈ Pusgw that

Tnω (x) < 1
2 , 1 ≤ n ≤ 1 + |s|,

Tnω (x) > 3
4 , 2 + |s| ≤ n ≤ 1 + |s|+ |w|,

T 2+|s|+|w|
ω (x) ∈ ( 1

2 ,
3
4 ).

Hence, κ(ω, x) = 2 + |s| and l(ω, x) = |w| for each (ω, x) ∈ Pusgw, and (3.21) follows
from (3.15). From this we immediately obtain that the sets in P are disjoint. To see
this, suppose there are two different sets Pusgw, Pũs̃g̃w̃ ∈ P with Pusgw ∩ Pũs̃g̃w̃ 6= ∅
and let (ω, x) ∈ Pusgw ∩ Pũs̃g̃w̃. Then without loss of generality we can assume that
[ũs̃g̃w̃] ⊆ [usgw], where the inclusion is strict. But this would give that

ϕ(ω, x) = 2 + |s|+ |w| < 2 + |s̃|+ |w̃| = ϕ(ω, x),

a contradiction.

For the estimates we give below, we split the word s into two parts s = vb, where
b specifies the string of bad digits that immediately precedes ωκ(ω,x). In other words,
if we write

AG = {v ∈ Σ∗ : v|v| ∈ ΣG}
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for the set of words that end with a good digit, then for any s ∈ Σ∗ there are unique
v ∈ AG and b ∈ Σ∗B such that s = vb. Recall γ1 and γ2 from (3.4) and (3.6),
respectively. In the remainder of this subsection we prove the following result.

Proposition 3.3.3. Suppose θ < 1. Then the following statements hold.

(i)
∫
Y
ϕdmp × λ <∞.

(ii) mp × λ(ϕ > n) = O(nγ−1) for any γ ∈ (γ1, 0).

(iii) mp × λ(ϕ > n) = Ω(nγ2−1).

For the proof of Proposition 3.3.3 we will first prove three lemmas. Write

s =
(

min
{{

DLg

(
L−1
g

(1

2

))
: g ∈ ΣG

}
∪
{
DLb

(
L−1
b

(1

4

))
: b ∈ ΣB

})−1

. (3.22)

The number 1
s will serve below as a lower bound on the derivative of the maps Tj in

some situation. Using Lemma 3.2.2, we see that s ∈ (0, 1).

Lemma 3.3.4. For each n ∈ N we have

mp × λ(ϕ > n) ≤ 1

4
·
∞∑
j=0

sj
∞∑
k=0

∑
b∈ΣkB

pb

2max(n−1−j−k,1)`−1
b r−1

max

,

mp × λ(ϕ > n) ≥ 1

4
·min{pg : g ∈ ΣG} ·

∞∑
k=0

∑
b∈ΣkB

pb

2max(n−1−k,1)`−1
b r−1

min

.

Proof. For P = Puvbgw ∈ P we know from Proposition 3.3.2 that the first return
time is constant on P and equal to ϕP = 2 + |v|+ |b|+ |w|. Let n ∈ N. Then

mp × λ(ϕ > n) =
∑

P :ϕP>n

mp × λ(P ).

To obtain the desired lower bound on mp × λ(ϕ > n) we only consider those P =

Puvbgw ∈ P where v = ε is the empty word. From Lemma 3.2.1 we get

(R|w| ◦ Lg ◦ Lb)−1
(1

2
,

3

4

)
=
(1

2

(
1− 1

2(|w|+1)`−1
b r−1

g

)
,

1

2

(
1− 1

2(|w|+2)`−1
b r−1

g

))
.

(3.23)

Since R has derivative 2, we then have

λ
(

(R|w| ◦ Lg ◦ Lb ◦R)−1
(1

2
,

3

4

))
=

1

4

( 1

2(|w|+1)`−1
b r−1

g

− 1

2(|w|+2)`−1
b r−1

g

)
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and thus

mp × λ(ϕ > n)

≥
∑
u∈Σ

∑
g∈ΣG

∑
b∈Σ∗B

∑
w∈Σ∗:

|w|≥max{n−2−|b|,0}

mp([ubgw])

4

( 1

2(|w|+1)`−1
b r−1

g

− 1

2(|w|+2)`−1
b r−1

g

)

=
∑
g∈ΣG

pg
4

∞∑
k=0

∑
b∈ΣkB

pb

∞∑
l=max{n−2−k,0}

( 1

2(l+1)`−1
b r−1

g

− 1

2(l+2)`−1
b r−1

g

)
(3.24)

≥ 1

4
·min{pg : g ∈ ΣG} ·

∞∑
k=0

∑
b∈ΣkB

pb

2max{n−1−k,1}`−1
b r−1

min

.

For the upper bound, we look for the smallest derivative to bound the length of
(R|w| ◦ Lg ◦ Lb ◦ Lv ◦R)−1( 1

2 ,
3
4 ). If v = ε, then from above we see

λ
(

(R|w| ◦ Lg ◦ Lb ◦R)−1
(1

2
,

3

4

))
=
s|v|

4

( 1

2(|w|+1)`−1
b r−1

g

− 1

2(|w|+2)`−1
b r−1

g

)
.

On the other hand, if v = v1 · · · vj with j ≥ 1, then vj ∈ ΣG. We have

(R|w| ◦ Lg ◦ Lb)−1
(1

2
,

3

4

)
⊆
(

0,
1

2

)
.

As follows from before s from (3.22) represents the smallest possible shrinkage factor
when applying L−1

vj . If j ≥ 2, then by Lemma 3.2.2(i) we have L−1
vj−1

(L−1
vj ( 1

2 )) ≤
L−1
vj−1

( 1
4 ). Hence, s−|v| is a lower bound for the derivative of Lv for any v ∈ AG on

(R|w| ◦ Lg ◦ Lb)−1( 1
2 ,

3
4 ). It then follows from (3.23) that

λ
(

(R|w| ◦ Lg ◦ Lb ◦ Lv ◦R)−1
(1

2
,

3

4

))
≤ s|v|

4

( 1

2(|w|+1)`−1
b r−1

g

− 1

2(|w|+2)`−1
b r−1

g

)
.

Writing f(n, j, k) = max(n− 2− j − k, 0), we thus obtain that

mp × λ(ϕ > n)

≤
∑
g∈ΣG

∑
v∈AG

∑
b∈Σ∗B

∑
w∈Σ∗:

|w|≥f(n,|v|,|b|)

pvbgws
|v|

4

( 1

2(|w|+1)`−1
b r−1

g

− 1

2(|w|+2)`−1
b r−1

g

)

≤ 1

4

∞∑
j=0

sj
∞∑
k=0

∑
g∈ΣG

∑
b∈ΣkB

pb

∞∑
l=f(n,j,k)

( 1

2(l+1)`−1
b r−1

g

− 1

2(l+2)`−1
b r−1

g

)
(3.25)

≤ 1

4

∞∑
j=0

sj
∞∑
k=0

∑
b∈ΣkB

pb

2(f(n,j,k)+1)`−1
b r−1

max

.

This gives the result.

The next lemma gives estimates for the last part of the expression on the right-
hand side of the first inequality from Lemma 3.3.4 for an initial range of values of
j. The number of values j for which we obtain an upper bound for the double sum
grows logarithmically with n.
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Lemma 3.3.5. Let γ ∈ (γ1, 0), and for each n ∈ N define j(n) = b (γ−1) logn
log s c. Then

there exist C1 > 0 and n1 ∈ N such that for all integers n ≥ n1 and j = 0, 1, . . . , j(n)

we have
∞∑
k=0

∑
b∈ΣkB

pb

2max(n−1−j−k,1)`−1
b r−1

max

≤ C1 · nγ−1. (3.26)

Proof. We will split the sum over k in (3.26) into three pieces: 0 ≤ k ≤ k1(n),
k1(n) + 1 ≤ k ≤ k2(n) and k > k2(n). To define k1(n), let a = γ log `max

log θ ∈ (0, 1).

Then for each n ∈ N set k1(n) =
⌊ log(na)

log `max

⌋
= bγ logn

log θ c. The values a and k1(n) are

such that θk1(n)+1 ≤ nγ and `
k1(n)
max ≤ na. Since j(n) + k1(n) = O(log n), we can

find an N0 ∈ N and a constant K1 > 0 such that for all integers n ≥ N0 we have
n − 1 − j(n) − k1(n) > 1 and (n − 1 − j(n) − k1(n)) · r−1

max ≥ K1 · n. Then, for all
n ≥ N0, 0 ≤ j ≤ j(n) and 0 ≤ k ≤ k1(n),

max(n− 1− j − k, 1) ≥ max(n− 1− j(n)− k1(n), 1) = n− 1− j(n)− k1(n)

and `b ≤ `
k1(n)
max ≤ na for all b ∈ ΣkB . Setting pB =

∑
b∈ΣB

pb as before, this together
gives

k1(n)∑
k=0

∑
b∈ΣkB

pb

2max(n−1−j−k,1)`−1
b r−1

max

≤
∞∑
k=0

pkB
2(n−1−j(n)−k1(n))n−ar−1

max

≤ 2−K1·n1−a

1− pB
.

(3.27)

Secondly, for each n ∈ N set k2(n) = d 1
2 (n− 1− j(n))e and take an integer N1 ≥ N0

and constant K2 > 0 such that for all integers n ≥ N1 we have k2(n) ≥ k1(n) + 1 and
1
2 (n − 1 − j(n)) − 1 ≥ K2 · n. Noting that for each d > 1 the function f on R given
by f(x) = x

dx has maximal value 1
e log d <

1
log d , we obtain for all integers n ≥ N1,

k2(n)∑
k=k1(n)+1

∑
b∈ΣkB

pb

2max(n−1−j−k,1)`−1
b r−1

max

=

k2(n)∑
k=k1(n)+1

∑
b∈ΣkB

pb`b
`−1
b

(2(n−1−j−k)r−1
max)`

−1
b

≤
k2(n)∑

k=k1(n)+1

θk
rmax

(n− 1− j − k) log 2

≤ θk1(n)+1

1− θ
· rmax

(n− 1− j(n)− k2(n)) log 2

≤ rmax

(1− θ)K2 log 2
· nγ−1.

(3.28)

Finally, for each n ≥ N1 we have
∞∑

k=k2(n)+1

∑
b∈ΣkB

pb

2max(n−1−j−k,1)`−1
b r−1

max

≤
∞∑

k=k2(n)+1

pkB =
p
k2(n)+1
B

1− pB
≤

pK2·n
B

1− pB
. (3.29)
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Combining (3.27), (3.28) and (3.29) yields

∞∑
k=0

∑
b∈ΣkB

pb

2max(n−1−j−k,1)`−1
b r−1

max

≤
2−K1·n1−a

+ pK2·n
B

1− pB
+

rmax

(1− θ)K2 log 2
nγ−1.

Since the first term on the right-hand side decreases superpolynomially fast in n, this
yields the existence of a constant C1 > 0 and integer n1 ≥ N1 for which the statement
of the lemma holds.

Lemma 3.3.6. There exist C2 > 0 and n2 ∈ N such that for each integer n ≥ N2 we
have

∞∑
k=0

∑
b∈ΣkB

pb

2max(n−1−k,1)`−1
b r−1

min

≥ C2 · nγ2−1.

Proof. Let b ∈ ΣB be such that γ2 = 1 + log πb
log `b

with πb as in (3.5). For each k ∈ N let

Ak = {b = b1 · · · bk ∈ ΣkB : `bj ≥ `b for each j = 1, . . . , k }.

Then
∑

b∈Ak pb = πkb and for each b ∈ Ak we have `b ≥ `kb . This gives

∞∑
k=0

∑
b∈ΣkB

pb

2max(n−1−k,1)`−1
b r−1

min

≥
∞∑
k=0

∑
b∈Ak

pb

2max(n−1−k,1)`−1
b r−1

min

≥
∞∑
k=0

πkb

2max(n−1−k,1)`−kb r−1
min

.

(3.30)

For each n ∈ N we define k3(n) = d (γ2−1) logn
log πb

e = d logn
log `b
e. Then π

k3(n)−1
b ≥ nγ2−1

and `−k3(n)
b ≤ n−1. We take N2 ∈ N and K3 > 0 such that for each integer n ≥ N2

we have n− 1− k3(n) ≥ 1 and (n− 1− k3(n)) · n−1 · r−1
min ≤ K3. Then we get

∞∑
k=0

πkb

2max(n−1−k,1)`−kb r−1
min

≥ π
k3(n)
b

1

2(n−1−k3(n))`
−k3(n)

b r−1
min

≥ πb · nγ2−1 1

2(n−1−k3(n))·n−1·r−1
min

≥ πb · 2−K3 · nγ2−1

(3.31)

for each n ≥ N2. Combining (3.30) and (3.31) now yields the result with C2 =

πb · 2−K3 .

Proof of Proposition 3.3.3. First of all, note that∫
Y

ϕdmp × λ =

∞∑
n=2

n ·mp × λ(ϕ = n) ≤ 2 ·
∞∑
n=1

mp × λ(ϕ > n).
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Since for each γ < 0 we have
∑∞
n=1 n

γ−1 < ∞, (i) follows from (ii). For (ii), let
γ ∈ (γ1, 0). It follows from Lemma 3.3.4 and Lemma 3.3.5 that for each integer
n ≥ n1 we have

mp × λ(ϕ > n) ≤ C1

4
· nγ−1 ·

j(n)∑
j=0

sj +
1

4

∞∑
j=j(n)+1

sj
∞∑
k=0

pkB

≤ C1

4(1− s)
· nγ−1 +

1

4(1− s)(1− pB)
· sj(n)+1.

By the definition of j(n), we have sj(n)+1 ≤ nγ−1, which gives (ii).
Finally, it follows from Lemma 3.3.4 and Lemma 3.3.6 that for each integer n ≥ n2

we have
mp × λ(ϕ > n) ≥ min{pg : g ∈ ΣG} · C2

4
· nγ2−1.

§3.3.3 Estimates on the induced map

Recall that Fϕ(ω, x) = (τϕ(ω,x)ω, T
ϕ(ω,x)
ω (x)). The second part of the next lemma

shows in particular that Fϕ projected on the second coordinate is expanding.

Lemma 3.3.7. Let (ω, x) ∈ Y .

(i) For each j = 1, . . . , ϕ(ω, x)− 1 we have DTϕ(ω,x)−j
τjω (T jω(x)) ≥ 1

2 .

(ii) DTϕ(ω,x)
ω (x) ≥ 2.

Proof. Let (ω, x) ∈ Y . Recall the definitions of κ = κ(ω, x) from (3.13), l = l(ω, x)

from (3.14) and m = m(ω, x) from (3.16). Write3

u =ω2 · · ·ωm ∈ Σ∗,

d =ωm+1 · · ·ωκ−1 ∈ Σ∗B ,

g =ωκ ∈ ΣG.

Then
Tϕ(ω,x)
ω (x) = Rl ◦ Lg ◦ Ld ◦ Lu ◦R(x).

We have DLb(y) ≥ 1 for all y ∈ [0, xb) and all b ∈ ΣB . For v ∈ ΣG with rv > 1

we obtained in Lemma 3.2.2(ii) that xv > L−1
v ( 1

2 ) and hence DLv(y) ≥ 1 for all
v ∈ ΣG and y ∈ [0, L−1

v ( 1
2 )). It follows from the definition of m that, for each

j ∈ {1, . . . ,m− 1},

DLuj ···um−1
(Lu1···uj−1

◦R(x)) =

m−1∏
i=j

DLui(Lu1···ui−1
◦R(x)) ≥ 1. (3.32)

3We use different letters here than for the partition elements Puvbgw from P, since the subdivision
here is different (and (ω, x)-dependent).
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Let q, t ∈ Σ∗B be any two words such that d = qt. Using Lemma 3.2.1 we find that
for each y ∈ [0, 1

2 ),

D(Lg ◦ Lt)(y) = 2`trg(1− 2y)`trg−1. (3.33)

Furthermore, from (3.17) we see that

2l ≥ 1

4
(1− 2Lu ◦R(x))−`drg (3.34)

and applying Lemma 3.2.1 to Lq gives

(1− 2Lq ◦ Lu ◦R(x))`trg−1 = (1− 2Lu ◦R(x))`drg−`q . (3.35)

Combining (3.33), (3.34) and (3.35) yields

D(Rl ◦ Lg ◦ Lt)(Lq ◦ Lu ◦R(x))

= 2l · 2`trg(1− 2Lq ◦ Lu ◦R(x))`trg−1

≥ 1

4
(1− 2Lu ◦R(x))−`drg · 2`trg(1− 2Lu ◦R(x))`drg−`q

=
1

2
`trg(1− 2Lu ◦R(x))−`q ,

(3.36)

which we can lower bound by 1
2 . To prove (i), for any j ∈ {1, . . . ,m−1} taking q = ε

(which means `q = 1) and t = d we obtain using (3.32) and (3.36) that

DT
ϕ(ω,x)−j
τjω (T jωx) = D(Rl ◦ Lg ◦ Ld)(Lu ◦R(x)) ·DLuj ···um−1

(Lu1···uj−1
◦R(x)) ≥ 1

2
.

For j ∈ {m, . . . , κ − 1} we take q = ωm+1 · · ·ωj and t = ωj+1 · · ·ωκ−1 (so q = ε in
case j = m and t = ε in case j = κ− 1) and get

DT
ϕ(ω,x)−j
τjω (T jω(x)) = D(Rl ◦ Lg ◦ Lt)(Lq ◦ Lu ◦R(x)) ≥ 1

2

by (3.36). Finally, if j ∈ {κ, . . . , ϕ(ω, x)− 1}, then

DT
ϕ(ω,x)−j
τjω (T jω(x)) = 2κ+l−j ≥ 1

2
.

This proves (i). For (ii), we write

DTϕ(ω,x)
ω (x) = D(Rl ◦ Lg ◦ Ld)(Lu ◦R(x)) ·DLu(R(x)) ·DR(x).

We have DR(x) = 2 and by (3.32) with j = 1 we get DLu(R(x)) ≥ 1. What is left is
to estimate the first factor. From (3.36) with q = ε and t = d we see that

D(Rl ◦ Lg ◦ Ld)(Lu ◦R(x)) ≥ 1

2
`drg(1− 2Lu ◦R(x))−1.

Note that by the definition of m we have Lu ◦R(x) ∈ (L−1
g ( 1

2 ), 1
2 ) if m = κ− 1, so if

d = ε, and Lu ◦R(x) ∈ [xd1
, 1

2 ) if m < κ− 1. In case m = κ− 1 we obtain that

`drg(1− 2Lu ◦R(x))−1 ≥ rg
(

1− 2L−1
g

(1

2

))−1

= rg · 21/rg ≥ 2,
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where we used the expression for L−1
g ( 1

2 ) from (3.8) and the fact that x · 21/x ≥ 2 for
all x ≥ 1. In case m < κ− 1, we have

`drg(1− 2Lu ◦R(x))−1 ≥ `d1
(1− 2xd1

)−1 = `
1+(`d1

−1)−1

d1
≥ 2,

where we used (3.9) and the fact that x1+(x−1)−1

> 2 for all x > 1. Hence, in all cases

DTϕ(ω,x)
ω (x) ≥ 1

2
· 2 · 1 · 2 = 2.

Recall the first return time partition P from (3.20). For P = Pusgw ∈ P set

π2(P ) := (R|w| ◦ Lg ◦ Ls ◦R)−1
(1

2
,

3

4

)
and write SP for the restriction of the map Tϕ(ω,x)

ω to π2(P ), so

SP := Tϕ(ω,x)
ω |π2(P ) = R|w| ◦ Lg ◦ Ls ◦R|π2(P ).

We give two lemmas on the maps SP , that will be useful when verifying (t6) for the
Young tower in the next section.

Lemma 3.3.8. There exists a constant C3 > 0 such that for each P ∈ P and all
(ω, x), (ω′, y) ∈ P we have∣∣∣ Jmp×λF

ϕ(ω, x)

Jmp×λF
ϕ(ω′, y)

− 1
∣∣∣ ≤ C3 ·

∣∣SP (x)− SP (y)
∣∣.

Proof. For each P ∈ P and all (ω, x), (ω′, y) ∈ P we have ϕ(ω, x) = ϕ(ω′, y) = ϕP
and ωj = ω′j for all 1 ≤ j ≤ ϕP . Hence, for each measurable set A ⊆ P we have

mp × λ(Fϕ(A)) =

∫
A

( ϕ(ω,x)∏
j=1

p−1
ωj

)
DTϕ(ω,x)

ω (x) dmp × λ(ω, x).

By Proposition 1.2.19 we obtain

Jmp×λF
ϕ(ω, x) =

( ϕ(ω,x)∏
j=1

p−1
ωj

)
DTϕ(ω,x)

ω (x),

which, for each P ∈ P and all (ω, x), (ω′, y) ∈ P , gives

∣∣∣ Jmp×λF
ϕ(ω, x)

Jmp×λF
ϕ(ω′, y)

− 1
∣∣∣ =

∣∣∣DTϕ(ω,x)
ω (x)

DT
ϕ(ω′,y)
ω′ (y)

− 1
∣∣∣ =

∣∣∣DSP (x)

DSP (y)
− 1
∣∣∣.

Let c > 0. As compositions of good and bad maps each SP has non-positive Schwar-
zian derivative and by Lemma 3.3.7(ii) each SP satisfies DSP ≥ 2. For this reason
for each P ∈ P we can extend the domain π2(P ) of SP on both sides to an interval
IP ⊇ π2(P ) such that there exists an extension S̃P : IP → R of SP , i.e. S̃P |π2(P ) =
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SP |π2(P ), that has non-positive Schwarzian derivative and for which both components
of S̃P (IP )\( 1

2 ,
3
4 ) have length at least c

4 . Applying for each P ∈ P the Koebe Principle
(1.15) with I = IP and J = π2(P ) then gives a constant C3 > 0 that depends only
on c such that for each P ∈ P and each x, y ∈ π2(P ) we have∣∣∣DSP (x)

DSP (y)
− 1
∣∣∣ ≤ C3 · |SP (x)− SP (y)|.

This gives the lemma.

Recall the definition of the separation time from (3.10). We have the following
lemma.

Lemma 3.3.9. Let (ω, x), (ω′, y) ∈ Y . Then

|x− y| ≤ 2−s((ω,x),(ω′,y)). (3.37)

Furthermore, if (ω, x), (ω′, y) ∈ P for some P ∈ P, then∣∣SP (x)− SP (y)
∣∣ ≤ 2−s(F

ϕ(ω,x),Fϕ(ω′,y)). (3.38)

Proof. Write n = s((ω, x), (ω′, y)) and, for each k ∈ {0, 1, . . . , n− 1}, let P (k) ∈ P be
such that (Fϕ)k(ω, x), (Fϕ)k(ω′, y) ∈ P (k). Then for each k ∈ {0, 1, . . . , n − 1} the
points (SP (k−1) ◦ · · · ◦SP (0))(x) and (SP (k−1) ◦ · · · ◦SP (0))(y) lie in the domain π2(P (k))

of SP (k) , so it follows from Lemma 3.3.7(ii) together with the Mean Value Theorem
that

|SP (k) ◦ · · · ◦ SP (0)(x)− SP (k) ◦ · · · ◦ SP (0)(y)|
|SP (k−1) ◦ · · · ◦ SP (0)(x)− SP (k−1) ◦ · · · ◦ SP (0)(y)|

≥ inf DSP (k) ≥ 2.

We conclude that

|x− y| ≤ 2−1|SP (0)(x)− SP (0)(y)|
≤ · · · ≤ 2−n|SP (n−1) ◦ · · · ◦ SP (0)(x)− SP (n−1) ◦ · · · ◦ SP (0)(y)| ≤ 2−n,

which gives the first part of the lemma. For the second part, note that if (ω, x), (ω′, y) ∈
P for some P ∈ P, then (3.38) follows by applying (3.37) to the points Fϕ(ω, x) =

(τϕP ω, SP (x)) and Fϕ(ω′, y) = (τϕPω′, SP (y)).

§3.4 A Young tower for the random map

§3.4.1 The acs probability measure
We are now in the position to construct a Young tower for the skew product F
according to the setup from [Y99, Section 1.1] that we outlined in Subsection 3.2.2.

As the base for the Young tower we take the set Y . The Young tower ∆, the lth

levels of the tower ∆l and the tower map G : ∆→ ∆ are defined in Subsection 3.2.2,
as well as the reference measure m and the partition η on ∆. Following the general
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setup in [Y99], inducing the map G on ∆0 = Y × {0} yields a transformation Gϕ on
∆0 given by Gϕ(z, 0) = Gϕ(z)(z, 0). Recall that we identify Gϕ with Fϕ by identifying
∆0 with Y and using the correspondence Gϕ(z, 0) = (Fϕ(z), 0). We check that the
conditions (t1)–(t6) from Section 3.2.2 hold for this construction.

Proposition 3.4.1. The conditions (t1)–(t6) hold for the map G on the Young tower
∆ defined above.

Proof. From the first return time partition P it is clear that (t1), (t2), (t3) and (t5)
hold.

For (t4) it is enough to show that the collection∨
n≥0

G−nη = {E0 ∩G−1E1 ∩ · · · ∩G−nEn : Ei ∈ η, 1 ≤ i ≤ n, n ≥ 0}

separates points. To show this, let (z1, l1), (z2, l2) ∈ ∆ be two points. If z1 = z2 and
l1 6= l2 and P ∈ P is such that z1 ∈ P , then ∆l1,P ,∆l2,P ∈ η are sets that separate
(z1, l1) and (z2, l2). Assume that z1 6= z2. Lemma 3.3.7(ii) implies that the map Fϕ is
expanding on Y , so there exist an N ≥ 0 and two disjoint sets A,E ∈

∨N
n=0(Fϕ)−nP

such that z1 ∈ A and z2 ∈ E. On these sets the first N first return times to Y

are constant, meaning that if K > 0 is such that GK(z1, 0) = ((Fϕ)N (z1), 0), then
A × {l1} ∈

∨K+l1
n=0 G−nη and if L > 0 such that GL(z2, 0) = ((Fϕ)N (z2), 0), then

E × {l2} ∈
∨L+l2
n=0 G−nη. Note that (z1, l1) ∈ A × {l1} and (z2, l2) ∈ E × {l2} and

(A× {l1}) ∩ (E × {l2}) = ∅. Hence, (t4) holds.
Finally, from Lemma 3.3.8 and (3.38) we obtain that∣∣∣Jmp×λF

ϕ(z1)

Jmp×λF
ϕ(z2)

− 1
∣∣∣ ≤ C3 · 2−s(F

ϕ(z1),Fϕ(z2)) (3.39)

for each P ∈ P and all z1, z2 ∈ P . This gives (t6) with β = 1
2 and the proposition

follows.

Now Proposition 3.3.3(i) and Theorem 3.2.3 imply the existence of a probability
measure ν on (∆,B) that is G-invariant, exact and absolutely continuous with respect
to m with a density that is bounded (because it is in Cβ) and bounded away from
zero and that satisfies (3.12). We use this to construct the invariant measure for F
that is promised in Theorem 3.1.2. Define

π : ∆→ ΣN × [0, 1], (z, l) 7→ F l(z).

Then

π(G(z, l)) = π(z, l + 1) = F l+1(z) = F (π(z, l)), l < ϕ(z)− 1,

π(G(z, l)) = π(Fϕ(z), 0) = Fϕ(z) = F (π(z, l)), l = ϕ(z)− 1.

So π ◦G = F ◦ π. Let ρ = ν ◦ π−1 be the pushforward measure of ν under π.

Lemma 3.4.2. The probability measure ρ satisfies the following properties.
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(i) F is measure preserving and mixing with respect to ρ.

(ii) ρ is absolutely continuous with respect to mp × λ.

(iii) We have
ρ(A ∩ Y ) = ν((A ∩ Y )× {0}), A ∈ F .

Proof. Part (i) immediately follows from the properties of the measure ν and the fact
that π ◦G = F ◦ π. For (ii), let A ∈ F be such that mp × λ(A) = 0. Using that F is
non-singular with respect to mp × λ, we obtain that

m(π−1(A)) = m
(

∆ ∩
(⋃
l≥0

F−l(A)× {l}
))
≤
∑
l≥0

mp × λ(F−l(A)) = 0.

Since ν is absolutely continuous with respect to m, it follows that ρ(A) = ν(π−1A) =

0. For (iii) let A ∈ F . We have

π−1(A ∩ Y ) =
⋃
P∈P

ϕP−1⋃
l=0

(F−l(A ∩ Y ) ∩ P )× {l}.

By definition of ϕP , we have F l(z) /∈ Y for each z ∈ P and each l ∈ {1, . . . , ϕP − 1}.
Therefore

π−1(A ∩ Y ) =
⋃
P∈P

(A ∩ P )× {0} = (A ∩ Y )× {0}.

Combining Lemma 3.4.2 with Lemma 1.4.1 yields that there exists a probability
measure µ that is absolutely continuous with respect to λ and such that ρ = mp× µ.
In other words, µ is an acs measure for (T ,p). We will now prove Theorem 3.1.2,
which shows that µ is in fact the only acs measure for (T ,p).

Proof of Theorem 3.1.2. It follows from Lemma 3.4.2(i) that F is mixing with respect
to mp × µ. Hence, to obtain that µ is the only acs probability measure for (T ,p), it
suffices according to Theorem 1.2.6 to show that dµ

dλ > 0 holds λ-a.e. Theorem 3.2.3
asserts that there is a constant C4 ≥ 1 such that

1

C4
≤ dν

dm
≤ C4. (3.40)

Let B ⊆ ( 1
2 ,

3
4 ) be a Borel set. Lemma 3.4.2(iii) and (3.40) imply that

µ(B) = ν(((Ω̃×B) ∩ Y )× {0}) ≥ C−1
4 ·m(((Ω̃×B) ∩ Y )× {0}) = C−1

4 · λ(B).

Since B was arbitrary, we have dµ
dλ (x) ≥ C−1

4 for λ-a.e. x ∈ ( 1
2 ,

3
4 ). Recall that the

density dµ
dλ is a fixed point of the Perron-Frobenius operator PT ,p being of the form

as in (1.20). Fix some g ∈ ΣG. The map T 2
g |( 1

2 ,
3
4 ) : ( 1

2 ,
3
4 ) → (0, 1) is a measurable

bijection with measurable inverse. For each x ∈ (0, 1) let yx be the unique element
in ( 1

2 ,
3
4 ) that satisfies x = T 2

g (yx). Furthermore, note that supy∈( 1
2 ,

3
4 )DT

2
g (y) ≤

2DTg(0). We conclude that for λ-a.e. x ∈ (0, 1)

dµ

dλ
(x) = P2

T ,p
dµ

dλ
(x) ≥ p2

g

dµ
dλ (yx)

DT 2
g (yx)

≥
p2
gC
−1
4

2DTg(0)
> 0.
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This gives that dµ
dλ is bounded away from zero and therefore that µ is the unique acs

measure.

Remark 3.4.3. Besides Theorems 3.1.1 and 3.1.2 it can also be shown that all the
results from Theorem 2.1.2 carry over. Namely, by following the same steps as in
Section 2.2 it can be shown that (T ,p) admits, independent of the value of θ, a
unique (up to scalar multiplication) acs measure that is σ-finite and ergodic and for
which the density is bounded away from zero, is locally Lipschitz on (0, 1

2 ) and [ 1
2 , 1)

and is not in Lq for any q > 1. This measure is infinite if θ ≥ 1 and coincides with µ if
θ < 1. Similar as in Chapter 2, if θ ≥ 1, it follows from applying Aaronson’s Ergodic
Theorem [A97, Theorem 2.4.2] to this infinite measure that no physical measure (see
footnote 1 on page 39) for F exists.

§3.4.2 Decay of correlations
Recall that for α ∈ (0, 1) we have set Hα for the set of α-Hölder continuous functions
on ΣN× [0, 1] with metric d as in (3.3). Also recall the definition of the function spaces
Cδ on ∆ from (3.11).

Lemma 3.4.4. Let α ∈ (0, 1) and h ∈ Hα. Then h ◦ π ∈ C1/2α .

Proof. Since h ∈ Hα, there exists a constant C5 > 0 such that

|h(z1)− h(z2)| ≤ C5 · d(z1, z2)α for all z1, z2 ∈ ΣN × [0, 1]. (3.41)

From this it is easy to see that ‖h‖∞ < ∞. Let υ1 = (z1, l1), υ2 = (z2, l2) ∈ ∆. If
l1 6= l2 or if z1 and z2 lie in different elements of P, then s(υ1, υ2) = 0 and

|h ◦ π(υ1)− h ◦ π(υ2)| = |h(F l1(z1))− h(F l2(z2))| ≤ 2‖h‖∞ = 2‖h‖∞ · 2−αs(υ1,υ2).
(3.42)

Hence, to prove that h ◦ π ∈ C1/2α , it remains to consider the case that z1, z2 ∈ P for
some P ∈ P and l1 = l2 = l ∈ {0, . . . , ϕP − 1}. Write z1 = (ω, x) and z2 = (ω′, y).
Note that ωj = ω′j for each j ∈ {1, 2, . . . , ϕP }. Hence,

2−min{i∈N :ωl+i 6=ω′l+i} ≤ 2−min{i∈N :ωϕP−1+i 6=ω′ϕP−1+i} ≤ 2−s(z1,z2).

Furthermore, it follows from the Mean Value Theorem together with Lemma 3.3.7(i)
that

|TϕPω (x)− TϕPω (y)|
|T lω(x)− T lω(y)|

=
|TϕP−l
τ lω

(T lω(x))− TϕP−l
τ lω

(T lω(y))|
|T lω(x)− T lω(y)|

≥ 1

2
.

Combining this with (3.38) yields that

|T lω(x)− T lω(y)| ≤ 2 · 2−s(F
ϕ(z1),Fϕ(z2)) = 4 · 2−s(z1,z2)

and hence by (3.41),

|h(F l(z1))− h(F l(z2))| ≤ C5(2−s(z1,z2) + 4 · 2−s(z1,z2))α = 5αC5 · 2−αs(z1,z2).

Together with (3.42) this gives the result.
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We now have all the ingredients to prove Theorem 3.1.3.

Proof of Theorem 3.1.3. To prove the theorem, we would like to use Theorem 3.2.3(iv),
which requires us to bound m(ϕ̂ > n), where

ϕ̂ : ∆→ N0, υ 7→ inf{n ≥ 0 : Gn(υ) ∈ ∆0}.

Since

{ϕ̂ = 0} = ∆0 =
⋃

P∈P:ϕP>0

∆0,P ,

{ϕ̂ = n} =
⋃

P∈P:ϕP>n

∆ϕP−n,P , n ≥ 1,

we have for each n ≥ 0 that

m(ϕ̂ = n) =
∑

P∈P:ϕP>n

mp × λ(P ) = mp × λ(ϕ > n).

It follows from Proposition 3.3.3(ii) that for each γ ∈ (γ1, 0) there is an M > 0 and
an N ≥ 1 such that for each n ≥ N ,

mp × λ(ϕ > n) ≤M · nγ−1.

Thus, for all n ≥ N ,

m(ϕ̂ > n) =
∑
k>n

m(ϕ̂ = k) ≤M
∑
k≥n

kγ−1 ≤M · nγ−1 +M

∫ ∞
n

xγ−1dx. (3.43)

So, m(ϕ̂ > n) = O(nγ). Combining Proposition 3.3.3(i), Proposition 3.4.1 and The-
orem 3.2.3(iv) now gives that for each γ ∈ (γ1, 0), f̂ ∈ L∞(∆, ν), δ ∈ (0, 1) and
ĥ ∈ Cδ, ∣∣∣ ∫

∆

f̂ ◦Gn · ĥ dν −
∫

∆

f̂ dν

∫
∆

ĥ dν
∣∣∣ = O(nγ). (3.44)

Now, let γ ∈ (γ1, 0), f ∈ L∞(ΣN × [0, 1],mp × µ) and h ∈ H. Using that mp × µ =

ν ◦ π−1 and π ◦G = F ◦ π, it then follows that

|Corn(f, h)| =
∣∣∣ ∫

∆

(f ◦ π) ◦Gn · (h ◦ π) dν −
∫

∆

f ◦ π dν
∫

∆

h ◦ π dν
∣∣∣.

Since h ∈ H, it holds that h ∈ Hα for some α ∈ (0, 1), so h ◦ π ∈ C1/2α by Lemma
3.4.4. Since also f ◦ π ∈ L∞(∆, ν), we obtain the result from (3.44) with f̂ = f ◦ π
and ĥ = h ◦ π.

In order to prove Theorem 3.1.4, we need the following lemma.

Lemma 3.4.5. There exists C6 > 0 such that for each P ∈ P and z1, z2 ∈ P ,∣∣∣ log
Jmp×µF

ϕ(z1)

Jmp×µF
ϕ(z2)

∣∣∣ ≤ C6 · 2−s(z1,z2).
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Proof. From the definition of the Jacobian we see that JmGϕ|∆0
= Jmp×λF

ϕ with
the identification of ∆0 and Y . Lemma 3.4.2(iii) and Lemma 1.2.20(a) give us that
for each P ∈ P and each measurable set A ⊆ P ,

mp × µ(Fϕ(A)) = ν(Gϕ(A× {0}))

=

∫
A×{0}

( dν
dm
◦Gϕ

)
JmG

ϕ dm

=

∫
A

dν

dm
(Fϕ(z), 0) · Jmp×λF

ϕ(z) · dm
dν

(z, 0) dmp × µ(z).

This gives

Jmp×µF
ϕ(z) =

dν

dm
(Fϕ(z), 0) · Jmp×λF

ϕ(z) · dm
dν

(z, 0), z ∈ Y,

and thus, for each z1, z2 ∈ Y ,∣∣∣ log
Jmp×µF

ϕ(z1)

Jmp×µF
ϕ(z2)

∣∣∣ ≤ ∣∣∣ log
dν
dm (Fϕ(z1), 0)
dν
dm (Fϕ(z2), 0)

∣∣∣+
∣∣∣ log

Jmp×λF
ϕ(z1)

Jmp×λF
ϕ(z2)

∣∣∣+
∣∣∣ log

dν
dm (z2, 0)
dν
dm (z1, 0)

∣∣∣.
Combining Proposition 3.3.3(i), Proposition 3.4.1 and Theorem 3.2.3(ii) gives the
existence of a constant C+ > 0 such that, for each ∆l,P ∈ η and υ1, υ2 ∈ ∆l,P ,∣∣∣ dνdm (υ1)

dν
dm (υ2)

− 1
∣∣∣ ≤ C+ · 2−s(υ1,υ2). (3.45)

Using that | log x| ≤ max{|x− 1|, |x−1 − 1|} for all x > 0, we obtain from (3.39) and
(3.45) that∣∣∣ log

Jmp×µF
ϕ(z1)

Jmp×µF
ϕ(z2)

∣∣∣ ≤ C+ · 2−s(F
ϕ(z1),Fϕ(z2)) +C3 · 2−s(F

ϕ(z1),Fϕ(z2)) +C+ · 2−s(z1,z2)

for all z1, z2 ∈ P , P ∈ P. The lemma thus holds with C6 = 3C+ + 2C3.

Proof of Theorem 3.1.4. Let f ∈ L∞(ΣN × [0, 1],mp × µ) and h ∈ H be such that
both f and h are identically zero on ΣN ×

(
[0, 1

2 ] ∪ [ 3
4 , 1]

)
and such that

∫
f dmp ×

µ ·
∫
h dmp × µ > 0. Let γ ∈ (γ1,min{γ2 + 1,−1}) if γ1 < −1 and γ ∈ (γ1,

γ2

2 ) if
−1 ≤ γ1 < 0. This is possible by assumption. Our strategy is to apply Theorem 3.2.4
with Y as before. For this, we verify (g1), (g2) and (g3).4

For (g3), h ∈ H implies that h ∈ Hα for some α ∈ (0, 1) and thus h ◦π ∈ C1/2α by
Lemma 3.4.4. In particular this yields (g3) with δ = 2−α. For (g2), Lemma 3.4.2(iii)
and (3.40) give

mp × µ(ϕ > n) =

∫
{ϕ>n}×{0}

dν

dm
dm ≤ C4 ·mp × λ(ϕ > n).

4More precisely, we apply Theorem 3.2.4 to versions of f and h that are also zero on
(
ΣN ×

( 1
2
, 3
4

)
)
\Y .
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Together with Proposition 3.3.3(ii) this implies that

mp × µ(ϕ > n) = O(nγ−1).

Finally, (g1) with δ = 2−α follows from Lemma 3.4.5 by setting C∗ = C6 and noting
that 1

2α >
1
2 . Hence, we satisfy all the conditions of Theorem 3.2.4 with δ = 2−α and

ζ = 1− γ. Note that

K1−γ(n) =


nγ−1, if 1− γ > 2,
logn
n2 , if 1− γ = 2,

n2γ , if 1− γ ∈ (1, 2).

If γ1 < −1, then 1 − γ ∈ (max{−γ2, 2}, 1 − γ1) ⊆ (2,∞) and if −1 ≤ γ1 < 0, then
1− γ ∈ (1− γ2

2 , 1− γ1) ⊆ (1, 2). We can thus conclude from Theorem 3.2.4 that

∣∣∣Corn(f, h)−
( ∞∑
k>n

mp × µ(ϕ > k)
)∫

f dmp × µ
∫
h dmp × µ

∣∣∣ = O(nξ),

where ξ = γ − 1 if γ1 < −1 and ξ = 2γ if −1 ≤ γ1 < 0. As above it follows from
Proposition 3.3.3(iii) combined with Lemma 3.4.2(iii) and (3.40) that mp × µ(ϕ >

n) = Ω(nγ2−1) and thus

∞∑
k>n

mp × µ(ϕ > k) = Ω(nγ2).

The result now follows from observing that γ2 > ξ.

We provide some examples of combinations of parameters for which the conditions
of Theorem 3.1.4 hold. As before set `min = min{`b : b ∈ ΣB} and pB =

∑
j∈ΣB

pj
and set πB =

∑
j∈ΣB : `j=`max

pj . Examples that satisfy the conditions of Theorem
3.1.4 include the following.

– If ΣB consists of one element, then γ1 = γ2.

– If p−1/3
B < `min ≤ `max < p

−1/2
B , or equivalently `min > `

2/3
max and pB ∈

(`−3
min, `

−2
max), then θ ≤ pB · `max < `−1

max, so θ < 1 and γ1 < −1, and

γ2 ≥ 1 +
log pB

log `min
> −2 ≥ γ1 − 1.

– If πB > p
4/3
B (or equivalently π−1/2

B < p−2
B πB) and `max ∈ [π

−1/2
B , p−2

B πB), then
θ ≤ pB · `max ≤ p−1

B πB < 1 and θ ≥ πB · `max ≥ `−1
max, i.e. γ1 ≥ −1, and

γ2 ≥ 1 +
log πB

log `max
>

2 log(pB · `max)

log `max
≥ 2γ1.
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§3.5 Further results and final remarks

We can obtain more information from the results from [G04]. First of all, using the
last part of [G04, Theorem 6.3] the upper bound in Theorem 3.1.3 can be improved
for a specific class of test functions.

Theorem 3.5.1. Assume that θ < 1. Let f ∈ L∞(ΣN × [0, 1],mp × µ) and h ∈ H be
such that both f and h are identically zero on ΣN×

(
[0, 1

2 ]∪[ 3
4 , 1]

)
and

∫
h dmp×µ = 0.

Let γ ∈ (γ1, 0). Then

|Corn(f, h)| = O(nγ−1).

Proof. The statement follows by applying the last part of [G04, Theorem 6.3]. For
this, (g1), (g2) and (g3) need to be verified. This is done before in the proof of
Theorem 3.1.4.

In [G04, Theorem 6.13] a Central Limit Theorem is derived for a specific class of
functions in H with zero integral. This result immediately carries over to our setting
and is given in the next theorem.

Theorem 3.5.2 (cf. Theorem 6.13 in [G04]). Assume that θ < 1. Let h ∈ H
be identically zero on ΣN ×

(
[0, 1

2 ] ∪ [ 3
4 , 1]

)
and with

∫
h dmp × µ = 0. Then the

sequence 1√
n

∑n−1
k=0 h◦F k converges in distribution with respect to mp×µ to a normally

distributed random variable with zero mean and finite variance σ2 given by

σ2 = −
∫
h2 dmp × µ+ 2

∞∑
n=0

∫
h · h ◦ Fn dmp × µ.

Furthermore, we have σ = 0 if and only if there exists a measurable function ψ

on ΣN × [0, 1] such that h ◦ F = ψ ◦ F − ψ. Such a function ψ then satisfies
supz1,z2∈Y

|ψ(z1)−ψ(z2)|
(2−α)s(z1,z2) < ∞ and ψ(F j(z)) = ψ(z) for each z ∈ Y and each j =

0, 1, . . . , ϕ(z)− 1.

Using [Y99, Theorem 4] we can also derive a Central Limit Theorem, this time for
a more general class of functions inH with zero integral but under the more restrictive
assumption that θ < `−1

max.

Theorem 3.5.3. Assume that θ < `−1
max. Let h ∈ H be such that

∫
h dmp × µ = 0.

Then the sequence 1√
n

∑n−1
k=0 h ◦ F k converges in distribution with respect to mp × µ

to a normally distributed random variable with zero mean and finite variance σ2.
Furthermore, we have σ = 0 if and only if there exists a measurable function ψ on ∆

such that h ◦ π ◦G = ψ ◦G− ψ.

Proof. The result from [Y99, Theorem 4] gives a statement for G on ∆. We have
already seen that h ∈ H implies h ◦ π ∈ C1/2α for some α ∈ (0, 1). The assumption
that θ < `−1

max implies γ1 < −1. Take γ ∈ (γ1,−1). We saw in (3.43) that m(ϕ̂ > n) =

O(nγ). It then follows from [Y99, Theorem 4] that 1√
n

∑n−1
k=0 h ◦ π ◦Gk converges in
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distribution with respect to ν to a normally distributed random variable with zero
mean and finite variance σ2, with σ > 0 if and only if h ◦ π ◦G 6= ψ ◦G− ψ for any
measurable function ψ on ∆. Since mp × µ = ν ◦ π−1 and F ◦ π = π ◦G, we get for
any u ∈ R that

mp × µ
( 1√

n

n−1∑
k=0

h ◦ F k ≤ u
)

= ν
( 1√

n

n−1∑
k=0

(h ◦ π) ◦Gk ≤ u
)
.

The result now follows.

Under an additional assumption on rmin = min{rg : g ∈ ΣG} and `min = {`b :

b ∈ ΣB} we can weaken the assumption that the test functions in Theorem 3.1.4,
Theorem 3.5.1 and Theorem 3.5.2 should be identically zero on ΣN ×

(
[0, 1

2 ] ∪ [ 3
4 , 1]

)
.

Namely, if for an integer l ≥ 2 we have

2−l ·min
{
rmin · 21/rmin , `

1+1/(`min−1)
min

}
≥ 1,

then it suffices to assume that these test functions are identically zero on ΣN×
(
[0, 1

2 ]∪
[1− 1

2l+1 , 1]
)
. Indeed, in this case Lemma 3.3.7 and also Proposition 3.3.3 still carry

over if we induce the random map on ( 1
2 , 1−

1
2l+1 ) instead, and the result then follows

by applying [G04, Theorem 6.3 and Theorem 6.13] to this induced system in the same
way as has been done in the proofs of Theorem 3.1.4, Theorem 3.5.1 and Theorem
3.5.2. The step in Lemma 3.4.5 where (3.45) is applied will then be replaced by
applying∣∣∣∣ dµdλ (x)

dµ
dλ (y)

− 1

∣∣∣∣ ≤ C · |x− y|, ∀x, y ∈
[1

2
, 1− 1

2l+1

]
, for some C > 0,

which can be shown using that dµ
dλ is bounded away from zero and is locally Lipschitz

on [ 1
2 , 1). As remarked in Remark 3.4.3, the latter can be shown by following the same

steps as in Section 2.2. It in particular shows that dµ
dλ is bounded on [ 1

2 , 1 −
1

2l+1 ],
which replaces the step in the proof of Theorem 3.1.4 where Lemma 3.4.2(iii) and
(3.40) are applied.

We can extend the results in this chapter to the following more general classes of
good and bad maps. Fix a c ∈ (0, 1), and let the class of good maps G consist of
maps Tg : [0, 1]→ [0, 1] given by

Tg(x) =

{
1− c−rg (c− x)rg , if x ∈ [0, c),
x−c
1−c , if x ∈ [c, 1],

where rg ≥ 1, and the class of bad maps B consist of maps Tb : [0, 1] → [0, 1] given
by

Tb(x) =

{
c− c−`b+1(c− x)`b , if x ∈ [0, c),
x−c
1−c , if x ∈ [c, 1],
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where `b > 1. Again, one easily computes that each map from G∪B has non-positive
Schwarzian derivative when restricted to [0, 1

2 ) or [ 1
2 , 1]. For these collections of maps

Lemma 3.2.2 carries over, replacing 1
2 with c and 1

4 with c2, under the additional
assumptions that c < rg · (1− c)1−r−1

g holds for all g ∈ ΣG, and that 1− c > `
`b/(1−`b)
b

holds for all b ∈ ΣB . Furthermore, Lemma 3.3.7 carries over with lower bounds
(1−c)2

c and 1
1−c in (i) and (ii) instead of 1

2 and 2, respectively, under the additional
assumption that

(1− c)2

c
·min

{
min
b∈ΣB

{rb · (1− c)−1/rb}, `1+1/(`min−1)
min

}
≥ 1.

By equipping ΣN with the metric dΣN(ω, ω′) = (1− c)min{i∈N :ωi 6=ω′i}, it can be shown
that under these additional conditions all the results formulated in Sections 3.1 and
3.5 carry over and are proven in the same way.

Finally, polynomial decay of correlations is expected to hold for a more general
class of good and bad maps for which random compositions show critical intermit-
tency, but the proofs may become more cumbersome. Our assumption that all maps
are identical on the interval [ 1

2 , 1] made it easier to find a suitable inducing domain,
but does not seem necessary. Furthermore, the linearity of this right branch and the
explicit forms of the left branches of the good and bad maps made the series in (3.24)
and (3.25) telescopic. A first step to generalise our results to a more general class
might be to require this explicit form of the left branch only close to c, though any
generalisations will inevitably make the calculations more complicated.
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