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PART I

STATISTICAL PROPERTIES OF
CRITICALLY INTERMITTENT

SYSTEMS





CHAPTER 2
Absolutely continuous invariant

measures for critically intermittent
systems

This chapter is based on: [HKR+22].

Abstract

Critical intermittency stands for a type of intermittent dynamics caused by an in-
terplay of a superstable fixed point and a repelling fixed point. We consider a large
class of random interval maps that exhibit critical intermittency and demonstrate
the existence of a phase transition when varying probabilities, where the absolutely
continuous invariant measure changes between finite and infinite. We discuss further
properties of this measure and show that its density is not in Lq for any q > 1. This
provides a theory of critical intermittency alongside the theory for the well-studied
Manneville-Pomeau maps where the intermittency is caused by a neutral fixed point.



2. Absolutely continuous invariant measures for critically intermittent systems

C
h
a
pt

er
2

§2.1 Introduction

The concept of critical intermittency has been illustrated in Subsection 1.1.1 by ran-
dom i.i.d. applications of the two logistic maps L2(x) = 2x(1 − x) and L4(x) =

4x(1 − x) on the unit interval: Orbits converge superexponentially fast to 1
2 under

applications of L2, and as soon as L4 is applied then diverge exponentially fast from
the repelling fixed point, behaving chaotically again for some time once escaped. See
Figures 1.1(b) and 1.2(b). The alternation between chaotic periods and being in a
seemingly steady state is related to the probability of choosing the maps as well as
the critical order `2 = 2 of L2, which determines the speed of convergence to 1

2 . In
[AGH18] it is shown that this random system admits a σ-finite acs measure which
is infinite if the probability p2 of choosing L2 satisfies p2 >

1
2 . We will see in this

chapter that this acs measure in fact is finite if and only if p2 · `2 < 1. More generally,
we will prove such a phase transition for the acs measure for a large family of random
interval maps with critical intermittency.

In this chapter we consider critically intermittent systems on [0, 1] that are defined
by random i.i.d. applications of so-called bad maps that share a globally superattract-
ing fixed point c ∈ (0, 1) and good maps that map c into the common invariant and
repelling set {0, 1}. To be precise, the families of maps we consider are defined as
follows.

Throughout the text we fix a point c ∈ (0, 1) that will represent the single critical
point of our maps, both good and bad.

A map Tg : [0, 1]→ [0, 1] is in the class of good maps, denoted by G, if

(G1) Tg|[0,c) and Tg|(c,1] are C3 diffeomorphisms onto [0, 1) or (0, 1] and Tg(c) ∈
{Tg(c−), Tg(c+)};

(G2) Tg has non-positive Schwarzian derivative on [0, c) and (c, 1];

(G3) to Tg we can associate three constants rg ≥ 1, 0 < Kg < 1 and Mg > rg such
that, for each x ∈ [0, 1],

Kg|x− c|rg−1 ≤ |DTg(x)| ≤Mg|x− c|rg−1; (2.1)

(G4) we have |DTg(0)|, |DTg(1)| > 1.

These conditions imply in particular that Tg({0, c, 1}) ⊆ {0, 1}, that at least one of
the maps Tg|[0,c] or Tg|[c,1] is continuous, and that both branches of Tg are strictly
monotone. Note also that the conditions Kg < 1 and Mg > rg are superfluous,
since we can always choose a smaller constant Kg and larger constant Mg to satisfy
(2.1), but we need these specific bounds in our estimates later. The critical point
c is mapped to either 0 or 1 under each of the good maps and both 0 and 1 are
(eventually) fixed points or periodic points (with period 2) by (G1) that are repelling
by (G4). Furthermore, a consequence of the Minimum Principle is that |DTg| has
locally no strict minima in the intervals (0, c) and (c, 1). In particular, there cannot
be any attracting fixed points for Tg in (0, c) and (c, 1). Examples of good maps
include the doubling map and surjective unimodal maps, see Figures 2.1(a)-(d).
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The choice of conditions (G1)-(G4) is based on two factors: firstly, these conditions
incorporate the most important properties of the ‘good’ logistic map L4(x) = 4x(1−
x), which is the primary motivating example for this chapter, and secondly, some of
the techniques used in this chapter are motivated by the work of Nowicki and Van
Strien [NvS91] where the following result has been proven. Let λ denote the Lebesgue
measure on [0, 1].

Theorem 2.1.1 (Main Theorem in [NvS91]). Suppose that T : [0, 1] → [0, 1] is
unimodal, C3, has negative Schwarzian derivative and that the critical point of T is
of order r ≥ 1. Moreover assume that the growth rate of |DTn (c1)|, c1 = T (c), is so
fast that

∞∑
n=0

|DTn (c1)|−1/r
<∞. (2.2)

Then T has a unique probability acim µ which is ergodic and of positive entropy.
Furthermore, there exists a positive constant K such that

µ(B) ≤ K · λ(B)1/r, (2.3)

for any Borel set B ⊆ [0, 1]. Finally, the density dµ
dλ of the measure µ with respect

to λ is an Lτ−-function where τ = r/(r − 1) and Lτ− =
⋂

1≤t<τ L
t and Lt =

{
f ∈

L1([0, 1], λ) :
∫ 1

0
|f |tdλ <∞

}
.

Formally this result is not immediately applicable to the good maps we introduced.
The difference, however, is not principal and the conclusion remains exactly the same,
the main reason being that the conditions (G1) and (G4) imply the growth rate (2.2),
and hence any good map admits a unique probability acim.

A map Tb : [0, 1]→ [0, 1] is in the class of bad maps, denoted by B, if

(B1) Tb|[0,c) and Tb|(c,1] are C3 diffeomorphisms onto [0, c) or (c, 1] and Tb(c) = c;

(B2) Tb has non-positive Schwarzian derivative on [0, c) and (c, 1];

(B3) to Tb we can associate three constants `b > 1, 0 < Kb < 1 and Mb > `b such
that, for each x ∈ [0, 1],

Kb|x− c|`b−1 ≤ |DTb(x)| ≤Mb|x− c|`b−1; (2.4)

(B4) we have |DTb(0)|, |DTb(1)| > 1.

In particular (B1) implies that Tb({0, 1}) ⊆ {0, 1}, that Tb is continuous, and that Tb
is strictly monotone on the intervals [0, c] and [c, 1]. In contrast to (G3), note that in
(B3) we have assumed that `b is not equal to one. This means that DTb(c) = 0, so c
is a superstable fixed point for each bad map. Furthermore, c has (0, 1) as its basin of
attraction, since it again follows from the Minimum Principle that |DTb| has locally
no strict minima in the intervals (0, c) and (c, 1). Combining this with the Poincaré
Recurrence Theorem, an immediate consequence is that the only finite Tb-invariant
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Figure 2.1: Eight maps with critical point c = 1
2
. The upper four graphs (a)-(d) show good

maps, while in (e)-(h) we see the graphs of four bad maps.

measures are linear combinations of Dirac measures at 0, c, and 1. For examples, see
Figures 2.1(e)-(h).

The random systems we consider in this chapter are the following. Let T1, . . . , TN ∈
G∪B be a finite collection of good and bad maps. Write ΣG = {1 ≤ j ≤ N : Tj ∈ G}
and ΣB = {1 ≤ j ≤ N : Tj ∈ B} for the index sets of the good and bad maps re-
spectively and assume that ΣG,ΣB 6= ∅. Write Σ = {1, . . . , N} = ΣG ∪ΣB . Let F be
the skew product associated to {Tj}j∈Σ, i.e.

F : ΣN × [0, 1]→ ΣN × [0, 1], (ω, x) 7→ (τω, Tω1
(x)), (2.5)

where τ denotes the left shift on sequences in ΣN. Let p = (pj)j∈Σ be a probability
vector representing the probabilities with which we choose the maps Tj , j ∈ Σ, and
let mp be the p-Bernoulli measure on ΣN. Our main results are the following.

Theorem 2.1.2. Let T = {Tj : j ∈ Σ} be as above and p = (pj)j∈Σ a strictly positive
probability vector.

(a) There exists a unique (up to scalar multiplication) σ-finite acs measure µ for
(T ,p). Moreover, F is ergodic w.r.t. mp × µ.

(b) The density dµ
dλ is bounded away from zero, is locally Lipschitz on (0, c) and

(c, 1) and is not in Lq for any q > 1.

Theorem 2.1.3. Let T = {Tj : j ∈ Σ} be as above and p = (pj)j∈Σ a strictly
positive probability vector. Let µ be the unique acs measure from Theorem 2.1.2. Set
θ =

∑
b∈ΣB

pb`b. Then µ is finite if and only if θ < 1. In this case, there exists a
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constant C > 0 such that

µ(B) ≤ C ·
∞∑
k=0

θkλ(B)`
−k
maxr

−1
max (2.6)

for any Borel set B ⊆ [0, 1], where rmax = max{rg : g ∈ ΣG} and `max = max{`b :

b ∈ ΣB}.

As we shall see in (2.28) the bound in (2.6) can be improved by not bounding
mixtures `brg =

∏k
i=1 `birg by their maximal value `kmaxrmax, but this improvement

does not change the qualitative behaviour of the bound.

Theorem 2.1.3 shows that the system undergoes a phase transition where the acs
measure changes between finite and infinite with threshold θ = 1. Interestingly, this
situation is significantly different than for the random LSV maps discussed in Example
1.4.3 where the existence of an acs probability measure only depends on whether there
is a positive probability to choose an LSV map with parameter < 1.

It is also worth mentioning that it follows from Theorem 2.1.3 that not only does
no finite acs measure exist if θ ≥ 1, but also that no physical measure1 for F exists
in this case. Indeed, this follows by applying Aaronson’s Ergodic Theorem [A97,
Theorem 2.4.2] to the infinite measure mp × µ.

Since µ is an acs measure, the density dµ
dλ is a fixed point of the associated Perron-

Frobenius operator being of the form as in (1.20). Moreover, Theorem 2.1.2 tells that
this density dµ

dλ is bounded away from zero. Using these two statements it is easy to
see that dµ

dλ blows up to infinity at the points zero and one and also at least on one
side of c. See Figure 2.2 for an example. Furthermore, Theorem 2.1.3 says that dµ

dλ

is integrable if and only if θ is small enough, namely θ < 1. This intuitively makes
sense since for a smaller value of θ the attraction of orbits to c is weaker on average
and consequently orbits typically spend less time near zero and one once a good map
is applied.

The inequality (2.6) is the counterpart of the Nowicki-Van Strien inequality (2.3),
and naturally gives a substantially worse bound due to the presence of bad maps. It
is not immediately clear how much worse (2.6) is in comparison to (2.3). However,
the following holds.

Corollary 2.1.4. Let T = {Tj : j ∈ Σ} be as above and p = (pj)j∈Σ a strictly
positive probability vector. Suppose θ =

∑
b∈ΣB

pb`b < 1. Then there exist K > 0 and
κ > 0 such that for any Borel set B ⊆ [0, 1] with λ(B) ∈ (0, 1) one has

µ(B) ≤ K 1

logκ(1/λ(B))
.

1A probability measure µ is a physical measure for a transformation T : X → X if it is T -
invariant and there exists a set U ⊆ X of positive Lebesgue measure (for our setting, this means
mp × λ(U) > 0) such that for each continuous function f : X → R we have

lim
n→∞

1

n

n−1∑
k=0

f(Tkx) =

∫
X
fdµ, for each x ∈ U.
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Moreover, the acs measure from Theorem 2.1.2 depends continuously on the prob-
ability vector p ∈ RN as the next result shows. Here we write µp for the acs probability
measure that corresponds to the probability vector p.

Corollary 2.1.5. Let T = {Tj : j ∈ Σ} be as above. For each n ≥ 0, let pn =

(pn,j)j∈Σ be a strictly positive probability vector such that supn
∑
b∈ΣB

pn,b`b < 1 and
assume that limn→∞ pn = p in RN+ . Then the sequence µpn converges weakly to µp.

As discussed in Section 1.4 the problem of finding acs probability measures for
random interval maps that are expanding on average is well studied and these results
often rely on bounded variation techniques from Lasota and Yorke [LY73]. In [P84,
Section 4] these techniques are extended to a class of i.i.d. random interval maps on
the unit interval that are not expanding on average and are composed of a uniformly
expanding map T and a contracting map S such that S contracts no faster than that T
expands. An example is T (x) = 2x mod 1 and S(x) = x

2 . Under additional conditions
on S and T and assuming that the probability of choosing T is bigger than S, Pelikan
shows that such a random map admits an acs probability measure. The proof of this
result relies heavily on the explicit expression that Pelikan has for a conjugacy map
between this random map and another random map that is expanding on average and
consists of two Lasota-Yorke type maps. This allows Pelikan to find the order of the
density of the acs measure near the pole at 0. As we see in Theorem 2.1.2 and prove
in Subsection 2.2.3, for our systems the density of the acs measure is not in Lq for
any q > 1. This suggests that a similar conjugacy for our systems, if it exists, might
not have such a nice explicit expression. Therefore, we resort to techniques similar to
the ones used by Nowicki and Van Strien in their proof of Theorem 2.1.1 rather than
the techniques introduced by Lasota and Yorke.

(a) (b)

Figure 2.2: Approximation of dµ
dλ

in case ΣG = {1}, ΣB = {2}, T1(x) = L4(x) = 4x(1 − x)
and T2(x) = L2(x) = 2x(1− x) for two different values of p1. Both pictures depict P 20

T ,p(1)
with Perron-Frobenius operator PT ,p, where in (a) we have taken p1 = 3

4
and in (b) p1 = 1

4
.
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To be more precise, for the existence result from Theorem 2.1.2 we use an inducing
scheme. This approach is inspired by [AGH18], but the choice of the inducing domain
needed some care. With the help of Kac’s Lemma we then obtain that the acs
measure is infinite in case θ ≥ 1. To prove that this measure is finite for θ < 1

we use an approach similar to the one employed in [NvS91] by estimating the sizes
of preimages of neighborhoods around points in the postcritical orbits. For this we
apply the Minimum Principle and Koebe Principle to iterates of the maps Tj , which
is possible due to (G2) and (B2). The main difficulty to obtain these estimates is that
it may take an arbitrarily long time before the superattracting fixed point is mapped
onto the repelling orbit by one of the good maps, which decreases the regularity of
the density of the acs measure. Furthermore, we will use the following key lemma.

Recall the constants `b, Kb and Mb from (2.4) in condition (B3) and set `min =

min{`b : b ∈ ΣB} and `max = max{`b : b ∈ ΣB}. We prove the next lemma in
Subsection 2.2.3.

Lemma 2.1.6. For all n ∈ N, ω ∈ ΣN
B and x ∈ [0, 1],

(
K̃|x− c|

)`ω1
···`ωn

≤ |Tnω (x)− c| ≤
(
M̃ |x− c|

)`ω1
···`ωn

,

with K̃ =
(min{Kb : b∈ΣB}

`max

) 1
`min−1 ∈ (0, 1) and M̃ =

(max{Mb : b∈ΣB}
`min

) 1
`min−1 > 1.

It follows that under iterations of bad maps the distance |Tnω (x)− c| is eventually
decreasing superexponentially fast in n. In Section 2.3 we will use the upper bound
on |Tnω (x)− c| that we obtained in Lemma 2.1.6 to prove that µ in Theorem 2.1.3 is
infinite if θ ≥ 1. The lower bound from Lemma 2.1.6 will be used to show that µ is
finite if θ < 1.

In (B3) we have assumed that for any bad map Tb the corresponding value `b is not
equal to one. Note that a bad map Tb for which we allow `b = 1 satisfies |DTb(c)| > 0,
so in this case c is an attracting fixed point for Tb but not superattracting. It should
not come as a surprise that results similar to Theorem 2.1.2 and Theorem 2.1.3 also
hold in case some or all of the bad maps Tb have `b = 1. The proofs presented for these
theorems, however, do not immediately carry over. This has mainly to do with the
constants K̃ and M̃ from Lemma 2.1.6, which are not well defined in case `min = 1.
In the last section we explain how the results are affected in case some or all maps Tb
satisfy `b = 1 and what the necessary changes in the proofs are.

The remainder of this chapter is organised as follows. Section 2.2 is devoted to the
proof of Theorem 2.1.2 and in Section 2.3 we prove Theorem 2.1.3. In Section 2.4 we
prove Corollaries 2.1.4 and 2.1.5 and explain what the analogues of Theorem 2.1.2 and
2.1.3 are in case `b = 1 for one or more b ∈ ΣB and how the proofs of Theorem 2.1.2
and 2.1.3 need to be modified to get these results. We end this chapter with some
final remarks.
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§2.2 Existence of a σ-finite acs measure

From now on we fix an integer N ≥ 2 and consider a finite collection T1, . . . , TN ∈
G ∪ B of good and bad maps in the classes G and B. As in Section 2.1 we write
ΣG = {1 ≤ j ≤ N : Tj ∈ G} and ΣB = {1 ≤ j ≤ N : Tj ∈ B} for the corresponding
index sets and assume that ΣG,ΣB 6= ∅. We write Σ = {1, 2, . . . , N}. In this section
we prove Theorem 2.1.2, i.e. we establish the existence of an ergodic acs measure and
several of its properties using an inducing scheme for the random system F . We fix the
index g ∈ ΣG of one good map Tg and start by constructing an inducing domain that
depends on this g. Throughout this section and the next ones we use the notations
for words and compositions of the maps Tj introduced in Section 1.4.

§2.2.1 The induced system and first return time par-
tition

The first lemma is needed to specify the set on which we induce. For each k ∈ N let
xk and x′k in (0, c) denote the critical points of T kg closest to 0 and c, respectively.
Furthermore, let yk and y′k in (c, 1) denote the critical points of T kg closest to 1 and
c, respectively.

Lemma 2.2.1. We have xk ↓ 0, x′k ↑ c, y′k ↓ c, yk ↑ 1 as k →∞.

Proof. Let a and b denote the critical points of T 2
g in (0, c) and (c, 1), respectively.

Then at least one of the branches T 2
g |(0,a) and T 2

g |(b,1) is increasing. Suppose that
T 2
g |(0,a) is increasing. It then follows from the Minimum Principle that T 2

g (x) ≥
min{xa , DT

2
g (0) · x} for each x ∈ [0, a]. To see this, suppose there is an x ∈ (0, a)

with T 2
g (x) < min{xa , DT

2
g (0) · x}. Then there must be a y ∈ (0, x) with DT 2

g (y) <

min{DT 2
g (0), 1

a} and a z ∈ [x, a) with DT 2
g (z) > 1

a . On the other hand, by the
Minimum Principle, DT 2

g (y) ≥ min{DT 2
g (0), DT 2

g (z)}, a contradiction. Combining
this with DT 2

g (0) > 1 and defining L : (0, 1)→ (0, a) by L = (T 2
g |(0,a))

−1, we see that
Lk(a) ↓ 0 as k → ∞. Furthermore, define R : (0, 1) → (b, 1) by R = (T 2

g |(b,1))
−1. If

T 2
g |(b,1) is increasing, we see that similarly Rk(b) ↑ 1 as k →∞. On the other hand, if
T 2
g |(b,1) is decreasing, we have RLk(a) ↑ 1 as k →∞. Finally, if T 2

g |(0,a) is decreasing,
then T 2

g |(b,1) must be increasing, which yields LRk(b) ↓ 0 as k → ∞. We conclude
that xk ↓ 0 and yk ↑ 1 as k → ∞. It follows from (G1) that c is a limit point of
both of the sets

⋃
k∈N(Tg|(0,c))−1({xk, yk}) and

⋃
k∈N(Tg|(c,1))

−1({xk, yk}). So x′k ↑ c,
y′k ↓ c as k →∞.

By the previous lemma and (G1), for k ∈ N large enough it holds that

Tg(x
′
k) ≤ x′k or Tg(x′k) ≥ y′k, and

Tg(y
′
k) ≤ x′k or Tg(y′k) ≥ y′k,

(2.7)

and, using also (G4), (B1) and (B4), for every j ∈ Σ,

Tj
(
[0, xk] ∪ [yk, 1]

)
⊆ [0, x′k) ∪ (y′k, 1] and

|DTj(x)| > d > 1 for all x ∈ [0, xk) ∪ (yk, 1] and some constant d.
(2.8)
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Fix a κ ∈ N for which (2.7) and (2.8) hold. We introduce some notation. Let t ∈ Σ

be such that t 6= g, and define

C = [g · · · g︸ ︷︷ ︸
κ times

t] = [gκt],

J0 = (xκ, x
′
κ), J1 = (y′κ, yκ), J = J0 ∪ J1,

Y = C × J.

Lemma 2.2.2. The set Y is a sweep-out set for F with respect to mp × λ.

Proof. For mp-almost all ω ∈ ΣN we have τnω ∈ [g] for infinitely many n ∈ N.
For any such n and each x ∈ (0, c) ∪ (c, 1) either Tnω (x) ∈ J or Tnω (x) 6∈ J . If
Tnω (x) ∈ (0, xκ] ∪ [yκ, 1), then it follows from (2.8) that there is an m ≥ 1 such
that Tn+m

ω (x) ∈ J . If Tnω (x) ∈ [x′κ, c) ∪ (c, y′κ] it follows from (2.7) that Tn+1
ω (x) =

Tg ◦Tnω (x) ∈ (0, x′κ]∪ [y′κ, 1), which means that we are in the first case if Tn+1
ω (x) /∈ J .

Hence, there exists a measurable set A ⊆ ΣN × [0, 1] with mp × λ(A) = 1 such that
for each (ω, x) ∈ A we have Tnω (x) ∈ J for infinitely many n ∈ N.

We define

E = A \
∞⋃
n=0

F−nY

and for each x ∈ [0, 1] we define

Ex =
{
ω ∈ ΣN : (ω, x) ∈ A \

∞⋃
n=0

F−nY
}
,

which is the x-section of E . It follows from Fubini’s Theorem that Ex is measurable
for λ-almost all x ∈ [0, 1] and that

mp × λ(E) =

∫
[0,1]

mp(Ex)dλ(x).

Combining this with mp × λ(A) = 1, it remains to show that mp(Ex) = 0 holds for
λ-almost all x ∈ [0, 1] for which Ex is measurable.

Let x ∈ [0, 1] for which Ex is measurable. According to the Lebesgue Differentiation
Theorem (see e.g. [T04]) we have that mp-almost all ω ∈ ΣN is a Lebesgue point of
the function 1Ex . Consider such an ω and suppose that ω ∈ Ex. Then (ω, x) ∈ A,
so there exists an increasing sequence (nj)j∈N in N that satisfies Tnjω (x) ∈ J for each
j ∈ N. Recall that τ denotes the left shift on sequences. If ω′ ∈ τ−njC ∩ [ω1 · · ·ωnj ],
then T

nj
ω′ (x) = T

nj
ω (x) ∈ J and so Fnj (ω′, x) ∈ Y , which gives ω′ /∈ Ex. So Ex

and τ−njC ∩ [ω1 · · ·ωnj ] are disjoint for each j ∈ N, which together with ω being a
Lebesgue point of 1Ex yields that

1 ≥
mp

(
(Ex ∪ τ−njC) ∩ [ω1 · · ·ωnj ]

)
mp

(
[ω1 · · ·ωnj ]

)
=

mp

(
Ex ∩ [ω1 · · ·ωnj ]

)
mp

(
[ω1 · · ·ωnj ]

) +
mp

(
τ−njC ∩ [ω1 · · ·ωnj ]

)
mp

(
[ω1 · · ·ωnj ]

) j→∞−−−→ 1Ex(ω) +mp(C).
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Since mp(C) > 0, we find that ω ∈ Ex gives a contradiction. We conclude that
mp(Ex) = 0.

Since F is non-singular with respect to mp × λ, it follows from Lemma 2.2.2 that in
particular

mp × λ
(
Y \

∞⋃
n=1

F−nY
)
≤ mp × λ

(
F−1

(
X \

∞⋃
n=0

F−nY
))

= 0.

Hence, the first return time map ϕY of the form as in (1.6) and the induced trans-
formation FY are well defined on the full measure subset of points in Y that return
to Y infinitely often under iterations of F , which we call Y again. The set of points
in Y that return to Y after n iterations of F can be described as

Y ∩ F−n(Y ) =
⋃

ω∈C∩τ−nC

[ω1 · · ·ωn]× (Tnω |J)−1(J) mod mp × λ, (2.9)

which is empty for n ≤ κ. Note that in (2.9) in fact [ω1 · · ·ωn] = [gκtωκ+2 · · ·ωngκt]
and that by construction each map Tnω |J in (2.9) consists of branches that all have
range (0, c) or (c, 1) or (0, 1), since any branch of Tκω |J maps onto (0, 1). Therefore,
Y ∩ F−n(Y ) can be written as a finite union of products A = [ugκt]× I of cylinders
[ugκt] ⊆ C with |u| = n and open intervals I ⊆ J , each of which is mapped under Fn

onto C × J0 or C × J1. Call the collection of these sets Pn and let α =
⋃
n>κ Pn. Let

mp,C and λJ denote the normalised restrictions of mp to C and λ to J respectively.

Lemma 2.2.3.

(1) The collection α forms a countable first return time partition of Y , i.e. mp,C ×
λJ(
⋃
A∈αA) = 1, any two different sets A,A′ ∈ α are disjoint and on any A ∈ α

the first return time map ϕY is constant.

(2) Let π denote the canonical projection of ΣN × [0, 1] onto the second coordinate.
Any x ∈ J is contained in a set π(A) for some set A ∈ α.

Proof. The fact thatmp,C×λJ(
⋃
A∈αA) = 1 follows from Lemma 2.2.2. Furthermore,

it is clear from the construction that the first return time map ϕY is constant on any
element of α once we know that any two distinct elements of α are disjoint. To show
the latter, note that for A,A′ ∈ Pn this is clear. Suppose there are 1 ≤ m < n,
A = [ugκt] × I ∈ Pn and A′ = [vgκt] × I ′ ∈ Pm such that A ∩ A′ 6= ∅. Since t 6= g

we get n ≥ m + κ + 1 and [ugκt] = [gκtvκ+2 · · · vmgκtum+κ+2 · · ·ungκt]. Moreover,
I ∩∂I ′ 6= ∅ or I = I ′. In both cases, note that Fm+κ+1([vgκt]×∂I ′) ⊆ ΣN×{0, 1}, so
by (G1) and (B1) also Fn([vgκt]×∂I ′) ⊆ ΣN×{0, 1}, contradicting that Fn(A) ⊆ Y .
This proves (1).

For (2) note that, since α is a partition of Y , for each x ∈ J it holds that there
is an A = [ugκt] × I ∈ α with x ∈ I or x ∈ ∂I. In the first case there is nothing
to prove, so assume that x ∈ ∂I. Then Tu(x) ∈ ∂Ji for some i ∈ {0, 1}. From the
first part of the proof of Lemma 2.2.2 it then follows that there is an n > |u| and an
ω ∈ C such that Tnω (x) ∈ J . If we write I ′ for the interval in (Tnω )−1(J) containing
x, then this means that there exists a set A′ = [vgκt]× I ′ ∈ α with x ∈ π(A′).
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The second part of Lemma 2.2.3 shows that even though the partition elements of
α are disjoint, their projections on the second coordinate are not. The same is true
for the first coordinate as the same string u can lead points in J to J0 and J1.

§2.2.2 Properties of the induced transformation
It follows from (2.9) and Lemma 2.2.3 that for each A ∈ α we have either FY (A) =

C×J0 or FY (A) = C×J1. For any [ugκt]×I ∈ α, the transformation Tu|I is invertible
from I to one of the sets J0 or J1. Define the operator Pu,I : L1(J, λJ) → L1(J, λJ)

by

Pu,Ih(x) =


h(Tu|−1

I (x))∣∣DTu|I(Tu|−1
I (x))

∣∣ , if Tu|−1
I {x} 6= ∅,

0, otherwise.

The random Perron-Frobenius-type operator PY : L1(J, λJ)→ L1(J, λJ) is given by

PY =
∑

[ugκt]×I∈α

mp,C([u])Pu,I . (2.10)

Note that PY is not exactly of the same form as the usual Perron-Frobenius operator
in (1.20). Nonetheless, we have the following result.

Lemma 2.2.4. If ϕ ∈ L1(J, λJ) is a fixed point of PY , then the measure mp,C × ν
with ν = ϕdλJ is invariant for FY .

Proof. Suppose ϕ ∈ L1(J, λJ) is a fixed point of PY . For each cylinder K ⊆ C and
each Borel set E ⊆ J we have

mp,C × ν
(
F−1
Y (K × E)

)
=

∑
[ugκt]×I∈α

mp,C([ugκt] ∩ τ−|u|K)ν(I ∩ T−1
u E)

= mp,C(K)
∑

[ugκt]×I∈α

mp,C([u])

∫
E

Pu,IϕdλJ

= mp,C(K)

∫
E

PY ϕdλJ

= mp,C × ν(K × E).

This gives the result.

In Lemma 2.2.5 below we show that a fixed point of PY exists. For m ∈ N, set
αm =

∨m−1
j=0 F−jY α. Atoms of this partition are the m-cylinders of FY . Introducing

for each Z =
⋂m−1
j=0 F−jY ([ujg

κt]× Ij) in αm the notation

CZ =

m−1⋂
j=0

τ−
∑j−1
i=0 |ui|[ujg

κt] and JZ =

m−1⋂
j=0

T−1
u0u1···uj−1

(Ij), (2.11)
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we obtain Z = CZ × JZ . Writing τZ = τ
∑m−1
i=0 |ui||CZ and TZ = Tu0u1···um−1

|JZ we
have FmY |Z = τZ × TZ . Each TZ has non-positive Schwarzian derivative, so we can
apply the Koebe Principle. The image TZ(JZ) either equals J0 or J1. Choose a ρ̄ > 0

such that J ′0 := [xκ − ρ̄, x′κ + ρ̄] ⊆ (0, c) and J ′1 := [y′κ − ρ̄, yκ + ρ̄] ⊆ (c, 1). There is
a canonical way to extend the domain of each TZ to an interval J ′Z containing JZ ,
such that TZ(J ′Z) equals either J ′0 or J ′1 and S(TZ) ≤ 0 on J ′Z . Then by the Koebe
Principle, i.e. (1.14) and (1.15), there exist constants K(ρ̄) > 1 and M (ρ̄) > 0 such
that for all m ∈ N, Z ∈ αm and x, y ∈ JZ ,

1

K(ρ̄)
≤ DTZ(x)

DTZ(y)
≤ K(ρ̄), (2.12)

∣∣∣DTZ(x)

DTZ(y)
− 1
∣∣∣ ≤ M (ρ̄)

min{λ(J0), λ(J1)}
· |TZ(x)− TZ(y)|. (2.13)

Note that for the random Perron-Frobenius-type operator from (2.10) we have for
each m ≥ 1 that

PmY =
1

mp(C)

∑
Z∈αm

mp,C(CZ)PTZ , (2.14)

where PTZ is of the form as in (1.10).

Lemma 2.2.5 (cf. Lemmas V.2.1 and V.2.2 of [dMvS93]). PY admits a fixed
point ϕ ∈ L1(J, λJ) that is bounded, Lipschitz and bounded away from zero.

Proof. For each m ∈ N and x ∈ J ,

PmY 1(x) =
1

mp(C)

∑
Z∈αm:

x∈TZ(JZ)

mp,C(CZ)

|DTZ(T−1
Z x)|

.

Using the Mean Value Theorem, for all m ∈ N and Z ∈ αm there exists a ξ ∈ JZ such
that

λ
(
TZ(JZ)

)
λ(JZ)

= |DTZ(ξ)|. (2.15)

Set K1 = max{K(ρ̄),M(ρ̄)}
mp(C)·min{λ(J0),λ(J1)} , where ρ̄ is as in (2.12) and (2.13). Since DTZ(ξ) and

DTZ(y) have the same sign for any y ∈ JZ , (2.15) together with (2.12) implies

PmY 1(x) ≤
∑
Z∈αm

mp,C(CZ)

mp(C)
·K(ρ̄) λ(JZ)

λ(TZ(JZ))
≤ K1

∑
Z∈αm

mp,C × λJ(CZ × JZ) = K1.

(2.16)

Moreover, if for A = [ugκt] × I ∈ α we take x, y ∈ I, then for any Z ∈ αm it holds
that x ∈ TZ(JZ) if and only if y ∈ TZ(JZ). For such Z, let xZ , yZ ∈ JZ be such that
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TZ(xZ) = x and TZ(yZ) = y. Then by (2.13)

|PmY 1(x)− PmY 1(y)| ≤
∑
Z∈αm:

x∈TZ(JZ)

mp,C(CZ)

mp(C)

∣∣∣∣ 1

|DTZ(xZ)|
− 1

|DTZ(yZ)|

∣∣∣∣
≤

∑
Z∈αm:

x∈TZ(JZ)

mp,C(CZ)
1

|DTZ(xZ)|
K1|TZ(xZ)− TZ(yZ)|

= K1PmY 1(x)|x− y|.

(2.17)

Together (2.16) and (2.17) imply that the sequence
(

1
m

∑m−1
j=0 P

j
Y 1
)
m

is uniformly
bounded and equicontinuous on I for each A = [ugκt] × I. By Lemma 2.2.3(2) it
follows that the same holds on J . Hence, by the Arzela-Ascoli Theorem there exists
a subsequence ( 1

mk

mk−1∑
j=0

PjY 1
)
mk

converging uniformly to a function ϕ : J → [0,∞) satisfying ϕ ≤ K1 and for each
A = [ugκt]× I ∈ α and x, y ∈ I,

|ϕ(x)− ϕ(y)| ≤ K1ϕ(x)|x− y|. (2.18)

Hence, ϕ is bounded and by Lemma 2.2.3(2) it is clear that ϕ is Lipschitz (with
Lipschitz constant bounded by K2

1 ). It is readily checked that ϕ is a fixed point of
PY , so that mp,C × ν with ν = ϕdλ is an invariant probability measure for FY .

Because of Lemma 2.2.3(2) and because ϕ is continuous, in order to obtain that
ϕ is bounded away from zero on J it suffices to verify for each A = [ugκt] × I ∈ α
that ϕ on I is bounded away from zero. Suppose that there is A = [ugκt]× I ∈ α for
which infx∈I ϕ(x) = 0. Then from (2.18) it follows that ϕ(y) = 0 for all y ∈ I, hence
ν(I) = 0. Either I ⊆ J0 or I ⊆ J1. If I ⊆ J0, then for any set A′ = [vgκt] × I ′ ∈ α
with Tv(I ′) = J0 it holds that

mp,C × λJ(A′ ∩ F−1
Y A) > 0

and, by the FY -invariance of mp,C × ν,

mp,C × ν(A′ ∩ F−1
Y A) ≤ mp,C × ν(F−1

Y A) = mp,C × ν(A) = 0,

which together give infx∈I′ ϕ(x) = 0 and therefore, like before, ν(I ′) = 0. There are
sets A′ = [vgκt]× I ′ with I ′ ⊆ J1 and Tv(I ′) = J0, so we can repeat the argument to
show that also for any set A′′ = [vgκt]× I ′′ ∈ α with Tv(I ′′) = J1 we have ν(I ′′) = 0.
So mp,C × ν(A) = 0 for all A ∈ α. If I ⊆ J1 we come to the same conclusion. This
gives a contradiction, so ϕ is bounded from below on each interval I.

It follows from Lemma 2.2.4 that mp,C × ν with ν = ϕdλJ is a finite FY -invariant
measure. To show that mp,C × λJ is FY -ergodic we need the following result, which
states that the sets π(A) for A ∈ αm shrink uniformly to λ-null sets as m→∞.
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Lemma 2.2.6. lim
m→∞

sup{λJ(JZ) : Z ∈ αm} = 0.

Proof. Set δ = sup{λJ(JZ) : Z ∈ α} < 1. Let m ≥ 2 and Z =
⋂m−1
j=0 F−jY ([ujg

κt]×
Ij) = CZ × JZ ∈ αm as in (2.11). Set

J̃Z =

m−2⋂
j=0

T−1
u0u1···uj−1

(Ij),

so that JZ = J̃Z ∩T−1
u0···um−2

(Im−1). Let Ji, i ∈ {0, 1}, be such that Tu0···um−2
(J̃Z) =

Ji. It holds that Tu0···um−2
(JZ) = Im−1, so λ(Tu0···um−2

(JZ)) ≤ δ and thus

λ(Tu0u1···um−2
(J̃Z \ JZ) ≥ λ(Ji)− δ.

Since J̃Z \ JZ consists of at most two intervals, with (2.12) and (1.12) applied to this
setting this gives

1− λJ(JZ)

λJ(J̃Z)
=
λJ(J̃Z \ JZ)

λJ(J̃Z)
≥ 1

K(ρ̄)

λJ(Tu0···um−2
(J̃Z \ JZ)

λJ(Tu0···um−2
(J̃Z))

≥ 1

K(ρ̄)

λJ(Ji)− δ
λJ(Ji)

.

Set K1 := max
{

1 − 1
K(ρ̄)

λJ (Ji)−δ
λJ (Ji)

: i = 0, 1
}
∈ (0, 1). Then by repeating the same

steps, we obtain

λJ(JZ) ≤ K1λJ(J̃Z) ≤ · · · ≤ Km−1
1 λJ(I0) < Km−1

1 ,

which proves the lemma.

Lemma 2.2.7. The measure mp,C × λJ is FY -ergodic.

Proof. Suppose E ⊆ Y with mp,C × λJ(E) > 0 satisfies F−1
Y E = E mod mp,C × λJ .

We show that mp,C × λJ(E) = 1. The Borel measure ρ on Y given by

ρ(V ) =

∫
V

1E(ω, x)ϕ(x)dmp,C(ω)dλJ(x)

for Borel sets V is FY -invariant. According to Proposition 1.2.12 and Lemma 1.4.1
this yields a stationary measure µ̃ on [0, 1] that is absolutely continuous w.r.t. λ and
satisfies (mp × µ̃)|Y = ρ. Let L := {x ∈ J : dµ̃dλ (x) > 0} denote the support of dµ̃dλ |J .
Since

mp × λ(Y ) · dµ̃
dλ

(x) =
dρ

dmp,C × λJ
(ω, x) = 1E(ω, x)ϕ(x), mp,C × λJ -a.e.

we obtain, using that ϕ is bounded away from zero,

E = C × L mod mp,C × λJ .

To obtain the result, it remains to show that λJ(J\L) = 0.
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We have C ×L =
⋃
Z∈αm CZ × (JZ ∩L) and F−mY (C ×L) =

⋃
Z∈αm CZ × T

−1
Z L.

From the non-singularity of FY w.r.t. mp,C × λJ it follows that for each m ∈ N,

C × L = E = F−mY E = F−mY (C × L) mod mp,C × λJ ,

which yields

JZ ∩ L = T−1
Z L mod λJ , for each Z ∈ αm. (2.19)

Let ε > 0. Since λJ(L) > 0, it follows from Lemma 2.2.6 and the Lebesgue Density
Theorem that there are i ∈ {0, 1}, m′ ∈ N and Z ′ ∈ αm′ such that

TZ′(JZ′) = Ji and λJ(JZ′ ∩ L) ≥ (1− ε)λJ(JZ′).

By (2.19), T−1
Z′ (Ji\L) = JZ′\L mod λJ . The Mean Value Theorem gives the existence

of a ξ ∈ JZ′ such that
λJ(TZ′(JZ′))

λJ(JZ′)
= |DTZ′(ξ)|,

and from (2.12) it follows that

λJ(TZ′(JZ′\L)) =

∫
JZ′\L

|DTZ′ |dλ ≤ K(ρ̄)|DTZ′(ξ)|λJ(JZ′\L).

Hence,

λJ(Ji\L)

λJ(Ji)
=
λJ(TZ′(JZ′\L))

λJ(TZ′(JZ′))
≤ K(ρ̄)λJ(JZ′\L)

λJ(JZ′)
≤ K(ρ̄)ε. (2.20)

So, for each ε > 0 we can find i = i(ε), Z ′ = Z ′(ε) and m′ = m′(ε) for which (2.20)
holds. If for each ε0 > 0 and each i0 ∈ {0, 1} there exists an ε ∈ (0, ε0) such that
i(ε) = i0, we obtain from (2.20) that λJ(J\L) = 0. Otherwise, there exists ε0 > 0 and
i0 ∈ {0, 1} such that i(ε) = i0 for all ε ∈ (0, ε0). Without loss of generality, suppose
that i0 = 0. Then (2.20) gives λJ(J0\L) = 0. By the equivalence of ν and λJ and
the fact that every good map has full branches it follows that

mp,C × ν
(
(C × J0) ∩ F−1

Y (C × J1)
)
> 0.

Together with the Poincaré Recurrence Theorem this gives that

A = {(ω, x) ∈ C × J0 : FmY (ω, x) ∈ C × J1 for infinitely many m ∈ N}

satisfiesmp,C×ν(A) > 0, and thereforemp,C×λJ(A) > 0. Together with λJ(J0\L) =

0 it follows from the Lebesgue Density Theorem that there exists a Lebesgue point
x ∈ π(A)∩L of 1π(A)∩L. Since x ∈ π(A), for infinitely many m ∈ N there exists Zm ∈
αm such that x ∈ JZm and TZm(JZm) = J1. This again together with Lemma 2.2.6
yields that for each ε > 0 there exist m ∈ N and Z ∈ αm such that

TZ(JZ) = J1 and λJ(JZ ∩ L) ≥ (1− ε)λJ(JZ).

Similar as before, this gives λJ(J1\L) = 0, so λJ(J\L) = 0.
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§2.2.3 Proof of Theorem 2.1.2
We will first give the proof of Lemma 2.1.6.

Proof of Lemma 2.1.6. It follows from (B3) that for any j ∈ ΣB and x ∈ [0, 1],

|Tj(x)− c| = |Tj(x)− Tj(c)| =
∣∣∣ ∫ x

c

DTj(y)dy
∣∣∣ ≥ min{Kb : b ∈ ΣB}

`max
|x− c|`j .

By induction we get that for each n ∈ N and ω ∈ ΣN
B ,

|Tnω (x)− c| ≥
(

min{Kb : b ∈ ΣB}
`max

)1+
∑n−2
i=0 `ωn ···`ωn−i

· |x− c|`ω1
···`ωn .

From (B3) we see that min{Kb : b∈ΣB}
`max

< 1. The lower bound now follows by observing
that (

1 +

n−2∑
i=0

`ωn · · · `ωn−i
)
/(`ω1

· · · `ωn) ≤
n∑
i=1

1

`imin

<
1

`min − 1
.

The result for the upper bound follows similarly, by noticing that in this case from
(B3) it follows that max{Mb : b∈ΣB}

`min
> 1.

Together with the results from the previous two subsections we now collected all
the ingredients necessary to prove Theorem 2.1.2.

Proof of Theorem 2.1.2. (1) We have constructed a finite FY -invariant measuremp,C×
ν which is absolutely continuous with respect to mp,C × λJ . Since F is non-singular
with respect to mp × λ we can therefore by Proposition 1.2.12 extend mp,C × ν to
a σ-finite F -invariant measure mp × µ that is absolutely continuous with respect to
mp × λ. According to Theorem 1.2.10 what is left to show is that F is conservative
and ergodic w.r.t. mp × λ.

Since µ � λ it follows from Lemma 2.2.2 that Y is a sweep-out set for F with
respect to mp×µ. Maharam’s Recurrence Theorem then gives that F is conservative
with respect to mp × µ. Furthermore, in the proof of part (2) below we will see that
the density of dµdλ is bounded away from zero. Hence, λ � µ and therefore F is also
conservative with respect to mp × λ. Furthermore, combining the ergodicity of FY
with respect to mp,C × λJ and the fact that Y is a sweep-out set for F with respect
to mp × λ gives using Proposition 1.2.11 that F is ergodic with respect to mp × λ.

(2) For the density ψ := dµ
dλ it holds that ψ|J = ϕ. Since we can take κ in the

definition of J as large as we want, ψ is locally Lipschitz on (0, c) and (c, 1). Moreover,
it is a fixed point of the Perron-Frobenius operator PT ,p being of the form as in (1.20)
and thus for all x ∈ (0, 1),

ψ(x) = PκT ,pψ(x) ≥ pκg
∑

y∈J∩T−κg {x}

ϕ(y)

|DTκg (y)|
.
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From Lemma 2.2.5 we conclude that ψ is bounded from below by some constant
C > 0. It remains to show that ψ is not in Lq for any q > 1. To see this, fix a b ∈ ΣB .
Since ψ is bounded from below by C > 0, we have for all k ∈ N0 and x ∈ [0, 1] that

ψ(x) = Pk+1
T ,p ψ(x) ≥ C · pgpkb

∑
y∈(TgTkb )−1{x}

1

|D(TgT kb )(y)|
. (2.21)

Let `b,Mb, rg,Mg,Kg be as in (B3) and (G3). From (B3), (G3) and Lemma 2.1.6 we
get

|D(TgT
k
b )(y)| = |DTg(T kb (y))|

k∏
i=1

|DTb(T k−ib (y))|

≤ Mg|T kb (y)− c|rg−1
k−1∏
i=0

(Mb|T ib (y)− c|`b−1)

≤ MgM
k
b (M̃ |y − c|)`

k
b (rg−1)

k−1∏
i=0

(M̃ |y − c|)`
i
b(`b−1)

= K1|y − c|`
k
b rg−1,

(2.22)

for the positive constant K1 = MgM
k
b M̃

`kb rg−1. On the other hand, from (G3) we
obtain for any y ∈ (TgT

k
b )−1{x} as in the proof of Lemma 2.1.6 that

|x− Tg(c)| = |TgT kb (y)− Tg(c)| ≥
Kg

rg
|T kb (y)− c|rg

and then Lemma 2.1.6 yields

|x− Tg(c)| ≥ K2|y − c|`
k
b rg (2.23)

for the positive constant K2 =
Kg
rg
K̃`brg . Now for any q > 1 we can choose k ∈ N0

large enough so that τ := (1− `−kb r−1
g )q ≥ 1. Combining (2.21), (2.22) and (2.23) we

obtain

ψq(x) ≥
(Cpgpkb

K1

)q( ∑
y∈(TgTkb )−1{x}

|y − c|1−`
k
b rg
)q

≥ K3|x− Tg(c)|−τ

for a positive constant K3. This gives the result.

Remark 2.2.8. The result from Theorem 2.1.2 still holds if we allow the critical
order `b from (B3) to be equal to 1 for some b, as long as `max > 1. To see this, note
that in the proof of Theorem 2.1.2 condition (B3) only plays a role in proving that
dµ
dλ 6∈ L

q for any q > 1. Here we refer to Lemma 2.1.6 and the constants K̃ and M̃ ,
which are not well defined if `min = 1. In (2.22) however, we use the estimates from
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Lemma 2.1.6 only for one arbitrary fixed b ∈ ΣB . By the same reasoning as in the
proof of Lemma 2.1.6 it follows that((Kb

`b

) 1
`b−1 |x− c|

)`nb
≤ |Tnb (x)− c| ≤

((Mb

`b

) 1
`b−1 |x− c|

)`nb
.

for any b ∈ ΣB with `b > 1. Hence, if there exists at least one b ∈ ΣB with `b > 1,
then we can replace the bounds obtained from Lemma 2.1.6 in (2.22) and (2.23) by
constants K1 = MgM

k
b (Kb`b )(`kb rg−1)/(`b−1) and K2 =

Kg
rg

(Mb

`b
)`brg/(`b−1) and obtain

the same result. In case `max = 1, then most parts from Theorem 2.1.2 still remain
valid with the exception that in that case we can only say that dµ

dλ 6∈ L
q if q ≥ rmax

rmax−1 .
This follows from the above reasoning by taking k = 0 in the definition of τ in the
proof of Theorem 2.1.2 and by noting that τ = (1− r−1

max)q ≥ 1 if q ≥ rmax

rmax−1 .

§2.3 Estimates on the acs measure

In this section we prove Theorem 2.1.3. Recall the definition of θ from Theorem 2.1.3:

θ =
∑
b∈ΣB

pb`b.

§2.3.1 The case θ ≥ 1

To prove one direction of Theorem 2.1.3, namely that the unique acs measure µ from
Theorem 2.1.2 is infinite if θ ≥ 1, we introduce another induced transformation.
Furthermore, we use that there exists a δ > 0 such that |DTb(x)| < 1 for all x ∈
[c− δ, c+ δ] and b ∈ ΣB . This implies

|Tb(x)− c| < |x− c| (2.24)

for all x ∈ [c− δ, c+ δ] and b ∈ ΣB .

Proposition 2.3.1. Suppose θ ≥ 1. Then the unique acs measure µ from The-
orem 2.1.2 is infinite.

Proof. Fix a b ∈ ΣB . Recall the definitions of M̃ from Lemma 2.1.6 and set γ =

min{δ, 1
2M̃

−1} with δ as given above. Let a ∈ [c−γ, c). Then there exists a ξ ∈ (a, c)

such that Tb(a) > ξ and T 2
b (a) > ξ. Take [bb]× (a, ξ) as the inducing domain and let

κ(ω, x) = inf{k ∈ N : F k(ω, x) ∈ [bb]× (a, ξ)}

be the first return time to [bb] × (a, ξ) under F . If mp × µ([bb] × (a, ξ)) = ∞, then
there is nothing left to prove. If not, then we compute

∫
[bb]×(a,ξ)

κ dmp × µ and use
Kac’s Lemma, i.e. Lemma 1.2.13, to prove the result.

So, assume that mp × µ([bb] × (a, ξ)) < ∞. The conditions that Tb(a) > ξ and
T 2
b (a) > ξ together with the fact that any bad map has c as a fixed point and is
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strictly monotone on the intervals (0, c) and (c, 1), guarantee that for each n ∈ N and
ω ∈ ΣN

B ∩ [bb] we get

Tnω ((a, ξ)) ∩ (a, ξ) = ∅. (2.25)

For any ω ∈ [bb] and x ∈ (a, ξ) it follows by (2.25) and (2.24) that Tnω (x) can only
return to (a, ξ) after at least one application of a good map. Assume that ω ∈ [bb] is
of the form

ω = (b, b, ω3, ω4, . . . , ωn, g, ωn+2, . . .),

with n ≥ 2, ωi ∈ ΣB for 3 ≤ i ≤ n, g ∈ Σg, and x ∈ (a, ξ). Then κ(ω, x) ≥ n + 1.
Lemma 2.1.6 yields that

|Tnω (x)− c| ≤ (M̃γ)`ω1 ···`ωn < 2−`ω1 ···`ωn . (2.26)

From (G3) and (2.26) we obtain that

|TgTnω (x)− Tg(c)| =

∣∣∣∣∣
∫ Tnω (x)

c

DTg(y) dy

∣∣∣∣∣ ≤ Mg

rg
|Tnω (x)− c|rg < Mg

rg
· 2−`ω1 ···`ωnrg .

(2.27)

Set

ζ = sup{|DTj(x)| : j ∈ Σ, x ∈ [0, 1]}.

Then ζ > 1 by (G4), (B4). Assume κ(ω, x) = m + n for some m ≥ 1. Then
Tm+n
ω (x) ∈ (a, ξ) so that by (G1),

|Tm+n
ω (x)− Tg(c)| ≥ min{a, 1− ξ}.

Because of (2.27) this implies

ζm−1Mg

rg
· 2−`ω1

···`ωnrg ≥ min{a, 1− ξ}.

Solving for m yields

m ≥ K1 +K2`ω1
· · · `ωn

for constants K1 = 1 + log
(min{a,1−ξ}rg

Mg

)
/ log ζ ∈ R and K2 = log(2rg )/ log ζ > 0.

Note that K1,K2 are independent of ω, x,m and n.

We obtain that for any g ∈ ΣG,∫
[bb]×(a,ξ)

κ dmp × µ

≥
∑
n∈N≥2

∑
ω3,...,ωn∈ΣB

mp([bbω3 · · ·ωng])µ((a, ξ))
(
n+K1 +K2`

2
b

n∏
i=3

`ωi

)
.

Since ∑
n∈N≥2

∑
ω3,...,ωn∈ΣB

mp([ω3 · · ·ωn])

n∏
i=3

`ωi = 1 +
∑
n∈N

θn =∞,

we get
∫

[bb]×(a,ξ)
κ dmp × µ = ∞ and from Lemma 1.2.13 we now conclude that µ is

infinite.
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§2.3.2 The case θ < 1

For the other direction of Theorem 2.1.3, assume θ < 1. We first obtain a stationary
probability measure µ̃ for F as in (2.5) using a standard Krylov-Bogolyubov type
argument. For this, let M denote the set of all finite Borel measures on [0, 1], and
define the operator P :M→M by

Pν =
∑
j∈Σ

pjν ◦ T−1
j , ν ∈M,

where ν ◦ T−1
j denotes the pushforward measure of ν under Tj . Then P is a Markov-

Feller operator (see e.g. [LMS04]) with dual operator U on the space BM([0, 1]) of all
bounded Borel measurable functions given by2 Uf =

∑
j∈Σ pjf◦Tj for f ∈ BM([0, 1]).

As before, let λ denote the Lebesgue measure on [0, 1], and set λn = Pnλ for each
n ≥ 0. Furthermore, for each n ∈ N define the Cesáro mean µn = 1

n

∑n−1
k=0 λk.

Since the space of probability measures on [0, 1] equipped with the weak topology is
sequentially compact, there exists a subsequence (µnk)k∈N of (µn)n∈N that converges
weakly to a probability measure µ̃ on [0, 1]. Using that a Markov-Feller operator
is weakly continuous, it then follows from a standard argument that Pµ̃ = µ̃, that
is, µ̃ is a stationary probability measure for F . The next theorem will lead to the
estimate (2.6) from Theorem 2.1.3. For any u = u1 · · ·uk ∈ Σk, k ≥ 0, recall that
we abbreviate pu =

∏k
i=1 pui and also let `u =

∏k
i=1 `ui if u ∈ ΣkB , where we use

pu = `u = 1 in case k = 0.

Theorem 2.3.2. There exists a constant C > 0 such that for all n ∈ N and all Borel
sets B ⊆ [0, 1] we have

λn(B) ≤ C ·
∑
g∈ΣG

pg

∞∑
k=0

∑
b∈ΣkB

pb`b · λ(B)`
−1
b r−1

g .

Before we prove this theorem, we first show how it gives Theorem 2.1.3.

Proof of Theorem 2.1.3. The first part of the statement follows from Proposition 2.3.1.
For the second part, assume that θ < 1 and that Theorem 2.3.2 holds. Let B ⊆ [0, 1]

be a Borel set. Using the regularity of λ, for any δ > 0 there exists an open set
G ⊆ [0, 1] such that B ⊆ G and λ(G) ≤ λ(B) + δ. Using that (µnk)k∈N converges
weakly to µ̃, we obtain from the Portmanteau Theorem together with Theorem 2.3.2
that

µ̃(B) ≤ µ̃(G) ≤ lim inf
k

µnk(G)

≤ C ·
∑
g∈ΣG

pg

∞∑
k=0

∑
b∈ΣkB

pb`b · (λ(B) + δ)`
−1
b r−1

g .

2By definition of a Markov-Feller operator, the space of bounded continuous functions is required
to be invariant under the dual operator U . If there is a g ∈ ΣG for which Tg is discontinuous (namely
at c), we then first identify [0, 1] with the unit circle S1 so that Tg can be viewed as a continuous
map on S1. With the same identification any acs measure on S1 then gives an acs measure on [0, 1].
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Since θ < 1, the sum is bounded and with the Dominated Convergence Theorem
we can take the limit as δ → 0 to obtain

µ̃(B) ≤ C ·
∑
g∈ΣG

pg

∞∑
k=0

∑
b∈ΣkB

pb`b · λ(B)`
−1
b r−1

g . (2.28)

This proves that µ̃ is absolutely continuous with respect to the Lebesgue measure on
[0, 1]. It follows that the probability measure µ̃ is equal to the unique acs measure µ
from Theorem 2.1.2. The estimate (2.6) follows directly from (2.28).

It remains to give the proof of Theorem 2.3.2. We shall do this in a number of
steps.

Proposition 2.3.3. There exists a constant K1 > 0 such that for all n ∈ N, all
u ∈ Σn and all Borel sets A ⊆ [0, 1] with 0 < 3λ(B) < 1

2 min{c, 1− c} we have

λ(T−1
u B) ≤ K1

(
λ(T−1

u [0, 3η)) + λ(T−1
u (c− 3η, c+ 3η)) + λ(T−1

u (1− 3η, 1])
)
,

where η = λ(B).

Proof. Let n ∈ N, u ∈ Σn and a Borel set B ⊆ [0, 1] with 0 < 3λ(B) < 1
2 min{c, 1 −

c} < 1 be given and write η = λ(B). The map Tu has non-positive Schwarzian
derivative on any of its intervals of monotonicity (see (1.13)) and the interior of
the image of any such interval is (0, c), (c, 1) or (0, 1). Set B1 = (η, c − η) and
B2 = (2η, c− 2η). Let I be a connected component of T−1

u B1, and set f = Tu|I and
I∗ = f−1B2. The Minimum Principle yields

|Df(x)| ≥ min
z∈∂I∗

|Df(z)|, for all x ∈ I∗. (2.29)

Suppose the minimal value is attained at f−1(2η) and set B3 = (2η, 3η) and J =

f−1B3. By the condition on the size of B it follows from the Koebe Principle that

K(η)|Df(f−1(2η))| ≥ |Df(x)|, for all x ∈ J . (2.30)

Combining (2.29) and (2.30) gives

λ(f−1(B ∩B2)) =

∫
B∩B2

1

|Df(f−1y)|
dλ(y) ≤ λ(B) · 1

|Df(f−1(2η))|

≤ K(η)

∫
B3

1

|Df(f−1y)|
dλ(y) = K(η)λ(f−1(B3)).

We conclude that

λ
(
T−1
u

(
B ∩ (2η, c− 2η)

))
≤ K(η)λ

(
T−1
u (2η, 3η)

)
.

In case minz∈∂I∗ |Df(z)| = f−1(c− 2η), a similar reasoning yields

λ
(
T−1
u

(
B ∩ (2η, c− 2η)

))
≤ K(η)λ

(
T−1
u (c− 3η, c− 2η)

)
.

Furthermore, a similar reasoning can be done for the interval [c, 1] to conclude that

λ
(
T−1
u

(
B∩(c+2η, 1−2η)

))
≤ K(η)

(
λ
(
T−1
u (c+2η, c+3η)

)
+λ
(
T−1
u (1−3η, 1−2η)

))
.

Hence, setting K1 = max{K(η), 1} gives the desired result.
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Proposition 2.3.3 shows that to get the desired estimate from Theorem 2.3.2 it
suffices to consider small intervals on the left and right of [0, 1] and around c, i.e. sets
of the form

Ic(ε) := (c− ε, c+ ε) and I0(ε) := [0, ε) ∪ (1− ε, 1]

for ε > 0. We first focus on estimating the measure of the intervals Ic(ε).

Lemma 2.3.4. There exists a constant K2 ≥ 1 such that for all n ∈ N, u ∈ Σn−1 ×
ΣG and all ε > 0 we have

λ(T−1
u Ic(ε)) ≤ K2ε.

Proof. Let n ∈ N and u ∈ Σn−1 × ΣG. Let ε > 0. Suppose that ε ≥ 1
4 min{c, 1− c}.

Then

λ(T−1
u Ic(ε)) ≤ 1 ≤ 4ε

min{c, 1− c}
. (2.31)

Now suppose ε < 1
4 min{c, 1 − c}. Again the map Tu has non-positive Schwarzian

derivative on the interior of any of its intervals of monotonicity and since un ∈ ΣG
the interior of the image of any such interval is (0, 1). Use I to denote the collection
of connected components of T−1

u Ic(ε). Let A ∈ I and write J = JA and I = IA for
the intervals that satisfy A ⊆ J , A ⊆ I and

Tu(J) =
[
c− 1

2
min{c, 1− c}, c+

1

2
min{c, 1− c}

]
,

Tu(I) =
[
c− 3

4
min{c, 1− c}, c+

3

4
min{c, 1− c}

]
.

Also, write f = Tu|I . Since f has non-positive Schwarzian derivative, it follows from
(1.12) applied to this setting

λ(A)

λ(J)
≤ K( 1

4 )λ(f(A))

λ(f(J))
= K( 1

4 ) 2ε

min{c, 1− c}
.

We conclude that

λ(T−1
u Ic(ε)) =

∑
A∈I

λ(A) ≤ K( 1
4 ) 2ε

min{c, 1− c}
∑
A∈I

λ(JA) ≤ K( 1
4 ) 2ε

min{c, 1− c}
.

(2.32)

Defining K2 = 2 max{2,K( 1
4

)}
min{c,1−c} , the desired result now follows from (2.31) and (2.32).

To find λn
(
Ic(ε)

)
, first note that from Lemma 2.1.6 it follows that for all ε > 0,

n ∈ N, u ∈ ΣnB ,

T−1
u

(
Ic(ε)

)
⊆ Ic

(
K̃−1ε`

−1
u
)
. (2.33)
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By splitting Σn according to the final block of bad indices, we can then write using
(2.33) and Lemma 2.3.4 that

λn
(
Ic(ε)

)
=

n−1∑
k=0

∑
v∈Σn−k−1

∑
g∈ΣG

∑
b∈ΣkB

pvgbλ
(
T−1
vgbIc(ε)

)
+
∑
b∈ΣnB

pbλ
(
T−1
b Ic(ε)

)
≤

n−1∑
k=0

∑
v∈Σn−k−1

∑
g∈ΣG

∑
b∈ΣkB

pvgbλ
(
T−1
vg Ic(K̃

−1ε`
−1
b )
)

+
∑
b∈ΣnB

pbλ
(
Ic(K̃

−1ε`
−1
b )
)

≤
n−1∑
k=0

∑
g∈ΣG

∑
b∈ΣkB

pgpbK2K̃
−1ε`

−1
b +

∑
b∈ΣnB

pb2K̃−1ε`
−1
b .

Taking K3 = max
{
K2, 2

(∑
g∈ΣG

pg
)−1} · K̃−1 ≥ 1 then gives

λn
(
Ic(ε)

)
≤ K3

∑
g∈ΣG

n∑
k=0

∑
b∈ΣkB

pgpbε
`−1
b . (2.34)

We now focus on I0(ε) = [0, ε) ∪ (1− ε, 1]. Fix an 0 < ε0 <
1
2 min{c, 1− c} and a

t > 1 that satisfy

|DTj(x)| > t, for all x ∈ I0(ε0) and each j ∈ Σ.

Such ε0 and t exist because of (G4) and (B4). From (G3) it follows that for each
0 < ε < ε0 and g ∈ ΣG,

|Tg(x)− Tg(c)| =
∣∣∣∣∫ x

c

DTg(y)dy

∣∣∣∣ ≥ Kg

rg
· |x− c|rg .

Set K4 = max{(K−1
g rg)

r−1
g : g ∈ ΣG} ≥ 1. Then (G1) implies that

T−1
g I0(ε) ⊆ I0(εt−1) ∪ Ic(K4ε

r−1
g ). (2.35)

Furthermore, from (B1) it follows that for each ε ∈ (0, ε0) and b ∈ ΣB ,

T−1
b I0(ε) ⊆ I0(εt−1). (2.36)

Write each u ∈ Σn as

u = b1g1 · · · bs̃gs̃ (2.37)

for some s̃ ∈ {1, . . . , n}, where for each i we have bi = bi,1 · · · bi,ki ∈ ΣkiB and gi =

gi,1 · · · gi,mi ∈ ΣmiG for some k1,ms̃ ∈ N0 and k2, . . . , ks̃,m1, . . . ,ms̃−1 ∈ N. Define

s =

{
s̃, if ms̃ ≥ 1,

s̃− 1, if ms̃ = 0.

57



2. Absolutely continuous invariant measures for critically intermittent systems

C
h
a
pt

er
2

Moreover, we introduce notation to indicate the length of the tails of the block u:

di = |bigi · · · bs̃gs̃|, i ∈ {1, . . . , s̃},
qi,j = |gi,j+1 · · · gi,mibi+1gi+1 · · · bs̃gs̃|, i ∈ {1, . . . , s̃}, j ∈ {0, . . . ,mi}.

If necessary to avoid confusion, we write s(u), ki(u), etc., to emphasise the depend-
ence on u.

Lemma 2.3.5. There exists a constant K5 > 0 such that for each 0 < ε < ε0, n ∈ N
and u = b1g1 · · · bs̃gs̃ ∈ Σn,

T−1
u I0(ε) ⊆ I0(εt−d1) ∪

s⋃
i=1

T−1
b1g1···bi−1gi−1

Ic

(
K5(εt−qi,1)

`−1
bi
r−1
gi,1

)
∪

s⋃
i=1

mi⋃
j=2

T−1
b1g1···bi−1gi−1bigi,1···gi,j−1

Ic(K5(εt−qi,j )
r−1
gi,j ).

Proof. We prove the statement by an induction argument for s̃. Let u be a word with
symbols in Σ, and write u = b1g1 · · · bs̃gs̃ for its decomposition as in (2.37). First
suppose that s̃ = 1. If m1 = 0, then the statement immediately follows from repeated
application of (2.36). If m1 ≥ 1, then repeated application of (2.35) gives

T−1
g1
I0(ε) ⊆ I0(εt−q1,0) ∪ Ic

(
K4(εt−q1,1)

r−1
g1,1

)
∪
m1⋃
j=2

T−1
g1,1···g1,j−1

Ic

(
K4(εt−q1,j )

r−1
g1,j

)
.

By setting K5 = K̃−1K4, applying (2.33) and (2.36) then yields

T−1
b1g1

I0(ε) ⊆ I0(εt−d1) ∪ Ic
(
K5(εt−q1,1)

`−1
b1
r−1
g1,1

)
∪
m1⋃
j=2

T−1
b1g1,1···g1,j−1

Ic

(
K5(εt−q1,j )

r−1
g1,j

)
.

Note that this is true for the case that k1 = 0 as well. This proves the statement if s̃ =

1. Now suppose s̃(u) > 1 and suppose that the statement holds for all words v with
s̃(v) = s̃(u) − 1. In particular, the statement then holds for the word b2g2 · · · bs̃gs̃.
Note that m1 ≥ 1. Again, by repeated application of (2.35) it follows that

T−1
g1
I0(εt−d2) ⊆ I0(εt−q1,0) ∪ Ic

(
K4(εt−q1,1)

r−1
g1,1

)
∪
m1⋃
j=2

T−1
g1,1···g1,j−1

Ic

(
K4(εt−q1,j )

r−1
g1,j

)
.

Furthermore, applying (2.33) and (2.36) then yields

T−1
b1g1

I0(εt−d2) ⊆ I0(εt−d1) ∪ Ic
(
K5(εt−q1,1)

`−1
b1
r−1
g1,1

)
∪
m1⋃
j=2

T−1
b1g1,1···g1,j−1

Ic

(
K5(εt−q1,j )

r−1
g1,j

)
.
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This together with the statement being true for the word b2g2 · · · bs̃gs̃ yields the
statement for u.

Combining Lemma 2.3.4 and Lemma 2.3.5 gives

λ(T−1
u I0(ε)) ≤ 2εt−d1 +

s∑
i=1

K2K5(εt−qi,1)
`−1
bi
r−1
gi,1 +

s∑
i=1

mi∑
j=2

K2K5(εt−qi,j )
r−1
gi,j .

Let rmax = max{rg : g ∈ ΣG} and set α := t1/rmax > 1. Then

s∑
i=1

mi∑
j=2

α−qi,j ≤
∞∑
`=0

α−` =
1

1− 1/α
,

so that

λ(T−1
u I0(ε)) ≤ 2ε1/rmax +K2K5

s∑
i=1

mi∑
j=2

ε1/rmaxα−qi,j +

s∑
i=1

K2K5(εt−qi,1)
`−1
bi
r−1
gi,1

≤
(

2 +
K2K5

1− 1/α

)
ε1/rmax +K2K5

s∑
i=1

(εt−qi,1)
`−1
bi
r−1
gi,1 .

(2.38)

Proposition 2.3.6. There exists a constant K6 > 0 such that for each ε ∈ (0, ε0)

and n ∈ N,

λn(I0(ε)) ≤ K6

∑
g∈ΣG

pg

n−1∑
k=0

∑
b∈ΣkB

pb`b · ε`
−1
b r−1

g .

Proof. Let n ∈ N. Then with (2.38) we obtain

λn(I0(ε)) =
∑

u∈Σn

puλ
(
T−1
u (I0(ε))

)
≤
(

2 +
K2K5

1− 1/α

)
ε1/rmax +K2K5

∑
u∈Σn

pu

s(u)∑
i=1

(
εt−qi,1(u)

)`−1
bi(u)

r−1
gi,1(u)

=

(
2 +

K2K5

1− 1/α

)
ε1/rmax

+K2K5

τ∑
i=1

∑
u∈Σn

1{1,...,s(u)}(i)pu
(
εt−qi,1(u)

)`−1
bi(u)

r−1
gi,1(u) , (2.39)

where we defined τ = bn+1
2 c which is the largest value s(u) can take. Let us consider

the term in (2.39). First of all, note that a word u ∈ Σn satisfies s(u) ≥ 1 if and only
if m1(u) ≥ 1. Therefore,

{u ∈ Σn : s(u) ≥ 1} =

n−1⋃
k=0

ΣkB × ΣG × Σn−k−1.
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Hence, defining the function χ on {0, . . . , n− 1}2 by

χ(k, q) =
∑
b∈ΣkB

∑
g∈ΣG

pbpg
(
εt−q

)`−1
b r−1

g , (k, q) ∈ {0, . . . , n− 1}2. (2.40)

we can rewrite and bound the term with i = 1 in (2.39) as follows:

∑
u∈Σn

1{1,...,s(u)}(1)pu
(
εt−q1,1(u)

)`−1
b1(u)

r−1
g1,1(u) =

n−1∑
k=0

∑
v∈Σn−k−1

pvχ(k, n− k − 1)

≤ ε1/rmax +

n−1∑
k=1

χ(k, n− k − 1).

(2.41)

Secondly, note that for each i ∈ {2, . . . , τ} a word u ∈ Σn satisfies s(u) ≥ i if and only
if mi−1(u), ki(u),mi(u) ≥ 1. For each k ∈ {1, . . . , n− 2} and q ∈ {0, . . . , n− k − 2}
and i ∈ {2, . . . , τ} we define

Ai,k,q = {v ∈ Σn−k−q−1 : s̃(v) = i− 1, vn−k−q−1 ∈ ΣG}.

The set Ai,k,q contains all words of length n − k − q − 1 that can precede the word
bigi · · · bs̃gs̃ with |bi| = k and |gi,2 · · · gi,mibi+1gi+1 · · · bs̃gs̃| = q. So

{u ∈ Σn : s(u) ≥ i} =

n−2⋃
k=1

n−k−2⋃
q=0

Ai,k,q × ΣkB × ΣG × Σq, i ∈ {2, . . . , τ}.

Hence, using (2.40) we can rewrite and bound the sum in (2.39) that runs from i = 2

to τ as follows:

τ∑
i=2

∑
u∈Σn

1{1,...,s(u)}(i)pu
(
εt−qi,1(u)

)`−1
bi(u)

r−1
gi,1(u)

=

τ∑
i=2

n−2∑
k=1

n−k−2∑
q=0

∑
v1∈Ai,k,q

∑
v2∈Σq

pv1
pv2

χ(k, q)

=

n−2∑
k=1

n−k−2∑
q=0

χ(k, q)

τ∑
i=2

∑
v1∈Ai,k,q

∑
v2∈Σq

pv1
pv2

≤
n−2∑
k=1

n−k−2∑
q=0

χ(k, q).

(2.42)

Here the last step follows from the fact that

τ∑
i=2

∑
v1∈Ai,k,q

pv1
≤

∑
v∈Σn−k−q−2

∑
g∈ΣG

pvpg ≤ 1.
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Combining (2.41) and (2.42) gives

τ∑
i=1

∑
u∈Σn

1{1,...,s(u)}(i)pu
(
εt−qi,1(u)

)`−1
bi(u)

r−1
gi,1(u) ≤ ε1/rmax +

n−1∑
k=1

n−k−1∑
q=0

χ(k, q).

(2.43)

Furthermore, for each b ∈ ΣkB and g ∈ ΣG we have again by setting rmax = max{rj :

j ∈ ΣG} and α = t1/rmax that

n−k−1∑
q=0

(t−q)`
−1
b r−1

g ≤
n−k−1∑
q=0

(
α−`

−1
b

)q ≤ 1

1− α−`−1
b

≤
α`−1

b

α`
−1
b − 1

`b ≤
α

log(α)
`b, (2.44)

where the last step follows from the fact that f(x) = x
αx−1 is a decreasing function

and limx↓0 f(x) = 1
logα . Hence, combining (2.39), (2.43) and (2.44) gives

λn(I0(ε))

≤
(

2 +
K2K5

1− 1/α
+K2K5

)
ε1/rmax +K2K5

n−1∑
k=1

n−k−1∑
q=0

∑
b∈ΣkB

∑
g∈ΣG

pbpg
(
εt−q

)`−1
b r−1

g

≤
(

2 +K2K5
2α− 1

α− 1

)
ε1/rmax +K2K5

n−1∑
k=1

∑
b∈ΣkB

∑
g∈ΣG

pbpgε
`−1
b r−1

g
α`b

log(α)

≤ K6

∑
g∈ΣG

pg

n−1∑
k=0

∑
b∈ΣkB

pb`bε
`−1
b r−1

g ,

where K6 = 1
min{pg : g∈ΣG}

(
2 +K2K5

2α−1
α−1

)
+ K2K5α

logα .

We are now ready to prove Theorem 2.3.2.

Proof of Theorem 2.3.2. Let B ⊆ [0, 1] be a Borel set. First suppose that λ(B) ≥ ε0
3 .

Then there exists a constant C = C(ε0) > 0 such that

λn(B) ≤ 1 ≤ C
∑
g∈ΣG

pg

∞∑
k=0

∑
b∈ΣkB

pb`b · λ(B)`
−1
b r−1

g .

Now suppose that λ(B) < ε0
3 and set ε = 3λ(B). It follows from Proposition 2.3.3

that for all n ∈ N and all u ∈ Σn we have

λ
(
T−1
u B

)
≤ K1

(
λ(T−1

u I0(ε)) + λ(T−1
u Ic(ε))

)
.

Together with (2.34) and Proposition 2.3.6 this yields for all n ∈ N that

λn(B) ≤ K1 · (K3 +K6)
∑
g∈ΣG

pg

∞∑
k=0

∑
b∈ΣkB

pb`b · ε`
−1
b r−1

g .

This gives the result.
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§2.4 Further results and final remarks

§2.4.1 Proof of Corollaries 2.1.4 and 2.1.5
In this section we prove Corollaries 2.1.4 and 2.1.5.

Proof of Corollary 2.1.4. We use the bound (2.6) obtained in Theorem 2.1.3. For
convenience, we set ` = `max and x = λ(B)1/rmax . The asymptotics are determined
by the interplay between θk ↘ 0 and x1/`k ↗ 1. First suppose θ < x1/`. Then
λ(B) > θ`rmax , so for each κ > 0 there exists C > 0 sufficiently large such that

µ(B) ≤ 1 ≤ C · 1

logκ(1/λ(B))
.

Now suppose θ ≥ x1/`. Note that θN ≥ x1/`N if and only if

logN +N log ` ≤ log

(
log x

log θ

)
.

Since logN ≤ N , this last inequality is satisfied if we take for example

N =

⌊
1

1 + log `
log

(
log x

log θ

)⌋
=

⌊
1

1 + log `
log

(
log(1/x)

log(1/θ)

)⌋
, (2.45)

where byc denotes the largest integer not exceeding y. Taking N as in (2.45), note
that it follows from θ ≥ x1/` that N ≥ 0. Then θk ≥ x1/`k for all k ≤ N as well, and
hence

∞∑
k=0

θkx1/`k =

N∑
k=0

θkx1/`k +

∞∑
k=N+1

θkx1/`k ≤
N∑
k=0

θk · x1/`N +

∞∑
k=N+1

θk · 1

≤ 1

1− θ
x1/`N +

θN+1

1− θ
≤ 1

1− θ
(1 + θ)θN .

From (2.45) we see that N ≥ 1
1+log ` log

(
log x
log θ

)
− 1, thus

θN = exp(N log θ) ≤ exp

((
1

1 + log `
log

(
log(1/x)

log(1/θ)

)
− 1

)
log θ

)
= exp

(
log θ

1 + log `
log log(1/x) + C(`, θ)

)
= C(`, θ)

(
log(1/x)

) log θ
1+log ` = C(`, θ)

(
rmax

log(1/λ(B))

)κ
,

where we set κ = log(1/θ)
1+log ` > 0, and where C(`, θ) ∈ R and C(`, θ) > 0 are constants

that only depend on ` and θ. We conclude from the bound (2.6) that

µ(B) ≤ K · 1

logκ(1/λ(B))

for some positive constant K.
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The proof of Corollary 2.1.5 consists of two steps. Firstly we show that any weak
limit point of µpn is a stationary measure, i.e. satisfies (1.18), and secondly that any
weak limit point of µpn is absolutely continuous with respect to the Lebesgue measure.
The corollary then follows from the uniqueness of absolutely continuous stationary
measures given by Theorem 2.1.2.

Proof of Corollary 2.1.5. For each n ≥ 0, let pn = (pn,j)j∈Σ be a strictly positive
probability vector such that supn

∑
b∈ΣB

pn,b`b < 1 and assume that limn→∞ pn = p

in RN+ for some strictly positive probability vector p = (pj)j∈Σ. Let µ̃ be a weak limit
point of an arbitrary subsequence of µpn . Again, note that such a µ̃ exists because the
space of probability measures on [0, 1] equipped with the weak topology is sequentially
compact. After passing to a further subsequence we have for any continuous function
ϕ : [0, 1]→ R that

lim
n→∞

∫
[0,1]

ϕdµpn =

∫
[0,1]

ϕdµ̃.

Moreover, by the stationarity of the measures µpn it follows that for each n ≥ 1,∫
[0,1]

ϕdµpn =
∑
j∈Σ

pn,j

∫
[0,1]

ϕ ◦ Tj dµpn .

To prove that µ̃ is stationary for p, it is sufficient to show that for each j ∈ Σ,

lim
n→∞

pn,j

∫
[0,1]

ϕ ◦ Tj dµpn = pj

∫
[0,1]

ϕ ◦ Tj dµ̃. (2.46)

If j ∈ ΣB this is obvious, since then ϕ ◦ Tj is continuous. For j ∈ ΣG the map
ϕ ◦ Tj might have a discontinuity at c. In this case, we let ϕδ be the continuous
function given by ϕδ(x) = ϕ◦Tj(x) for x ∈ I \ (c− δ, c+ δ) and ϕδ is linear otherwise.
Then we have

lim
n→∞

∣∣∣∣∣pn,j
∫

[0,1]

ϕδ dµpn − pj
∫

[0,1]

ϕδ dµ̃

∣∣∣∣∣ = 0,

by the weak convergence and since pn,j → pj as n→∞. Also, we have∣∣∣∣∣pn,j
∫

[0,1]

ϕ ◦ Tj dµpn − pn,j
∫

[0,1]

ϕδ dµpn

∣∣∣∣∣ ≤ Cµpn([c− δ, c+ δ])→ 0 as δ → 0,

where the convergence is uniform in n because of (2.6). Similarly,∣∣∣∣∣pj
∫

[0,1]

ϕ ◦ Tjdµ̃− pj
∫

[0,1]

ϕδdµ̃

∣∣∣∣∣ ≤ Cµ̃([c− δ, c+ δ])→ 0 as δ → 0,

The last three relations imply (2.46).
To show that µ̃ is absolutely continuous with respect to the Lebesgue measure λ

we proceed as in the proof of Theorem 2.1.3. We set θ̃ = supn
∑
b∈ΣB

pn,b`b < 1. Let
B ⊆ [0, 1] be a Borel set. Every µpn satisfies the conclusion of Theorem 2.1.3, so

µpn(B) ≤ Cn
∞∑
k=0

θ̃kλ(B)`
−k
maxr

−1
max ,
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where the constant Cn depends on (
∑
g∈ΣG

pn,g
)−1 and (min{pn,g : g ∈ ΣG})−1

(and properties of the good and bad maps themselves that are not linked to the
probabilities). Since p and each pn, n ≥ 0, are strictly positive probability vector
and limn→∞ pn = p, both these quantities can be bounded from above and C̃ :=

supn Cn < ∞. From the weak convergence of µpn to µ̃ we obtain as in (2.28) using
the Portmanteau Theorem that

µ̃(B) ≤ C̃
∞∑
k=0

θ̃kλ(B)`
−k
maxr

−1
max .

Hence, µ̃ � λ. By Theorem 2.1.2 we know that µp is the unique acs probability
measure for (T ,p). So, µ̃ = µp.

§2.4.2 The non-superattracting case
With some modifications the results from Theorem 2.1.2 and Theorem 2.1.3 can be
extended to the class B1 ⊇ B of bad maps whose critical order `b in (B3) is allowed
to be equal to 1. We will list the modified statements and the necessary modifications
to the proofs here. Note that for each T ∈ B1 \B, we have DT (c) 6= 0, and due to the
minimal principle, |DT (c)| < 1. We consider T1, . . . , TN ∈ G ∪B1 with Σ1

B = {1 ≤
j ≤ N : Tj ∈ B1} and ΣG, ΣB as before and such that ΣG,Σ

1
B\ΣB 6= ∅. Furthermore,

we write again Σ = {1, . . . , N} = ΣG ∪ Σ1
B . We again set `max = max{`b : b ∈ ΣB}.

Theorem 2.4.1. Let T = {Tj : j ∈ Σ} be as above and p = (pj)j∈Σ a strictly positive
probability vector.

(a) There exists a unique (up to scalar multiplication) σ-finite acs measure µ for
(T ,p). Moreover, F is ergodic w.r.t. mp × µ and the density dµ

dλ is bounded
away from zero and is locally Lipschitz on (0, c) and (c, 1).

(b) Suppose `max > 1.

(i) The measure µ is finite if and only if θ =
∑
b∈Σ1

B
pb`b < 1. In this case,

for each θ̂ ∈ (θ, 1) there exists a constant C(θ̂) > 0 such that

µ(B) ≤ C(θ̂) ·
∞∑
k=0

θ̂kλ(B)`
−k
maxr

−1
max

for any Borel set B ⊆ [0, 1], where rmax = max{rg : g ∈ ΣG}.
(ii) The density dµ

dλ is not in Lq for any q > 1.

(c) Suppose `max = 1.

(i) The measure µ is finite, and for each η = (ηb)b∈Σ1
B

such that ηb > 1 for
each b ∈ Σ1

B and θ̂(η) =
∑
b∈Σ1

B
pbηb < 1 there exists a constant C(η) > 0

such that

µ(B) ≤ C(η) ·
∞∑
k=0

θ̂(η)kλ(B)η
−k
maxr

−1
max
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for any Borel set B ⊆ [0, 1], where ηmax = max{ηb : b ∈ Σ1
B}. If∑

b∈Σ1
B

pb
|DTb(c)| < 1, so if the bad maps are expanding on average at the

point c, then we can get the estimate

µ(B) ≤ C · λ(B)r
−1
max (2.47)

for some constant C > 0 and any Borel set B ⊆ [0, 1].
(ii) If rmax > 1, then dµ

dλ 6∈ L
q for any q ≥ rmax

rmax−1 . If also
∑
b∈Σ1

B

pb
|DTb(c)| < 1,

then dµ
dλ ∈ L

q for all 1 ≤ q < rmax

rmax−1 .

(iii) If rmax = 1 and
∑
b∈Σ1

B

pb
|DTb(c)| < 1, then dµ

dλ ∈ L
∞.

The main issue we need to deal with in order to get Theorem 2.4.1 is adapting
Lemma 2.1.6, i.e. finding suitable bounds for |Tnω (x)− c|, since the constants K̃ and
M̃ from Lemma 2.1.6 are not well defined in case `min = 1. This is done in the next
two lemmas. For the upper bound of |Tnω (x) − c| we assume `max > 1 since we only
need it for the proof of part (b)(i).

Lemma 2.4.2. Let {Tj : j ∈ Σ} be as above. Suppose `max > 1. There are constants
M̂ > 1 and δ > 0 such that for all n ∈ N, ω ∈ (Σ1

B)N and x ∈ [c− δ, c+ δ] we have

|Tnω (x)− c| ≤
(
M̂ |x− c|

)`ω1
···`ωn

.

Proof. Similar as in the proof of Lemma 2.1.6 it follows that there exists an M > 1

such that for any b ∈ ΣB and x ∈ [0, 1] we have

|Tb(x)− c| ≤M |x− c|`b . (2.48)

Furthermore, there exists a δ > 0 such that |DTb(x)| < 1 for all x ∈ [c− δ, c+ δ] and
b ∈ Σ1

B . This implies

|Tb(x)− c| < |x− c| (2.49)

for all x ∈ [c − δ, c + δ] and b ∈ Σ1
B . Note that ΣB 6= ∅ because `max > 1. We set

υ = min{`b : b ∈ ΣB} > 1 and M̂ = M
1

υ−1 . For each n ∈ N and ω ∈ (Σ1
B)N, write

m(n, ω) = #{1 ≤ ωi ≤ n : `ωi > 1}.

The statement follows by showing that for all n ∈ N, ω ∈ (Σ1
B)N and x ∈ [c− δ, c+ δ]

we have

|Tnω (x)− c| ≤
(
M (1−υ−m(n,ω))/(υ−1)|x− c|

)`ω1
···`ωn

. (2.50)

We prove (2.50) by induction. From (2.48) and (2.49) it follows that (2.50) holds for
n = 1. Now suppose (2.50) holds for some n ∈ N. Let ω ∈ (Σ1

B)N and y ∈ [c−δ, c+δ].
If `ωn+1

= 1, then the desired result follows by applying (2.49) with b = ωn+1 and
x = Tnω (y). Suppose `ωn+1

> 1. Then, using (2.48),

|Tn+1
ω (y)− c| ≤ M |Tnω (y)− c|`ωn+1

≤
(
M (1−υ−m(n,ω))/(υ−1)+υ−m(n+1,ω)

|y − c|
)`ω1

···`ωn+1

.
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Using that

υ−m(n+1,ω) =
υ−m(n,ω) − υ−m(n+1,ω)

υ − 1
,

the desired result follows.

Lemma 2.4.3. Let {Tj : j ∈ Σ} be as above. Let η = (ηb)b∈Σ1
B
be a vector such that

ηb > 1 for each b ∈ Σ1
B. Set η̂b = max{ηb, `b} for each b ∈ Σ1

B. Then there exists a
constant K̂(η) ∈ (0, 1) such that for all n ∈ N, ω ∈ (Σ1

B)N and x ∈ [0, 1] we have(
K̂(η)|x− c|

)η̂ω1
···η̂ωn

≤ |Tnω (x)− c|.

Proof. Note from (B3) that for each b ∈ Σ1
B we have

Kb|x− c|η̂b−1 ≤ Kb|x− c|`b−1 ≤ |DTb(x)|.

By setting η̂min = min{η̂b : b ∈ Σ1
B}, η̂max = max{η̂b : b ∈ Σ1

B} and K̂(η) =(min{Kb : b∈Σ1
B}

η̂max

) 1
η̂min−1 the result now follows in the same way as in the proof of Lemma

2.1.6.

Proof of Theorem 2.4.1. Firstly, note that (a), (b)(ii) and the first part of (c)(ii)
immediately follow from Remark 2.2.8. Moreover, as in [dMvS93, Section 5.4] it can
be shown that (2.47) implies that dµ

dλ is in Lq if rmax > 1 and 1 ≤ q < rmax

rmax−1 , giving
the remainder of 3(ii). It is immediate that (2.47) implies that dµdλ is in L∞ if rmax = 1,
so (3)(iii) holds. Hence, it remains to prove (b)(i) and (c)(i).

Suppose θ =
∑
b∈Σ1

B
pb`b ≥ 1, which means that `max > 1. The proof that in

this case µp is infinite follows by the same reasoning as in Subsection 2.3.1 by now
taking γ = min{δ, 1

2M̂
−1} with δ and M̂ as in the proof of Lemma 2.4.2. Now

suppose θ < 1. Let η = (ηb)b∈Σ1
B

be a vector such that ηb > 1 for each b ∈ Σ1
B and

θ̂(η) =
∑
b∈Σ1

B
pbη̂b < 1 with again η̂b = max{ηb, `b}. Applying Lemma 2.4.3 yields

that for all ε > 0, n ∈ N, b ∈ (Σ1
B)n,

T−1
b

(
Ic(ε)

)
⊆ Ic

(
K̂(η)−1εη̂

−1
b

)
, (2.51)

where we used the notation η̂b = η̂b1 · · · η̂bn for a word b = b1 · · · bn. Following the line
of reasoning in Subsection 2.3.2 with (2.51) instead of (2.33), we obtain that there
exists a constant C(η) > 0 such that

µ(B) ≤ C(η) ·
∞∑
k=0

θ̂(η)kλ(B)η̂
−k
maxr

−1
max (2.52)

for any Borel set B ⊆ [0, 1]. In case `max > 1 we can choose η to satisfy η̂max = `max

and such that θ̂(η)− θ > 0 is arbitrarily small, which yields (b)(i). In case `max = 1,
then η̂max = ηmax, so this together with (2.52) yields the first part of (c)(i).
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Finally, for the second part of (c)(i), suppose `max = 1 and Λ =
∑
b∈Σ1

B

pb
|DTb(c)| <

1. Setting Kb = |DTb(c)| for each b ∈ (Σ1
B)n and n ∈ N, note that for all ε > 0,

n ∈ N, b ∈ (Σ1
B)n,

T−1
b

(
Ic(ε)

)
⊆ Ic

(
K−1

b ε
)
. (2.53)

By using (2.53) instead of (2.33), letting p̃b = K−1
b pb play the role of pb in the

reasoning of Subsection 2.3.2 and noting that Λk =
∑

b∈(Σ1
B)k p̃b, we arrive similarly

as for Theorem 2.3.2 to the conclusion that there exists a constant C̃ > 0 such that
for all n ∈ N and all Borel sets B ⊆ [0, 1],

λn(B) ≤ C̃ ·
∑
g∈ΣG

pg

( ∞∑
k=0

Λk
)
λ(B)r

−1
g .

This proves the remaining part of (c)(i).

§2.4.3 Final remarks
The results from Theorem 2.4.1 contain one possible extension of our main results
to another set of conditions (G1)–(G4), (B1)–(B4). In this section we discuss some
of the questions that our main results brought up in this respect, i.e. about whether
or not some of the conditions (G1)–(G4), (B1)–(B4) can be relaxed, and questions
about other possible future extensions.

A condition that plays a fundamental role in the proofs of Theorem 2.1.2 and
Theorem 2.1.3 is the fact that the critical point is mapped to a point that is a common
repelling fixed point for all maps Tj . We considered whether this condition can be
relaxed, for instance by assuming that the branches of one of the good maps are not
full. However, in this case the critical values of the random system are not just 0, c, 1

but contain all the values of all possible postcritical orbits of c. This has several
consequences:

- An invariant density (if it exists) clearly cannot be locally Lipschitz on (0, c) and
(c, 1).

- Proposition 2.3.3 and all subsequent arguments fail, since it is not sufficient to
restrict to neighbourhoods around only 0, c and 1. One might try to solve this issue by
requiring that (on average) the postcritical orbits ‘gain enough expansion’ as is done
in for instance [NvS91] for deterministic maps (see Theorem 2.1.1). An analogous
condition for random systems, however, would be much more difficult to verify since
it would involve all possible random orbits of c.

- The argument using Kac’s Lemma might fail, because in that case there exist
words u with symbols in Σ and neighbourhoods U of c such that Tu(x) is bounded
away from 0 and 1 uniformly in x ∈ U .

There are also some additional questions that our main results raise. It would be
interesting for example to study further statistical properties of the random systems
such as mixing properties and if possible mixing rates in case the acs measure is finite.
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As is well known from e.g. [KN92, Y92, Y98, BLvS03] the good maps individually
have exponential decay of correlations. But since trajectories in the random systems
spend long periods of time near the points 0 or 1 or both, polynomial mixing rates
are expected rather than exponential. This will be the topic of Chapter 3.

The dynamical behaviour of the system is governed by the interplay between the
superexponential convergence to c and the exponential divergence from 0 and 1. In
this chapter we fixed the exponential divergence away from 0 and 1 and the two
regimes θ < 1 and θ ≥ 1 in Theorem 2.1.3 only refer to the convergence to c: For
smaller (bigger) θ orbits are less (more) attracted to c. It would be interesting to see
under what other conditions on the rates of convergence to c and divergence from 0

and 1 the system admits an acs measure. Could one for example
- take exponential convergence to c and polynomial divergence from 0 and 1? We

will investigate this question in Chapter 4.
- replace the conditions (G4) and (B4) stating that all good and bad maps are

expanding at 0 and 1 by the condition that the random system is expanding on average
at a sufficiently large neighbourhood of 0 and 1?

Finally, in Theorems 2.1.2 and 2.4.1 we have seen that the regularity of the density
dµ
dλ depends on whether or not there is a bad map for which c is superstable: If
`max > 1, then dµ

dλ is not in Lq for any q > 1. On the other hand, if `max = 1 and the
bad maps are expanding on average at c, i.e.

∑
b∈Σ1

B

pb
|DTb(c)| < 1, then the density

has the same regularity as in the setting of Theorem 2.1.1 by Nowicki and Van Strien.
Indeed, in this case, if rmax > 1, we have dµ

dλ ∈ L
q if and only if 1 ≤ q < rmax

rmax−1 and in
the case that rmax = 1 we have dµ

dλ ∈ L
q for all q ∈ [1,∞]. In view of this, one could

wonder for which q > 1 we have dµ
dλ ∈ L

q in the intermediate case that `max = 1 and∑
b∈Σ1

B

pb
|DTb(c)| ≥ 1, i.e. if c is not superattracting for any bad map and the bad maps

are not expanding on average at c.
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