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PART 1

STATISTICAL PROPERTIES OF
CRITICALLY INTERMITTENT
SYSTEMS







CHAPTER 2

Absolutely continuous invariant
measures for critically intermittent
systems

This chapter is based on: [HKR122].

Abstract

Critical intermittency stands for a type of intermittent dynamics caused by an in-
terplay of a superstable fixed point and a repelling fixed point. We consider a large
class of random interval maps that exhibit critical intermittency and demonstrate
the existence of a phase transition when varying probabilities, where the absolutely
continuous invariant measure changes between finite and infinite. We discuss further
properties of this measure and show that its density is not in L9 for any ¢ > 1. This
provides a theory of critical intermittency alongside the theory for the well-studied
Manneville-Pomeau maps where the intermittency is caused by a neutral fixed point.



CHAPTER 2

2. Absolutely continuous invariant measures for critically intermittent systems

§2.1 Introduction

The concept of critical intermittency has been illustrated in Subsection 1.1.1 by ran-
dom i.i.d. applications of the two logistic maps Lo(x) = 22(1 — z) and Ly(x) =
4x(1 — x) on the unit interval: Orbits converge superexponentially fast to 5 under
applications of Lo, and as soon as L4 is applied then diverge exponentially fast from
the repelling fixed point, behaving chaotically again for some time once escaped. See
Figures 1.1(b) and 1.2(b). The alternation between chaotic periods and being in a
seemingly steady state is related to the probability of choosing the maps as well as
the critical order ¢ = 2 of Ly, which determines the speed of convergence to % In
[AGH18] it is shown that this random system admits a o-finite acs measure which
is infinite if the probability po of choosing Ly satisfies po > % We will see in this
chapter that this acs measure in fact is finite if and only if ps - €5 < 1. More generally,
we will prove such a phase transition for the acs measure for a large family of random

interval maps with critical intermittency.

In this chapter we consider critically intermittent systems on [0, 1] that are defined
by random i.i.d. applications of so-called bad maps that share a globally superattract-
ing fixed point ¢ € (0,1) and good maps that map ¢ into the common invariant and
repelling set {0,1}. To be precise, the families of maps we consider are defined as
follows.

Throughout the text we fix a point ¢ € (0, 1) that will represent the single critical
point of our maps, both good and bad.

A map T, : [0,1] — [0, 1] is in the class of good maps, denoted by &, if
(G1) Tyljo,) and Tyl(c,1) are C* diffeomorphisms onto [0,1) or (0,1] and Ty(c) €
{Ty(c=), Ty(eH)};
(G2) T, has non-positive Schwarzian derivative on [0, ¢) and (c, 1];

(G3) to T, we can associate three constants r, > 1, 0 < K, < 1 and M, > r, such
that, for each x € [0, 1],

Kyla — "™ < [DTy(x)| < Mylz — | (2.1)

(G4) we have |DT,(0)|,|DT,(1)] > 1.

These conditions imply in particular that T,({0,¢c,1}) C {0,1}, that at least one of
the maps Tyljo,q or Tyli,1) is continuous, and that both branches of Tj are strictly
monotone. Note also that the conditions K, < 1 and M, > r, are superfluous,
since we can always choose a smaller constant K, and larger constant M, to satisfy
(2.1), but we need these specific bounds in our estimates later. The critical point
¢ is mapped to either 0 or 1 under each of the good maps and both 0 and 1 are
(eventually) fixed points or periodic points (with period 2) by (G1) that are repelling
by (G4). Furthermore, a consequence of the Minimum Principle is that |DTy| has
locally no strict minima in the intervals (0,c¢) and (¢, 1). In particular, there cannot
be any attracting fixed points for Ty in (0,¢) and (c,1). Examples of good maps
include the doubling map and surjective unimodal maps, see Figures 2.1(a)-(d).
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§2.1. Introduction

The choice of conditions (G1)-(G4) is based on two factors: firstly, these conditions
incorporate the most important properties of the ‘good’ logistic map Ly(x) = 4a(1 —
x), which is the primary motivating example for this chapter, and secondly, some of
the techniques used in this chapter are motivated by the work of Nowicki and Van
Strien [NvS91] where the following result has been proven. Let A denote the Lebesgue
measure on [0, 1].

Theorem 2.1.1 (Main Theorem in [NvS91]). Suppose that T : [0,1] — [0,1] is
unimodal, C3, has negative Schwarzian derivative and that the critical point of T is
of order r > 1. Moreover assume that the growth rate of |DT™ (¢1)|, c1 = T(c), is so
fast that

STIDT™ ()| 7V < oo (2.2)
n=0

Then T has a unique probability acim p which is ergodic and of positive entropy.
Furthermore, there exists a positive constant K such that

u(B) < K - A(B)Y", (2.3)

for any Borel set B C [0,1]. Finally, the density % of the measure p with respect

to A is an L™~ -function where T = r/(r — 1) and L™ = ﬂl§t<7' Lt and Lt = {f €
LY([0,1], ) : fiy [fI'dA < o0}

Formally this result is not immediately applicable to the good maps we introduced.
The difference, however, is not principal and the conclusion remains exactly the same,
the main reason being that the conditions (G1) and (G4) imply the growth rate (2.2),
and hence any good map admits a unique probability acim.

A map Ty : [0,1] — [0,1] is in the class of bad maps, denoted by B, if
(B1) Tyljo,c) and Tp|(cq) are C3 diffeomorphisms onto [0, ¢) or (¢, 1] and Ty(c) = ¢
(B2) Ty has non-positive Schwarzian derivative on [0, ¢) and (¢, 1];

(B3) to Ty we can associate three constants ¢, > 1, 0 < K, < 1 and M, > ¥, such
that, for each x € [0, 1],

Kylx — c|é”_1 < |DTp(x)| < My|x — c|€b—1; (2.4)

(B4) we have |DTy(0)|,|DTp(1)] > 1.

In particular (B1) implies that T3,({0,1}) C {0, 1}, that T} is continuous, and that T}
is strictly monotone on the intervals [0, ¢] and [c, 1]. In contrast to (G3), note that in
(B3) we have assumed that ¢, is not equal to one. This means that DTy(c) =0, so ¢
is a superstable fixed point for each bad map. Furthermore, ¢ has (0, 1) as its basin of
attraction, since it again follows from the Minimum Principle that |DT,| has locally
no strict minima in the intervals (0, ¢) and (¢, 1). Combining this with the Poincaré
Recurrence Theorem, an immediate consequence is that the only finite Tj-invariant
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CHAPTER 2

2. Absolutely continuous invariant measures for critically intermittent systems
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1 1 1 1
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(6) z +— 2x(1l — x) (f) z — %+4(z—%)3 (g) T %4»8(1—%)4 (h) z — %—lﬁ(m—%)s

Figure 2.1: Eight maps with critical point ¢ = L. The upper four graphs (a)-(d) show good

maps, while in (e)-(h) we see the graphs of four bad maps.

measures are linear combinations of Dirac measures at 0, ¢, and 1. For examples, see

Figures 2.1(e)-(h).

The random systems we consider in this chapter are the following. Let T7,...,TN €
& U be a finite collection of good and bad maps. Write ¥ ={1 < j < N : T; € &}
and ¥p = {1 < j < N : T; € B} for the index sets of the good and bad maps re-
spectively and assume that X, X5 # 0. Write X = {1,...,N} =XgUXpg. Let F be
the skew product associated to {7} }ex, i.e.

F 3N x0,1] = =N x [0,1], (w,z) = (tw, T, (2)), (2.5)

where 7 denotes the left shift on sequences in =N. Let p = (pj)jex be a probability
vector representing the probabilities with which we choose the maps T3, j € X, and
let m,, be the p-Bernoulli measure on XN, Our main results are the following.

Theorem 2.1.2. Let T = {1} : j € £} be as above and p = (p;) ex a strictly positive
probability vector.

(a) There exists a unique (up to scalar multiplication) o-finite acs measure u for
(T,p). Moreover, F is ergodic w.r.t. mp X p.

(b) The density j—’; is bounded away from zero, is locally Lipschitz on (0,¢) and
(¢,1) and is not in L7 for any g > 1.

Theorem 2.1.3. Let T = {T; : j € X} be as above and p = (pj)jex a strictly
positive probability vector. Let p be the unique acs measure from Theorem 2.1.2. Set
0= ZbGEB poly. Then p is finite if and only if @ < 1. In this case, there exists a
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§2.1. Introduction

constant C > 0 such that

W(B) < C - N 0FA(B) e (2.6)
k=0

for any Borel set B C [0,1], where rmax = max{ry : g € g} and lyax = max{ly, :
be EB}

As we shall see in (2.28) the bound in (2.6) can be improved by not bounding
mixtures fpry = Hle &y,r, by their maximal value €% 7.y, but this improvement
does not change the qualitative behaviour of the bound.

Theorem 2.1.3 shows that the system undergoes a phase transition where the acs
measure changes between finite and infinite with threshold § = 1. Interestingly, this
situation is significantly different than for the random LSV maps discussed in Example
1.4.3 where the existence of an acs probability measure only depends on whether there
is a positive probability to choose an LSV map with parameter < 1.

It is also worth mentioning that it follows from Theorem 2.1.3 that not only does
no finite acs measure exist if § > 1, but also that no physical measure' for F exists
in this case. Indeed, this follows by applying Aaronson’s Ergodic Theorem [A97,
Theorem 2.4.2| to the infinite measure my, x p.

Since p is an acs measure, the density g—’; is a fixed point of the associated Perron-
Frobenius operator being of the form as in (1.20). Moreover, Theorem 2.1.2 tells that
this density Z—’; is bounded away from zero. Using these two statements it is easy to
see that Z—’; blows up to infinity at the points zero and one and also at least on one
side of c¢. See Figure 2.2 for an example. Furthermore, Theorem 2.1.3 says that %
is integrable if and only if 6 is small enough, namely # < 1. This intuitively makes
sense since for a smaller value of 8 the attraction of orbits to ¢ is weaker on average
and consequently orbits typically spend less time near zero and one once a good map
is applied.

The inequality (2.6) is the counterpart of the Nowicki-Van Strien inequality (2.3),
and naturally gives a substantially worse bound due to the presence of bad maps. It
is not immediately clear how much worse (2.6) is in comparison to (2.3). However,
the following holds.

Corollary 2.1.4. Let T = {T; : j € X} be as above and p = (p;)jex a strictly
positive probability vector. Suppose § = ZbezB poly < 1. Then there exist K > 0 and
> 0 such that for any Borel set B C [0,1] with A(B) € (0,1) one has

1
B <K—/—m—.
HB) < g (1/3(B))
LA probability measure p is a physical measure for a transformation T' : X — X if it is T-

invariant and there exists a set U C X of positive Lebesgue measure (for our setting, this means
mp X A(U) > 0) such that for each continuous function f : X — R we have

) 1 n—1 .
nli{no(J -~ kz_:o f(TFz) = /X fdu, for each x € U.
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CHAPTER 2

2. Absolutely continuous invariant measures for critically intermittent systems

Moreover, the acs measure from Theorem 2.1.2 depends continuously on the prob-
ability vector p € RV as the next result shows. Here we write p for the acs probability
measure that corresponds to the probability vector p.

Corollary 2.1.5. Let T = {T; : j € X} be as above. For each n > 0, let p, =
(Pn.j)jes be a strictly positive probability vector such that sup, Y ycs - Paply < 1 and
assume that limy,_,. p, = p n R]_,\_’. Then the sequence [ip, converges weakly to pip.

As discussed in Section 1.4 the problem of finding acs probability measures for
random interval maps that are expanding on average is well studied and these results
often rely on bounded variation techniques from Lasota and Yorke [LY73]. In [P84,
Section 4] these techniques are extended to a class of i.i.d. random interval maps on
the unit interval that are not expanding on average and are composed of a uniformly
expanding map 7" and a contracting map S such that S contracts no faster than that T’
expands. An example is T'(x) = 2z mod 1 and S(x) = §. Under additional conditions
on S and T and assuming that the probability of choosing T is bigger than S, Pelikan
shows that such a random map admits an acs probability measure. The proof of this
result relies heavily on the explicit expression that Pelikan has for a conjugacy map
between this random map and another random map that is expanding on average and
consists of two Lasota-Yorke type maps. This allows Pelikan to find the order of the
density of the acs measure near the pole at 0. As we see in Theorem 2.1.2 and prove
in Subsection 2.2.3, for our systems the density of the acs measure is not in L? for
any g > 1. This suggests that a similar conjugacy for our systems, if it exists, might
not have such a nice explicit expression. Therefore, we resort to techniques similar to
the ones used by Nowicki and Van Strien in their proof of Theorem 2.1.1 rather than
the techniques introduced by Lasota and Yorke.

1.5 15

1 1

0.5 0.5
0 0 J
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) (b)

Figure 2.2: Approximation of g—‘; in case g = {1}, ¥ = {2}, Ti(z) = La(z) = 4z(1 — x)
and Ts(z) = La(x) = 22(1 — x) for two different values of p1. Both pictures depict P7°,(1)
with Perron-Frobenius operator Pr p, where in (a) we have taken p1 = 3 and in (b) p1 = 5.
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§2.1. Introduction

To be more precise, for the existence result from Theorem 2.1.2 we use an inducing
scheme. This approach is inspired by [AGH18], but the choice of the inducing domain
needed some care. With the help of Kac’s Lemma we then obtain that the acs
measure is infinite in case # > 1. To prove that this measure is finite for § < 1
we use an approach similar to the one employed in [NvS91| by estimating the sizes
of preimages of neighborhoods around points in the postcritical orbits. For this we
apply the Minimum Principle and Koebe Principle to iterates of the maps 7j, which
is possible due to (G2) and (B2). The main difficulty to obtain these estimates is that
it may take an arbitrarily long time before the superattracting fixed point is mapped
onto the repelling orbit by one of the good maps, which decreases the regularity of
the density of the acs measure. Furthermore, we will use the following key lemma.

Recall the constants ¢, Kj, and M from (2.4) in condition (B3) and set £y, =
min{f, : b € ¥} and lpax = max{f, : b € Xp}. We prove the next lemma in
Subsection 2.2.3.

Lemma 2.1.6. For alln € N, w € X5 and z € [0,1],

ém by,

- Loy Ly, ~
(K|zfc|) CT @) — o < (Mo - o)) ,

with K = (W beSs ) T0T ¢ (0)1) and BT = (RRAMotbeSslymneT o

max min

It follows that under iterations of bad maps the distance |T}(z) — ¢| is eventually
decreasing superexponentially fast in n. In Section 2.3 we will use the upper bound
on |T*(x) — c| that we obtained in Lemma 2.1.6 to prove that p in Theorem 2.1.3 is
infinite if # > 1. The lower bound from Lemma 2.1.6 will be used to show that p is
finite if 8 < 1.

In (B3) we have assumed that for any bad map T}, the corresponding value ¢, is not
equal to one. Note that a bad map T}, for which we allow ¢, = 1 satisfies | DTy (c)| > 0,
so in this case ¢ is an attracting fixed point for T but not superattracting. It should
not come as a surprise that results similar to Theorem 2.1.2 and Theorem 2.1.3 also
hold in case some or all of the bad maps T} have £, = 1. The proofs presented for these
theorems, however, do not immediately carry over. This has mainly to do with the
constants K and M from Lemma 2.1.6, which are not well defined in case limin = 1.
In the last section we explain how the results are affected in case some or all maps T
satisfy £, = 1 and what the necessary changes in the proofs are.

The remainder of this chapter is organised as follows. Section 2.2 is devoted to the
proof of Theorem 2.1.2 and in Section 2.3 we prove Theorem 2.1.3. In Section 2.4 we
prove Corollaries 2.1.4 and 2.1.5 and explain what the analogues of Theorem 2.1.2 and
2.1.3 are in case £, = 1 for one or more b € X5 and how the proofs of Theorem 2.1.2
and 2.1.3 need to be modified to get these results. We end this chapter with some
final remarks.
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CHAPTER 2

2. Absolutely continuous invariant measures for critically intermittent systems

§2.2 Existence of a o-finite acs measure

From now on we fix an integer N > 2 and consider a finite collection T7,...,Ty €
B U DB of good and bad maps in the classes & and B. As in Section 2.1 we write
Ye={1<j<N:T;e®}and X = {1 <j<N:T; € B} for the corresponding
index sets and assume that X¢,Xp # (). We write ¥ = {1,2,..., N}. In this section
we prove Theorem 2.1.2, i.e. we establish the existence of an ergodic acs measure and
several of its properties using an inducing scheme for the random system F. We fix the
index g € X of one good map T}, and start by constructing an inducing domain that
depends on this g. Throughout this section and the next ones we use the notations
for words and compositions of the maps T introduced in Section 1.4.

§2.2.1 The induced system and first return time par-
tition

The first lemma is needed to specify the set on which we induce. For each k € N let

x and 2}, in (0, c) denote the critical points of T, ; closest to 0 and ¢, respectively.

Furthermore, let g and g}, in (¢, 1) denote the critical points of T} closest to 1 and
¢, respectively.

Lemma 2.2.1. We have z;, 1 0, z}, T ¢, y. L ¢, yr T 1 as k — oo.

Proof. Let a and b denote the critical points of Tg2 in (0,¢) and (¢, 1), respectively.
Then at least one of the branches T92|(07a) and T92|(b’1) is increasing. Suppose that
T7|(0,a) is increasing. It then follows from the Minimum Principle that T (x) >
min{Z, DT7(0) - «} for each 2 € [0,a]. To see this, suppose there is an z € (0,a)
with T2( ) < min{Z, DTZ(0) - #}. Then there must be a y € (0,z) with DT (y) <

mln{DTz( ),1} and a z € [z,a) with DT2(z) > %. On the other hand, by the
Minimum Principle, DT?(y) > min{DT}; (0 ) DTz(z)} a contradiction. Combining
this with DT7(0) > 1 and defining L : (0,1) — (0,a) by L = (T;|(0,a)) "', We see that
L¥(a) | 0 as k — co. Furthermore, define R : (0,1) — (b7 1) by R = (T7|py) " If
T92|(b71) is increasing, we see that similarly R*(b) 1 1 as k — oo. On the other hand, if
T7|(s,1) is decreasing, we have RL*(a) 1 1 as k — oc. Finally, if T7| (o) is decreasing,
then T92|(b’1) must be increasing, which yields LR*(b) | 0 as k — co. We conclude
that 2 | 0 and yx T 1 as kK — oo. It follows from (G1) that ¢ is a limit point of
both of the sets UkeN(Tg‘(O,C))il({xh yr }) and UkeN(Tg‘(al))il({x/ﬁ Yk }). So IE;C Te,
Y L cas k — oo. O

By the previous lemma and (G1), for k¥ € N large enough it holds that

Ty(xy,) < aj or Ty(ay) = yj, and

(2.7)

Tg(y;c) < .Z‘;c or Tg(yl/c) 2 y;w

and, using also (G4), (B1) and (B4), for every j € &,
T; ([0, 2] U [yk, 1]) € [0,2) U (v, 1] and (2.8)

|DT;(x)| >d>1 for all x € [0, zx) U (yx, 1] and some constant d.
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§2.2. Existence of a o-finite acs measure

Fix a x € N for which (2.7) and (2.8) hold. We introduce some notation. Let ¢t € ¥
be such that t # g, and define

C=lg---gt]=I[g"t],

K times
JO:(me;)a le(y;;yn)a J=JyUJy,
Y=CxJ

Lemma 2.2.2. The set Y is a sweep-out set for F' with respect to mp X A.

Proof. For mp-almost all w € YN we have 7"w € [g] for infinitely many n € N.
For any such n and each z € (0,¢) U (¢, 1) either T?(x) € J or T/ (x) ¢ J. If
T7(z) € (0,2,] U [y, 1), then it follows from (2.8) that there is an m > 1 such
that T ™(x) € J. If T(x) € [z}, ¢) U (¢, 9] it follows from (2.7) that T**1(z) =
T,oT(x) € (0,2,]U[y., 1), which means that we are in the first case if 77! (z) ¢ J.
Hence, there exists a measurable set A C %N x [0, 1] with m, x A(A) = 1 such that
for each (w,z) € A we have T?(x) € J for infinitely many n € N.

We define

£=A\ GF*"Y

n=0

and for each = € [0, 1] we define

g, = {w exsV: (wx)e A\ | F‘”Y}7
n=0
which is the x-section of £. It follows from Fubini’s Theorem that &£, is measurable
for A-almost all = € [0, 1] and that

mp X A(€) = / myp(Ey)dN ().
[0.1]
Combining this with mp x A(A) = 1, it remains to show that mp(€;) = 0 holds for
A-almost all z € [0, 1] for which &, is measurable.

Let z € [0, 1] for which &, is measurable. According to the Lebesgue Differentiation
Theorem (see e.g. [T04]) we have that mp-almost all w € XN is a Lebesgue point of
the function 1g . Consider such an w and suppose that w € £,. Then (w,z) € A,
so there exists an increasing sequence (n;);jen in N that satisfies 7,,” () € J for each
J € N. Recall that 7 denotes the left shift on sequences. If w' € 77" C' N [wy - - - wy,],
then T/ (z) = T, (x) € J and so F" (w',z) € Y, which gives ' & &.. So &,
and 77" C N [wy - - - wy,] are disjoint for each j € N, which together with w being a
Lebesgue point of 1¢, yields that

mp (€, UT™™C) N [wy -+ wy,])
mp([wl o 'wn]‘])
_ mp(é’wﬂ[w1~-~wnj]) mp(T_"jCﬂ[wl---wnj}) o0

mp ([wi -+ wn,]) mp([wr -+ wn, )

1

1gm (w) + mp(C’)
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Since mp(C) > 0, we find that w € &, gives a contradiction. We conclude that
mp(Eg) = 0. O

Since F' is non-singular with respect to my, x A, it follows from Lemma 2.2.2 that in
particular

mp x MY\ F7Y) < mp x A(F7(x\ | FY)) =0,
n=1 n=0
Hence, the first return time map @y of the form as in (1.6) and the induced trans-
formation Fy are well defined on the full measure subset of points in Y that return
to Y infinitely often under iterations of F', which we call Y again. The set of points
in Y that return to Y after n iterations of F' can be described as

YOF™Y)= |J [|wrw)x@)7(J) modmyp x A, (2.9)
weCnr—nC

which is empty for n < k. Note that in (2.9) in fact (w1 - wy] = [¢"twit2 -+ - w9 t]
and that by construction each map 77|y in (2.9) consists of branches that all have
range (0,¢) or (¢,1) or (0,1), since any branch of T%|; maps onto (0,1). Therefore,
Y N F~"(Y) can be written as a finite union of products A = [ug”t] x I of cylinders
[ug”t] C C with |u| = n and open intervals I C J, each of which is mapped under F™
onto C' x Jy or C x J;. Call the collection of these sets P,, and let o = J,,~.,, Pn. Let
mp,c and Ay denote the normalised restrictions of mp, to C and A to J respectively.

Lemma 2.2.3.

(1) The collection « forms a countable first return time partition of Y, i.e. mp ¢ x
A1(Unea 4) = 1, any two different sets A, A" € a are disjoint and on any A € «
the first return time map @y is constant.

(2) Let 7 denote the canonical projection of XN x [0, 1] onto the second coordinate.
Any x € J is contained in a set w(A) for some set A € a.

Proof. The fact that mp o xAj(Uc, A) = 1 follows from Lemma 2.2.2. Furthermore,
it is clear from the construction that the first return time map ¢y is constant on any
element of o once we know that any two distinct elements of v are disjoint. To show
the latter, note that for A, A’ € P, this is clear. Suppose there are 1 < m < n,
A=lugtt] x I € P, and A" = [vgFt] x I' € Py, such that AN A’ # 0. Since t # g
we get n > m+ Kk + 1 and [ug”t] = [¢"tveto - UG tUmarta - - - ung™t]. Moreover,
INAI' # B or I = I'. In both cases, note that F™+*+1([vg~t] x 9I') C BN x {0, 1}, so
by (G1) and (B1) also F"([vg”t] x 0I') € N x {0,1}, contradicting that F"(A) C Y.
This proves (1).

For (2) note that, since « is a partition of Y, for each x € J it holds that there
isan A = [ug"t] x I € a with x € I or € 0I. In the first case there is nothing
to prove, so assume that © € JI. Then T, (z) € dJ; for some ¢ € {0,1}. From the
first part of the proof of Lemma 2.2.2 it then follows that there is an n > |u| and an
w € C such that T"(z) € J. If we write I’ for the interval in (7?)~1(J) containing
x, then this means that there exists a set A’ = [vg~t] x I' € o with z € 7w(4"). O
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The second part of Lemma 2.2.3 shows that even though the partition elements of
« are disjoint, their projections on the second coordinate are not. The same is true
for the first coordinate as the same string « can lead points in J to Jy and Jj.

§2.2.2 Properties of the induced transformation

It follows from (2.9) and Lemma 2.2.3 that for each A € a we have either Fy (A) =
CxJyor Fy(A) = CxJ;. For any [ug”t]| x I € a, the transformation T, |7 is invertible
from I to one of the sets Jy or J;. Define the operator Py, s : L*(J,A;) = L1(J,\))
by

W(Tul; * (x)) e -1
9 fT"LL ®a
Pushie) = { DTl )] 0 7
0, otherwise.

The random Perron-Frobenius-type operator Py : LY (J, \;) — LY(J, \;) is given by

Py= Y mpc(ul)Pur. (2.10)

[ugrtlxIca

Note that Py is not exactly of the same form as the usual Perron-Frobenius operator
in (1.20). Nonetheless, we have the following result.

Lemma 2.2.4. If ¢ € L'(J,\)) is a fized point of Py, then the measure mpc X v
with v = @d\j is invariant for Fy .

Proof. Suppose ¢ € L'(J,\;) is a fixed point of Py. For each cylinder K C C and
each Borel set £ C J we have

mp.c x v(Fy (K x E)) > mpe(ugttinT MK N T, E)

[ugrtlxI€a

= mpo(®) Y mpe(u)) [ Pusedr,

[lugrt]xI€a
= mp,c(K)/ 'Pygﬁd)\J
E
= mpc X V(K x E).
This gives the result. O
In Lemma 2.2.5 below we show that a fixed point of Py exists. For m € N, set

QU = \/;.n:*o1 F;ja. Atoms of this partition are the m-cylinders of Fy. Introducing
for each Z = ﬂ??ol Fy7 ([ujg"t] x I;) in a,, the notation
m—1 m—1

G=1 g, K _
Cy = ﬂ 7= 200 Willy g%t and  Jy = ﬂ Tty (1), (2.11)
=0 =0
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m—1

we obtain Z = Cy x Jz. Writing 7, = 72i=0 1%il|o_ and Ty = Tugu,. -, |7, We
have F{'|z = 7z x Tz. Each Tz has non-positive Schwarzian derivative, so we can
apply the Koebe Principle. The image T7(Jz) either equals Jy or J;. Choose a p > 0
such that Jj := [z, — p, 2}, + p] C (0,¢) and J]| := [y, — p,ys + p] C (¢, 1). There is
a canonical way to extend the domain of each Tz to an interval J, containing Jz,
such that Tz (J7) equals either J§ or Jj and S(Tz) < 0 on J,. Then by the Koebe
Principle, i.e. (1.14) and (1.15), there exist constants K > 1 and M) > 0 such
that for allm € N, Z € a,;, and z,y € Jz,

K®) = DT4(y) <KW, (2.12)
DTy (x) M)
DTi(y) - ‘ = min{A(Jo), A(J1)} Tz (@) = Tz (y)]- (2.13)

Note that for the random Perron-Frobenius-type operator from (2.10) we have for
each m > 1 that

m 1
PY = mp(C) Zgo;m mp,C(CZ)PTzv (214)

where Pr, is of the form as in (1.10).

Lemma 2.2.5 (cf. Lemmas V.2.1 and V.2.2 of [dMvS93]). Py admits a fized
point o € L*(J,\;) that is bounded, Lipschitz and bounded away from zero.

Proof. For each m € N and x € J,

mp.c(Cz)

P () — _Mmpo\Cz)

VI =G 2 DT )
xeTz(?]é)

Using the Mean Value Theorem, for all m € N and Z € «,, there exists a £ € Jz such
that

MTz(Jz))
——— = |DT, . 2.15
s~ DT (9) (2.15)
max{K® nrP _. . .
Set K; = mp(C)-nEiIrf{i\(’%);ng)}’ where p is as in (2.12) and (2.13). Since DTz (§) and

DT (y) have the same sign for any y € Jz, (2.15) together with (2.12) implies

Pr1(z) < Z M(CZ) . K(E)M < K, Z Mp.c X A (Cz x Jz) = K;.

s mp(C) A(Tz(Jz)) dem

(2.16)

Moreover, if for A = [ug”t] x I € a we take z,y € I, then for any Z € v, it holds
that x € Tz (Jz) if and only if y € T (Jz). For such Z, let xz,yz € Jz be such that
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Tz(xz) =2 and Tz(yz) = y. Then by (2.13)

mp.c(Cz) ‘ 1 1
Pyl(z) — Pyl < P, —
G LD D (e M 7 e R ]
:CETz(jz)
1 (2.17)
< —— K4|T’ - T
< ZZ; m”’C(CZ)|DTZ(xZ)| 1Tz(xz) —Tz(yz)]
IETz(Jz)

= Ky Py L(z)|z -yl

Together (2.16) and (2.17) imply that the sequence (- Z?l:_ol P{;l)m is uniformly
bounded and equicontinuous on I for each A = [ug®t] x I. By Lemma 2.2.3(2) it
follows that the same holds on J. Hence, by the Arzela-Ascoli Theorem there exists

a subsequence
mg— 1

(mik ;O P{}l)mk

converging uniformly to a function ¢ : J — [0, 00) satisfying ¢ < K; and for each
A=lugit] x I € and z,y € I,

lp(z) — o(y)| < Kip(z)|o —yl. (2.18)

Hence, ¢ is bounded and by Lemma 2.2.3(2) it is clear that ¢ is Lipschitz (with
Lipschitz constant bounded by K?%). It is readily checked that ¢ is a fixed point of
Py, so that mp ¢ X v with v = ¢ d\ is an invariant probability measure for Fy-.

Because of Lemma 2.2.3(2) and because ¢ is continuous, in order to obtain that
¢ is bounded away from zero on J it suffices to verify for each A = [ug®t]| x I € «
that ¢ on I is bounded away from zero. Suppose that there is A = [ug”t] x I € « for
which inf,e; ¢(z) = 0. Then from (2.18) it follows that ¢(y) =0 for all y € I, hence
v(I) = 0. Either I C Jyor I C Jy. If I C Jy, then for any set A" = [vg"t] x I' € «
with To,(I") = Jy it holds that

mp.c x Aj(A NFylA) >0
and, by the Fy-invariance of mp ¢ X v,
mp.c X V(A NFy A) <my o x v(FytA) = mpo x v(A) =0,

which together give inf,cp p(z) = 0 and therefore, like before, v(I') = 0. There are
sets A’ = [vg"t] x I with I' C J; and Ty, (I") = Jo, so we can repeat the argument to
show that also for any set A” = [vg"t] x I € @ with T,,(I"") = J; we have v(I") = 0.
Sompc xv(A) =0forall A€ a. If I CJ; we come to the same conclusion. This
gives a contradiction, so ¢ is bounded from below on each interval I. O

It follows from Lemma 2.2.4 that mp, ¢ x v with v = @d\; is a finite Fy-invariant
measure. To show that mp ¢ x A; is Fy-ergodic we need the following result, which
states that the sets w(A) for A € ay, shrink uniformly to A-null sets as m — oo.
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Lemma 2.2.6. lim sup{\;(Jz) : Z € a,n} = 0.
m—o0

Proof. Set 6 =sup{A;(Jz) : Z€a} <1l Let m>2and Z = ﬂ;":_ol F;j([ujg"‘t] X
I;)=Cyz x Jz € ayy, as in (2.11). Set

JZ_ m u0u1 U1 j)?

so that Jz = JZﬂTu_0 -, _1). Let J;, i € {0,1}, be such that Ty, ..o, ,(Jz) =

2(
Ji. It holds that Ty ...as,, 2(J ) =1Im—1, 50 MTug- -, »(Jz)) < d and thus
A(T’U/Oul“'um72(jz \ JZ) > )‘(JZ) — 0.

Since Jz \ Jz consists of at most two intervals, with (2.12) and (1.12) applied to this
setting this gives

Ai(Jz) _ Ai(Jz\ Jz) o b A (Tugu .(Jz \ Jz) oL A =9

120220 . _
A (Jz) Ni(Jz) T K@ A j(Tugom,, ,(Jz))  — K@ X;(Jp)

Set Ky := max {1 — 41 ’\f\%}g‘s : i =0,1} € (0,1). Then by repeating the same
steps, we obtain

A(Jz) S K\ (Jz) < - < KPPy (Io) < KPP,
which proves the lemma. O
Lemma 2.2.7. The measure mp c X Ay is Fy-ergodic.

Proof. Suppose E CY with myp ¢ x Aj(E) > 0 satisfies Fy,'E = E mod myp ¢ X Aj.
We show that mp o X Aj(E) = 1. The Borel measure p on Y given by

p(V) = /V 15w, 2)p(@)dimp, o (w)dA s ()

for Borel sets V is Fy-invariant. According to Proposition 1.2.12 and Lemma 1.4.1
this yields a stationary measure & on [0, 1] that is absolutely continuous w.r.t. )\ and
satisfies (mp X @i)]ly = p. Let L:={z € J: g (x) > 0} denote the support of &l
Since

dji d,
mp X A(Y) - d/;( x) = m(w,x) = 1g(w,z)p(x), Mp,c X Ag-a.e.
we obtain, using that ¢ is bounded away from zero,

E=CxL modmpc X Aj.

To obtain the result, it remains to show that A;(J\L) = 0.
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We have C' x L= ., Czx (JzNL)and Fy,"(C x L) =Uye,, CzxT5'L.
From the non-singularity of Fy w.r.t. mp o x Ay it follows that for each m € N,

CxL=E=F,""E=F,"(CxL) modmpc x Aj,
which yields
JzNL=T,'L mod\;, foreach Z € ay. (2.19)

Let ¢ > 0. Since A\j(L) > 0, it follows from Lemma 2.2.6 and the Lebesgue Density
Theorem that there are i € {0,1}, m’ € N and Z’ € ay,,s such that

TZ/(JZ/) =J; and )\J(JZ/ ﬂL) > (1 — 8))\J(JZ/).

By (2.19), T} (J;\L) = Jz/\L mod \;. The Mean Value Theorem gives the existence
of a £ € Jz such that
ATz (Jz1))
As(Jz)
and from (2.12) it follows that

= |DTZ’(€)‘7

A (T (T2 \L)) = / DTl < KODTL O 2\ D),

Hence,

Ar(JA\L) _ ATz (Jz/\L)) < K® Aj(Jz\L) < KD, (2.20)
As(Ji) ATz (Jz)) Ai(Jz1)

So, for each € > 0 we can find i = i(e), Z' = Z'(e) and m' = m/(g) for which (2.20)
holds. If for each gy > 0 and each iy € {0,1} there exists an € € (0,&0) such that
i(e) = i, we obtain from (2.20) that A;(J\L) = 0. Otherwise, there exists g > 0 and
ip € {0,1} such that i(e) = ip for all € € (0,g9). Without loss of generality, suppose
that ig = 0. Then (2.20) gives Aj(Jo\L) = 0. By the equivalence of v and A\; and
the fact that every good map has full branches it follows that

mp,c x v((C x Jo) N Fy ' (C x Jp)) > 0.
Together with the Poincaré Recurrence Theorem this gives that
A={(w,z) € C x Jy: Fy'(w,x) € C x J; for infinitely many m € N}

satisfies myp o XV (A) > 0, and therefore myp ¢ x Aj(A) > 0. Together with A;(Jo\L) =
0 it follows from the Lebesgue Density Theorem that there exists a Lebesgue point
v € m(A)NL of 1;(a)nr. Since x € 7(A), for infinitely many m € N there exists Z,, €
am such that « € Jz, and Tz, (Jz, ) = J;. This again together with Lemma 2.2.6
yields that for each € > 0 there exist m € N and Z € «,, such that

T;(Jz)=J1 and Aj(JzNL)>(1—e)A;(Jz).

Similar as before, this gives A\j(J1\L) =0, so A\;(J\L) = 0. O
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§2.2.3 Proof of Theorem 2.1.2

We will first give the proof of Lemma 2.1.6.
Proof of Lemma 2.1.6. Tt follows from (B3) that for any j € ¥5 and z € [0, 1],

mln{Kb be ZB}‘

max

[13(0) ~ = [130) = T30l = | [ DT )] =

By induction we get that for each n € N and w € %},

n

oL

n—2
min{Kj : b€ EB})HELO bon b .

gmax

|m@%m(

mm{Kb

From (B3) we see that bezB} < 1. The lower bound now follows by observing

that
@+zmqumw-wsz

The result for the upper bound follows similarly, by noticing that in this case from

(B3) it follows that W > 1. O

m mm_1

Together with the results from the previous two subsections we now collected all
the ingredients necessary to prove Theorem 2.1.2.

Proof of Theorem 2.1.2. (1) We have constructed a finite Fy-invariant measure mp ¢ X
v which is absolutely continuous with respect to mp ¢ x Ay. Since F' is non-singular
with respect to myp X A we can therefore by Proposition 1.2.12 extend myp c X v to
a o-finite F-invariant measure my X p that is absolutely continuous with respect to
mp X A. According to Theorem 1.2.10 what is left to show is that F' is conservative
and ergodic w.r.t. mp X A.

Since p < A it follows from Lemma 2.2.2 that Y is a sweep-out set for F' with
respect to my X p. Maharam’s Recurrence Theorem then gives that F' is conservative
with respect to my x p. Furthermore, in the proof of part (2) below we will see that
the density of Z—‘; is bounded away from zero. Hence, A < p and therefore F' is also
conservative with respect to mp x A. Furthermore, combining the ergodicity of Fy
with respect to mp c x Ay and the fact that Y is a sweep-out set for F' with respect
to myp X A gives using Proposition 1.2.11 that I is ergodic with respect to mp x A.

(2) For the density 9 := Z—i it holds that ¢|; = ¢. Since we can take £ in the
definition of J as large as we want, ¢ is locally Lipschitz on (0, ¢) and (¢, 1). Moreover,
it is a fixed point of the Perron-Frobenius operator Py j, being of the form as in (1.20)
and thus for all z € (0,1),

U(z) = PF (@) > pf > %
yeJNTy “{z} J
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From Lemma 2.2.5 we conclude that v is bounded from below by some constant
C > 0. It remains to show that v is not in L? for any ¢ > 1. To see this, fixa b € 3.
Since 1 is bounded from below by C > 0, we have for all k¥ € Ny and z € [0, 1] that

1
b(x) = Priiy(z) > C - popy Z DT )| (2.21)
ye(@, T~ ey |90
Let £y, My, 14, My, K, be as in (B3) and (G3). From (B3), (G3) and Lemma 2.1.6 we
get

k
ID(T,T) ()| = DTy (Ty () [T IDT (T3 ()

=1
k—1
< My|TH () = e TLOMIT () = ")
=0 (2.22)
k—1
. o 3 o
< MyMF(M]y — )% ra=b) H(M|y _ )il
1=0

= Kyly — o7,

for the positive constant K; = MgMé“MZETfl. On the other hand, from (G3) we
obtain for any y € (T, T)~*{z} as in the proof of Lemma 2.1.6 that

K T
|z = Ty(o)| = 1T, Ty (y) — Ty(c)| > Tg\Tb’“(y) — "

g9

and then Lemma 2.1.6 yields
o = Ty(c)] > Kaly —c|s™ (2.23)

for the positive constant Ko = &f(&”g Now for any ¢ > 1 we can choose k € Ny

large enough so that 7 := (1 — ¢, ’ r;')g > 1. Combining (2.21), (2.22) and (2.23) we
obtain

iz (DY (3 i)’

YE(TyTy) = {=}

> Kslo = Ty(c)|™"
for a positive constant K3. This gives the result. O

Remark 2.2.8. The result from Theorem 2.1.2 still holds if we allow the critical
order /;, from (B3) to be equal to 1 for some b, as long as £yax > 1. To see this, note
that in the proof of Theorem 2.1.2 condition (B3) only plays a role in proving that

25 ¢ L9 for any q > 1. Here we refer to Lemma 2.1.6 and the constants K and M,
Wthh are not well defined if ¢,,;, = 1. In (2.22) however, we use the estimates from
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Lemma 2.1.6 only for one arbitrary fixed b € ¥p. By the same reasoning as in the
proof of Lemma 2.1.6 it follows that

((Izﬁ(:)“lllx—q)‘i < |TMz) - < ((]\Z))Qlllx—d)w.

for any b € X g with £, > 1. Hence, if there exists at least one b € X g with £, > 1,
then we can replace the bounds obtained from Lemma 2.1.6 in (2.22) and (2.23) by
constants K1 = Mng(%)(Zlgrg_l)/(zb_l) and Ky = ?(%’)5”9/(@”_1) and obtain
the same result. In case fj,.x = 1, then most parts from Theorem 2.1.2 still remain
valid with the exception that in that case we can only say that % ¢ L1if g > Tr:“:ﬁ

This follows from the above reasoning by taking £ = 0 in the definition of 7 in the
proof of Theorem 2.1.2 and by noting that 7 = (1 — ;1 )g > 1 if ¢ > Tmax_

max Tmax

§2.3 Estimates on the acs measure

In this section we prove Theorem 2.1.3. Recall the definition of § from Theorem 2.1.3:

0= Z puly.

beXp

§2.3.1 The case 0 > 1

To prove one direction of Theorem 2.1.3, namely that the unique acs measure u from
Theorem 2.1.2 is infinite if § > 1, we introduce another induced transformation.
Furthermore, we use that there exists a 6 > 0 such that |DTy(z)| < 1 for all z €
[c —d,c+ 6] and b € X . This implies

|Tp(z) — ¢ < |z — ¢ (2.24)
forall x € [c —d,¢+ 6] and b € ¥p.

Proposition 2.3.1. Suppose 8 > 1. Then the unique acs measure p from The-
orem 2.1.2 is infinite.

Proof. Fix a b € ¥p. Recall the definitions of M from Lemma 2.1.6 and set y =
min{d, M~} with § as given above. Let a € [c—~,c). Then there exists a £ € (a, c)
such that T,(a) > ¢ and T2 (a) > &. Take [bb] x (a,£) as the inducing domain and let

k(w,z) = inf{k € N: F¥(w, z) € [bb] x (a, &)}

be the first return time to [bb] x (a,&) under F. If mp x p([bb] % (a,&)) = oo, then
there is nothing left to prove. If not, then we compute f[bb]x(a o kdmyp X p and use
Kac’s Lemma, i.e. Lemma 1.2.13, to prove the result.

So, assume that my x p([bb] x (a,€)) < oco. The conditions that T;(a) > & and
TZ(a) > & together with the fact that any bad map has c as a fixed point and is
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strictly monotone on the intervals (0, ¢) and (¢, 1), guarantee that for each n € N and
w € X N [bb] we get

T3 ((a,€)) N (a, ) = 0. (2.25)
For any w € [bb] and z € (a,§) it follows by (2.25) and (2.24) that T.”(z) can only
return to (a, &) after at least one application of a good map. Assume that w € [bb] is
of the form
W = (ba b7W3,W4, sy Wny G, Wn42, .. ')a
with n > 2, w; € ¥p for 3 <i<n,ge X, and z € (a,§). Then k(w,z) > n+ 1.
Lemma 2.1.6 yields that

T () — ¢| < (Mry)borton < 2 bonbon, (2.26)
From (G3) and (2.26) we obtain that
5 (@) M M
Ty (x) = Ty(e)| = / DTy(y) dy| < —2|T} (x) — c|"s < =227 forrbonTs,
c Tg T'g

(2.27)

Set

¢ =sup{|DT;(z)| : j € X, z €[0,1]}.
Then ¢ > 1 by (G4), (B4). Assume k(w,z) = m + n for some m > 1. Then
T (x) € (a,€) so that by (G1),

75" (x) = Ty(c)| = minfa, 1 — &}

Because of (2.27) this implies

gml]\ég o7t ben™s > min{a, 1 — £},
Solving for m yields

mZK1+K2£w1"'€w

n

for constants K; = 1 + log (%t&m)/logc € R and Ky = log(2")/log¢ > 0.
Note that K7, Ko are independent of w,z, m and n.

We obtain that for any g € ¥,

/ Kdmgp X [
[b0] x (a.£)

> Z Z mp([bbwg---wng]),u((a,f))(n—l—Kl+K2€(2)H€wi>.

n€N22 W3,...,wWn EXRB 1=3

Since

Z Z mp([w3-~'wn])H£wz::1+29n200a
=3

’I’LEsz W3,...,wn €EX B neN

we get f[bb]x(a7€) kdmp X p = oo and from Lemma 1.2.13 we now conclude that pu is
infinite. O
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§2.3.2 The case § < 1

For the other direction of Theorem 2.1.3, assume 6 < 1. We first obtain a stationary
probability measure i for F' as in (2.5) using a standard Krylov-Bogolyubov type
argument. For this, let M denote the set of all finite Borel measures on [0, 1], and
define the operator P : M — M by

’Pl/Zzpjl/OTfl, veM,

JES

where v o Tj_1 denotes the pushforward measure of v under 7. Then P is a Markov-
Feller operator (see e.g. [LMS04]) with dual operator U on the space BM (][0, 1]) of all
bounded Borel measurable functions given by? U f = EjeE p; foT) for f € BM([0,1]).
As before, let A denote the Lebesgue measure on [0,1], and set A, = P"™\ for each
n > 0. Furthermore, for each n € N define the Cesaro mean p, = %L Z;é Ak
Since the space of probability measures on [0, 1] equipped with the weak topology is
sequentially compact, there exists a subsequence (pin, )ren Of (fin)nen that converges
weakly to a probability measure i on [0,1]. Using that a Markov-Feller operator
is weakly continuous, it then follows from a standard argument that Pp = fi, that
is, {1 is a stationary probability measure for F. The next theorem will lead to the
estimate (2.6) from Theorem 2.1.3. For any w = uy ---ux € ¥, k > 0, recall that
we abbreviate p,, = Hle Dy, and also let £, = Hle ly, if u € T%, where we use
Pu =Ly =1 1in case k = 0.

Theorem 2.3.2. There exists a constant C > 0 such that for all n € N and all Borel
sets B C [0,1] we have

M(B)SC- Y py Y Y puly- AB) T

9€%c  k=0bexk
Before we prove this theorem, we first show how it gives Theorem 2.1.3.

Proof of Theorem 2.1.3. The first part of the statement follows from Proposition 2.3.1.
For the second part, assume that § < 1 and that Theorem 2.3.2 holds. Let B C [0, 1]
be a Borel set. Using the regularity of A, for any 6 > 0 there exists an open set
G C [0,1] such that B C G and A(G) < A(B) + 6. Using that (un, )ren converges
weakly to fi, we obtain from the Portmanteau Theorem together with Theorem 2.3.2
that

f(B) < j(G) < limint i, (G)

<C N > D by (A(B) +0) T

9€¥c  k=0pexk

2By definition of a Markov-Feller operator, the space of bounded continuous functions is required
to be invariant under the dual operator U. If there is a g € X for which Ty is discontinuous (namely
at c), we then first identify [0, 1] with the unit circle ST so that Ty can be viewed as a continuous
map on S'. With the same identification any acs measure on S! then gives an acs measure on [0, 1].
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Since 6 < 1, the sum is bounded and with the Dominated Convergence Theorem
we can take the limit as § — 0 to obtain

AB)<C- 3" gy D pols- A(B)w 0 (2.28)
9€Xa  k=0bexk

This proves that i is absolutely continuous with respect to the Lebesgue measure on
[0,1]. It follows that the probability measure [ is equal to the unique acs measure
from Theorem 2.1.2. The estimate (2.6) follows directly from (2.28). O

It remains to give the proof of Theorem 2.3.2. We shall do this in a number of
steps.

Proposition 2.3.3. There exists a constant K1 > 0 such that for all n € N, all
u € X" and all Borel sets A C [0,1] with 0 < 3\(B) < 3 min{c,1 — ¢} we have

MT,'B) < K1 (AT, 1[0,3n)) + AT, ' (¢ — 3n, ¢+ 3n)) + AT, ' (1 = 3n,1])),
where n = A(B).

Proof. Let n € N, uw € £" and a Borel set B C [0,1] with 0 < 3\(B) < 3 min{c,1 —
¢} < 1 be given and write n = A(B). The map T, has non-positive Schwarzian
derivative on any of its intervals of monotonicity (see (1.13)) and the interior of
the image of any such interval is (0,¢), (¢,1) or (0,1). Set By = (n,¢ — n) and
By = (2n,¢ — 2n). Let I be a connected component of T,; ! By, and set f = Ty, |; and
I* = f~'B,. The Minimum Principle yields

|IDf(x)| > mé? |Df(2)], forall z € I". (2.29)
zeol*
Suppose the minimal value is attained at f~!(2n) and set By = (21,37n) and J =
f~!'Bs. By the condition on the size of B it follows from the Koebe Principle that
KM |Df(f~1(2n))| > |Df(2)], for all z € J. (2.30)
Combining (2.29) and (2.30) gives

. B 1 1
AITBNB)) = /]m D1y

N TEET)]
< KO [ e W) = KOG (B)
We conclude that
MT (BN (20,¢ = 2m))) < KDL, (20,30).
In case min,cyr- |Df(2)| = f~1(c — 27), a similar reasoning yields
AT (B0 (20— 2m))) < KON (e = 30,0 — 21)).
Furthermore, a similar reasoning can be done for the interval [c, 1] to conclude that

MNT (BN (c+2n,1-2n))) < K™ (A(T;l(c+2n, c+3n)) + ATt (1—3n, 1—277))).

Hence, setting K; = max{K " 1} gives the desired result. O
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Proposition 2.3.3 shows that to get the desired estimate from Theorem 2.3.2 it
suffices to consider small intervals on the left and right of [0, 1] and around c, i.e. sets
of the form

I.(e):=(c—¢g,c+e) and Iy(e):=1[0,e) U(1l—¢g,1]
for e > 0. We first focus on estimating the measure of the intervals I..(¢).

Lemma 2.3.4. There exists a constant Ko > 1 such that for alln € N, u € X771 x
Yo and all e > 0 we have

MNT, M (e)) < Kae.
Proof. Let n € Nand u € X" ! x . Let ¢ > 0. Suppose that £ > %min{c, 1—c}.
Then

4e

NI () <1< el a

(2.31)

Now suppose € < imin{c,l — ¢}. Again the map T, has non-positive Schwarzian

derivative on the interior of any of its intervals of monotonicity and since u, € Xg
the interior of the image of any such interval is (0,1). Use Z to denote the collection
of connected components of T, 11.(¢). Let A € Z and write J = J4 and I = I4 for
the intervals that satisfy A C J, A C I and

1 1

Tu(J) = {c—gmin{c,l—c},c—k§min{c,1—c}},
3 . 3 .

T.(I) = [cf Zmln{c,l —ch,c+ Zmln{c,l fc}]

Also, write f = T, |;. Since f has non-positive Schwarzian derivative, it follows from
(1.12) applied to this setting

We conclude that

-1 _ < K& (G
AT, 1.(2)) ;IA(A)_K mm{cl_c}Z (Ja) < K mm{cl_c}

Defining K3 = w the desired result now follows from (2.31) and (2.32).0

min{c,1—c}

To find A, (IC(E)), first note that from Lemma 2.1.6 it follows that for all € > 0,
neN, ueXy,

T, (I(e)) C L (K tel). (2.33)
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By splitting X" according to the final block of bad indices, we can then write using
(2.33) and Lemma 2.3.4 that

n—1
=30 30 DD peaA (T le(@) + Y peA(T, e(e))
k=0 vexn—*-1 geXg bexk bexy
S Z Z Z Z pvgb)\ Ugl-[( Z pb>\ ))
k=0wvecxn—k-1gclag bezk bexy
< Z ST N pamEaK e+ Y 2K et
k=0 g€Xc bexk bexy

Taking K3 = max {KQ,Q(EQEZG pg)_l} . K~1>1 then gives

M(Ie(@) < K5 30 ST ST pemeete (2.34)

g€EX g k=0 bez’%

We now focus on Io(e) = [0,) U (1 —¢,1]. Fix an 0 < g9 < $min{c,1— ¢} and a
t > 1 that satisfy

|DT;(x)| > t, for all x € Iy(ep) and each j € X.

Such €¢ and ¢ exist because of (G4) and (B4). From (G3) it follows that for each
0<e<egpand g€ Xg,
K,
/ DTy ( dy' — oz —¢|".
Ty

Set Ky = max{(Kg_lrg)rs71 :g € X} > 1. Then (G1) implies that

Ty () ol =

T o(e) C Io(et ™) U L(K4e™ ). (2.35)

Furthermore, from (B1) it follows that for each ¢ € (0,e¢) and b € X,

T, 'Io(e) C In(et™). (2.36)
Write each u € X" as
u = b1g; - bsgs (2~37)
for some § € {1,...,n}, where for each i we have b; = b;1---b; 1, € Z% and g; =
Gi,1 " Gim, € B¢t for some ki, ms € Ng and kg, ..., ks, mq,...,mz_; € N. Define

5 if ms > 1,
S =
5—1, ifms=0.
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Moreover, we introduce notation to indicate the length of the tails of the block u:

d_|b ngS|7 26{177§}a
Gij = |gz,j+1 o Gim,bit19ir1 - bsgs|, i€ {l,...,8}, 5 €{0,...,m;}.

If necessary to avoid confusion, we write s(u), k;(u), etc., to emphasise the depend-
ence on u.

Lemma 2.3.5. There exists a constant K5 > 0 such that for each 0 < e < ¢gg, n € N
and u =by1gy---bzg; € X7,

— ‘e 1
T Io(e) C Io(et™™) UU bron b1 Le (Ks(at ) g“)

=1

-1
—4qi,5\"9; ;
U U U blgl b 1Q'i—1bi9i,1"'5i,j—11c(K5(gt ) 1])'
i=1j=2

Proof. We prove the statement by an induction argument for 5. Let u be a word with
symbols in ¥, and write u = by gy - - - bzgs for its decomposition as in (2.37). First
suppose that § = 1. If my; = 0, then the statement immediately follows from repeated
application of (2.36). If my > 1, then repeated application of (2.35) gives

T, o) € To(et™ ) U T, (K4(gt—qu)’”53,1)

r_l_
U 911 91,51 (K4( tm) gl’J)'

By setting K5 = K~ 'Ky, applying (2.33) and (2.36) then yields

—1,.-1
T, IO( ) C IO(Et_dl) U Ic (KE)(Et_ql‘l)gbl 791,1)

b191
-1
U 51911 g1, ,1IC<K5(€t7q1=J)T91,j>_

Note that this is true for the case that k1 = 0 as well. This proves the statement if § =
1. Now suppose 5(u) > 1 and suppose that the statement holds for all words v with
5(v) = 5(u) — 1. In particular, the statement then holds for the word bsgs - - - bsgs.
Note that m; > 1. Again, by repeated application of (2.35) it follows that

Tgflljo(gtfdz) C Io(et~ 1) U I, (K4(€tfq1,1)r_;11,1)

ma

ro b
U 91 1°°91,5—1 <K4(Et_(h$j) 91,]>'
Furthermore, applying (2.33) and (2.36) then yields

blglIO(Et dz) C Io(et™ dl) Ul <K5(€t q11)5b1 91 1)

-1
U U b1g1 . gleillc(Kg)(gt_qu)"‘gl,j).
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This together with the statement being true for the word bsgs - - bzgs yields the
statement for u. O

Combining Lemma 2.3.4 and Lemma 2.3.5 gives

1 s l
MT; o (e)) < 26t~ +ZK2K5 (et=4i1)e: Toin +ZZK2K5 (et=93) 9
=1 =1 j=2
Let rmax = max{r, : g € Xg} and set a := ¢'/™max > 1. Then

ZZO‘ " <Zo‘ - 1—1/a

=1 j=2

so that

S m; S 11
)\(TJII()(E)) < 251/T(nax + Ky K Z Zgl/Tmaxa—qz',j + Z K2K5(€t_qi‘1)€bi Tg9i1
i=1 j—=2 i=1

KyKs \ . o
< (2 /Tmax K- K et~ 1), 911
(+1—1/a)€ + Ko 5;( )*

(2.38)

Proposition 2.3.6. There exists a constant Kg > 0 such that for each € € (0,¢)
and n € N,

n—1
Mllo(€) S Ko D pgd 3 poly-cv "

g€X k=0 bez%

Proof. Let n € N. Then with (2.38) we obtain

= ) puT (To(e)))
uexn

s(u)

< <2+ lei{; > Vrmes 4 KoKy Y pa Y (et a1 () 701
— «
uexn =1

KK \
) /Tmax
( " =1/ )

+K2K52 Z 1{17.",S(u)}(i)pu(at*th@(u))

=1 uekn

Coy o) i ) (2.39)

where we defined 7 = | 25! | which is the largest value s(u) can take. Let us consider
the term in (2.39). First of all, note that a word u € X" satisfies s(u) > 1 if and only
if my(w) > 1. Therefore,

n—1

{ue":s(u)>1} = [ JTh x Sg x £nr L
k=0
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Hence, defining the function y on {0,...,n — 1}? by

=> > p,,pg(et*q)e‘?”?l, (k,q) € {0,...,n —1}2 (2.40)

bexk ge¥a

we can rewrite and bound the term with ¢ = 1 in (2.39) as follows:

_ _ n—1
Z 1{1)“‘78(1‘)}(1)pu(5t*Q1,1(u))Zb11(u)Tg11,1(u> — Z Z va(kyn —k— 1)

uesn k=0 pexn—k-1

n—1

< gl/rmax 4 Zx(k:,n —k-1).
k=1
(2.41)

Secondly, note that for each i € {2,...,7} a word u € X" satisfies s(u) > i if and only

if m;_1(u), k;(uw), m;(u) > 1. For each k € {1,...,n—2} and ¢ € {0,...,n — k — 2}
and ¢ € {2,...,7} we define

Ai,k,q = {’U S ynk-a-l. §(’U) =17 — 1,Un—k—q—1 S Zg}
The set A; 1 4 contains all words of length n — k — ¢ — 1 that can precede the word

bigi - -~ bsgs with [b;| =k and |gi2 -+ gi,m,bi+1Git+1 -+ - bsgs| = ¢. So

—2n—k—
{fuexm:s(u)>i :U U Ajpg xS xTex0?,  ie{2,...,7}

Hence, using (2.40) we can rewrite and bound the sum in (2.39) that runs from i = 2
to 7 as follows:

i > 1{1,..4,s(u)}(i)pu(Etfqi’l(u))egil(")r"_’f“”’
=2 uexn
> S Y pupux(kiq)

=2 k=1 q=0 v1E€A;k qv2ELY

n—2n—k—2 (242)
= X k q Z Z Z Py, Poy

k=1 ¢q=0 1=2 v1€EA; |, q V2EXT

n—2n—k—2

IA
(]
=,
-
e

Here the last step follows from the fact that

i YoopwS D, Y pepg sl

=2 V1E€A; k. q veXn—k-a-2 ge¥g

60



§2.3. Estimates on the acs measure

Combining (2.41) and (2.42) gives

n—1ln—k—1

Z Z ].{1 s(u)} pu( = qll(u)) b (u) 93, 1(u) <5‘1/Trndx +Z Z X

=1 uexn

(2.43)
Furthermore, for each b € ¥4 and g € X we have again by setting rp.x = max{r; :
j € ¥g} and a = !/ max that

n—k—1 n—k—1 _
1 al;!

+—4 é;lr < 75_ . 1b /
2, ¢ 2, S a1 Tog@

q=0 q=0

ly, (2.44)

lfoz ¢

where the last step follows from the fact that f(z) = %5 is a decreasing function
and lim, o f(z) = log . Hence, combining (2.39), (2.43) and (2.44) gives

An(Zo(€))
K K n—1n—k—1 1
2825 1/Tmax 6T
< (z+1_1/ +K2K5) PR SS Y YY (et )
k=1 ¢=0 bexk geXc
9+ KoK 1/rm+KKZZZ gt Ol
2 K5 2885 PbPg log(a)
k=1bexk geXa

-1
<Kg Y pan: 37 puleet o

9€Sc  k=0bexh,

1 2a—1 KoKsa
where K6 = 7min{pg 9esa) (2 + K2K5 o ) + 715)g0¢ . O
We are now ready to prove Theorem 2.3.2.

Proof of Theorem 2.3.2. Let B C [0, 1] be a Borel set. First suppose that A\(B) > <.
Then there exists a constant C' = C(gg) > 0 such that

B)<1<C Y >0 pol - AB) 7
g€le  k=0bexk

Now suppose that A\(B) < % and set ¢ = 3\(B). It follows from Proposition 2.3.3
that for all n € N and all u € X" we have

AT, ' B) < Ki(MTy ' Io(€)) + MTy, ' L(2))).
Together with (2.34) and Proposition 2.3.6 this yields for all n € N that
oo o,
M(B) < Ki-(Ks+ Ko) 3 pg 3 polo-e "o
g€Xa  k=0bexk

This gives the result. O
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§2.4 Further results and final remarks

§2.4.1 Proof of Corollaries 2.1.4 and 2.1.5

In this section we prove Corollaries 2.1.4 and 2.1.5.

Proof of Corollary 2.1.4. We use the bound (2.6) obtained in Theorem 2.1.3. For
convenience, we set £ = {.x and z = /\(B)l/ ™max_ The asymptotics are determined
by the interplay between 0% \, 0 and g/ A 1. First suppose 6 < z'/¢. Then
A(B) > §rmax | 5o for each s > 0 there exists C' > 0 sufficiently large such that

1
B <1< C By

Now suppose 6 > z'/¢. Note that OV > 2V if and only if

lo
log N + Nlogt < log o8],
log 6

Since log N < N, this last inequality is satisfied if we take for example

o (525) = e ()]

where |y| denotes the largest integer not exceeding y. Taking N as in (2.45), note
that it follows from 6 > /¢ that N > 0. Then 0 > 21/¢" for all k < N as well, and
hence

iakml/ékzzek 1/0F + Z 0% 2 1/zk<zak 1/eN + i 0% .1

k=0 k=0 k=N+1 k=N+1
1 N gNH1
< = _pl/t < 1+ 0)6N
S T A e I e G

From (2.45) we see that N > 1+loge log (}ZEZ) — 1, thus

exp(Nlog0) < exp ((1 +1log€ log (i’é%g) - 1) log 9)

log 6
= exp (1-1-15 loglog(1/x) + C(¥, 9)>

eN

— 0(1,0)(log(1/2)) "7 = T(¢,6) <1g<17A<B>>) ’

where we set 3 = lfi(ll/a) > 0, and where C(£,0) € R and C(¢,0) > 0 are constants
that only depend on ¢ and 6. We conclude from the bound (2.6) that

1
“log”(1/A(B))

for some positive constant K. O

wB) < K
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The proof of Corollary 2.1.5 consists of two steps. Firstly we show that any weak
limit point of pp, is a stationary measure, i.e. satisfies (1.18), and secondly that any
weak limit point of p,,, is absolutely continuous with respect to the Lebesgue measure.
The corollary then follows from the uniqueness of absolutely continuous stationary
measures given by Theorem 2.1.2.

Proof of Corollary 2.1.5. For each n > 0, let p, = (pnj)jex be a strictly positive
probability vector such that sup,, Zbezs Pnpls < 1 and assume that lim, ,oc pr, = p
in Rf for some strictly positive probability vector p = (p;);ex. Let fi be a weak limit
point of an arbitrary subsequence of jip,, . Again, note that such a fi exists because the
space of probability measures on [0, 1] equipped with the weak topology is sequentially
compact. After passing to a further subsequence we have for any continuous function
¢ :[0,1] — R that

lim pdup, = / edfi.
nee Jo) [0,1]
Moreover, by the stationarity of the measures pyp, it follows that for each n > 1,
/ edpp, = Pn / o Tjdpp,.
[0,1] jEX

To prove that [ is stationary for p, it is sufficient to show that for each j € ¥,

lim py; / poT)dup, =Dpj / poTjdf. (2.46)
[0,1] [0,1]

n—oo

If j € ¥p this is obvious, since then ¢ o T} is continuous. For j € ¥ the map
¢ o T; might have a discontinuity at c. In this case, we let 5 be the continuous
function given by ¢;5(z) = @oTj(z) for x € I'\ (¢ —6,¢c+0) and g5 is linear otherwise.

Then we have
pn,j/ w5 dip,, — pj/ ws dji
[0,1] [0,1]

)

lim = 01
n—oo

by the weak convergence and since p,, ; — p; as n — oo. Also, we have

< Cpp, ([c—0,c+3d]) > 0asd —0,

Pn,j / ¢ oTjdup, — pPn,; / w5 dpip,
[0,1] [0,1]

)

where the convergence is uniform in n because of (2.6). Similarly,

pj/ <poTjd/1—pj/ wsdfi
[0,1] [0,1]

The last three relations imply (2.46).

To show that [ is absolutely continuous with respect to the Lebesgue measure A
we proceed as in the proof of Theorem 2.1.3. We set 6 = sup,, ZbezB Pnply < 1. Let
B C [0,1] be a Borel set. Every pup, satisfies the conclusion of Theorem 2.1.3, so

N - -1
ip, (B) < Cpp S 0FA(B) b,
0

< Cp(le—9d,c+0]) = 0asd— 0,
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where the constant C,, depends on (3_ s, pn’g)f1 and (min{p,, : g € S} !
(and properties of the good and bad maps themselves that are not linked to the
probabilities). Since p and each p,, n > 0, are strictly positive probability vector
and lim, .. p, = p, both these quantities can be bounded from above and C =
sup,, Cp, < co. From the weak convergence of pp,, to fi we obtain as in (2.28) using
the Portmanteau Theorem that

—k ’l"_l

A(B) < €Y FFA(B) b,
k=0

Hence, i < A. By Theorem 2.1.2 we know that p, is the unique acs probability
measure for (7, p). So, i = pp. O

§2.4.2 The non-superattracting case

With some modifications the results from Theorem 2.1.2 and Theorem 2.1.3 can be
extended to the class B! DO B of bad maps whose critical order ¢, in (B3) is allowed
to be equal to 1. We will list the modified statements and the necessary modifications
to the proofs here. Note that for each T' € B!\ B, we have DT (c) # 0, and due to the
minimal principle, |DT(c)| < 1. We consider T1,...,Ty € & UB! with X5 = {1 <
j < N:T; € B'} and X, Ep as before and such that ¥, X5 \Xp # 0. Furthermore,
we write again ¥ = {1,..., N} = ¢ UXL. We again set lya = max{f, : b € Xp}.

Theorem 2.4.1. Let T = {1} : j € £} be as above and p = (p;) ex a strictly positive
probability vector.

(a) There exists a unique (up to scalar multiplication) o-finite acs measure u for
(T,p). Moreover, F is ergodic w.r.t. mp X p and the density % 1s bounded
away from zero and is locally Lipschitz on (0,¢) and (c, 1).

(b) Suppose lrax > 1.

(i) The measure p is finite if and only if 0 = Zbex}g poly < 1. In this case,
Jor each 0 € (0,1) there exists a constant C(A) > 0 such that

-k . —1

p(B) < C(0) > 0FN(B) max"mex
k=0

for any Borel set B C [0,1], where ryax = max{r, : g € Xg}.
(i) The density Z—’; is not in L1 for any q > 1.

(¢) Suppose liax = 1.

(i) The measure p is finite, and for each n = (m)pesy, such that ny > 1 for
each b € B and O(n) = Zbezg pemy < 1 there exists a constant C(n) > 0
such that

w(B) < C(n)- Z O(n)* A(B) e Tmax
k=0
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for any Borel set B C [0,1], where Nmax = max{n, : b € L}, If
Zbele ‘D%’% < 1, so if the bad maps are expanding on average at the

point ¢, then we can get the estimate
((B) < C - \(B)"max (2.47)

for some constant C > 0 and any Borel set B C [0,1].
(1) If rmax > 1, then ‘;—‘; ¢ L7 for any q > tmexg. If also Zbele \D?Z“'% <1,
then%fEquoralllgq<TTM

max—1

(iti) If rmax = 1 and Lo okt < 1 then 95 € L.

The main issue we need to deal with in order to get Theorem 2.4.1 is adapting
Lemma 2.1.6, i.e. finding suitable bounds for |T(x) — ¢|, since the constants K and
M from Lemma 2.1.6 are not well defined in case £y, = 1. This is done in the next
two lemmas. For the upper bound of |T}(x) — ¢| we assume fpax > 1 since we only
need it for the proof of part (b)(i).

Lemma 2.4.2. Let {T} : j € £} be as above. Suppose {max > 1. There are constants
M > 1 and § > 0 such that for alln € N, w € (X5)N and z € [c — 6, ¢ + 6] we have

~ ewl“‘ewn
T2 (@) =l < (M=)

Proof. Similar as in the proof of Lemma 2.1.6 it follows that there exists an M > 1
such that for any b € X5 and z € [0, 1] we have
Ty () — ¢| < M|z — ¢|*. (2.48)

Furthermore, there exists a 6 > 0 such that |DTy(z)| < 1 for all z € [¢ — §, ¢+ d] and
b € k. This implies

|Ty(z) — ¢| < |z — ¢ (2.49)
for all z € [c — &,c+ 6] and b € ¥%. Note that Xp # () because lpax > 1. We set
v=min{l,: b€ Np}>1and M = M+71. For each n € N and w € (SL)N, write

m(n,w) =#{1 <w; <n: 4, >1}.

The statement follows by showing that for alln € N, w € (X5)N and = € [¢ — 6, ¢+ ]
we have

—m(n,w Lo ""gwn
|Tg(x)—c|g(M<1*v ‘ >>/<v*1>\x—c|) L (2.50)

We prove (2.50) by induction. From (2.48) and (2.49) it follows that (2.50) holds for
n = 1. Now suppose (2.50) holds for some n € N. Let w € (X5)N and y € [c—6, c+4].
If 4,,,,, = 1, then the desired result follows by applying (2.49) with b = w,4+; and
x =TJ (y). Suppose £, , > 1. Then, using (2.48),

T2 () — e < MIT (y) — cf“nr

Loyt
= m(n,w) _ —m(n+1,w) w Wy
< (M(l v )/ (v=1)+v |y—c|> 1 e
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Using that

—-m(n,w) _ Ufm(n+1,w)

_ v
v m(n+lw) _ ,

v—1

the desired result follows. O

Lemma 2.4.3. Let {T}; : j € X} be as above. Let n = (m)pexy, be a vector such that
ny > 1 for each b € k. Set 7, = max{my, £y} for each b € X%. Then there exists a
constant K(n) € (0,1) such that for alln € N, w € (SL)N and x € [0, 1] we have

17 Mwn

N N
(Kl - d) < T2 (@) — .
Proof. Note from (B3) that for each b € =} we have
Kylz — ¢! < Kylz — ¢[*~! < |DTy(z)|.

By setting fmin = min{f, : b € L}, fmax = max{Ay, : b € L} and k(n) =
. . 1
(%) "min =1 the result now follows in the same way as in the proof of Lemma

2.1.6. O

Proof of Theorem 2.4.1. Firstly, note that (a), (b)(ii) and the first part of (c)(ii)
immediately follow from Remark 2.2.8. Moreover, as in [dMvS93, Section 5.4] it can
be shown that (2.47) implies that 2—’; isin LY if rppax >1land 1 < g < %, giving
the remainder of 3(ii). It is immediate that (2.47) implies that % isin L™ if rpa = 1,
so (3)(iii) holds. Hence, it remains to prove (b)(i) and (c)(i).

Suppose ¢ = >, s pply > 1, which means that fn.c > 1. The proof that in
this case pp is infinite follows by the same reasoning as in Subsection 2.3.1 by now
taking v = min{J, %M’l} with § and M as in the proof of Lemma 2.4.2. Now
suppose 6 < 1. Let n = (my)pex1, be a vector such that n, > 1 for each b € YL and
0(n) = Zbezg iy < 1 with again 7, = max{n, £y}. Applying Lemma 2.4.3 yields
that for alle > 0, n € N, b € (X})",

Ty ' (Le(e) C L(K(n)"'e™ ), (2.51)

where we used the notation 7y = M, - - - s, for a word b = by - - - b,,. Following the line
of reasoning in Subsection 2.3.2 with (2.51) instead of (2.33), we obtain that there
exists a constant C'(n) > 0 such that

p(B) < C(m) - 0(m) A(B)ITons (2.52)
k=0

for any Borel set B C [0,1]. In case fpax > 1 we can choose 1 to satisty fmax = max
and such that 6(n) — 0 > 0 is arbitrarily small, which yields (b)(i). In case fpax = 1,
then fimax = Nmax, SO this together with (2.52) yields the first part of (c)(i).
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§2.4. Further results and final remarks

Finally, for the second part of (c)(i), suppose €max = 1 and A = Zbele ‘D%’% <
1. Setting Kp = |DTp(c)| for each b € (£5)" and n € N, note that for all € > 0,
neN, be (Th)",

Ty M (Ie(e)) C I (K te). (2.53)

By using (2.53) instead of (2.33), letting pp = Kb_lpb play the role of pp in the
reasoning of Subsection 2.3.2 and noting that A* = Ebe(zg )k Db, We arrive similarly

as for Theorem 2.3.2 to the conclusion that there exists a constant C' > 0 such that
for all n € N and all Borel sets B C [0, 1],

M(B)<C- Y pg(iAk)A(B)T?.
k=0

g€Xa

This proves the remaining part of (c)(i). O

§2.4.3 Final remarks

The results from Theorem 2.4.1 contain one possible extension of our main results
to another set of conditions (G1)-(G4), (B1)-(B4). In this section we discuss some
of the questions that our main results brought up in this respect, i.e. about whether
or not some of the conditions (G1)—(G4), (B1)—(B4) can be relaxed, and questions
about other possible future extensions.

A condition that plays a fundamental role in the proofs of Theorem 2.1.2 and
Theorem 2.1.3 is the fact that the critical point is mapped to a point that is a common
repelling fixed point for all maps 7T;. We considered whether this condition can be
relaxed, for instance by assuming that the branches of one of the good maps are not
full. However, in this case the critical values of the random system are not just 0,¢, 1
but contain all the values of all possible postcritical orbits of ¢. This has several
consequences:

- An invariant density (if it exists) clearly cannot be locally Lipschitz on (0, ¢) and
(c,1).

- Proposition 2.3.3 and all subsequent arguments fail, since it is not sufficient to
restrict to neighbourhoods around only 0, ¢ and 1. One might try to solve this issue by
requiring that (on average) the postcritical orbits ‘gain enough expansion’ as is done
in for instance [NvS91] for deterministic maps (see Theorem 2.1.1). An analogous
condition for random systems, however, would be much more difficult to verify since
it would involve all possible random orbits of c.

- The argument using Kac’s Lemma might fail, because in that case there exist
words u with symbols in ¥ and neighbourhoods U of ¢ such that T, (x) is bounded
away from 0 and 1 uniformly in z € U.

There are also some additional questions that our main results raise. It would be
interesting for example to study further statistical properties of the random systems
such as mixing properties and if possible mixing rates in case the acs measure is finite.
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CHAPTER 2

2. Absolutely continuous invariant measures for critically intermittent systems

As is well known from e.g. [KN92, Y92, Y98, BLvS03| the good maps individually
have exponential decay of correlations. But since trajectories in the random systems
spend long periods of time near the points 0 or 1 or both, polynomial mixing rates
are expected rather than exponential. This will be the topic of Chapter 3.

The dynamical behaviour of the system is governed by the interplay between the
superexponential convergence to ¢ and the exponential divergence from 0 and 1. In
this chapter we fixed the exponential divergence away from 0 and 1 and the two
regimes # < 1 and # > 1 in Theorem 2.1.3 only refer to the convergence to ¢: For
smaller (bigger) 0 orbits are less (more) attracted to c. It would be interesting to see
under what other conditions on the rates of convergence to ¢ and divergence from 0
and 1 the system admits an acs measure. Could one for example

- take exponential convergence to ¢ and polynomial divergence from 0 and 1?7 We
will investigate this question in Chapter 4.

- replace the conditions (G4) and (B4) stating that all good and bad maps are
expanding at 0 and 1 by the condition that the random system is expanding on average
at a sufficiently large neighbourhood of 0 and 1?7

Finally, in Theorems 2.1.2 and 2.4.1 we have seen that the regularity of the density
% depends on whether or not there is a bad map for which c¢ is superstable: If
lax > 1, then Z—K is not in LY for any ¢ > 1. On the other hand, if /;,,x = 1 and the

bad maps are expanding on average at c, i.e. Zbez}g w%’ﬁ < 1, then the density

has the same regularity as in the setting of Theorem 2.1.1 by Nowicki and Van Strien.
Indeed, in this case, if Fmax > 1, we have % € L9 if and only if 1 < ¢ < w2 and in

T'max

the case that rp,.x = 1 we have ‘;—‘; € L7 for all ¢ € [1,00]. In view of this, one could
wonder for which g > 1 we have g—‘; € L7 in the intermediate case that £, = 1 and
Zbez}g IDTEW > 1, i.e. if ¢ is not superattracting for any bad map and the bad maps

are not expanding on average at c.
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