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CHAPTER 1
Introduction

§1.1 Motivation and context

In science, studies on systems that evolve in time are ubiquitous. In most of these
studies mathematical models are essential to analyse and predict the behaviour of
these systems. A large part of these models falls in the category of discrete-time
dynamical systems. A state of the system under consideration is then represented as
a point in some abstract space and the evolution of the system is described as moving
from one point in this space to another in discrete time steps. This evolution can be
modelled to be either deterministic or random.

More formally, a deterministic discrete-time dynamical system models the evol-
ution by a single transformation T acting on a state space X, so that if the system
starts at state x0 ∈ X, then x1 = T (x0) is the state of the system at time 1, and more
generally,

xn = T (xn−1), n ∈ N (1.1)

is the state of the system at time n. Examples of deterministic discrete-time dynamical
systems are interval maps, in which case the state space X is a bounded interval in
R. See Figure 1.1(a) for an example.

On the other hand, for a random discrete-time dynamical system a set T = {Ti :

X → X}i∈I of transformations on X is considered and the evolution of the system
starting at x0 ∈ X is given by

xn = Tin(xn−1), n ∈ N, (1.2)

where the sequence {in}n∈N is drawn from IN according to some probability law P.
If X is an interval, we then refer to the pair (T ,P) as a random interval map. See
Figure 1.1(b) for an example of a random interval map.

The past decades have seen an increasing interest in the mathematical properties
of random interval maps. These systems have applications in electrical engineering,
pseudo-random number generators, etc., and provide realistic models in many fields
such as physics and population dynamics for studying real-world phenomena that
evolve in time and involve noise. This dissertation consists of two parts, each of
which considers a different research area related to random interval maps. We go into
this in more detail in the next two subsections.
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Figure 1.1: Example of (a) an interval map, namely the doubling map x 7→ 2x mod 1,
and (b) a random interval map consisting of the two logistic maps x 7→ 2x(1 − x) and
x 7→ 4x(1− x). The dashed lines indicate parts of an orbit, which in (a) is of the form as in
(1.1) and in (b) of the form as in (1.2).

§1.1.1 Statistical properties of critically intermittent
systems

Typically dynamical systems under consideration exhibit to a certain extent irreg-
ular or chaotic activity. See Figure 1.2. The long-term behaviour of these systems
cannot be predicted by following single orbits, even if they are generated by a single
deterministic transformation. On the other hand, systems with chaotic behaviour
are usually statistically predictable and their long-term behaviour can be analyzed
by using tools from Ergodic Theory. Of particular interest are absolutely continuous
invariant measures, or acim’s for short, and mixing properties.

First of all, an invariant measure gives information about the long-term distribu-
tion of the orbits from (1.1) or (1.2) on part of the space, and this part is large if
the invariant measure is absolutely continuous with respect to the Lebesgue measure.
Furthermore, if this measure is finite, then on this part of the space mixing properties
can be investigated. A dynamical system is mixing if any two observables on the
system become uncorrelated from their initial values in the long run. In applications,
observables are those quantities that can be measured from the states {xn}n∈N of the
dynamical system given by (1.1) or (1.2), whereas the states themselves are usually
not detectable. The speed of decay of correlations between any two observables gives
an idea of the level of chaos within the system and can help deriving statistical limit
laws for the system. Formal definitions of all these concepts are given in Section 1.2.

In the first part of this dissertation we are interested in random dynamical systems
that are intermittent. This is a type of behaviour where the system alternates between
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Figure 1.2: Time series of the systems from Figure 1.1: In (a) part of an orbit under the
doubling map1 is shown, whereas (b) depicts a typical trajectory under the random map from
Figure 1.1(b) if the two logistic maps are chosen with equal probability and independently at
each time step.

periods of either irregular activity or being in a seemingly steady state. An example
is shown in Figure 1.2(b) where the system spends long periods near zero. This
is in contrast to the system depicted in Figure 1.2(a) which only exhibits chaotic
behaviour. In case an intermittent system admits an acim that is infinite, then this
usually means that the steady state is more prevalent than the irregular activity and
orbits tend to remain long near invariant sets of the system. If a finite acim exists and
the intermittent system is mixing, then typically correlations decay subexponentially
fast, which indicates a weak level of chaos.

The study on intermittent dynamical systems goes back to the seminal article
[PM80] by Manneville and Pomeau, who used such systems to model intermittency in
the context of transitions to turbulence in convective fluids, see also [MP80, BPV86],
and distinguished several different types of intermittency. We are interested in so-
called critical intermittency introduced recently in [AGH18, HPR21]. This is a kind
of intermittent behaviour caused by an interplay of a superattracting fixed point and
a repelling fixed point. To illustrate the concept, consider the random interval map
consisting of the two logistic maps L2(x) = 2x(1−x) and L4(x) = 4x(1−x): for each

1Real numbers in [0, 1) randomly generated by Matlab have 53 bits and thus after at most 53
applications of the doubling map end up in zero. To overcome this, we have used in Matlab a version
of the doubling map rescaled to [0, π] and then scaled the resulting plot to [0, 1].
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n, independently, let

xn =

{
L2(xn−1), with prob. p2,

L4(xn−1), with prob. p4 = 1− p2.

The dynamics of these two maps individually are quite different: L4 exhibits chaotic
behaviour, admits a finite acim and correlations decay exponentially fast, while L2

has 1
2 as a superattracting fixed point with (0, 1) as its basin of attraction. Under

random compositions of L2 and L4 the typical behaviour is the following: orbits are
quickly attracted to 1

2 by applications of L2 and are then repelled first close to 1 and
then close to 0 by one application of L4 followed by an application of either L2 or L4.
Since 0 is a repelling fixed point for both maps, orbits then leave a neighbourhood of
0 after a number of time steps, see Figure 1.1(b). This pattern occurs infinitely often
in typical random orbits and is the result of the interplay between the exponential
divergence from 0 under L2 and L4 and the superexponential convergence to 1

2 under
L2. Figure 1.2(b) shows an orbit under random compositions of L2 and L4.

The dynamical behaviour of random compositions of the two logistic maps L2 and
L4 was studied in [AD00, AS03, AGH18, C02, HPR21] among others. In [AGH18,
HPR21] the authors investigated the existence and finiteness of an acim for this ran-
dom system and for random systems consisting of rational maps on the Riemann
sphere. One particular result from [AGH18] states that the random dynamical sys-
tem generated by i.i.d. compositions of L2 and L4 chosen with probabilities p2 and
p4 = 1 − p2 admits a σ-finite acim that is infinite in case p2 > 1

2 . An interesting
question that was left open in [AGH18] is whether for p2 ≤ 1

2 this measure is infinite
or finite.

One of the first results in this dissertation answers this question. For a large
family of random interval maps with critical intermittency that includes the random
combination of L2 and L4 we show the existence of a unique acim. We give an
explicit expression of a phase transition threshold in terms of the probabilities of
choosing the maps as well as their strengths of convergence to the superstable fixed
point, a threshold that separates the cases where the acim is either finite or infinite.
In particular, the acim of the random interval map composed of L2 and L4 is finite if
and only if the probability p2 of choosing L2 satisfies p2 <

1
2 . Moreover, for a closely

related class of critically intermittent random interval maps we show that in case the
acim is finite correlations decay polynomially fast and we give bounds on the rate of
this decay. Finally, we show that a similar phase transition holds for a similar class
of intermittent random interval maps but where the superattracting fixed point is
replaced by an attracting fixed point and the repelling fixed point is replaced by a
weakly repelling fixed point. Among the techniques we will use are Perron-Frobenius
operators, induced transformations and Young towers.

Most studies on random interval maps consider systems where the dynamics are
dominated by only one type of behaviour, e.g. if the system is uniformly expanding as
in [ANV15, M85b, P84], or if only one of the constituent maps governs the dynamics as
is the case in [BBD14, BB16, NTV18]. The random interval maps we study go beyond
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this familiar setting and are composed of two types of maps that are very different
from each other, one being chaotic and the other not. We prove statistical properties
that depend on the features of both types of maps as well as on the probabilities of
choosing the maps, a dependence that is new compared to other known results on
random interval maps.

§1.1.2 Extensions of Lochs’ Theorem to random sys-
tems

Besides modelling dynamical phenomena we can also use random interval maps to
generate number expansions, which will be the main object of study in the second
part of this dissertation. A number expansion of a real number is a representation of
this number with a specific set of symbols or digits. For example, for each x ∈ [0, 1]

there exists a sequence (bn)n≥1 in {0, 1}N such that

x =

∞∑
n=1

bn
2n
,

a number expansion referred to as a binary (or base 2 ) expansion of x. Other classical
examples of number expansions include decimal expansions, β-expansions and contin-
ued fraction expansions. These examples have in common that they can be generated
by an interval map. For instance, let T2 : [0, 1]→ [0, 1] be the doubling map given by

T2(x) = 2x mod 1 =

{
2x, if 0 ≤ x < 1

2 ,

2x− 1, if 1
2 ≤ x ≤ 1,

(1.3)

see Figure 1.1(a). Then the n + 1-th symbol in the binary expansion of a point
x0 ∈ [0, 1] is zero if xn as given in (1.1) is smaller than a half, and one otherwise.
For example, the point x0 in Figure 1.1(a) has binary expansion (bn)n≥1 with b1 = 1,
b2 = b3 = 0, etc. In a similar way we can use suitable random interval maps to
generate number expansions by assigning symbols to subintervals and following orbits
of the form in (1.2).

In [L64] Lochs compared the efficiency between representing real numbers in
decimal expansions and regular continued fraction expansions. It is known that each
irrational x ∈ [0, 1] has a unique decimal expansion

x =

∞∑
n=1

dn
10n

,

where (dn)n≥1 is a sequence in {0, 1, . . . , 9}N, and moreover that there exists a unique
sequence (an)n≥1 in NN such that

x =
1

a1 +
1

a2 +
1

a3 +
. . .

,
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which is referred to as the regular continued fraction expansion of x. In [L64] the fol-
lowing question is investigated: Suppose we know the first n decimal digits d1, . . . , dn
of a further unknown irrational number x ∈ [0, 1]. What is the largest numberm(n, x)

of digits a1, . . . , am(n,x) in the regular continued fraction expansion of x that can be
determined from this information? In 1964, Lochs [L64] provided an answer for the
limit n→∞ by proving that for Lebesgue almost every irrational x ∈ [0, 1]

lim
n→∞

m(n, x)

n
=

6 log 2 log 10

π2
= 0.97027 · · · . (1.4)

In other words, the first 100 decimal digits determine roughly 97 digits in the reg-
ular continued fraction expansion, which indicates that typically regular continued
fraction expansions are slightly more efficient to represent real numbers than decimal
expansions.

A natural question is whether something similar to Lochs’ result can be said for
other pairs of expansions as well. Interestingly, the right-hand side of (1.4) is the
ratio of the entropies of the interval maps that generate these expansions. In [DF01]
Lochs’ result has been generalised to a large class of pairs of interval maps that
generate number expansions. For such a pair the analogue of the right-hand side of
(1.4) is then the ratio of the entropies of the interval maps with respect to their unique
probability acim.

In this dissertation we further generalise this result and extend Lochs’ result given
in (1.4) to a wide class of pairs of random interval maps that produce number expan-
sions. For this we generalise the method from [DF01] and apply existing theory on
fiber entropy from [B93] as well as derive new theory on this topic. The random ana-
log of the right-hand side of (1.4) is then a fraction of fiber entropies. Furthermore,
under additional assumptions we also provide a corresponding Central Limit Theorem
by using a method that is similar to the one from [H09] applied to the deterministic
setting from [DF01].

We also study a question posed in [JMKA13] in the context of β-encoders that is
closely related to Lochs’ result. A β-encoder is an analog circuit that converts analog
input signals into bitstreams and was first introduced in [DDGV02]. In [JMKA13]
Jitsumatsu and Matsumura provide an algorithm that reads the output digits of a
β-encoder with input x ∈ [0, 1) and converts them into digits that correspond with
the binary expansion of x. The distribution of these base 2 digits are shown to be in
some sense close to that of i.i.d. random variables, thus making it a suitable pseudo-
random number generator. However, in order to produce m base 2 digits in this
way, Jitsumatsu and Matsumura posed the question of what is the minimum required
number k(m) of output digits of the β-encoder. To approach this problem we provide
multiple limit results as m → ∞ for β-encoders. These results give an indication
on the efficiency of the β-encoder being used in [JMKA13] as a potential source for
pseudo-random number generation but also show that in the presence of amplification
or scaling errors the proposed method in [JMKA13] is not optimal.

In the following sections we explain the aforementioned notions in more detail and
provide some of the mathematical tools that are needed in the rest of this dissertation.
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§1.2 Ergodic Theory

This section briefly covers some relevant concepts of Ergodic Theory. We refer the
reader to [P89, W00, DK21] for a more extensive and complete introduction to Ergodic
Theory. In a nutshell, Ergodic Theory is the study on the long-term average behaviour
of systems over time. The state space of the system under consideration is assumed
to be a measure space (X,F ,m) with X a set, F a σ-algebra on X and m a measure
on (X,F). The evolution is given by a measurable transformation T : X → X. We
refer to the quadruple (X,F ,m, T ) as a dynamical system. Usually we assume T to
satisfy the following property with respect to the reference measure m.

Definition 1.2.1 (Non-singularity). Ameasurable transformation T on a measure
space (X,F ,m) is said to be non-singular if for any A ∈ F we have m(A) = 0 if and
only if m(T−1A) = 0.

Suppose that there is some A ∈ F such that T−1A = A. Then T−1(X\A) = X\A,
so in this case T can be decomposed into two transformations T |A : A → A and
T |X\A : X\A→ X\A. For this reason it is natural to study transformations that are
indecomposable up to sets of measure zero.

Definition 1.2.2 (Ergodicity). Ameasurable transformation T on a measure space
(X,F ,m) is said to be ergodic if for any A ∈ F such that T−1A = A we have either
have m(A) = 0 or m(X\A) = 0.

We are interested in invariant measures for T , which is the topic of the next
subsection.

§1.2.1 Invariant measures
Invariant measures can give an idea on the distribution of points in the orbits under
T on part of the space. They are defined as follows:

Definition 1.2.3 (Invariant measures). Let (X,F) be a measurable space and
T : X → X be measurable. Then a measure µ on (X,F) is called invariant with
respect to T if

µ(T−1A) = µ(A)

holds for all A ∈ F , or equivalenty if∫
X

f ◦ Tdµ =

∫
X

fdµ

holds for all f ∈ L1(X,µ). In this case we also say that T is measure preserving with
respect to µ.

Among the invariant measures for T we focus usually on those that are absolutely
continuous with respect to some reference measure m. We recall the definition:

13
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Definition 1.2.4 (Absolute continuity and equivalence of measures). Let µ
and m be two measures on a measurable space (X,F). Then µ is absolutely continu-
ous with respect to m if for each A ∈ F we have that m(A) = 0 implies µ(A) = 0.
In this case we use the notation µ � m. Furthermore, we say that µ and m are
equivalent if µ� m and m� µ.

As is well known, it follows from the Radon-Nikodym Theorem that if µ � m

and µ and m are σ-finite measures, then there exists an m-a.e. unique measurable
function dµ

dm : X → [0,∞] called the density for which

µ(A) =

∫
A

dµ

dm
dm

holds for all A ∈ F . If µ is also invariant with respect to T , then we usually refer
to dµ

dm as an invariant density for T and call µ an absolutely continuous invariant
measure, or acim for short, for T . Furthermore, when we say that T has a unique
acim µ, then we mean unique up to scalar multiplication, because in this case c · µ is
also an acim for each constant c > 0.

If µ is an invariant measure for T that is finite, i.e. µ(X) <∞, then Birkhoff’s Er-
godic Theorem gives the following characterization of the long-term average behaviour
of orbits that are typical with respect to µ.

Theorem 1.2.5 (Birkhoff’s Ergodic Theorem). Let T be a measure preserving
and ergodic transformation on a measure space (X,F , µ) with finite measure µ. Then

lim
n→∞

1

n

n−1∑
k=0

f(T kx) =
1

µ(X)

∫
X

fdµ for µ-a.e. x ∈ X (1.5)

holds for any f ∈ L1(X,µ).

The statement in (1.5) might hold only for a small or negligible part of the space,
for instance when µ is a linear combination of Dirac measures. On the other hand,
if µ is absolutely continuous with respect to a reference measure m for which sets of
positive measures are considered large, e.g. the Lebesgue measure, then (1.5) holds
for a non-trivial part of the space. This illustrates the significance of acim’s.

In general a transformation can admit multiple acim’s. The next result, which
can be derived from Birkhoff’s Ergodic Theorem as shown in [DK21, Theorem 3.1.2],
gives conditions under which a transformation admits precisely one (up to scalar-
multiplication) finite acim.

Theorem 1.2.6. Let T be an ergodic transformation on a measure space (X,F ,m).
If µ is a finite acim of T that is equivalent to m, then µ is the only (up to scalar
multiplication) finite acim of T .

This result can be strengthened under additional conditions on the dynamical
system (X,F ,m, T ), which is done below in Theorem 1.2.10. One of these conditions
is that T is conservative, which means that almost every point in a set of positive
measure will return to this set under iterations of T :

14
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Definition 1.2.7 (Conservativity). A measurable transformation T on a measure
space (X,F ,m) is said to be conservative if m(A\

⋃
n≥1 T

−nA) = 0 holds for each
A ∈ F such that m(A) > 0.

The next result, Maharam’s Recurrence Theorem, gives a sufficient condition for
a transformation to be conservative with respect to an invariant measure. For this,
we need the following definition.

Definition 1.2.8 (Sweep-out set). Let (X,F ,m, T ) be a dynamical system. A set
A ∈ F is called a sweep-out set for T if 0 < m(A) <∞ and m(X\

⋃
n≥0 T

−nA) = 0.

Theorem 1.2.9 (Maharam’s Recurrence Theorem). Let T be a measure pre-
serving transformation on a measure space (X,F , µ). If there exists a sweep-out set
for T , then T is conservative.

We remark that a transformation T that preserves a measure µ is always con-
servative with respect to µ if µ is finite. This is the content of the famous Poincaré
Recurrence Theorem, which is one of the many results in Ergodic Theory where the
dependence on the finiteness of the invariant measure is crucial. This dependence is
also illustrated by Birkhoff’s Ergodic Theorem, which does not apply if µ(X) =∞.

The following theorem can be found in e.g. [A97, Theorem 1.5.6].

Theorem 1.2.10. Let T be a conservative, ergodic, non-singular transformation on
a σ-finite measure space (X,F ,m). Then T admits at most one (up to scalar multi-
plication) σ-finite acim.

A commonly used technique to obtain an acim is by inducing the transformation
on a suitable subset of the space. More precisely, let (X,F ,m) be a measure space and
T : X → X non-singular with respect tom. For a set Y ∈ F such that 0 < m(Y ) <∞
and m

(
Y \

⋃
n≥1 T

−nY
)

= 0, the first return time map ϕY : Y → N ∪ {∞} given by

ϕY (y) = inf{n ≥ 1 : Tn(y) ∈ Y } (1.6)

is finite m-a.e. on Y , and moreover m-a.e. y ∈ Y returns to Y infinitely often. If we
remove from Y the m-null set of points that return to Y only finitely many times, and
for convenience call this set Y again, then we can define the induced transformation
TY : Y → Y by

TY (y) = TϕY (y)(y).

The idea of inducing is to take a subset Y such that TY is easier to analyse than T
and deduce properties on T via TY . This is illustrated by the following two results.
The first one can be found in e.g. [A97, Proposition 1.5.2]. Note that this statement
requires m

(
X \

⋃
n≥1 T

−nY
)

= 0, which immediately follows if T is non-singular and
Y is a sweep-out set for T as is the case below.

Proposition 1.2.11. Let T be a non-singular and conservative transformation on a
measure space (X,F ,m) and let Y ∈ F be such that 0 < m(Y ) < ∞. If Y is a
sweep-out set for T and TY is ergodic with respect to m|Y , then T is ergodic with
respect to m.
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The next result can be found in e.g. [A97, Proposition 1.5.7]. Note that this
statement asks for T to be conservative w.r.t. m. This is not used in the proof
however and the condition m

(
Y \

⋃
n≥1 T

−nY
)

= 0 is enough to guarantee that the
induced transformation is well defined.

Proposition 1.2.12. Let T be a non-singular transformation on a measure space
(X,F ,m) and let Y ∈ F be such that 0 < m(Y ) < ∞ and m

(
Y \

⋃
n≥1 T

−nY
)

= 0.
If ν � m|Y is a finite invariant measure for the induced transformation TY , then the
measure µ on (X,F) defined by

µ(A) =
∑
k≥0

ν
(
Y ∩ T−kA \

k⋃
j=1

T−jY
)

(1.7)

for A ∈ F is a σ-finite acim for T and µ|Y = ν. Moreover, µ is finite if and only if∫
Y
ϕY dν <∞.

The last statement of the previous result follows by taking A = X in (1.7), which
gives µ(X) =

∫
Y
ϕY dν. This formula holds true more generally:

Lemma 1.2.13 (Kac’s Lemma). Let T be a conservative, measure preserving and
ergodic transformation on a measure space (X,F , µ). Let Y ∈ F be such that 0 <

µ(Y ) <∞. Then
∫
Y
ϕY dµ = µ(X).

Kac’s Lemma can serve as a powerful tool to show that a certain invariant measure
µ is infinite, where the challenge is to find a suitable Y ∈ F such that

∫
Y
ϕY dµ =∞.

We will exploit this technique several times in this dissertation.

In Sections 1.3 and 1.4 we will discuss more techniques to find (finite) acim’s in
case the dynamical system under consideration is a (random) interval map.

§1.2.2 Mixing and statistical properties
Let T be a measure preserving transformation on a probability space (X,F , µ). If
T is ergodic, then it can be shown from Birkhoff’s Ergodic Theorem that for each
f ∈ L∞(X,µ) and g ∈ L1(X,µ) we have

lim
n→∞

1

n

n−1∑
k=0

∫
X

f ◦ T k · gdµ =

∫
X

fdµ ·
∫
X

gdµ.

In other words, observables (also called test functions) get uncorrelated on average
over time. The following definition strengthens this property by getting rid of the
averaging over time.

Definition 1.2.14 (Mixing). A measure preserving transformation T on a probab-
ility space (X,F , µ) is said to be mixing if

lim
n→∞

∫
X

f ◦ Tn · gdµ =

∫
X

fdµ ·
∫
X

gdµ.

for each f ∈ L∞(X,µ) and g ∈ L1(X,µ).
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We define for each n ∈ N, f ∈ L∞(X,µ) and g ∈ L1(X,µ) the correlation function

Corn,T,µ(f, g) =

∫
X

f ◦ Tn · gdµ−
∫
X

fdµ ·
∫
X

gdµ,

for which we will also sometimes just write Corn(f, g) if the context allows for it. Then
T being mixing gives limn→∞ Corn(f, g) = 0. The speed at which Corn(f, g) converges
to zero, i.e. the speed at which f ◦Tn and g get uncorrelated, depends on the degree of
chaos within the dynamical system as well as on the regularity of the observables. It
is in general always possible to find two observables f ∈ L∞(X,µ) and g ∈ L1(X,µ)

for which this loss of memory happens arbitrarily slowly. However, it is sometimes
possible to obtain for a suitable class of observables that are sufficiently regular a rate
on the decay of correlations that is uniform with respect to the observables in this
class, thus being a good measure for the level of chaos within the system. We will
discuss examples of this in Sections 1.3 and 1.4 for (random) interval maps.

A number of these examples obtain results on the rate of decay of correlations by
constructing a suitable Young tower, a technique introduced in [Y98, Y99] by Young.
We will exploit this technique as well in Chapter 3. The construction of a Young tower
is rather technical and we explain this in more detail in Chapter 3, but let us briefly
indicate here one of its powerful consequences. As we have seen in Proposition 1.2.12,
sometimes an acim µ for a dynamical system (X,F ,m, T ) can be obtained by finding
a finite acim ν for an induced transformation TY with Y ∈ F , and µ is then finite if
and only if ϕY is integrable with respect to ν. For the latter it is usually sufficient to
verify that ϕY is integrable with respect to m|Y . If a Young tower can be constructed
on Y , then T is mixing with respect to µ and more can be said depending on the tail
of the distribution of ϕY with respect to m|Y . More precisely, if the tail is polynomial
or exponential, then the correlation function for Hölder continuous functions with
respect to µ decays polynomially or exponentially fast, respectively.

Mixing and correlation decay rates are statistical properties of the system that give
an idea on the chaotic behaviour of the system under consideration. Another (but
closely related) indicator for chaos in a dynamical system (X,F , µ, T ) is the behaviour
of processes of the form {f ◦Tn}n∈N where f : X → R is a measurable function. If the
system is sufficiently chaotic such processes exhibit stochastic behaviour and there are
many settings known in which these processes satisfy classical results from Probability
Theory. For instance, if µ is a probability measure and T is measure preserving with
respect to µ, then the processes {f ◦ Tn}n∈N are stationary on (X,F , µ), i.e. the
joint probability distribution of {f ◦ Tn}n∈N does not change when shifted in time.
Moreover, Birkhoff’s Ergodic Theorem can be rephrased to saying that these processes
satisfy the Law of Large Numbers if T is also ergodic with respect to µ. For such
processes the classical Central Limit Theorem reads as follows:

Definition 1.2.15 (Central Limit Theorem). Let T be a transformation on a
probability space (X,F , µ) that is measure preserving. We say that f ∈ L1(X,µ)

satisfies the Central Limit Theorem (CLT) if there exists a σ > 0 such that

lim
n→∞

µ
({
x ∈ X :

∑n−1
k=0(f ◦ T k(x)−

∫
fdµ)

σ
√
n

≤ u
})

=
1√
2π

∫ u

−∞
e−t

2/2dt. (1.8)
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The results in [L96] provide a large class of ergodic measure preserving transform-
ations T on a probability space (X,F , µ) and functions f ∈ L∞(X,µ) that satisfy the
CLT if the correlation function Corn(f, f) decays fast enough as n→∞, namely if∑

n∈N
|Corn(f, f)| <∞. (1.9)

See [L96] and references therein for more results on the CLT for dynamical systems.

Other statistical properties of dynamical systems include exactness and Bernoulli-
city and other statistical limit laws like the almost sure invariance principle and large
deviation theorems. In this dissertation we restrict our attention to mixing and the
Central Limit Theorem. Moreover, we only discuss these properties for dynamical
systems (X,F , µ, T ) where µ is a probability (or finite) measure. For infinite measure
systems statistical properties are usually harder to derive since we cannot immediately
apply the tools from Probability Theory.

§1.2.3 Entropy
Shannon introduced the concept of entropy in information theory as a measure for
randomness generated by an information source, see [S48]. This notion was then
introduced to dynamical systems by Kolmogorov [K58] and Sinai [S59]. In this sub-
section we give a brief introduction on this topic.

Let (X,F , µ) be a probability space. We call a collection P a partition of X if it is
an at most countable collection of measurable sets, P ⊆ F , that are pairwise disjoint
and satisfy X =

⋃
P∈P P , where both properties are considered modulo µ-null sets.

The entropy of a partition P is defined as

Hµ(P) = −
∑
P∈P

µ(P ) logµ(P ).

For two partitions P1 and P2 of X we use the notation P1 ≤ P2 to indicate that P2

is a refinement of P1, i.e. that for every P ∈ P2 there is a Q ∈ P1 such that P ⊆ Q.
Moreover, we use P1 ∨ P2 := {P ∩ Q : P ∈ P1, Q ∈ P2} to denote the common
refinement of P1 and P2.

Definition 1.2.16 (Measure theoretic entropy). Let (X,F , µ, T ) be a dynam-
ical system where µ is a T -invariant probability measure. For a partition P of X with
finite entropy, i.e. Hµ(P) <∞, the entropy of T with respect to P is given by

hµ(T,P) := lim
n→∞

1

n
Hµ

( n−1∨
k=0

T−kP
)
.

Furthermore, the measure theoretic entropy of T is given by

hµ(T ) := sup
P
hµ(T,P),

where the supremum is taken over all partitions P with finite entropy.
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It is not very practical to calculate the measure theoretic entropy straight from its
definition. We present some results that facilitate the computation of entropy. For a
collection of measurable sets E ⊆ F we use σ(E) to denote the smallest sub σ-algebra
of F containing E . We say that a partition P of X is a generator for a transformation
T : X → X if the sequence of partitions {Pn} given by Pn =

∨n−1
k=0 T

−kP satisfies
σ(
⋃
n∈N Pn) = F up to sets of µ-measure zero. If X is a Polish space and F the

associated Borel σ-algebra, then according to [M57, Theorem 3.3] a sufficient condition
for a partition P of X to be a generator for T is if {Pn} separates points, i.e. for each
x, y ∈ X with x 6= y there exist n ∈ N and A ∈ Pn such that x ∈ A and y /∈ A.

Theorem 1.2.17 (Kolmogorov-Sinai Theorem). Let (X,F , µ, T ) be a dynamical
system where µ is a T -invariant probability measure and let P be a partition of X
with finite entropy. If P is a generator with respect to T , then hµ(T ) = hµ(T,P).

In applications of the Kolmogorov-Sinai Theorem, P usually consists of invertib-
ility domains of T , which are measurable sets on which T is bijective to its image
with measurable inverse. More generally, the following result, which can be found in
e.g. [DK21, Proposition 9.3.1], holds.

Lemma 1.2.18. Let (X,F , µ, T ) be a dynamical system where µ is a T -invariant
probability measure. If P1 ≤ P2 ≤ . . . is an increasing sequence of partitions of X
with finite entropy and σ(

⋃
n∈N Pn) = F up to sets of µ-measure zero, then hµ(T ) =

limn→∞ hµ(T,Pn).

Another tool that can be useful for calculating the entropy is a result known
as Rokhlin’s Formula presented below, which relates entropy to the Jacobian of a
transformation. The next result gives conditions under which the Jacobian function
exists.

Proposition 1.2.19 (Jacobian). Let (X,F ,m, T ) be a dynamical system where X
is a Polish space, F the associated Borel σ-algebra, m a probability measure and T
non-singular. Suppose that P is a partition of X consisting of invertibility domains of
T . Then there exists a m-a.e. unique non-negative function JmT ∈ L1(X,m), called
the Jacobian of T with respect to m, such that

m(T (B)) =

∫
B

JmTdm

holds for each measurable B ⊆ A and A ∈ P.

In later chapters we will make use of the following change of variables formulae
from [VO16, Lemma 9.7.4].

Lemma 1.2.20 (Change of variables formulae). Under the assumptions of Pro-
position 1.2.19, for each measurable B ⊆ A and A ∈ P,
(a)

∫
T (B)

ϕdm =
∫
B

(ϕ◦T )JmTdm for any measurable function ϕ : T (B)→ R such
that the integrals are defined (possibly ±∞),
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(b)
∫
B
ψdm =

∫
T (B)

(ψ/JmT ) ◦ (T |B)−1dm for any measurable function ψ : B → R
such that the integrals are defined (possibly ±∞).

The following result goes back to Rokhlin [R52], see e.g. [VO16, Theorem 9.7.3].

Theorem 1.2.21 (Rokhlin Formula). Let (X,F , µ, T ) be a dynamical system with
X a Polish space, F the associated Borel σ-algebra, µ a probability measure and T
measure preserving with respect to µ. Suppose that P is a partition of X with finite
entropy consisting of invertibility domains of T , and that P is a generator for T .
Then

hµ(T ) =

∫
X

log JµTdµ.

Finally, we state the Shannon-McMillan-Breiman Theorem. For a partition P of
X and x ∈ X we denote by P(x) the partition element of P containing x.

Theorem 1.2.22 (Shannon-McMillan-Breiman Theorem). Let T be a meas-
ure preserving and ergodic transformation on a probability space (X,F , µ) and let P
be a partition of X with finite entropy. Then

lim
n→∞

−
logµ

(∨n−1
k=0 T

−kP(x)
)

n
= hµ(T,P) for µ-a.e. x ∈ X.

§1.3 Interval maps

An interval map is a dynamical system of the form (X,B, λ, T ) where X is a bounded
interval in R, B the associated Borel σ-algebra and λ the Lebesgue measure on (X,B).
Without loss of generality we take in this section X = [0, 1]. There are numerous
techniques showing the existence of acims for interval maps, but precise formulae
for the densities are in general not known. In this section we review some of these
techniques for the types of interval maps that will be relevant in this dissertation as
well as some of their statistical properties. We refer to [L06] for a more complete
overview.

In general, the question whether an interval map admits an acim is linked to the
degree to which distances between points close to each other get expanded under
iterations of the interval map. Usually an interval map T : [0, 1] → [0, 1] admits a
finite acim with exponential decay of correlations if the map is sufficiently smooth
and uniformly expanding, meaning that there exist constants C > 0 and q > 1 such
that |DTn(x)| > Cqn holds for all n ∈ N and all x ∈ [0, 1]. A sufficient condition to
be uniformly expanding is if infx∈[0,1] |DT (x)| > 1 holds and this is usually what is
assumed when considering expanding interval maps.

The first important results on acims for uniformly expanding interval maps have
been derived for so-called Markov interval maps, see e.g. [dMvS93, Section 5.2]. The
main feature of a Markov interval map T : [0, 1] → [0, 1] is that T is piecewise
monotonic and sufficiently smooth on a finite or countable partition {Ii} such that
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for each Ij there exists a collection Aj ⊆ {Ii} such that T (Ij) =
⋃
I∈Aj I. The

dynamics under T can then be modelled by a Markov chain where a state i can
move to state j if and only if Ij ⊆ T (Ii). A finite acim for T can then be obtained
by e.g. applying the thermodynamic formalism to this Markov chain, see e.g. [S09].
Moreover, if the Markov chain is irreducible and aperiodic this is the only acim for
T and it has very strong mixing properties under T , including that the correlation
function for Hölder continuous observables decays exponentially fast. In particular,
these observables satisfy the summability condition from (1.9) and therefore typically
satisfy the Central Limit Theorem from (1.8). For more details see e.g. [dMvS93, Y98].

Example 1.3.1 (N-adic transformations). The simplest class of examples of a
Markov interval map are the N -adic transformations TN : [0, 1]→ [0, 1] with integer
N ≥ 2 and

TN (x) = Nx mod 1.

The doubling map from (1.3) is the N -adic transformation where N = 2, see Figure
1.1(a). It can be shown that, for each integer N ≥ 2, TN preserves the Lebesgue
measure λ on [0, 1] and that λ is the only acim of TN .

Example 1.3.2 (Gauss map). Another well-studied Markov interval map is the
Gauss map G : [0, 1]→ [0, 1] given by G(0) = 0 and for x 6= 0,

G(x) =
1

x
mod 1,

see Figure 1.3(a). It is well known that G preserves the Gauss probability measure
µG on [0, 1] with density

dµG
dλ

(x) =
1

log 2

1

x+ 1
, x ∈ [0, 1],

and that µG is the only acim for G.

For interval maps that are uniformly expanding but not Markov, the lack of control
on the images of intervals of monotonicity makes the study on acims more difficult.
For such maps often a functional analytic approach is executed by considering the
Perron-Frobenius operator, which for a piecewise strictly monotonic C1 interval map
T is an operator acting on non-negative measurable functions h on [0, 1] as

PTh(x) =
∑

y∈T−1{x}

h(y)

|DT (y)|
. (1.10)

A non-negative measurable function ϕ on [0, 1] is a fixed point of PT if and only if it
provides an acim µ for T by setting µ(B) =

∫
B
ϕdλ for each B ∈ B. The celebrated

article by Lasota and Yorke [LY73] shows that the Perron-Frobenius operator of a
uniformly expanding interval map that is piecewise C2 and monotonic on a finite
partition has a fixed point that is of bounded variation, thus yielding a finite acim
for the interval map. Moreover, in the same article this result is extended to the case
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(a) The map G

4
5

3
4

2
3

1
2

10

1

(b) The map R

Figure 1.3: In (a) we see the graph of the Gauss map G and in (b) the graph of the Rényi
map R is depicted.

that the partition is countable under some additional conditions like long branches.
Other extensions of this result can be found in e.g. [BG97] and references therein.
Furthermore, in the setting of [LY73] the Perron-Frobenius operator restricted to
the space of functions of bounded variations is quasi-compact and therefore has a
spectral gap. This implies for instance for a large class of uniformly expanding (not
necessarily Markov) interval maps that the correlation function for observables of
bounded variation decays exponentially fast. See e.g. [B00, BG97] for more properties
on the Perron-Frobenius operator.

One of the simplest ways to go beyond uniformly expanding interval maps is
by considering interval maps that have derivative bigger than 1 everywhere except
at some neutral fixed point. (A neutral fixed point for an interval map is a fixed
point where the derivative is equal to 1.) Such maps are examples of non-uniformly
expanding maps. The dynamics in the presence of a neutral fixed point are usually
significantly different than that of uniformly expanding maps. The reason for this
is that under uniformly expanding maps nearby points move away from each other
exponentially fast, while points diverge from a neutral fixed point at a subexponential
rate. Consequently, these maps typically exhibit intermittency and orbits spend long
periods of time close to the neutral fixed point while behaving chaotically otherwise.
Furthermore, if an acim exist, its density usually has a pole at the neutral fixed point
and if the acim is infinite, then this means that typical orbits stay too long near the
neutral fixed point for the acim to be normalisable. Also, if the acim is finite, the
rate on the decay of correlations is typically subexponential, see [L06] and references
therein. A common approach to study non-uniformly expanding interval maps is
to induce the map on a suitable subset such that the induced transformation is a
uniformly expanding (Markov) interval map.

Example 1.3.3 (Rényi map). The Rényi map R : [0, 1] → [0, 1] is an example of
a non-uniformly expanding interval map with a neutral fixed point and is given by
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R(1) = 0 and for x 6= 1,

R(x) =
1

1− x
mod 1,

which can be obtained by reflecting the Gauss map in the vertical line through 1
2 , see

Figure 1.3(b). It is shown by Rényi in [R57a] that T admits no finite acim but does
have a σ-finite acim µR on [0, 1] with density

dµR
dλ

(x) =
1

x
, x ∈ (0, 1],

which is the only σ-finite acim for R.

Example 1.3.4 (LSV maps). For each α ∈ (0,∞), let

Sα : [0, 1]→ [0, 1], Sα(x) =

{
x(1 + 2αxα) if x ∈ [0, 1

2 ],

2x− 1 if x ∈ ( 1
2 , 1].

(1.11)

The map Sα has a neutral fixed point at zero. The graph of Sα is shown in Figure
1.4(a). Members of the family {Sα : α ∈ (0,∞)} are called Liverani-Saussol-Vaienti
(LSV) maps and were first introduced in [LSV99]. It follows from older results in
e.g. [P80, T80] that Sα admits a unique acim µα with density that behaves like x−α.
More precisely, there exist constants C2 > C1 > 0 such that

C1 · x−α ≤
dµα
dλ

(x) ≤ C2 · x−α, x ∈ (0, 1].

In particular, µα is finite if and only if α ∈ (0, 1). Furthermore, it is shown in
[H04, LSV99, Y99, G04] that correlations decay polynomially fast if α ∈ (0, 1). More
precisely, in e.g. [Y99] it is shown (in a more general fashion) by constructing a Young
tower that for all α ∈ (0, 1), f ∈ L∞([0, 1], µα) and g : [0, 1] → R Hölder continuous
there are C > 0 and N ∈ N such that

Corn,Sα,µα(f, g) ≤ C · n1−1/α

for each integer n ≥ N . In particular, for such an f the summability condition from
(1.9) is satisfied if α ∈ (0, 1

2 ) and it is shown in [Y99] that these observables therefore
satisfy the CLT. Moreover, it is shown in [G04] that for a class of observables that
vanish near zero the rate n1−1/α is in fact sharp and that such observables satisfy the
CLT for all α ∈ (0, 1).

The previous example falls in a more general class that is referred to asManneville-
Pomeau maps, which are transformations on [0, 1] consisting of two increasing branches
onto [0, 1] with neutral fixed point at zero and everywhere else derivative bigger than
1. The intermittent behaviour of these maps was first studied by Manneville and
Pomeau in [PM80, MP80, BPV86] to investigate intermittency of turbulent flows.
The standard Manneville-Pomeau maps are given by x 7→ x+x1+α mod 1 with α > 0

and the LSV maps from Example 1.3.4 were introduced in [LSV99] as a simplification
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of the standard Manneville-Pomeau maps in the sense that the right branch of the LSV
maps is linear. Typically one considers a one-parameter family of Manneville-Pomeau
maps where the parameter determines the behaviour around zero, and typically there
is a phase transition threshold for this parameter that separates the cases where the
acim is either finite or infinite. For the LSV maps Sα parametrised by α ∈ (0,∞) as
in (1.11) this threshold is α = 1.

α = 1/2
α = 2
α = 8

11
2

0

1

(a) The map Sα

a
4

a−1
a

11
2

0

1

(b) The map La

Figure 1.4: In (a) we see the graph of the LSV map Sα for several values of α and in (b)
the graph of the logistic map La is depicted.

Another well-studied class of interval maps that are not uniformly expanding are
smooth maps that have critical points, which are points where the derivative of the
map is zero. We restrict our attention to critical points c ∈ (0, 1) of a C3 interval
map T that are non-flat, i.e. there exist constants 0 < K ≤ M and ` > 1 such that
for each x ∈ [0, 1]

K|x− c|`−1 ≤ |DT (x)| ≤M |x− c|`−1.

In this case ` is called the (critical) order of c. If T has only one critical point
c ∈ (0, 1) such that DT > 0 on [0, c) and DT < 0 on (c, 1], then T is said to
be unimodal. Furthermore, c1 = T (c) is referred to as a critical value of T and
the orbit of c1 under T is called the postcritical orbit. Typically, orbits that get
close to c remain close to this postcritical orbit for some time. It was recognised in
[M81, CE83, NvS91, KN92, Y92, BLvS03, BSvS03] among others that the influence
of a critical point c of T on the dynamics depends crucially on the expansion gained
along the postcritical orbit, that is on the growth of DTn(c1) as n grows. Indeed,
orbits that get close to c will stay close to the postcritical orbit for some time due to
the contracting behaviour near c. The faster DTn(c1) grows as n grows, the faster the
contraction gets compensated and the shorter orbits “shadow” the postcritical orbit.
For the existence of an acim for unimodal maps it suffices in general to assume that
DTn(c1) stays large enough for all n sufficiently large and no growth of DTn(c1) has
to be assumed [BSvS03], but the rates on which correlations decay is strongly related
with the growth of DTn(c1) [BLvS03, Y92]. For instance, it was shown in [BLvS03]
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using a Young tower that, roughly speaking, if the derivative along all postcritical
orbits of the map grows exponentially or polynomially, then correlations typically
decay exponentially or polynomially, respectively.

Example 1.3.5 (Logistic maps). An important and well-studied class of unimodal
maps is the family {La : a ∈ [0, 4]} of logistic maps given by

La : [0, 1]→ [0, 1], La(x) = ax(1− x),

see Figure 1.4(b). It can in fact be shown that any unimodal map is semi-conjugate
to a logistic map, see e.g. [dMvS93, Section 2.6] for more details. The dynamical
behaviour of La depends crucially on the value of the parameter a. For 0 ≤ a ≤ 1

all orbits under La converge to the attracting fixed point zero. If a > 1, then zero
is a repelling fixed point for La and for 1 < a ≤ 3 orbits instead converge to the
fixed point a−1

a with a speed that is dependent on the value of a. For instance, if
a = 2, then the critical value a

4 coincides with a−1
a and there is superexponential

convergence, whereas for a = 3 orbits converge sublinearly fast to a−1
a . For Lebesgue

almost all a ∈ (3, 4) the map La either has an attracting periodic orbit or a finite acim
[J81, L02]. Furthermore, it was shown by Young in [Y92] that there exists a subset in
(3, 4) of positive Lebesgue measure such that for each a in this subset the map La has
exponential decay of correlations for observables of bounded variation and also that
such observables satisfy the CLT under La. Finally, the full branched logistic map
L4 admits an ergodic probability acim µ and is a special case in the sense that its
invariant density is known explicitly, namely dµ

dλ (x) = 2
π

1√
1−x2

. In this case it is clear
what the postcritical orbit looks like, namely it consists of the points 1 and 0. Since
L4 is expanding in these two points this map has exponential decay of correlations,
see e.g. [Y92]. For a more extensive discussion on logistic maps, see again [dMvS93].

Usually techniques for obtaining acims for an interval map T , including the ones
discussed so far, require some control on the distortion of iterates of T . There are
several definitions in the literature of bounded distortion of a C1 map T : I → R
where I is an interval in R. One way to define it is that there exists K > 1 such that
for each x, y ∈ I,

1

K
≤ DT (x)

DT (y)
≤ K,

thus indicating that T cannot be too non-linear. This gives the following control
on the sizes of images of intervals: Let J ⊆ I be another interval. By the Mean
Value Theorem there exists an x ∈ J with |DT (x)| = λ(T (J))

λ(J) and a y ∈ I with

|DT (y)| = λ(T (I))
λ(I) . Hence,

1

K

λ(J)

λ(I)
≤ DT (x)

DT (y)

λ(J)

λ(I)
=
λ(T (J))

λ(T (I))
≤ Kλ(J)

λ(I)
. (1.12)

To guarantee for bounded distortion commonly interval maps where the branches
have non-positive Schwarzian derivative are considered. For a C3 map T : I → R on
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an interval I the Schwarzian derivative of T at x ∈ I with DT (x) 6= 0 is defined by

ST (x) =
D3T (x)

DT (x)
− 3

2

(D2T (x)

DT (x)

)2

.

We say that T has non-positive Schwarzian derivative on I if DT (x) 6= 0 and ST (x) ≤
0 for all x ∈ I. A direct computation shows that the Schwarzian derivative of the
composition of two C3 maps T1 : I1 → R and T2 : I2 → R with T1(I1) ⊆ I2 and I1
and I2 intervals satisfies

S(T2 ◦ T1)(x) = ST2

(
T1(x)

)
· |DT1(x)|2 + ST1(x). (1.13)

Hence, S(T2 ◦ T1) ≤ 0 provided ST1 ≤ 0 and ST2 ≤ 0. We will use the follow-
ing two well-known properties of maps with non-positive Schwarzian derivative (see
e.g. [dMvS93, Section 4.1]).

Theorem 1.3.6 (Koebe Principle). For each ρ > 0 there exist K(ρ) > 1 and
M (ρ) > 0 with the following property. Let J ⊆ I be two intervals and suppose that
T : I → R has non-positive Schwarzian derivative. If both components of T (I)\T (J)

have length at least ρ · λ(T (J)), then

1

K(ρ)
≤ DT (x)

DT (y)
≤ K(ρ), ∀x, y ∈ J (1.14)

and ∣∣∣DT (x)

DT (y)
− 1
∣∣∣ ≤M (ρ) · |T (x)− T (y)|

λ(T (J))
, ∀x, y ∈ J. (1.15)

Note that the constants K(ρ),M (ρ) only depend on ρ and not on the map T .

In particular, Koebe’s Principle implies bounded distortion on subintervals of the
domain of a map with non-positive Schwarzian derivative.

Theorem 1.3.7 (Minimum Principle). Let I = [a, b] be a closed interval and sup-
pose that T : I → R has non-positive Schwarzian derivative. Then

|DT (x)| ≥ min{|DT (a)|, |DT (b)|}, ∀x ∈ [a, b].

A consequence of the Minimum Principle is that for any T : I → R with non-
positive Schwarzian derivative the absolute value of the derivative |DT | has locally
no strict minima in the interior of I.

§1.4 Random interval maps

Recall the definition of a random dynamical system (T ,P) given in Section 1.1, where
the evolution of the system is given by (1.2). Frequently random dynamical systems
are studied by a deterministic map called the skew product. Given a family T = {Ti :

X → X}i∈I the corresponding skew product is given by

F : IN ×X → IN ×X, (ω, x) 7→
(
τω, Tω1(x)

)
,
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where ω = (ω1, ω2, . . .) ∈ IN and τ : IN → IN is the left shift on IN, i.e. τω =

(ω2, ω3, . . .). We use the following notation for the compositions of the maps Ti. For
each ω ∈ IN and each n ∈ N0 define

Tω1···ωn(x) = Tnω (x) =

{
x, if n = 0,

Tωn ◦ Tωn−1
◦ · · · ◦ Tω1

(x), for n ≥ 1.
(1.16)

With this notation, we can write the iterates of the skew product F as

Fn(ω, x) = (τnω, Tnω (x)),

from which it becomes clear that F generates in its second coordinate the random
orbits of the form in (1.2). For random dynamical systems one is usually interested
in the annealed dynamics, where the behaviour is averaged over ω, as well as the
quenched dynamics, where the behaviour is studied for fixed ω. In this dissertation
we will mostly focus on obtaining annealed results and for this we will study the skew
product.

For the random dynamical systems that we consider the index set I is assumed
to be a Polish space and we write BI for the corresponding Borel σ-algebra on I.
Then the probability space (IN,BNI ,P) is referred to as the base space of the random
dynamical system. Furthermore, for the case that I is finite or countable we introduce
the following definitions. For any n ∈ N we use u ∈ In to denote a word u = u1 · · ·un.
The set I0 contains only the empty word, which we denote by ε. We write I∗ =⋃
n≥0 I

n for the collection of all finite words with digits from I. We use the notation
|u| for the length of u ∈ I∗, so |u| = n for u ∈ In, and for two words u ∈ In and
v ∈ Im the concatenation of u and v is denoted by uv ∈ In+m. Furthermore, on IN

we use for each u ∈ In the notation

[u] = [u1 · · ·un] = {ω ∈ IN : ω1 = u1, . . . , ωn = un}

for the cylinder set corresponding to u. We also use the notation from (1.16) for finite
words u ∈ Σm, m ≥ 1, instead of sequences ω ∈ ΣN, and with n ≤ m.

In the first part of this dissertation we consider random interval maps (T ,P) on
[0, 1] where T consists of finitely many transformations, and for this setting we denote
Σ instead of I for the index set of T , i.e. T = {Tj}j∈Σ, to distinguish from the more
general setup above. Moreover, we take P to be a Bernoulli measure. For a probability
vector p = (pj)j∈Σ the p-Bernoulli measure mp on (ΣN,BNΣ) is defined on cylinder
sets as

mp([u]) =

n∏
i=1

pui , u ∈ Σn, n ∈ N.

This defines mp uniquely since the finiteness of Σ yields that the σ-algebra BNΣ gener-
ated from the discrete topology on Σ is generated by the cylinder sets. We introduce
the notation

pu =

n∏
i=1

pui , u ∈ In, n ∈ N
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to simply write mp([u]) = pu. Taking the Bernoulli measure P = mp as probability
law on the base space means that at each time step for each j ∈ Σ the map Tj is
applied with probability pj independently from the maps that are applied at other
time steps. In this case we refer to (T ,P) as an i.i.d. random interval map.

Suppose (T ,P) is a random dynamical system with index set I and where m is
some reference measure on the state space X. When we speak of an acim ρ for F we
mean that the absolute continuity of ρ is with respect to the reference measure P×m.
Invariant measures of the skew product and in particular acims give information on
the long-term average behaviour of orbits under a random dynamical system. For
instance, suppose ρ is an ergodic probability acim for F . Then it follows from Birk-
hoff’s Ergodic Theorem applied to (F, ρ) that for each bounded measurable function
f on X there exists a measurable set A ⊆ IN ×X with P×m(A) > 0 such that

lim
n→∞

1

n

n−1∑
k=0

f(T kω (x)) =

∫
f(x)dρ(ω, x) (1.17)

holds for all (ω, x) ∈ A. In case (T ,P) is an i.i.d. random interval map2, then the
finite acims of F are of a special form as the next lemma below will show.

Given a finite family T = {Tj : [0, 1] → [0, 1]}j∈Σ and probability vector p =

(pj)j∈Σ we say that a Borel measure µ on [0, 1] is stationary w.r.t. (T ,p) if∑
j∈Σ

pjµ(T−1
j B) = µ(B) for all Borel sets B ⊆ [0, 1]. (1.18)

It is easy to verify that mp×µ is F -invariant if and only if µ is stationary. For brevity
we call a stationary Borel measure µ on [0, 1] that is absolutely continuous w.r.t. λ
an acs measure for (T ,p).

Lemma 1.4.1 ([M85a], see also [F99, Lemma 3.2]). Let {Tj : [0, 1]→ [0, 1]}j∈Σ

be a finite family of non-singular transformations and let F denote the associated
skew product. Furthermore, let p = (pj)j∈Σ be a probability vector. Then the mp×λ-
absolutely continuous F -invariant finite measures are precisely the measures of the
form mp × µ where µ is a finite acs measure.

Statistical properties of the skew product F yield statistical properties of the
corresponding random dynamical system (T ,P). For instance, if ρ is an invariant
probability measure for F and f is a bounded measurable function on the state space
X of the system that satisfies the Central Limit Theorem from Definition 1.2.15
w.r.t. (F, ρ) for some σ > 0, then this means

lim
n→∞

ρ
({

(ω, x) :

∑n−1
k=0

(
f(T kω (x))−

∫
f(x)dρ(ω, x)

)
σ
√
n

≤ u
})

=
1√
2π

∫ u

−∞
e−t

2/2dt,

2Lemma 1.4.1 is formulated in [M85a, F99] for i.i.d. random interval maps but in fact holds for all
random dynamical systems where the constituent maps are non-singular and where the probability
law on the base space is a Bernoulli measure.
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hence giving information on the fluctuations of the convergence as in (1.17). As
another example, suppose the state space X is a Polish space, P is τ -invariant and
ρ is again an invariant probability measure for F . Then there exists a family of
probability measures {ρω}ω∈IN on X such that for all bounded measurable functions
f and g on X

Corn,F,ρ(f, g) =

∫
IN

Corn,ω(f, g)dP(ω) + Corn,τ,P(f̄ , ḡ), (1.19)

where

Corn,ω(f, g) =

∫
X

f ◦ Tnω · gdρω −
∫
X

fdρτnω ·
∫
X

gdρω

are (forward) fiberwise correlations and f̄(ω) =
∫
X
fdρω and ḡ(ω) =

∫
X
gdρω (see

e.g. [B99, Subsection 0.2] or use (5.21) from Section 5.4 for a justification). In other
words, the speed at which correlations decay with respect to (F, ρ) gives information
on the decay of annealed correlations of the random system.3

Various results on acims and statistical properties for skew products that are
associated with random interval maps have been found in the last decades. We briefly
discuss some techniques and results for i.i.d. random interval maps and refer the reader
to [ANV15] and references therein for a more extensive discussion.

Let (T ,mp) be an i.i.d. random interval map where T = {Tj : [0, 1]→ [0, 1]}j∈Σ is
a finite family of piecewise strictly monotonic C1 interval maps. The Perron-Frobenius
operator PT ,p associated to (T ,p) is defined on the space of non-negative measurable
functions h on [0, 1] by

PT ,ph(x) =
∑
j∈Σ

pjPTjh(x), (1.20)

where each PTj is as given in (1.10). Then a non-negative measurable function ϕ

on [0, 1] is a fixed point of PT ,p if and only if the Borel measure µ on [0, 1] given
by µ(A) =

∫
ϕdλ is an acs measure. Hence, it follows from Lemma 1.4.1 that the

integrable fixed points of (1.20) provide precisely the finite acims of F . By applying
techniques similar to the ones for the Perron-Frobenius operator from (1.10) discussed
in the previous section it is possible to obtain analogous annealed results if the random
interval map is uniformly expanding in some sense. We say (T ,mp) is expanding on
average if ∑

j∈Σ

pj
infx∈[0,1] |DTj(x)|

< 1. (1.21)

For a large class of i.i.d. random interval maps that satisfy this condition an acs
probability measure can be obtained by applying to (1.20) an approach that is similar

3The second term on the right-hand side of (1.19) is a correlation function with respect to (τ,P),
and its speed of decay is typically known. In Chapter 3, where we consider decay of correlations for
the skew product, P is a Bernoulli measure, in which case correlations under τ decay exponentially
fast.
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to that of Lasota and Yorke for (1.10). Furthermore, exponential decay of annealed
correlations and Central Limit Theorems can be obtained for functions of bounded
variation using the quasi-compactness of (1.20). In [P84, I12] the weaker condition

sup
x∈[0,1]

∑
j∈Σ

pj
|DTj(x)|

< 1, (1.22)

is used to obtain for i.i.d. random interval maps the existence of acs probability
measures among other results.

Example 1.4.2 (Random Gauss-Rényi map). We have seen that the Gauss map
G from Example 1.3.2 admits a probability acim, whereas the Rényi map R from
Example 1.3.3 admits no finite acim but does admit a σ-finite acim with density that
has a pole at zero. Now let ({T0, T1},mp) be the i.i.d. random interval map with
p = {p0, p1} where the Gauss map T0 = G is chosen with probabity p0 and the Rényi
map T1 = R with probability p1 = 1−p0. This random interval map satisfies (1.22) if
p0 ∈ (0, 1), and it is shown in [KKV17] that for each p0 ∈ (0, 1) it admits an invariant
probability density of bounded variation, annealed correlations decay exponentially
fast and an annealed CLT holds. In other words, if p0 ∈ (0, 1) the annealed dynamical
behaviour is not as much influenced by the presence of the neutral fixed point of T1

at zero as compared to the p0 = 0 case. On the other hand, it is shown in [KMTV22]
that if p0 ∈ (0, 1) the density of the acs measure is provably less smooth than the
invariant density of the Gauss map.

We now give an example of an i.i.d. random interval map that does not possess
any uniform expandingness.

Example 1.4.3 (Random LSV maps). In [BBD14, BB16, Z18, NTV18, BBR19,
BQT21, NPPT21] i.i.d. random interval maps are considered that are composed of
the LSV maps Sα from Example 1.3.4 where α is sampled from some fixed subset
A ⊆ (0,∞). Because the maps Sα share the same neutral fixed point at zero such
random interval maps are not uniformly expanding. Instead, it is shown that the
annealed dynamics of such random interval maps are governed by the map with the
fastest relaxation rate, i.e. the map Sαmin

where αmin is the minimal value of A. In
particular, it is shown in [BBD14] by means of a Young tower for the associated skew
product that for the case that A is finite and a subset of (0, 1] and αmin ∈ (0, 1) an
acs probability measure exists and annealed correlations decay as fast as n1−1/αmin ,
a rate that in [BB16] is shown to be sharp for a class of observables that vanish near
zero. In [Z18] it was shown that an acs probability measure also exists without the
restriction A ⊆ (0, 1] as long as A ⊆ (0,∞) is finite and αmin lies in (0, 1). This was
later shown in [BQT21] as well without the finiteness condition on A provided there
is a positive probability to choose a parameter < 1, and for this more general setting
it is also shown in [BQT21] that annealed correlations decay polynomially fast with
a rate that is close (and sometimes equal) to the rate found in [BBD14]. We refer the
reader to [BBR19] for quenched results obtained for random LSV maps.
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§1.5 Outline of dissertation

We conclude this chapter by giving a brief summary of the content of each chapter.

In Chapter 2 we consider a wide class of critically intermittent random systems
on [0, 1]. By using the inducing technique from Proposition 1.2.12 we prove that these
random interval maps admit a σ-finite acs measure that is either finite or infinite de-
pending on the probabilities of choosing the constituent maps as well as their critical
orders. The existence of an infinite acs measure is proven with the help of Kac’s
Lemma. On the other hand, a finite acs measure is derived by estimating the sizes of
neighborhoods around points of the postcritical orbits, which is shown to be sufficient
using an argument that involves the Koebe Principle and Minimum Principle.

In Chapter 3 we derive several statistical properties of critically intermittent
systems that are closely related to the ones from Chapter 2 but for which the corres-
ponding skew product is easier to analyse using the Young tower technique. We show
that these systems are mixing and that annealed correlations decay polynomially fast.
We also provide sufficient conditions for an annealed CLT to hold for a class of Hölder
continuous functions.

In Chapter 4 we investigate what happens to the acs measure of the critically
intermittent random systems when the system is modified in such a way that the
superexponential convergence is replaced by exponential convergence and the expo-
nential divergence is replaced by polynomial divergence. We show that a similar phase
transition for the acs measure holds as the one found in Chapter 2, but for the proof
we use techniques different from those executed in Chapter 2 and construct a suitable
invariant set for the Perron-Frobenius operator.

In Chapter 5 we give an extension of Lochs’ result from (1.4) to a large class of
pairs of random interval maps that produce number expansions. For this we gener-
alise the method from [DF01] by applying fiberwise analogs of the Kolmogorov-Sinai
Theorem and Shannon-McMillan-Breiman Theorem. To calculate the fiber entropy
we also deduce a random analog of Rokhlin’s Formula for entropy. Furthermore, we
also provide a corresponding Central Limit Theorem. The chapter is concluded with
applying the obtained general theory to common number expansions.

In Chapter 6 we study the question posed in [JMKA13] that asks what is the
minimum number k(m) of output digits of the β-encoder needed to produce with
this output m base 2 digits of the same input value. We provide several limit results
as m → ∞ in the case that the quantiser threshold fluctuates but the amplification
factor and scaling factor are fixed. We end this chapter by observing that the method
of [JMKA13] is not optimal for producing large pseudo-random numbers when the
amplification factor or scaling factor of the β-encoder fluctuates as well.
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