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ABSTRACT
We present a new approach to measure the power-law temperature density relationship 𝑇 = 𝑇0 (𝜌/�̄�)𝛾−1 and the UV background
photoionization rate ΓH i of the intergalactic medium (IGM) based on the Voigt profile decomposition of the Ly𝛼 forest into
a set of discrete absorption lines with Doppler parameter 𝑏 and the neutral hydrogen column density 𝑁HI. Previous work
demonstrated that the shape of the 𝑏-𝑁H i distribution is sensitive to the IGM thermal parameters 𝑇0 and 𝛾, whereas our new
inference algorithm also takes into account the normalization of the distribution, i.e. the line-density d𝑁/d𝑧, and we demonstrate
that precise constraints can also be obtained on ΓH i. We use density-estimation likelihood-free inference (DELFI) to emulate the
dependence of the 𝑏-𝑁H i distribution on IGM parameters trained on an ensemble of 624 Nyx hydrodynamical simulations at
𝑧 = 0.1, which we combine with a Gaussian process emulator of the normalization. To demonstrate the efficacy of this approach,
we generate hundreds of realizations of realistic mock HST/COS datasets, each comprising 34 quasar sightlines, and forward
model the noise and resolution to match the real data. We use this large ensemble of mocks to extensively test our inference
and empirically demonstrate that our posterior distributions are robust. Our analysis shows that by applying our new approach
to existing Ly𝛼 forest spectra at 𝑧 ' 0.1, one can measure the thermal and ionization state of the IGM with very high precision
(𝜎log𝑇0 ∼ 0.08 dex, 𝜎𝛾 ∼ 0.06, and 𝜎logΓH i ∼ 0.07 dex).

Key words: intergalactic medium – method: statistical – quasars: absorption lines

1 INTRODUCTION

The intergalactic medium (IGM) is the largest reservoir of baryons
in the Universe, which plays an essential role in its evolution and
structure formation. Current theoretical models, supported by many
observations, predict twomajor phase transition events that dominate
the thermal evolution of the IGM. The first one is the reionization of
hydrogen by the first galaxies at redshift 6 < 𝑧 < 20 (Madau et al.
1998; Faucher-Giguère et al. 2008; Robertson et al. 2015; McGreer
et al. 2015; Fan et al. 2006). The second phase transition is the
double reionization of Helium (He ii→He iii) driven by quasi-stellar
objects (QSO)s (see e.g. Madau & Meiksin 1994; Miralda-Escudé
et al. 2000; McQuinn et al. 2009; Dixon & Furlanetto 2009; Syphers
& Shull 2014), which is expected to happen at 𝑧 ∼ 3, where the
quasar luminosity density peaks (see e.g.Worseck et al. 2011; Khaire
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2017; Worseck et al. 2018; Kulkarni et al. 2019). These two events
change the ionization state of the IGM dramatically and heat it to
temperatures as high as 15,000K.
After hydrogen reionization (𝑧 < 6), the thermal state of the IGM

is determined by the balance between photoionization heating from
the extragalactic UV background and various cooling processes such
as cooling due to Hubble expansion, recombinations, and the exci-
tation and inverse Compton scattering of electrons from the cosmic
microwave background (CMB). As a result of these processes, the
IGM is expected to follow a tight temperature-density relation:

𝑇 (Δ) = 𝑇0Δ𝛾−1, (1)

where Δ = 𝜌/�̄� is the overdensity, 𝑇0 is the temperature at mean
density, and 𝛾 is the adiabatic index (Hui & Gnedin 1997; McQuinn
& Upton Sanderbeck 2016), and these two parameters characterize
the thermal state of the IGM. By measuring 𝑇0 and 𝛾 at differ-
ent epochs, we are thus able to constrain the IGM thermal history
(Miralda-Escudé & Rees 1994; Hui & Haiman 2003), improving our

© 2021 The Authors
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2 Hu et al.

knowledge of the evolution of the IGM and our understanding of the
relevant heating and cooling processes responsible.
The thermal state of the IGM is encoded in the Ly𝛼 forest, a swath

of Ly𝛼 absorption lines originating from a trace amount of neutral
hydrogen gas in the IGM (Gunn & Peterson 1965; Lynds 1971).
The Ly𝛼 forest is thus used as the premier probe of the IGM ther-
mal history. Various statistical properties of the Ly𝛼 forest are used
to measure the IGM thermal state, including the power spectrum
(Theuns et al. 2000; Zaldarriaga et al. 2001; McDonald et al. 2001;
Walther et al. 2017; Walther et al. 2018; Khaire et al. 2019; Gaikwad
et al. 2021), the flux probability density function (PDF) (Bolton et al.
2008; Viel et al. 2009; Lee et al. 2015), the transmission curvature
(Becker et al. 2011; Boera et al. 2014), the wavelet decomposition of
the forest (Theuns & Zaroubi 2000; Theuns et al. 2002; Lidz et al.
2010; Garzilli et al. 2012; Wolfson et al. 2021), and the quasar pair
phase angle distribution (Rorai et al. 2013, 2017). These measure-
ments are typically performed using Ly𝛼 forest spectra from ground-
based telescopes at 𝑧 > 1.6, where the Ly𝛼 transition lies above the
atmospheric cutoff (_ ∼ 3300Å), explaining why there are currently
very few measurements of the IGM thermal state at redshift below
such limit (i.e. 𝑧 < 1.6), which is, however, an essential epoch for
galaxy formation. By far the only available direct measurements at
redshift 𝑧 < 1.6 is reported by Ricotti et al. (2000) at 𝑧 ∼ 0, which
was done two decades ago using only 43 Ly-𝛼 absorption lines from
HST Goddard High Resolution Spectrograph data, suggesting a need
for new and precise measurements at redshift 𝑧 ∼ 0.
Long after the helium reionization (𝑧 < 3), the thermal state of the

IGM is expected to be dominated by adiabatic cooling from Hubble
expansion, where theoretical models and simulations predict such
cooling leads to an IGM thermal state with 𝑇0 ∼ 5000K and 𝛾 ∼ 1.6
at the current epoch 𝑧 = 0 (McQuinn & Upton Sanderbeck 2016).
However, to date, this predicted cooling to low temperatures has
not been verified observationally. Moreover, recent studies based on
the low-𝑧 Ly𝛼 forest dataset (Danforth et al. 2016) show that these
lines appear broader (i.e. have larger 𝑏 parameter) than numerical
model predictions (Gaikwad et al. 2017; Viel et al. 2017; Nasir et al.
2017). While it has been speculated that such a discrepancy might be
resolved by an additional source of turbulence (Bolton et al. 2021),
an alternative explanation would be that there are additional sources
of heating, and the IGM is actually hotter than expected, with 𝑇0
conceivably approaching 10000K.
If true, such unexpected heating would change our understanding

of IGM physics drastically, highlighting a severe need to investigate
processes that are possibly responsible for it, such as dark matter
annihilation (Araya & Padilla 2014), gamma ray sources (Puchwein
et al. 2012), or feedback from galaxy formation, whose effects are
not fully understood in low-𝑧 (see Springel et al. 2005; Croton et al.
2006; Sĳacki et al. 2007; Hopkins et al. 2008). To this end, precise
measurements of the thermal state at low-𝑧 are needed to determine
whether the IGM cools down as predicted.
In this work, we follow the method for measuring the IGM ther-

mal state based on Voigt profile decomposition of the Ly𝛼 forest
(Schaye et al. 1999; Ricotti et al. 2000; McDonald et al. 2001). In
this approach, a transmission spectrum is treated as a superposi-
tion of multiple discrete Voigt profiles, with each line described by
three parameters: redshift 𝑧abs, Doppler broadening 𝑏, and neutral
hydrogen column density 𝑁HI. By studying the statistical properties
of these parameters, i.e. the 𝑏-𝑁H i distribution, one can recover the
thermal information encoded in the absorption profiles. The major-
ity of past applications of this method constrained the IGM thermal
state by fitting the low-𝑏-𝑁HI cutoff of the 𝑏-𝑁H i distribution (Schaye
et al. 1999, 2000; Ricotti et al. 2000; McDonald et al. 2001; Rudie

et al. 2012; Bolton et al. 2014; Boera et al. 2014; Garzilli et al.
2015, 2018; Rorai et al. 2018; Hiss et al. 2018). The motivation for
this approach is that the Ly𝛼 lines are broadened by both thermal
motion and non-thermal broadening resulting from combinations
of Hubble flow, peculiar velocities and turbulence. By isolating the
narrow lines in the Ly𝛼 forest that constitutes the lower-cutoff in
𝑏-𝑁H i distributions, of which the line-of-sight component of non-
thermal broadening is expected to be zero, the broadening should be
purely thermal, thus allowing one to constrain the IGM thermal state.
However, this method has three crucial drawbacks. First, the IGM
thermal state actually impacts all the lines besides just the narrowest
lines. Therefore, by restricting attention to data in the distribution
outskirts, this approach throws away information and reduces the
sensitivity to the IGM thermal state significantly(Rorai et al. 2018;
Hiss et al. 2019). Second, in practice, determining the location of the
cutoff is vulnerable to systematic effects, such as contamination from
the narrowmetal lines (Rorai et al. 2018; Hiss et al. 2018). Lastly, the
results from this approach critically depend on the choice of low-𝑏
cutoff fitting techniques, where different techniques might result in
inconsistent 𝑇0 and 𝛾 measurements (Rorai et al. 2018; Hiss et al.
2018).
To overcome these limitations, Hiss et al. (2019) developed a

new approach to measure the IGM thermal state from the full 𝑏-
𝑁H i distribution based on density estimation and Bayesian analysis.
We further advance the 𝑏-𝑁H i distribution emulation by employ-
ing a novel density estimation technique based on machine learning,
namely Density-Estimation Likelihood-Free Inference (DELFI) (see
Papamakarios & Murray 2016; Alsing et al. 2018; Papamakarios
et al. 2018; Lueckmann et al. 2018; Alsing et al. 2019). In addition,
we augment the likelihood function to take into account the absorber
number density d𝑁/d𝑧, making our improved method far more sen-
sitive to the photoionization rate of hydrogen ΓH i sourced by the UV
background.
In this work, we introduce our new method, demonstrate its ro-

bustness, and perform an analysis using realistic mock datasets to
illustrate the sensitivity to IGM parameters. Our inference is based
on a suite of cosmological hydrodynamic simulations with different
thermal parameters at redshift 𝑧 ∼ 0.1. While this method can be
applied to the Ly𝛼 forest at any redshift where the opacity is low
enough to make it amenable to Voigt profile decomposition (e.g.
𝑧 . 3.4, see Hiss et al. 2018), we choose to focus on 𝑧 ∼ 0.1 because
we want to quantify the sensitivity of archival Hubble Space Tele-
scope spectra, so as to perform the first measurements of the IGM
thermal state at 𝑧 < 1.6 in future work. Such a measurement would
directly test the prediction that the IGM cools down at low-𝑧, which
has been challenged by recent observations. To this end, we run a set
of cosmological hydrodynamic simulations with different thermal
parameters at redshift 𝑧 ∼ 0.1, from which we create mock datasets
with the same properties as the Danforth et al. (2016) low redshift
Ly𝛼 forest dataset observed with the Cosmic Origins Spectrograph
(COS, Green et al. 2012) on the Hubble Space Telescope (HST). We
demonstrate that our method applied to such a dataset can reliably
and accurately determine the thermal state of the IGM.
This paper is structured as follows. In §2 we introduce our hy-

drodynamic simulations, parameter grid, and data processing proce-
dures, which include generatingLy𝛼 forest from simulation, forward-
modeling and our method to fit Voigt profiles (VPFIT). In §3 we
present our inference algorithm, including likelihood, emulators, in-
ference results, and a set of inference tests. Finally, we discuss these
results and summarize the highlights of this study in §4. Through-
out this paper, we write log in place of log10. Cosmology param-
eters used in this study (Ω𝑚 = 0.319181,Ω𝑏ℎ

2 = 0.022312, ℎ =
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0.670386, 𝑛𝑠 = 0.96, 𝜎8 = 0.8288) are taken from Planck Collabo-
ration et al. (2014) .

2 SIMULATIONS

A set of Nyx cosmological hydrodynamic simulations (see Lukić
et al. 2015; Almgren et al. 2013) is used to model the low-redshift
IGM. Nyx is a massively-parallel, cosmological simulation code
primarily developed to simulate the IGM. 1 In Nyx simulations,
the evolution of dark matter is traced by treating dark matter as
self gravitating Lagrangian particles, while baryons are modeled
as as ideal gas on a uniform Cartesian grid following an Eulerian
approach. The Eulerian gas dynamics equations are solved following
a second-order piece-wise parabolic method (PPM), which captures
shock waves accurately.
Nyx includes themain physical processes relevant formodeling the

Ly𝛼 forest. First of all, gas in the Nyx is assumed to have a primordial
composition with a hydrogen mass fraction of 0.76, and helium mass
fraction of 0.24 and zero metallicity. The recombination, collisional
ionization, dielectric recombination, and cooling are implemented
based on prescriptions given in Lukić et al. (2015). Nyx keeps track
of the net loss of thermal energy resulting from atomic collisional
processes and takes into account the inverse Compton cooling off the
microwave background. Ionizing radiation is modeled by a spatially
homogeneous but time-varying ultraviolet background radiation field
(from Haardt & Madau 2012) that changes with redshift, while as-
suming all cells in the simulation are optically thin.We later make the
UV background a free parameter for generating Ly𝛼 forest in post-
processing (See §2.2). Since Nyx simulations are developed mainly
to study the IGM, no feedback or galaxy formation processes are
included, significantly reducing the computational requirement al-
lowing us to run a large ensemble of simulations varying the thermal
parameters (see 3.3).
Each Nyx simulation used in this study is initialized at 𝑧 = 159

and evolves down to 𝑧 = 0.03 in a 𝐿box = 20 cMpc/ℎ simulation
domain, using 𝑁cell = 10243 Eulerian cells and 10243 dark matter
particles. The box size is chosen as the best compromise between
computational cost and the need to be converged at least to < 10%
on small scales (large 𝑘). More discussion about resolutions and box
sizes can be found in Lukić et al. (2015). We also performed box size
convergence tests at low redshift as explained in appendix D.

2.1 Thermal parameters and simulation grid

To model the IGM with different thermal states, we use part of the
publicly available Thermal History and Evolution in Reionization
Models of Absorption Lines (THERMAL)2 suite of Nyx simulations
(see Hiss et al. 2018; Walther et al. 2019). We make use of in total
48 models with different thermal histories, and for each model, we
generate a simulation snapshot at 𝑧 = 0.1, from which we measure
the thermal state [log𝑇0,𝛾]. The thermal grid is illustrated in the left
panel of Fig.1, which shows that log(𝑇0/K) spans from 3.2 to 3.95,
and 𝛾 ranges from 0.86 to 2.41. Here different thermal histories are
achieved by artificially changing the photoheating rates (𝜖) following

1 Nyx simulation is able to run with Adaptive Mesh Refinement (AMR).
However, the AMR feature is not used in this work, since this work focus on
the Ly𝛼 forest, which distribute nearly the entire simulation domain rather
than isolated concentrations of matter where AMR is more effective.
2 For details of THERMAL suite, see http://thermal.joseonorbe.com

the method presented in Becker et al. (2011). In this method, 𝜖 is
treated as a function of overdensity, i.e.

𝜖 = 𝜖HM12𝐴Δ
𝐵 , (2)

where 𝜖HM12 represents the photoheating rate per ion tabulated in
Haardt & Madau (2012), and 𝐴 and 𝐵 are parameters that are varied
to obtain different thermal histories. It is noteworthy that the thermal
state tends to converge towards low redshifts due to the cooling and
other physical processes in the evolution, and it is therefore difficult
to generate models with a uniform grid of 𝑇0 and 𝛾 (for more details,
see Walther et al. 2019). Moreover, it is especially challenging to
generate models with low 𝑇0 (< 103.5 K) and high 𝛾(> 1.9) at
low-𝑧, because when one reduces the photoheating rates to obtain
lower 𝑇0, the cooling rate from Hubble expansion dominates, and 𝛾
asymptotically approaches values near 1.6 (see McQuinn & Upton
Sanderbeck 2016). As a result, the 𝑇0-𝛾 grid has an irregular shape,
and there are no models in the high 𝛾 low 𝑇0 regions. In addition,
such an irregular 𝑇0-𝛾 grid is also a result of the original grid of the
THERMAL suite, which is driven by the high-𝑧 thermal state analysis
in Walther et al. (2019) that obtains relatively high temperatures.
To measure the thermal state for each of the 48 models, we fit

temperature-density (𝑇-Δ) relation (seeEq. 1) to the temperatures and
densities in the simulation domain.While fitting the𝑇-Δ relationship,
we noticed broader distributions of the IGM temperatures in low
redshift (𝑧 < 0.5) compared to high redshift (𝑧 > 3). Examples of
low-𝑧 IGM temperature-density distributions are illustrated in Fig. 2,
wherewe show2Dhistograms of𝑇-Δ of gas in each cell for two of our
simulations on the thermal grid at 𝑧 = 0.1. The gas cells are divided
into four phases depending on the temperature and density, namely
theWarmHot IntergalacticMedium (WHIM),Diffuse Ly𝛼, HotHalo
gas, and Condensed 3. The density-weighted gas phase fractions are
shown in the legends of the figure, where the diffuse Ly𝛼 phase
representing the densities and temperatures probed by the Ly𝛼 forest
occupies about 40% of the total gas mass, while this percentage can
be up to about 80% or higher at high-𝑧. Therefore at high-𝑧 most
of the gas lies on or around the 𝑇-Δ power-law relation. Whereas
the high-temperature low-density WHIM phase is negligible at high-
𝑧, it appears significantly at low-𝑧, resulting in puffy-looking gas
distribution around the 𝑇-Δ power-law (see Fig. 2), which makes
𝑇-Δ power-law fitting non-trivial at low-𝑧.
We address this issue by implementing an improved fitting proce-

dure following Villasenor et al. (2021). First, we extract the temper-
ature 𝑇 and the overdensity Δ for each cell of a simulation and then
select gas with −1.5 < logΔ < 0 and 𝑇 < 105𝐾 to avoid regions
significantly deviant from the expected power-law 𝑇-Δ relationship.
Afterward, we divide the selected region into 15 equal-width bins
in logΔ, where the overdensity logΔ𝑖 for each bin 𝑖 is given by
the median value of overdensity in the bin. Here we define the bin
temperature log𝑇𝑖 to be the maximum of the marginal temperature
distribution 𝑃(log𝑇 | logΔ𝑖) and its effective 1-𝜎𝑇 ,𝑖 interval to be
1/2 of the temperature range containing the 68% (16% ∼ 84%) high-
est probability density. The temperature-density relationship Eq. (1)
is then fitted using a least squares linear fit on these (logΔ𝑖 , log𝑇i)
pairs weighted by 1/𝜎T,i2. Examples of temperature-density rela-
tionships for two models in our thermal grid are illustrated in Fig.2.
Power-law fits of the 𝑇-Δ relationship of our simulations are shown
as white dashed lines while their values are given in the legends

3 Here we follow the definition used in Davé et al. (2010), where the cutoffs
are set to be 𝑇 = 105K and Δ = 120, more discussion about the different
cutoff used in literature can be found in Gaikwad et al. (2017).
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Figure 1. Thermal grid (blue circles) from snapshots of hydrodynamic simulations of the THERMAL suite at 𝑧 = 0.1. The left-hand panel is the 𝛾 - 𝑇0 grid,
whose shape is determined by the parameters of thermal grid at and the evolution of the thermal state of the IGM. The right-hand panel is 𝛾 - ΓH i grid, showing
the thirteen ΓH i values for each point on the 2D 𝛾 - 𝑇0 grid.
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Figure 2. Temperature-density (𝑇 -Δ) distribution for the IGM gas in two different models from Nyx simulation. White dashed lines is the power-law fit to the
𝑇 -Δ relation, and legends show the best fit values of 𝑇0 and 𝛾. Dotted T = 105 K lines divide the phase diagram into hot and cold region, while only cold gas is
used for the fitting. Density peaks (log𝑇peak,i, logΔ𝑖) for each bin are plotted as black dot, and 1-𝜎𝑇 ,𝑖 error bars are shown as black bars. The left-hand panel
shows a model with 𝑇0 = 4345 K and 𝛾 = 1.58, and the right-hand panel shows a model with 𝑇0 = 5091 K and 𝛾 = 1.45. The density weighted gas phase
fractions are shown in the annotation.

texts. The peak temperature in each logΔ bin (log𝑇peak,i,logΔ𝑖) are
plotted as black dots and 1-𝜎𝑇 ,𝑖 error bars are also shown. Left panel
shows a model with 𝑇0 = 4353 K and 𝛾 = 1.58, while right panel
shows another model with 𝑇0 = 5091 K and 𝛾 = 1.45. Finally, as
will be discussed later in §2.2, we let the H i photoionization rate ΓH i
be a free parameter when generating Ly𝛼 forest skewers from our
simulations. As such, we add an additional parameter logΓH i to our
thermal grid, extending it to [log𝑇0, 𝛾, logΓH i]. The value of ΓH i we
used in this study spans from log(ΓH i/s−1) = -13.834 to −12.932 in
logarithmic steps of 0.075 dex, which gives 13 values in total (see
right-hand panel of Fig.1). In total, the 3D thermal grid consists of
48 × 13 = 624 models.

2.2 Skewers

We generate simulated Ly𝛼 spectra by calculating the Lyman-𝛼 op-
tical depth (𝜏) array along the line-of-sight, which hereafter will be
referred as skewers for simplicity. For each model on the thermal
grid, a set of 60,000 skewers are constructed parallel to the 𝑥, 𝑦, 𝑧
axes of the simulation box (20,000 skewers in each direction). For
each cell on these skewers, we extract properties needed for optical
depth calculation, including temperature 𝑇 , overdensity Δ, and the
velocity along the line-of-sight 𝑣𝑧 . The hydrogen neutral fraction 𝑥H i,
which is also needed to generate the synthetic Ly𝛼 forest skewers,
is calculated by assuming ionization equilibrium while considering
both collisional ionization and photoionization. Here the collisional

MNRAS 000, 1–19 (2021)
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Figure 3. Illustration of one of our forward modeled spectra from Nyx simulation. The simulated raw spectrum is shown in gray, while a model spectrum based
on VPFIT line fitting (described in § 2.4) is shown in blue and the noise vector is plotted in red. This particular spectrum is forward-modeled in order to model
the instrumental effect and noise properties of one of the HST COS spectra in Danforth et al. (2016) low redshift dataset.

ionization rate is computed based on the gas temperature 𝑇 . Whereas
the photoionization rate ΓH i is set to be a free parameter in the post-
processing of the simulation. Since Nyx does not model radiative
transfer, we approximate the self-shielding of the UV background
for optically thick gas following the method given by Rahmati et al.
(2013), which amounts to attenuating ΓH i for cells containing dense
gas.

Given 𝑥H i, 𝑇 , Δ, 𝑣𝑧 , and ΓH i, we then calculate the optical depth
𝜏 in redshift space by summing contributions from all cells in real
space along the line-of-sight following the full Voigt profile approx-
imation by Tepper-García (2006). Then 𝐹 = 𝑒−𝜏 gives us continuum
normalized flux of Ly𝛼 forest along with skewers. Lastly, we redo the
procedure described above for each ΓH i value to recalculate the skew-
ers.More specifically , we do not re-scale the 𝜏 to obtain skewers for a
differentΓH i, which is the standard procedure at higher redshifts. This

is because, whereas the high-𝑧 IGM is predominantly photoionized,
there is significantly more shock-heated WHIM gas at low-𝑧, render-
ing the contribution from collisional ionization important as shown
by Khaire et al. (2019) for the case of Ly𝛼 flux power spectrum.
Although, it may not be essential for studying Ly𝛼 forest absorption
lines, to be more precise we recalculate skewers for each value of
ΓH i.

2.3 Forward Modeling of Noise and Resolution

As discussed in §1, we are interested in understanding the constraints
on the IGM achievable with realistic data. To this end, we generate
mock datasets with properties consistent with the Danforth et al.
(2016) low redshift Ly𝛼 forest dataset, which comprises 82 unique
quasar spectra with S/N > 5 observed with the Cosmic Origins
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Spectrograph (COS) on the HST. To avoid proximity regions and
contamination from lower Ly-𝛽, we use rest-frame wavelength range
1050 − 1180 Å to identify Ly𝛼 forest for each of these spectra. As a
result, we select 34 of Danforth et al. (2016) quasar spectra covering
the redshift range 0.06 < 𝑧 < 0.16 of our interest for the study, com-
prising a total redshift pathlength ofΔob = 2.136, which corresponds
to our observational dataset for forward modelling. We choose this
redsfhit bin to be the same as the redshift bin used for power spectrum
calculation by Khaire et al. (2019) at 𝑧 = 0.1 so that we can compare
our future analysis with the results obtained with power spectrum
measurements.
The COS has a nominal resolution 𝑅 ∼ 20000, which corresponds

to roughly 15 km/s, and a non-Gaussian line spread function (LSF)
exhibiting significantly broadLorentzianwings,which could alter the
shape of absorption lines on velocity scales larger than the resolution
quoted above. For low-𝑧 IGM with temperatures at mean density
𝑇0 ∼ 5000 K, the 𝑏-values for pure thermal broadening (i.e. the
narrowest lines in the Ly𝛼 forest) are about 10 ∼ 20 km/s, which
means that the corresponding absorption features can not be fully
resolved by COS. Thus, it is crucial to treat the instrumental effect
carefully, including the peculiar shape of COS LSF. Therefore, we
forward model noise and resolution to make our simulation results
statistically comparable with the observation data.
In practice, we make use of tabulated COS LSF and noise vectors

from Danforth et al. (2016) data. For any individual quasar spec-
trum from the observation dataset, we first stitch randomly selected
simulated skewers without repetition to cover the same wavelength
(in the rest frame 1050 − 1180 Å) of that quasar and then rebin the
skewers onto the pixels of the observed spectra. Then we convolve
the simulated spectra with the HST COS line spread function (LSF)
while taking into account the grating and life-time positions used
for that specific data spectrum. Here the COS LSF is obtained from
linetools4 and is tabulated for up to 160 pixels in each direction.
We interpolate the LSF onto the wavelengths of the mock spectrum
(segment) to obtain a wavelength dependent LSF. Each output pixel
is then modeled as a convolution between the input stitched skewers
and the interpolated LSF for the corresponding wavelength. After-
ward, the newly generated spectrum is interpolated to the wavelength
of the selected COS spectra. The noise vector of the quasar spectrum
is propagated to our simulated spectrum pixel-by-pixel by sampling
from a Gaussian with 𝜎 = 𝜓𝑖 , with 𝜓𝑖 being the data noise vec-
tor value at the ith pixel. In the end, a fixed floor is added to the
error vector for all simulated spectra to avoid an artificial effect in
post-processing, which will be discussed later in §2.4.
For each model, we generated 2000 forward-modeled spectra, cor-

responding to a total pathlength Δ𝑧tot ∼ 125, from the 60,000 raw
skewers5, and fit voigt profiles to each line in the spectra to obtain the
{𝑏, 𝑁H i} pairs for our dataset (as described in section § 2.4). For the
purpose of illustration, an example of a forward-modeled spectrum
is shown in Fig.3 where the simulated spectrum is shown in gray, the
model spectrum based on VPFIT line fitting (see § 2.4) is in blue,
and the noise vector in red.

2.4 VPFIT

To perform the analysis based on the 𝑏-𝑁H i distributions, we have to
fit the Ly𝛼 lines in our simulated spectra to obtain a set of {𝑏, 𝑁H i}

4 For more information, visit https://linetools.readthedocs.io
5 For each Nyx model, 2000 spectra needs about 20,000 raw skewers, i.e, we
randomly pick 20,000 skewers from 60,000.

pairs for each model. To this end, we run a line-fitting program on
our forward-modeled mock spectra to obtain a set of 𝑏-𝑁HI pairs
for each simulation model in our thermal grid. In this work, we
use the line-fitting program VPFIT, which fits a collection of Voigt
profiles convolved with the instrument LSF to spectroscopic data
(Carswell &Webb 2014)6. Here, we employ a fully automated VPFIT
wrapper adapted from Hiss et al. (2018), which is built on the VPFIT
version 10.2. The wrapper routine controls VPFIT with the help of
the VPFIT front-end/back-end programs RDGEN and AUTOVPIN and
fit our simulated spectra automatically.
VPFIT identifies lines automatically and fits each line with three

parameters: the absorption redshift 𝑧abs of the line, its Doppler pa-
rameter 𝑏, and column density 𝑁H i. VPFIT obtains these param-
eters for a collection of lines by minimizing the 𝜒2 between the
data and the model spectrum generated from all the fitted lines.
While fitting, VPFIT restrict 𝑏 and 𝑁HI to 1 ≤ 𝑏(km/s) ≤ 300 and
11.5 ≤ log(𝑁H i/cm−2) ≤ 18, respectively. Our VPFIT wrapper al-
lows us to fit spectra with a custom LSF7. Since we are working at
0.06 ≤ 𝑧 ≤ 0.16, the Ly 𝛼 forest lies completely in the wavelength
range covered exclusively by the COS G130M grating having a cen-
tral wavelength 1300 Å. We fit our forward-modeled spectra with
the same G130M LSF. Furthermore, the effective resolution of the
grating also depends on the COS lifetime position during the obser-
vations, and they are also taken into account while running VPFIT as
well as in forward modelling. An example of model spectrum gener-
ated by combining lines fitted using VPFIT is shown in Fig.3 as blue
lines.
Moreover, we notice the presence of a significant number of ab-

sorption lines with very low Doppler-𝑏 parameters and low column
densities 𝑁H i after fitting mock as well as real data with high signal-
to-noise ratios (SNR). These weak narrow absorption lines, however,
are not seen in our simulated and forward-modeled spectra. Visual
inspection of these lines indicates that they are spurious and intro-
duced by VPFIT while attempting to fit artifacts due to flat-fielding,
continuum placement, or errors in the data reduction. These lines are
only introduced in spectra of the highest quality, where the extremely
high signal-to-noise ratio (SNR) leads to over-fitting by VPFIT. To
avoid this problem, a fixed floor of value 0.02 is added in quadrature
to the error vector of the continuum normalized flux for all simulated
spectra without adding additional noise to the normalized flux. With
such a noise ’floor’, these weak features are essentially removed from
the VPFIT output. We find this floor value 0.02 via trial and error.
In practice, this additional noise floor mainly removes lines with
log(𝑁H i/cm−2) < 12.5 from our dataset, which is outside our limits
used in likelihood calculations (which will be discussed in §3.2) and
therefore not used in this study.
Furthermore, we follow the convention and apply another filter

for both 𝑏 and 𝑁H i in this study, using only 𝑏-𝑁H i pairs in region
12.5 ≤ log(𝑁H i/cm−2) ≤ 14.5 and 0.5 ≤ log(𝑏/km s−1) ≤ 2.5 in
our analysis (Schaye et al. 2000; Rudie et al. 2012; Hiss et al. 2018).
Such an limitation is chosen to include the 𝑏-𝑁H i distributions for
all of our Nyx models while guaranteeing that the absorbers are not
strongly saturated, which maximizes the sensitivity to IGM thermal

6 VPFIT: http://www.ast.cam.ac.uk/~rfc/vpfit.html
7 Although our VPFIT wrapper allows us to implement an LSF in VPFIT,
only a single LSF can be used at once, i.e. the wavelength dependence can not
be taken into accout. As such, for the input into VPFIT we use the LSF at the
lifetime of the data and evaluated it at the central wavelength of the spectrum
that we are trying to fit. Such treatment is applied to both observed (mock)
spectra and stimulated spectra so as to make sure our statistics are not biased.
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state andminimizes the impact of poorly understood strong absorbers
arising from the circumgalactic medium of galaxies.

3 INFERENCE ALGORITHM

Hiss et al. (2019) introduced a Bayesian method to estimate the IGM
thermal parameters from the joint 𝑏-𝑁H i distribution. In this paper,
we adopt a similar approach while employing a new method for 𝑏-
𝑁H i distribution emulation, namely Density-Estimation Likelihood-
Free Inference (DELFI). In addition, we also include the absorber
number density along the line-of-sight d𝑁/d𝑧 in our analysis, i.e. the
number of absorption lines (in some range of 𝑏 and 𝑁HI) per unit
path-length along the line-of-sight, which helps us to better constrain
the UV background photoionization rate ΓH i. The reason behind
this is that the 𝑏-𝑁H i distribution is less sensitive to ΓH i compared
with thermal parameters 𝑇0 and 𝛾 (see Fig.5 and §3.3), whereas
the number density of absorbers (see Fig.4) depends strongly on
ΓH i. It is analogous to the fact that the mean flux of the Ly𝛼 forest
is sensitive to ΓH i. In this work, we emulate the d𝑁/d𝑧 using a
Gaussian process emulator based on our simulations and employ it
as a normalization factor in our likelihood function. More discussion
about this modification is presented in §3.2 and Appendix A.
This section is organized as follows, we first introduce our new

𝑏-𝑁H i distribution emulator and then discuss the modifications to
the likelihood function. Afterward, we investigate the relationship
between thermal parameters and 𝑏-𝑁H i distribution in §3.3. Finally,
we present our inference results in §3.4 and apply a series of inference
tests to evaluate the statistical validity of our method in §3.5.

3.1 Emulating the 𝑏-𝑁H i distribution with DELFI

In this work, we build our 𝑏-𝑁H i distribution emulator following the
density-estimation likelihood-free inference (DELFI) method (Papa-
makarios & Murray 2016; Alsing et al. 2018; Papamakarios et al.
2018; Lueckmann et al. 2018; Alsing et al. 2019), which turns infer-
ence into a density estimation task by learning the sampling distribu-
tion of the data as a function of the parameters. Compared with the
previously used Kernel Density Estimation (KDE) method in Hiss
et al. (2019), this method provides a flexible framework for condi-
tional density estimation and does not implicitly apply a smoothing
kernel to the training data. It hence is able to deliver higher-fidelity
conditional density estimators given the same training data.
Wemake use of pydelfi8 − the publicly available python imple-

mentation of DELFI based on neural density estimators (NDE)s and
active learning (Alsing et al. 2019). pydelfi makes use of NDEs
to learn the sampling conditional probability distribution 𝑃(d | 𝜽) of
the data summaries d, as a function of parameters 𝜽 , from a training
set of simulated data summary-parameter pairs {d, 𝜽}. In this work,
the parameters 𝜽 are log𝑇0, 𝛾 and logΓH i, and the data summaries
d are log 𝑁H i and log 𝑏9, and the 𝑏-𝑁H i distribution is considered as
a conditional probability distribution 𝑃(𝑏 , 𝑁H i | 𝑇0, 𝛾, ΓH i) learned
from our simulations. More specifically, the 𝑏-𝑁H i distribution is
modeled as a Masked Autoregressive Flow (MAF; Papamakarios
et al. 2017) neural density estimator, which is constructed as a stack

8 See https://github.com/justinalsing/pydelfi
9 pydelfi also has the option to apply different data compression methods
(e.g., Alsing & Wandelt 2018) and active learning methods to optimize the
data and parameter space sampling. Here we do not exploit these features
since we have pre-chosen our summary statistics and simulation grid (the
𝑏-𝑁H i distribution) at a fixed grid of thermal parameters.

of five Masked Autoencoders for Density Estimation, (MADE; Ger-
main et al. 2015), each with two hidden layers with 50 units each
and tanh activation functions. The NDEs are trained by stochastic
gradient descent. For more technical details about MAF and MADE
neural network architectures see Germain et al. (2015), Papamakar-
ios et al. (2017) and Alsing et al. (2019). To prevent over-fitting, the
NDEs are weighted by their relative cross-validation losses and are
trained with early-stopping (see Alsing et al. 2019 for details). For
convenience, in this paper we will refer to the 𝑏-𝑁H i distribution
emulator discussed above as the DELFI emulator.
As mentioned above, the DELFI emulator is trained on the

data summary-parameter pairs {[log𝑇0, 𝛾, logΓH i], [𝑏, log 𝑁H i]}.
For each model, we fit (VPFIT) 2000 simulated spectra, correspond-
ing to a total pathlength Δ𝑧tot ∼ 123, to get {𝑏, 𝑁H i} pairs for the
model, and label these {𝑏, 𝑁H i} pairs with their simulation param-
eters [log𝑇0, 𝛾, logΓH i]. Our training set therefore consists of all
these labeled {𝑏, 𝑁H i} pairs for all models on the thermal grid. Here
we quantify the size of data by its total pathlength rather than number
of lines10, because the latter depends on the d𝑁/d𝑧 that varies among
different models.

3.2 Likelihood function

Hiss et al. (2019) used only the shape of 𝑏-𝑁H i distribution to con-
strain IGM thermal parameters, but ignored the normalization, which
can be thought of as the total number of absorption lines in the dataset
or equivalently as the line density 𝑑𝑁/𝑑𝑧. Here we generalize the
likelihood formalism introduced in Hiss et al. (2019) to include the
information contained in the absorber density d𝑁/d𝑧 (see also Hiss
2019). Our goal is to find the likelihood of observing a set of absorp-
tion lines

{
𝑏𝑖 , 𝑁H i,𝑖

}
given a model with a set of thermal parameters

[log𝑇0 ′, 𝛾′, logΓH i ′]. We first assume that the probability density
function (PDF)s are normalized such that∬

𝑃(𝑏, 𝑁H i) d𝑁H i d𝑏 = 1, (3)

where 𝑃(𝑏, 𝑁H i) is the conditional probability distribution function
𝑃(𝑏 , 𝑁H i | 𝑇0 ′, 𝛾′, ΓH i ′), for simplicity we write it as 𝑃(𝑏, 𝑁H i) in
the rest of this subsection. We imagine dividing the 𝑏-𝑁HI into a set
of infinitesimally fine grid cells, such that the occupation number
of each grid cell is either one or zero. Knowing that our set of
observational/mock dataset

{
𝑏𝑖 , 𝑁H i,𝑖

}
is comprised of 𝑛 lines, and

assuming that there are 𝑁g grid cells in total, the likelihood for a
model with thermal parameters [log𝑇0 ′, 𝛾′, logΓH i ′] can thus be
written as the following product of Poisson probabilities11

L =𝑃(data|model) (4)

=

(
𝑛∏
𝑖=1

`𝑖 𝑒
−`𝑖

) ©«
𝑁g∏
𝑗≠𝑖

𝑒−` 𝑗
ª®¬ ,

where the first product is over the occupied cells, and the second

10 It means that the learned 𝑏-𝑁H i distribution has a resolution that depends
on the d𝑁 /d𝑧 of themodel.We could instead set the number of {𝑏, 𝑁H i } pairs
to be fixed while using different total panthlength for each model. However
such a change does not affect the results of our inference method.
11 In assuming the probability distribution for each grid cell is Poisson, we
are implicitly assuming each 𝑏-𝑁HI pair is an uncorrelated draw from the 𝑏-
𝑁H i distribution. This assumption, also made by Hiss et al. (2019), amounts
to ignoring the spatial correlations between absorption lines. Hiss et al. (2019)
showed that this is a very good approximation and yields unbiased inference
as we will also demonstrate in § 3.5)
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Figure 4. An example of emulation of the absorber density d𝑁 /d𝑧 generated by the Gaussian emulator sliced at the median value of the posterior from the
MCMC process, where log(𝑇0/K) = 3.69, 𝛾 = 1.55, log(ΓH i/s−1) = -13.30. Top panels are the 2D d𝑁 /d𝑧 distributions where Nyx models are shown in blue
circle. The top left panel is the d𝑁 /d𝑧 on 𝛾-log𝑇0 plane at log(ΓH i/s−1)= -13.30. The top middle is log𝑇0-logΓH i plane at 𝛾 = 1.55. The top right is logΓH i-𝛾
plane at log(𝑇0/K) = 3.69. Bottom panels are marginalized 1D d𝑁 /d𝑧 distributions at the thermal parameters mentioned above. From left to right: d𝑁 /d𝑧 vs
log𝑇0, d𝑁 /d𝑧 vs logΓH i, and d𝑁 /d𝑧 vs 𝛾.

product is over the empty cells. Here the `𝑖 is the Poisson rate of
occupying a cell in the 𝑏-𝑁HI plane with area ΔNH i𝑖 × Δ𝑏𝑖 , i.e.

`𝑖 =

(
d𝑁
d𝑧

)
model

𝑃(𝑏𝑖 , 𝑁H i,𝑖) Δ𝑁H i Δ𝑏 Δ𝑧data, (5)

where 𝑃(𝑏𝑖 , 𝑁H i𝑖) is the probability distribution function evaluated
at the point (𝑏𝑖 , 𝑁H i,𝑖) using the DELFI 𝑏-𝑁H i distribution emulator
described in § 3.1, and Δ𝑧data is the total redshift path covered by
the data spectra from which we obtain our data set {𝑏, 𝑁H i}, whereas
(d𝑁/d𝑧)model is the absorber density of the model which will be
further discussed later in this subsection.
Afterwards, it is easy to show that Eq. (4) implies

lnL =

𝑛∑︁
𝑖=1
ln(`𝑖) −

𝑁𝑔∑︁
𝑘=1

`𝑘 . (6)

Above, the second sum over 𝑘 is simply an integral of Eq. (5) over the
𝑏-𝑁H i plane, while the integral of 𝑃(𝑏, 𝑁H i) d𝑁H i d𝑏 over the plane
is unity according to Eq. (3). As a result, we can write our likelihood
function as

lnL =

𝑛∑︁
𝑖=1
ln(`𝑖) −

(
d𝑁
d𝑧

)
model

Δ𝑧data. (7)

Since Hiss et al. (2019) did not consider the absorber den-
sity, the likelihood in their analysis is simply given by lnLHiss =∑𝑛
𝑖=1 ln 𝑃(𝑏𝑖 , 𝑁H i,𝑖). In comparison, our likelihood function Eq. (7)
can be written as

lnL =

𝑛∑︁
𝑖=1
ln 𝑃(𝑏𝑖 , 𝑁H i,𝑖) + 𝑛 ln b − b, (8)

where b = (d𝑁/d𝑧)modelΔ𝑧data.We can see that the first term remains
the same, and our modification (the implementation of absorber den-
sity d𝑁/d𝑧) can be considered as a correction term based on the
absorber density of the model, the number of lines observed, and the
pathlength of the data set Δ𝑧data.
As a result of our modification, the likelihood of observing a

line with certain line parameter (𝑏, 𝑁H i) now depends not only on
the 𝑏-𝑁H i distributions of models but also on absorber densities
of the models. Consequently, to evaluate the likelihood L on the
parameter space, we need the ability to evaluate (d𝑁/d𝑧)model at an
arbitrary location on the parameter space. To this end, a Gaussian
process emulator (based on George, see Ambikasaran et al. 2016)
is employed to emulate (d𝑁/d𝑧)model by interpolating the d𝑁/d𝑧 of
models from Nyx simulations based on their 𝑁model/Δ𝑧model, where
Δ𝑧model is the total pathlength of simulated spectra that are fed into
VPFIT, and 𝑁model is the total number of lines identified by VPFIT
from these spectra. The Gaussian process emulator is constructed
with smoothing lengths of 40% of our thermal grid length12 in log𝑇0
and logΓH i and a smoothing length of 80% of thermal grid length
in 𝛾. The longer smoothing length in 𝛾 is set to prevent the emulator
from over-fitting the noise, considering that 𝛾 has less effect on the
absorber density d𝑁/d𝑧 compared with 𝑇0 and ΓH i (see Fig.4), which
makes small fluctuations induced by noise more significant.
The results of our d𝑁/d𝑧 emulation are shown in Fig.4, where

12 The smoothing length is input as initial guess, which is then refined later
in the routine. In addition, all dimensions in the thermal grid are rescaled to
unity in the Gaussian process emulator.
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both log𝑇0 and logΓH i (left and middle column) have negative cor-
relations with absorber density d𝑁/d𝑧. This dependence can be ex-
plained qualitatively by the fluctuatingGunn-Peterson approximation
(FGPA, see Weinberg et al. 1997)

𝜏Ly𝛼 ∝ 𝑛HI ∝ 𝑥HI𝑛H ∝
𝑛2H𝑇

−0.7

ΓHI
, (9)

where the 𝜏Ly𝛼 denotes the Ly𝛼 optical depth and the 𝑛H is the
hydrogen number density. This equation implies that both higher
temperatures and higher photoionization rates reduce the Ly𝛼 op-
tical depth of gas absorbers in the IGM, leading to lower absorber
density. The wiggles shown in d𝑁/d𝑧 vs 𝑇0 plot (bottom left panel
of Fig.4) are effects of poor interpolation due to lack of models at
𝛾 ∼ 1.5 (see top left panel). Moreover, we notice a weak correlation
between 𝛾 and d𝑁/d𝑧 (see the bottom right panel of Fig.4). How-
ever, such 𝛾 dependence is relatively weak compared with 𝑇0 and
ΓHI dependencies, and is likely caused by artifacts due to the emu-
lation. As shown in the top left-hand panel, we do not have models
in low 𝑇0 high 𝛾 region, the absorber density d𝑁/d𝑧 could thus be
over-extrapolated in these regions, further biasing the 𝛾 dependence
on the whole parameter space. We performed some tests and found
that the weak correlations in 𝛾 - d𝑁/d𝑧 vanishes if we do not include
the high 𝛾 simulations. Therefore, in conclusion, the marginalized 𝛾
- d𝑁/d𝑧 correlation shown in Fig. 4 is an artifact introduced by our
Gaussian emulator, however, it is too weak to affect our inference
results.

3.3 Parameter study

A new feature of the DELFI 𝑏-𝑁H i distribution emulator is its ability
to emulate 𝑏-𝑁H i distributions continuously on the parameter space.
With such a feature, we are now able to illustrate the parameter
dependence of the 𝑏-𝑁H i distribution and investigate the physics
behind these dependence. Fig.5 shows emulated 𝑏-𝑁H i distributions
with different values of thermal parameters [log𝑇0, 𝛾 , logΓH i].
The top panel shows 𝑏-𝑁H i distributions with increasing 𝑇0, where
log(𝑇0/K) = 3.25 (left), 3.60 (middle) and 3.95 (right) respectively,
while 𝛾=1.55 and log(ΓH i/s−1)=-13.36 for all three plots. Increasing
𝑇0 results in the upward shifting of the 𝑏-𝑁H i distributions, which
can be explained by the thermal component of the 𝑏 parameter and
the 𝑇-Δ relationship Eq. (1), i.e.

𝑏𝑇 ∝ (2𝑘𝑇/𝑚)1/2 ∝ (𝑇0Δ𝛾−1)1/2, (10)

where higher 𝑇0 results in higher IGM temperature, leading to larger
𝑏 parameters. In addition, we notice that as the 𝑇0 goes up, the
𝑏-𝑁H i distribution becomes more concentrated, i.e. the distribution
becomes tighter, and the pdf values increases. Such behavior might
be explained as follows. There are two components contributing to 𝑏
parameter, namely thermal motion and non-thermal broadening. The
thermal component is associated with the IGM temperature and thus
follows a distribution determined by𝑇0. On the other hand, as a result
of the small-scale motion of the gas, the non-thermal component is
independent of the temperature and has a large dispersion, leading
to broader distribution. At low temperatures, where the thermal con-
tribution is weak, the 𝑏 parameter is dominated by the non-thermal
component, resulting in broad distribution. As the temperature goes
up, the thermal component dominates over non-thermal broaden-
ing, and the 𝑏 parameter thus concentrates on a central value of 𝑏
determined by the IGM temperature.
The middle panel of Fig.5 shows the 𝑏-𝑁H i distribution with in-

creasing 𝛾, where 𝛾 =1.15 (left), 1.55 (middle), and 1.95 (right),
respectively, while log(𝑇0/K) =3.65 and log(ΓH i/s−1)=-13.36 are

fixed. These plots indicate that there are degeneracies between 𝛾
and 𝑇0, where an increasing 𝛾 also shifts 𝑏-𝑁H i distributions up-
wards, which can be understood from Eq. (10) and the fact that at
low-𝑧, the Ly𝛼 lines originate predominantly from gas with Δabs > 1
(Δabs ∼ 10, see Gaikwad et al. 2017), which results in higher temper-
atures at densities of absorbers for models with larger 𝛾. The concen-
tration effect is also seen in the middle panel, which can be explained
in the same way as the upward shifting of the 𝑏-𝑁H i distribution due
to increasing 𝛾. It can also be seen from the middle panel that the 𝛾
is correlated with the slope of the low-𝑏 cutoff of the 𝑏-𝑁H i distri-
bution, which is consistent with the analytical fit of the low-𝑏 cutoff,
where the slope can be approximated by Δ log 𝑏/Δ log 𝑁 = (𝛾−1)/3
(see Rudie et al. 2012).
The bottom panel of Fig.5 shows 𝑏-𝑁H i distributions with in-

creasing photoionization rateΓH i, where log(ΓH i/s−1)= -13.66 (left),
-13.36 (middle) and -13.06 (right), while log𝑇0 and 𝛾 remain un-
changed. We observe that increasing ΓH i results in a similar but
much weaker effect compared with increasing 𝑇0, i.e. the 𝑏-𝑁H i dis-
tribution slightly shifts upward and becomes more concentrated with
increasing ΓH i. Such effects are because the photoionization rate ΓH i
alters the Ly𝛼 optical depth of the IGM. Since the Ly𝛼 forest typi-
cally probes regions with optical depth 𝜏Ly𝛼 ∼ 1, given higher ΓH i, it
probes regions with higher temperatures and densities, which can be
derived from Eq.(9), causing effects similar to increasing 𝑇0. How-
ever, such effects are relatively weak, making the 𝑏-𝑁H i distribution
less sensitive to the photoionization rate ΓH i.
All these aforementioned parameter dependences (except ΓH i,

which is not considered in previous works ) of the 𝑏-𝑁H i distri-
bution are consistent with previous works that measure the IGM
thermal state based on the full 𝑏-𝑁H i distribution13 (Hiss et al. 2019)
and low-𝑏 cutoff (Schaye et al. 1999; Rudie et al. 2012; Bolton et al.
2014; Rorai et al. 2018; Hiss et al. 2018), indicating that our DELFI
emulator successfully reproduce the parameter dependences of the 𝑏-
𝑁H i distribution. Furthermore, it also implies that our understanding
of the 𝑏-𝑁H i distribution agrees with the physics prediction.

3.4 Inference results

Sets of mock spectra are created from our Nyx simulations to test
the performance of our inference algorithm under realistic condi-
tions. These mock spectra set are generated from a set of simulated
spectra following a forward-modeling approach designed to match
the pathlength, resolution, and noise properties of the Danforth et al.
(2016) low-redshift quasar spectra in one-to-one correspondence as
described in §2.3. Consequently, each mock spectra set consists of 34
forward-modeled spectra, which has exactly the same noise vectors,
instrumental effects, and total pathlength (Δ𝑧data=2.136) as the real
observed dataset, which ensures that the accuracy of our analysis is
realistic and achievable when the method is applied to real data. A
set of {𝑏, 𝑁HI} pairs, obtained by fitting these spectra using VPFIT
(see §2.4), is then used as the ’data’ in the likelihood function (see
Eq.4) to infer the posterior distribution for IGM thermal parameters
for this mock dataset.
In this work, we perform inference via Markov chain Monte Carlo

(MCMC) sampling using the python package emcee (Foreman-
Mackey et al. 2013), which implements the affine-invariant sampling

13 In Hiss et al. (2019), at 𝑧 ∼ 2, the Ly𝛼 lines originate predominantly
from gas with Δ < 0, causing different effects when changing 𝛾. However,
the physics explanations behind the effect are coherent.
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Figure 5.Comparisons of 𝑏-𝑁H i distributionsmodeled byDELFI emulator with different thermal parameters. Top panel shows changes in the 𝑏-𝑁H i distribution
with increasing log𝑇0, where log(𝑇0/K) = 3.25 (left), 3.60 (middle) and 3.95 (right) respectively, while 𝛾=1.55 and log(ΓH i/s−1)=-13.36 for all three plots.
The middle panel shows changes of the 𝑏-𝑁H i distribution where 𝛾 =1.15 (left), 1.55 (middle) and 1.95 (right) respectively, while log(𝑇0/K)=3.60 and
log(ΓH i/s−1)=-13.36 are fixed. The bottom panel shows 𝑏-𝑁H i distributions with decreasing UV background. log(ΓH i/s−1)= -13.66 (left), -13.36 (middle) and
-13.06 (right), while log𝑇0 and 𝛾 remain unchanged. All pdfs here are normalized to unity. For illustration purposes, values of pdf are multiplied by 100 in the
color bar.

technique (Goodman & Weare 2010) to sample the posterior prob-
ability distribution. Here the posterior is calculated based on the
likelihood in Eq. (6), which takes into account the absorber density
d𝑁/d𝑧 as described in §3.2, while assuming uniform (flat) priors
for log𝑇0, 𝛾 and logΓH i, where the boundaries are chosen to be the
range of each respective parameter in 1D.MCMCposteriors obtained
from the aforementioned mock datasets ({𝑏, 𝑁HI} pairs) are shown
in Fig.6. We obtain log(𝑇0/K) = 3.668+0.075−0.080, 𝛾 = 1.611+0.060−0.055
and log(ΓH i/s−1) = −13.497+0.065−0.066 from the marginalized dis-
tributions, whereas the true parameters are: log(𝑇0/K) = 3.643,

𝛾 = 1.591 and log(ΓH i/s−1) = −13.458 (red dot and red ver-
tical lines). We recover the input parameters in very high pre-
cision with errors Δ log(𝑇0/K) = +0.025dex, Δ𝛾 = +1.3%, and
Δ log(ΓH i/s−1) = −0.039dex, while true parameters (red dot/solid
lines) are all in the 1-𝜎 interval (inner black contours/ black dashed
lines) of the posterior. Here the degeneracy between 𝑇0 and 𝛾 can
be quantitatively understood by the 𝑇-Δ relationship Eq. (1) and the
typical overdensity of absorbers Δabs ∼ 10. More specifically, both
higher 𝑇0 and 𝛾 result in higher temperature of the absorbers, shift-
ing the 𝑏-𝑁H i distribution upward (see Fig.5 and relevant discussion
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Figure 6.MCMC posterior for one of the models from Nyx simulation (absorbers shown in Fig.7) using the likelihood function Eq. 7. Projections of the thermal
grid used for generating models are shown as blue dots, while the true model is shown as red dot. Inner (outer) black contour represents the projected 2D
1(2)-sigma interval. The parameters of true model are indicated by red lines in the marginal distributions, while the dashed black lines indicates the 16, 50, and
84 percentile values of the posterior. The true parameters are: log(𝑇0/K) = 3.643, 𝛾 = 1.591 and log(ΓH i/s−1) = -13.458.

in §3.3). The degeneracy between 𝑇0 and ΓH i is mainly a result of
the degeneracy in the absorber density d𝑁/d𝑧 with respect to the two
parameters (see Fig.4 and Fig.A1 as comparison), which is explained
in §3.2. It is noteworthy that our inference algorithm provides pre-
eminent accuracy for all three parameters even under a very realistic
condition, where the resolution of spectra is rather low (with lines
not fully solved), and the number of data is limited (with a total
pathlength Δ𝑧 = 2.136). Such a high sensitivity and precision makes
our inference method a powerful tool in the study of the low-𝑧 IGM
and Ly𝛼 forest.

Fig.7 shows the full 𝑏-𝑁H i distribution recovered from the mock
dataset, which is emulated by our DELFI emulator based on the
best-fit parameters (median values of the marginalized MCMC pos-
terior). It appears that the PDF (color map) successfully represents
the density distribution of the data points. Furthermore, marginal-
ized 1D distributions of 𝑏 and 𝑁H i are given in Fig.8 for both the

mock dataset (black dots) and random samples from the emulated
𝑏-𝑁H i distribution (blue bars). It can be seen that our emulator
successfully reproduces the 1D marginalized 𝑏 and 𝑁H i distribu-
tion, though there is a fluctuations in 𝑁H i for the mock dataset at
around log(𝑁H i/cm−2) ∼ 13.5. We figured out that such fluctuation
is caused by the random error during the generation of the mock
dataset, which can be reduced by increasing the size of the mock
datasets. However, to test the performance of our inference method
under realistic conditions, we fix the size of the mock datasets and
bear with such fluctuation in this work.

3.5 Inference test

As discussed above, the likelihood function used in our inference al-
gorithm involves several approximations and emulation/interpolation
procedures. Most importantly, our inference ignores correlations be-
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Figure 7. The color map is the full 𝑏-𝑁H i distribution recovered from the
Nyx mock dataset, which is emulated by our DELFI emulator based on the
best-fit parameters (median values of the marginalized MCMC posterior),
where log(𝑇0/K) = 3.668, 𝛾 = 1.611 and log(ΓH i/s−1) =-13.498. Black
dots are the mock datasets we used in the inference. For illustration purposes,
values of pdf are multiplied by 100 in the color bar.

tween the lines (see the discussion in Hiss et al. 2019), and we
emulate the 𝑏-𝑁H i distribution and the d𝑁/d𝑧 with our DELFI and
Gaussian emulators respectively, while both emulations involve in-
terpolations. These procedures might induce additional uncertainties
that are counted in our error budget14, we hence want to make sure
our inference results are valid under these assumptions, and our inter-
polation procedures work correctly. Therefore, we perform a series
of inference tests to evaluate the robustness of the entire inference
method. An inference test is to carry out a set of realizations of the
inference algorithm based on the mock dataset and inspect the results
to reveal if the inference method returns valid posterior probability
distributions, i.e. whether the ’true model’ is included in a set of
probability contours following the ratio indicated by the posterior.
The inference test is done as follows. First of all, we adopt the

same prior as described in 3.4, and construct a regular uniform grid
in the parameter space spanning the range set by our prior. For each
realization, we pick a model (set of parameters) on the above grid,
which we refer to as the ‘true model’. and we refer its thermal param-
eters as ’true parameters’ \\\true, We then create a corresponding mock
dataset following the prescription described in §3.4. Given the mock
dataset, since our priors are flat, we can determine the corresponding
posterior probability distribution by evaluating the likelihood func-
tion L = 𝑃(data|model) on the whole parameter space. We then
normalize the posterior function to unity and determine 3D posterior

14 The uncertainty of the 𝑏-𝑁H i distributions emulated by DELFI is also
ignored in our analysis. Such uncertainty is caused by the randomness in
the training process, and has not been included in the results. But since our
inference method (and the toy model) does well in the inference test, such
randomness should be smaller than stochastic error shown in our analysis,
and should not dominate our error budget.

Table 1. Table of results of the inference test

models Total 68( % ) 95 (% )

random models 480 290 (60.42 ± 2.29%) 439 (94.67 ± 1.25%)
single model 200 134 (67.00 ± 3.50%) 190 (95.00 ± 1.50%)

probability contours based on the posterior (likelihood) distribution.
Knowing that the likelihood function is continuous on the whole
domain, the 3D volume integral can hence be substituted by a 1D
integral over the sorted likelihood function. Herewe define the proba-
bility contours𝐶𝑃 and the likelihood thresholds L𝑃 in the following
way,∭

𝐶𝑃

Ld𝑉 =

∫ ∞

L𝑃

LdL = 𝑃, (11)

such that a probability contour 𝐶𝑃 is simply where L = LP, and
any ’model’ with parameter \\\ being inside a contour 𝐶𝑃 thus be-
comes equivalent to L(\\\) > LP. We further define the effective 1𝜎
(68%) and 2𝜎 (95%) intervals as the volume between contour pairs
(𝐶0.16, 𝐶0.84) and (𝐶0.025, 𝐶0.975) respectively. Finally, we judge the
performance of our inference method based on how often the param-
eters of the ’true model’ \\\true falls in these 1(2)-𝜎 interval contour
pairs compared to the expectation based on the corresponding prob-
abilities, i.e. if our posterior distribution is perfect, the true model
should land within the 1𝜎 (2𝜎) contours 68% (95%) of the time.
An example of the distribution of the likelihood function is shown
in Fig.B1, and more details about the calculation of the likelihood
distribution is presented in Appendix B.
In practice, we perform an inference test on a set of randommodels

on the thermal grid to test the overall performance of our inference
algorithm.We pick 12 models and execute 40 realizations per model.
The result shows that the true values arewithin the 1-𝜎 (68%) interval
for 60.42±2.29% (290/480) of the time, and in the 2𝜎(95%) interval
for 94.67 ± 1.25% (439/480) of the time, while the upper and lower
limits are given by the ±1𝜎bi error for corresponding binomial dis-
tributions. In addition, we carry out a cross-validation test to ensure
our emulators are not affected by over-fitting problem. Here we select
a single model near the center of the parameter space (log(𝑇0/K) =
3.643, 𝛾 = 1.591, and log(ΓH i/s−1) = -13.458.), and exclude the
model15 from the training dataset. We train our emulators (both 𝑏-
𝑁H i distribution and d𝑁/d𝑧) based on the new dataset, and run 200
realizations of our inference method. We observe that the true values
are inside the 1𝜎 (68%) interval for 67.00 ± 3.50% (134/200) of the
time, and inside the 2𝜎 (95%) interval for 95.0±1.50% (190/200) of
the time. Results are presented in Table 1. The overall performance
indicates that our algorithm passes the inference16.
In the end, to further demonstrate and elaborate on the effec-

tiveness of our inference algorithm, we created a toy model, which

15 In practice we exclude all models with the same 𝑇0 and 𝛾 log(𝑇0/K)
=3.643 and 𝛾 = 1.591), since we mostly want to test the performance of the
𝑏-𝑁H i distribution emulator on the 𝑇0-𝛾 plane.
16 Our inference method performs better when the model is close to the
center of the grid. This might be because our emulators, both DELFI and
Gaussian process emulator, perform better at the center of the grid where
the interpolation is more accurate. Besides, our thermal grid has an irregular
shape on the 𝑇0-𝛾 plane, and might thus make the interpolation even harder
or distorted when there are no or only a few models around. Such a problem
might be addressed by adding more simulation models, extending the thermal
grid to make sure the region we are interested in always lies at the center of
the grid.
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Figure 8. Marginalized 1D distributions of 𝑁H i (left-hand panel) and 𝑏 (right-hand panel) for the mock dataset (black dots) and the sampling from emulated
𝑏-𝑁H i distribution (blue bars) at log(𝑇0/K) = 3.699, 𝛾 = 1.549 and log(ΓH i/s−1) =-13.506. Blue bars show the average of 5000 sampling from the emulated
𝑏-𝑁H i distribution using MCMC, while the (dark) blue shaded regions represent the 1-𝜎 fluctuation (16%-84% percentile among 5000 samples).

involves entire inference pipeline, (in Appendix C) to test the whole
inference algorithm under more controlled conditions, where the toy
𝑏-𝑁H i distribution is analytical, and the parameter dependence is
known. Here the toy 𝑏-𝑁H i distribution consists of a multivariate
Gaussian distribution parameterized by three mock parameters fol-
lowing the parameter dependence discussed in § 3.3. Moreover, these
mock parameters also control the line density d𝑁/d𝑧 of the model
based on the d𝑁/d𝑧 map generated by the Gaussian emulator from
our Nyx simulation models (see Appendix C for more details). As a
result of this toy model and also the inference test, we conclude that
our inference algorithm is sound.

4 SUMMARY AND CONCLUSIONS

In this study, we have presented and evaluated our new method of
measuring the thermal state [𝑇0, 𝛾] and the photoionization rate ΓH i
of the low redshift IGM using its 𝑏-𝑁H i distribution and absorber
density d𝑁/d𝑧. We made use of a novel machine learning technique
DELFI to build a 𝑏-𝑁H i distribution emulator and used a Gaussian
process emulator to simulate the absorber density d𝑁/d𝑧. We trained
both emulators on a dataset generated from a set of Nyx simulations
on a large parameter grid. To test the performance of our inference
algorithm under realistic conditions, we applied forward modeling
techniques to model the noise and instrumental effects based on the
HST COS quasar spectra from Danforth et al. (2016). We showed us-
ing extensive tests that our inferencemethod is proficient and reliable.
Here we conclude by discussing the performance and summarizing
the essential elements of our new algorithm.

• We used mock datasets to simulate the measurement of the
thermal state [𝑇0, 𝛾] of the low redshift IGM from the full joint 𝑏-
𝑁H i distribution, for the first time taking the absorber density d𝑁/d𝑧
into account. The latter enables us to constrain the photoionization
rate ΓHI, since only the shape of the 𝑏-𝑁H i distribution is insensitive
to this parameter (see Fig.5). We also confirm that the d𝑁/d𝑧 term we
introduced is consistent with our inference based on the 𝑏-𝑁H i distri-
bution alone, and improves the performance of our inference method
(see Appendix A).

• Our new inference method successfully recovers thermal pa-
rameters of models from the Nyx simulation with small uncertain-
ties (in our example, 𝜎log𝑇0 ∼ 0.08 dex, 𝜎𝛾 ∼ 0.06, and 𝜎logΓH i ∼
0.07 dex), using a relatively small dataset with Δ𝑧 = 2.316. Fur-
thermore, these results are obtained under realistic conditions as we
forward-model the observational effects and noise from the Danforth
et al. (2016) low-𝑧 COS quasar spectra while setting the size of our
mock datasets to be the same as the observational dataset (i.e. having
the same total pathlength Δ𝑧ob). Considering all these factors, the
accuracy and sensitivity we attained in this study should be achiev-
able when our inference method is applied to real observational data,
making it a powerful tool for studying the Ly𝛼 forest.

• Our algorithm passes the inference test (see §3.5), indicating
that our approximation and emulation/interpolation are reliable. We
also demonstrate the robustness of our inference method by testing
the entire inference pipeline, including emulation and interpolation
procedures on a toy model under better-controlled conditions(see
Appendix C).

• The 𝑏-𝑁H i distribution (DELFI) emulator successfully emulates
both the 2D 𝑏-𝑁H i distributions and 1D marginalized distributions
of 𝑏 and 𝑁H i. We find that the 2D 𝑏-𝑁H i distribution shifts upward
(towards higher 𝑏 values) with increasing 𝑇0 and 𝛾, while larger 𝛾
also tilts up the low-𝑏 cut off. We explain these effects qualitatively
in section § 3.3 and show that they are consistent with previous work.

Moreover, previous work (Viel et al. 2017; Gaikwad et al. 2017;
Nasir et al. 2017) reported a discrepancy in the 1D marginalized
𝑏 distribution for low redshift IGM between the observation and
current simulations, implying the existence of additional heating or
turbulence that is stronger than expected (Bolton et al. 2021). While
these works mainly focus on 1D marginalized distributions of 𝑏 and
column density distribution function (CDDF), our new inference al-
gorithm, which successfully emulate both 1D marginalized and 2D
joint 𝑏-𝑁H i distribution, would allow us to investigate such prob-
lem using the joint distribution together with d𝑁/d𝑧 statistics. We
aim to investigate this problem by applying our inference method to
observational data in future works, which we expect would provide
an accurate measurement of the thermal state of the low-𝑧 IGM and
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possibly solve this discrepancy. In addition, we also look forward
to applying our method to other recent cosmological galaxy forma-
tion simulations like Illustris (TNG) (Genel et al. 2014; Weinberger
et al. 2017), to study the effect of feedback on the Ly𝛼 forest which
is not yet completely understood (see for e.g, Gurvich et al. 2017;
Christiansen et al. 2020; Burkhart et al. 2022).
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APPENDIX A: INFERENCE WITHOUT ABSORBER
DENSITY

In this section we provide more details about the inference without
using the absorber density. In such a case, the likelihood function
would simply be the first term of Eq.(8), i.e.

lnL =

𝑛∑︁
𝑖=1
ln 𝑃(𝑏𝑖 , 𝑁H i,𝑖). (A1)

Such likelihood function is evaluated based on our 𝑏-𝑁H i distribution
emulator solely. To make better comparison, we use the same mock
dataset and training dataset as used in §3.4. The MCMC posterior
is given in Fig.A1, where we obtain log(𝑇0K) = 3.709+0.058−0.073, 𝛾 =

1.550+0.066−0.068 and log(ΓH i/s
−1) = 13.401+0.097−0.090 from themarginalized

distributions, whereas the true parameters are: log(𝑇0K) = 3.643,
𝛾 = 1.591 and log(ΓH i/s−1) = 13.458. In comparison, the posterior
obtained using Eq.(6), which takes into account the d𝑁/d𝑧, is shown
in blue in Fig.A1. As we show here, the two inference results are
coherent, but our modified inference algorithm (green posteriors)
perform better. By implementing the d𝑁/d𝑧 feature, our modified
inference algorithm provides more accurate results in both 𝑇0 and

ΓH i, and reduce the uncertain in ΓH i significantly. Furthermore, the
inference without absorber density dose not pass the inference where
the true model falls in the 1-𝜎 (68%) interval for about 50% of the
time.
In short, by employing the absorber density we not only evi-

dently reduce the uncertainty in ΓH i but also increase the accuracy
in other parameters since the modification adds more information to
the Bayesian analysis by matching the absorber density.

APPENDIX B: INFERENCE TEST LIKELIHOOD
CALCULATION

To calculate contours of cumulative probability distributionwith high
dimensionality is challenging in computation power. In our case, the
parameter grid size is 1003 and we have to compute the probability
density function 𝑃(𝑏 , 𝑁H i | 𝑇0, 𝛾, ΓH i) many hundreds times (i.e. the
number of lines in the data set) to evaluate the likelihood function
on a single point on the parameter grid (see Eq. 6). However, due to
the structure of the 𝑏-𝑁HI PDF calculated by our DELFI emulator,
we are able to save time by computing the likelihood function on
the whole grid simultaneously, with help of vector operations imple-
mented in python, though such treatment requires reconstruction of
the likelihood function and needs extra amounts of memory. In com-
parison, our code is much faster than the MCMC prescription which
would require a very long chain to interpolate the likelihood function
on the whole grid to achieve the same precision. An example of the
distribution of the likelihood function is shown in Fig.B1.

APPENDIX C: TOY MODEL

To verify the performance of our emulators in a clean environment,
we build a toymodelwith amock data setwhich roughly simulates the
behavior of our real model. Here the toy 𝑏-𝑁H i distributions consist
of 2D Gaussian distributions parameterized by 𝑇mock and 𝛾mock,
Γmock in analogy with thermal parameters 𝑇0, 𝛾 and ΓH i. Here we
follow the parameter dependence discussed in §3.3, i.e. both 𝑇mock
and 𝛾mock sets the 𝑦-axis location of the center of the Gaussian,
while 𝛾mock also sets the tilted angle of the Gaussian, and the Γmock
controls the density of data points for eachmodel, in analogy with the
ΓH i which determines the absorber density d𝑁/d𝑧. For convenience,
we set these mock parameters to be dimensionless. We tune these
parameters in a way that the ‘𝑏-𝑁H i distribution’ of our toy model
falls roughly in the same range as the Nyx simulation, and we adopt
absorber density emulated by our d𝑁/d𝑧 emulator based on our Nyx
simulations, so that the mock d𝑁/d𝑧 follows the relationship between
thermal parameters and absorber density in our Nyx simulation. We
in total generate 7x7x7 = 343 (see Fig.C2) models spanning the
thermal grid. An example of the 𝑏-𝑁H i distribution of a toy model
is shown in Fig.C1, which is generated based on the Kernel Density
Estimation (KDE) of the mock dataset using a smoothing bandwidth
(𝜎log 𝑁mock , 𝜎log 𝑏mock ) = (0.08, 0.32). Such choice of bandwidth is
taken from Hiss et al. (2019).
For each toy model with different mock thermal parameters, we

first generate a set of 2000 ‘imaginary’ pathlengthΔ𝑧𝑖 , each of which
equals to a randomly chosen observation spectra in Danforth et al.
(2016) low-z Ly𝛼 dataset (i.e. for each model we generate a set of
2000Δ𝑧𝑖 butwithout actual spectra). For each ‘imaginary’ pathlength
Δ𝑧𝑖 we generate a set of mock ‘𝑏-𝑁’ pairs (lines), sampling from the
𝑏-𝑁H i distribution, while the number of lines 𝑁𝑖 follows a Poisson
distribution Pois(_𝑖) with Poisson rate _𝑖 = Δ𝑧𝑖 × (d𝑁/d𝑧)model,
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Figure A1.MCMC posterior (black) for the Nyx model discussed in §3.4 based on the likelihood function without the absorber density Eq.( A1). Projections of
the true model is shown as red dot. Inner(outer) contours represents the projected 2D 1(2)-sigma interval. The parameters of true model are indicated by red lines
in the marginal distributions, while the dashed black lines indicates the 16, 50, and 84 percentile values of the posterior. The true parameters are: log(𝑇0/K) =
3.643, 𝛾 = 1.591 and log(ΓH i/s−1) = -13.458. In comparison, the posterior obtained using Eq.(6), which takes into account the d𝑁 /d𝑧, is shown in blue, while
the medians of the posterior are shown in blue on the top right.

where the (d𝑁/d𝑧)model is the absorber density of that model. The
total number of lines for the model is thus 𝑁tot =

∑2000
𝑖

𝑁𝑖 . At
this point we obtain a training dataset with the same structure as
the one described in §3.1, which consists of ‘𝑏-𝑁’ pairs labeled by
thermal parameters. We then train the DELFI (𝑏-𝑁H i distribution)
and Gaussian (d𝑁/d𝑧) emulators based on the above dataset, and
test our whole inference algorithm on the toy model following the
prescription given in §3.4. An example of the inference result is
shown below, including the MCMC posteriors (Fig.C3) and the ’best
fit’ 𝑏-𝑁H i distribution recovered from mock dataset (Fig.C4). As a
comparison, the KDE based PDF of the 𝑏-𝑁H i distribution of the
model is shown in Fig.C1.
In the end, we perform inference test on our toy model for both

3D and 2D (without ΓH i) models to test the robustness of our whole
inference pipeline following the method discussed in §3.5, and the
results are given in table C1, showing that our inference algorithm
passes the inference test perfectly for an idealized model. Moreover,
the inference on toy model of 𝑏-𝑁H i distribution performs slightly

Table C1. Table of results of the inference test for the toy model

models Total 68( % ) 95 (% )

3D toy model 240 165 (68.75 ± 2.92%) 225 (93.75 ± 1.67%)
2D toy model 300 199 (66.33 ± 2.67%) 284 (94.67 ± 1.33%)

better than on Nyx simulation (see Appendix C). The reason could be
that the toy model 𝑏-𝑁H i distributions are 2D Gaussian distributions
that solely depends on the thermal parameters 𝑇mock and 𝛾mock,
which is equivalent to say that the 𝑏-𝑁H i distribution fully preserved
the thermal information of the IGM, however, in the Nyx simulation
the 𝑏-𝑁H i distributions are affected by the complex astrophysical
processes in the diffuse IGM, resulting in the loss of the thermal
information.
Combining all results shown above, we conclude that our inference

algorithm is able to recover the mock parameters with extraordinary
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Figure C1. The KDE based PDF of 𝑏-𝑁H i distribution of one of the toy
models which is a 2D Gaussian distribution parameterized by 𝑇mock, 𝛾mock
and Γmock in analogy with thermal parameters𝑇0, 𝛾 , ΓH i. The parameters of
the toy model is shown in the right bottom corner of the plot. For illustration
purposes, values of pdf are multiplied by 100 in the color bar.

accuracy under idealized condition, and our entire pipeline including
𝑏-𝑁H i distribution emulation, d𝑁/d𝑧 emulation, likelihood function
and inference pipeline is robust.

APPENDIX D: CONVERGENCE TEST

Lukić et al. (2015) demonstrated that the 𝑏 parameter of Ly𝛼 forest is
sensitive to the simulation resolution, and its distribution converges
for simulation finer than L10N512 simulation (i.e., box size 𝐿 =

10ℎ−1 Mpc and 𝑁 = 5123 dark matter particles and baryon grids
which gives the resolution of 20 h−1 kpc) while the box size itself
does not affect line parameters of the Ly𝛼 forest. Whereas above
mentioned tests are done at redshift ∼ 3, it is worthy to further
investigate impact of the boxsize and resolution of the simulation on
the Ly𝛼 forest at lower redshifts, since the nonlinear evolution at low
redshift can affect the Ly𝛼 forest.
Here, we perform a convergence test at redshift 𝑧 = 0.5 to to

check if our results are independent of the simulation box-size at low
redshift. To test the convergence we use two Nyx boxes; L20N1024
(box-size = 20 ℎ−1Mpc, 𝑁 = 10243 dark matter particles and baryon
grids i.e resolution of 20 ℎ−1 kpc), and L100N4096 (box-size 100
ℎ1− Mpc and 𝑁 = 40963 dark matter particles and baryon grids,
resolution of 24 ℎ−1 kpc). These two simulation boxes are ran fol-
lowing the same procedures given in section §2. In Fig. D1, we plot
the temperature 𝑇 , overdensity Δ, and velocity along line-of-sight
𝑣𝑙𝑜𝑠 of these two simulations. We can see the distributions of 𝑇 and
Δ are alike for both while the small box L20N1024 simulation has
much smaller line-of-sight velocity. This is expected since line-of-
sight velocities are dominated by the large scale modes that exist
only in the large box simulations. However, these large velocities are
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Figure C3. MCMC posterior for the fit of the 𝑏-𝑁H i distribution from one
of the toy models (absorbers shown as black points in Fig.C4) using the
likelihood function (Eq. 7) from DELFI and our Gaussian emulator (see
§ 3.2). Projections of the thermal grid used for generating models are shown
as blue circles. Inner(outer) black contour represents the projected 2D 1(2)-
sigma interval. The parameters of true model are indicated by red lines in
the corner plot, while the dashed black lines indicates the 16, 50, and 84
percentile value of the posterior. The true parameters are: log𝑇mock = 3.59,
𝛾mock = 1.63 and logΓmock = −13.12.

because of bulk motion and therefore do not affect the parameters of
the Ly𝛼 forest lines.
For both simulations, we follow the forward modeling and line

fitting procedures discussed in Section §2, except that here we use
a Gaussian LSF with fixed resolution R=3.5 km/s and assume a
SNR=100. Such choices of resolution and SNR assure that the
Ly𝛼 forest are fully resolved and the box-size effect are indepen-
dent of resolution and instrument. For both simulations, we use the
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Figure C4. The ‘best fit’ model 𝑏-𝑁H i distribution for the Gaussian toy
model emulated by DELFI. It is emulated based on the best-fit parameters
(median values of the marginalized MCMC posterior), which is shown in the
right bottom corner of the plot. The true parameters are: log(𝑇mock = 3.59,
𝛾mock = 1.63 and log(Γmock = -13.12. For illustration purposes, values of pdf
are multiplied by 100 in the color bar.

photoionization rate logΓH i (s−1) = −13.308. The 1D marginalized
distributions of Doppler parameter 𝑏 and column density 𝑁H i of both
simulations are presented in Fig. D2. The 𝑁H i distribution of the two
simulations are in excellent agreement with each other, with the rel-
ative difference Δ𝑃 (𝑁 ) < 10%. The 𝑏 parameter have very similar
distributions for both simulations, where the two distributions agree
with each other near the peak, with relative difference Δ𝑃 (𝑏) < 25%,
and the difference increases as log 𝑏 becomes smaller than 1.0 or
larger than 2.0, which however have very small contribution in the
total cumulative distribution. The peak values of the 𝑏 parameter
for both simulations are given in Fig. D2, where the 𝑏 distributions
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Figure D1. From left to right, the 1D marginalized distribution of the temperature𝑇 , overdensity Δ, and velocity along line-of-sight 𝑣los. The unfilled histogram
in the left most panel shows the CDF of the temperature distribution. The L100N4096 box are shown in blue, while the L20N1024 box are shown in green.
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Figure D2. The 1D marginalized 𝑁HI(left) and 𝑏(right) parameters of the two simulations. The relative differences are shown in the bottom panels. The
L100N4096 box is shown in blue, while the L20N1024 box is shown in green. The peak of 𝑏 parameters are given in the text.

give 𝑏peak = 18.3 km/s and 17.2km/s for L100N4096 and L20N1024
simulations respectively. We count the d𝑁/d𝑧 for both simulations,
L20N1024 gives d𝑁/d𝑧= 750, and L100N4096 gives d𝑁/d𝑧= 700.
The difference in d𝑁/d𝑧 is about 7%. Furthermore, we plot the 2D
𝑏-𝑁H i distribution in Fig. D3 for both simulations. These are 2D
KDE maps each generated by 20000 data points collected from the
{𝑏, 𝑁H i} dataset following the procedures described in Section §2. In
the right most panel of Fig. D3, we plot the relative difference of the
KDE map, given by Δ𝑃 = (𝑃𝐿100/𝑃𝐿20 − 1), where the 𝑃𝐿100 and
𝑃𝐿20 stand for the KDE for L100N4096 and L20N1024 simulations
respectively. To avoid division by zero,we apply a small threshold and
only include regions with 𝑃𝐿20 > 𝑃TH, where

∫ ∞
𝑃TH

𝑃d𝑃 = 75%. We

quantify the overall relative difference by calculating the root mean
square and standard deviation of the Δ𝑃 . As shown in Fig. D3, the
relative differences in the 2D 𝑏-𝑁H i distribution are small and only
about 5%. Therefore we conclude, even at 𝑧 ∼ 0.5 box-sizes do not
affect the parameters of Ly𝛼 forest significantly.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure D3. The 2D KDE maps of 𝑏-𝑁H i distributions for simulations L100N4096 (left-hand panel) and L20N1024 (middle panel). The right-hand panel shows
the relative difference Δ𝑃 = (𝑃𝐿100/𝑃𝐿20 − 1) . To avoid division by zero, we apply a threshold and only include regions integrating up to 75% for 𝑃𝐿20.
The KDE maps are made from 20000 data points for each simulation, and the RMS and standard deviation of of the relative difference map are given in the
right-hand panel. Details of the calculations are given in the text.
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