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Abstract

We present the publicly available open-source code UCLCHEMCMC, designed to estimate physical parameters of
an observed cloud of gas by combining Markov chain Monte Carlo (MCMC) sampling with chemical and radiative
transfer modeling. When given the observed values of different emission lines, UCLCHEMCMC runs a Bayesian
parameter inference, using an MCMC algorithm to sample the likelihood and produce an estimate of the posterior
probability distribution of the parameters. UCLCHEMCMC takes a full forward-modeling approach, generating
model observables from the physical parameters via chemical and radiative transfer modeling. While running
UCLCHEMCMC, the created chemical models and radiative transfer code results are stored in an SQL database,
preventing redundant model calculations in future inferences. This means that the more UCLCHEMCMC is used,
the more efficient it becomes. Using UCLCHEM and RADEX, the increase oin efficiency is nearly two orders of
magnitude, going from 5185.33± 1041.96 s for 10 walkers to take 1000 steps when the database is empty, to
68.89± 45.39 s when nearly all models requested are in the database. In order to demonstrate its usefulness, we
provide an example inference of UCLCHEMCMC to estimate the physical parameters of mock data, and perform
two inferences on the well-studied prestellar core, L1544, one of which shows that it is important to consider the
substructures of an object when determining which emission lines to use.

Unified Astronomy Thesaurus concepts: Astrochemistry (75); Interdisciplinary astronomy (804); Markov chain
Monte Carlo (1889); Bayesian statistics (1900); Posterior distribution (1926)

1. Introduction

Throughout the interstellar medium (ISM), chemical reactions
impact the environments that we observe. In turn, the physics of
a molecular cloud greatly affects the chemistry. For example, at
high densities (�105 cm−3) and low temperatures (�30K),
atoms and molecules freeze out onto dust grains, where they can
react through many pathways (for a review, see Allodi et al.
2013). On the other hand, shocks from protostellar outflows
impacting the surrounding medium can lead to desorption of
many molecular species stored on dust grains (Caselli et al.
1997). Hence, emission and absorption lines of different species
allow us to study the physics of the objects we observe.

In order to interpret the observations that are made, radiative
transfer codes can be used to calculate the expected intensities
that should be observed with a given set of physical parameters.
One example of such a code is RADEX (van der Tak et al.
2007), which focuses on nonlocal thermal equilibrium (non-
LTE) analysis. These types of codes require parameters that
describe the condition of the gas as well as the column density
of a species. These are connected by chemistry, but are treated
as free parameters in many radiative transfer models. Modeling
tools such as UCLCHEM (Holdship et al. 2017) or
GRAINOBLE (Taquet et al. 2012), among many others,
provide the fractional abundances of species, which can be
used to calculate the column density. The fractional abun-
dances can be combined with estimates of the total gas column

density of an object in order to calculate the column density of
an individual species.
Chemical models calculate fractional abundances by con-

sidering the rate of change of many species as they interact
through a network of reactions. These reaction networks usually
include a gas-phase database such as KIDA (Wakelam et al.
2012) or UMIST (McElroy et al. 2013), as well as gas-grain and
grain surface processes such as freeze out, nonthermal
desorption, and surface reactions. Additional processes such as
thermal desorption or sputtering of ice mantles are often
included, depending on the chemical code and its intended
purpose. The complexity involved in determining what should
be included in these models in order to maximize the accuracy
while minimizing computational cost of creating a model is an
aspect that requires significant expertise.
The best modeling approaches combine chemical modeling

codes with radiative transfer codes. One benefit in doing this is
that the column densities can be calculated with the chemical
model, which can then be combined with the set of physical
parameters calculated by the chemical code to use as
parameters for the radiative transfer model. There are additional
parameters for the radiative transfer codes, such as the line
width, which are not directly calculated by a chemical code, but
can be treated as free parameters or derived from observations.
The outputs from the radiative transfer code can then be
compared to spectroscopic observations (Viti 2017; Punanova
et al. 2018; Harada et al. 2019).
In order to assist in the inference of physical parameters of

an observation, we present the open-source Markov chain
Monte Carlo (MCMC) inference tool UCLCHEMCMC.3 The
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intended use of UCLCHEMCMC is to infer the probability
distribution of key physical parameters given some observed
data. The following section describes the code in detail, starting
with the forward-modeling approach and the tools it uses in
Section 2.1, followed by the workflow of the code and how it
stores models to allow future inferences to be more efficient in
Section 2.3, which in turn is followed by a brief description of
the chosen interface in Section 2.4. After this, we examine an
example case by providing UCLCHEMCMC with mock
observations, and we then perform a stress-test inference using
observations of the prestellar core L1544 in Section 3, before
we proceed to discuss caveats for the use of this tool. We
summarize in Section 4.

2. UCLCHEMCMC

UCLCHEMCMC infers physical parameter values from
molecular observations using chemical and radiative transfer
models. First, we use a chemical model, in order to obtain
abundances for a user-defined list of species for which
UCLCHEMCMC was configured. These abundances can then
be used with a radiative transfer model to calculate the
intensities for the emission lines of those species. For a single
model, this process can take several minutes to be calculated on
a standard computer.

In order to infer the physical parameter values, we use the
affine-invariant MCMC ensemble algorithm of Goodman &
Weare (2010) as implemented in the Python package emcee
(Foreman-Mackey et al. 2013). This kind of sampling initiates
walkers with a set of physical parameters, which are used to
calculate the chemical and radiative transfer models as just
described. During each step, the walkers calculate the like-
lihood value for that set of parameters using the likelihood
function given by the user (see Section 2.2 for details of the
likelihood). After calculating the likelihood of the current
values, the walkers choose a new set of values in parameter
space for which the likelihood is also evaluated. At this point,
the walker must decide whether it remains stationary for this
step, discarding the new set of values and keeping the one it
already has, or if it discards the old values and keeps the new
ones. This decision is dependent on the type of “move”
function that is chosen (for details, we refer to Foreman-
Mackey et al. 2013). The default function for UCLCHEMCMC
is a combination of a differential evolution proposal (Nelson
et al. 2013) and a snooker proposal using differential evolution
(ter Braak & Vrugt 2008). Mixing like this is recommended by
Foreman-Mackey et al. (2013) when dealing with multimodal
problems because the differential evolution proposal can allow
for large enough step sizes to cross between peaks in
probability. However, the standard version strongly recom-
mends that at least N= 2d walkers are used, where d is the
number of parameters over which to infer, and it performs
better with higher N. The snooker proposal using differential
evolution allows for an improved performance compared to the
basic version, when a smaller number of walkers is used. The
process of sampling parameter space in this way requires
thousands of models to be calculated before a meaningful
posterior is produced. The calculations of each model using
UCLCHEM and RADEX can take a minute or more, which can
result in several hours of computing time before the parameter
space is sampled well enough to produce a usable posterior.

Our aim is to improve the efficiency without decreasing the
accuracy. To do this, UCLCHEMCMC manages a database of

previously calculated models from which it can retrieve values
when required. The curated database contains the input and
output from both the chemical and radiative transfer models
and is used to perform an inference of the physical parameter
space of an observed object without repeating any calculation.
Anytime a new step is taken, it can check if this combination of
parameters has been used before, and if it has, use the old
output rather than perform a new calculation. A full flowchart
of the processes done can be found in Figure 1. In this section,
we start by briefly describing the forward-modeling method we
use that the software UCLCHEMCMC requires in order to
create the models that it stores, followed by the details of the
MCMC inference and how UCLCHEMCMC manages the
database, before detailing the interface it has.

2.1. Forward Modeling

To create the simulations that are stored in the database, we
use UCLCHEM combined with RADEX as the chemical
model and radiative transfer code, respectively. Physical
parameters describing the gas conditions are passed to
UCLCHEM to generate abundances, and then a subset of
these values is passed to RADEX in order to obtain a list of
transition lines. Beyond the outputs from UCLCHEM,
additional free parameters are required for RADEX, such as
the line width. A detailed flowchart of how the modeling tools
interact with each other can be found in Figure 2 for clarity.
The inputs for UCLCHEM and RADEX listed in the flowchart
can be changed according to the needs of the inference to be
run, but this requires changes to be made to configuration files.
By default, UCLCHEMCMC is configured to use RADEX

for the radiative transfer calculations; we use the fractional
abundance calculated by UCLCHEM to approximate the column
density by using the visual extinction calculated from the given
Rout and gas volume density. This value is used alongside the
other inputs UCLCHEM was given, which RADEX needs as
well, such as gas volume density and kinetic temperature, in
order to run the radiative transfer model to produce observables
that can be compared to the data. The observable values
produced by RADEX are the radiation peak temperature (TR)
in K, which is comparable to the measured line intensity; the
integrated surface brightness in K km s−1; and the isotopic flux
emitted in all directions in -ergs s cm2 1( ) (van der Tak et al.
2007). Any of these can be sent to the likelihood function
depending on the user’s data.
Both UCLCHEM and RADEX can be replaced because

UCLCHEMCMC is only designed to perform an MCMC
inference and manage an SQL database. As long as inputs and
outputs are carefully tailored to a given project, the code could
be simply modified to be used with any chemical modeling or
radiative transfer codes. To begin, we use a limited list of
chemical species whose collisional data are available in the
Leiden Atomic and Molecular Database (LAMDA; Schöier
et al. 2005), as RADEX requires such data.

2.2. MCMC Inference

For the MCMC inference, UCLCHEMCMC uses the Python
package emcee (Foreman-Mackey et al. 2013) in order to
calculate the posterior probability density function (PDF) of the
physical parameters for the desired observation. We assume the
errors on the data are Gaussian and that our model provides
the true intensities for any given parameters. The initially

2
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Figure 1. Flowchart of the various processes that happen in UCLCHEMCMC. Green ovals indicate parts with which the user interfaces. Diamonds indicate the parts
of UCLCHEMCMC in which the next step is dependent on options specified by the user. The SQL database is represented with a cylinder and has been labeled this
way for clarity. Arrows to and from the database represent a query of the SQL that then returns the models that match the query.

Figure 2. Small flowchart showing the parameters that enter UCLCHEM and the parameters that are taken from UCLCHEM and given to RADEX.
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configured likelihood of observing our data given some
parameters that were used for the example cases in Section 3
is therefore
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where di represents the observed input, θi is the output from
RADEX, using physical parameters from UCLCHEM, and sdi

is the error in the observed input, each for line i. This is then
combined with a prior on the physical parameters, P(θ) and the
Bayesian evidence, P(d), in the Bayes theorem to derive the full
PDF in the form of
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By default, the prior is a uniform top-hat function in grid space
on the ranges designated by the end user, but it can be altered
by end users. As the prior is applied in grid space, it will be a
log uniform prior if the physical parameter has a log-spaced
grid applied to it. The evidence is treated as a normalization
factor, and the values that are used for our example application
on a prestellar core are discussed in Section 3. This approach to
parameter inference has been used before (Holdship et al.
2019), and UCLCHEMCMC makes such inference problems
simple.

2.3. Database

The core of UCLCHEMCMC is managing a database of
models and running an MCMC inference that is supplemented
by this database. After giving the inputs, which are detailed in
Section 2.4, UCLCHEMCMC initiates a string of operations in
order to start calculating the posterior PDF of the physical
parameter values of an object using an MCMC sampler. A
detailed flowchart of the processes can be seen in Figure 1. The
code starts by initiating the walkers that will be used for the
MCMC inference. If informed starting positions were
requested, the SQL database will be searched for models that
are similar to the given observations based on a simple top-hat
function with a configurable distance on either side of the
observed intensities. By searching and retrieving the para-
meters of models that have intensities similar to the given
observation, we can construct a function by calculating the
mean and standard deviation for each parameter to produce a
normal distribution from which we can sample starting
positions. Each parameter will have its own distribution from
which the starting positions for the MCMC walkers are
sampled. If random starting positions are chosen, then a
uniform distribution of the parameter space is sampled in order
to create the starting positions for each walker. Upon creating
the starting positions, we then invoke the MCMC inference that
will need to be able to access the SQL database, as described in
Section 2.3.

For the sake of storing the inputs and outputs from
UCLCHEM and RADEX, we use an SQL database using the
SQLite implementation. This is chosen as it is a light-weight,
widely used, and easy to implement solution for storing large
volumes of data in such a way that they can easily be queried.
The main advantage of having access to an SQL search method
is that it can quickly check if the combination of parameters to
be calculated has been previously stored. If it has, then the

program goes directly to evaluating the likelihood using
Equation (1), which takes an almost negligible amount of time
to perform. If the combination of parameters is not in the
database, then a model can be created and stored for that set of
parameters. This means that the calculation speed of the
MCMC inference is dependent not only on the number of
walkers and desired steps, but also on how many models are
stored in the database.
Based on this, UCLCHEMCMC will become faster as more

inferences are performed. The calculation of a single model can
take around one minute when using UCLCHEM and RADEX.
While this can be parallelized, it is still a limiting factor when
thousands of models have to be calculated to obtain a
reasonable estimation of a PDF. In contrast, the action of
submitting a query to an SQL database and evaluating the
probability of the stored models matching the observations
takes less than a second. Improving efficiency in this way has
the advantage over techniques such as emulation (de Mijolla
et al. 2019) because no approximation is made. To quantify the
improvement, we measure the time it took 10 walkers to
perform 100 steps at three different times: (i) when no database
is being used, (ii) when about half of the models that the
inference wishes to use are retrieved from the database, and (iii)
when nearly all models used by the inference are retrieved from
the database. We use this type of measurement for the
performance because the minimum time, the time when every
model can be retrieved from the database, should be identical
regardless of the chemical and radiative transfer model that is
used. For the three cases, the mean time and standard deviation
are (i) 5185.33 s± 1041.96 s, (ii) 4834.67 s± 843.24 s, and
(iii) 68.89 s± 45.39 s. We emphasize that the times found for
cases (i) and (ii) are strongly dependent on the chemical and
radiative transfer models that are used, while case (iii) should
only be weakly dependent on which models are used, with the
dependence disappearing if all models the inference wishes to
use are within the database.
The database can be accessed both by the code and by a user

who wishes to use the models stored within it for other
purposes. At the time of the first release, we store all inputs that
are given to the chemical model when it is run, as well as all
outputs that are produced by it. This can include the output of
intermediate time steps that UCLCHEMCMC can be set up to
store if requested. UCLCHEMCMC then takes the given line
width, either as a free parameter of the MCMC or as a constant
value given by the user, as well as the kinetic temperature,
volume density of H2, and the fractional abundances of the
atomic or molecular species from the chemical code in order to
run the radiative transfer code. The outputs from this code are
then stored in the SQL database. From here, the emission lines
given by the radiative transfer code can be compared to the
observations to evaluate the likelihood, as discussed
previously.

2.4. Interface

The user interface (UI) for UCLCHEMCMC is browser
based, in order to give a simple usable interface that should be
compatible with most operating systems. A further advantage
of this is that an online, publicly available version can be more
easily created in the future, such that end users will not need to
change the workflow.
The inputs that are requested from a user of UCL-

CHEMCMC are separated onto three pages within the UI, a
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brief summary of each page can be found in Table 1. The first
page requests the ranges of the physical parameters over which
the inference should be performed. At the time of the first
release, the configured parameters are (i) the volume density of
the gas in cm−3 for the point at which the model should stop
collapsing, (ii) the kinetic temperature of the gas in K, (iii) the
cosmic ray (CR) ionization rate in units of the galactic CR
ionization rate (ζ0), (iv) the UV radiation field strength in units
of Habing, (v) the radius of the assumed spherical cloud being
modeled in parsec (Rout), and (vi) the line width to be used with
RADEX in units of km s−1. Upon supplying the desired ranges
and the parameters that should be kept constant, the next set of
inputs is the observations. Here, a list of species can be selected
to be added to the current inference. Once a species has been
selected, the compatible lines will be shown and can be
selected, after which it is possible to add the values of the
observations, errors, and the observed quantity. As of the first

release, UCLCHEMCMC is configured to allow for the units
that RADEX has as outputs, detailed in Section 2.1.
The penultimate page contains the options for the MCMC

inference. The options are the MCMC details, walker starting
positions, and grid type. There are three options for the MCMC

Table 1
Inputs and Options per Page

Page Input/Option Description

Parameter input

Page1( )
Final volume density [cm3] Hydrogen volume density at which the model stops collapsing

Kinetic temperature [K] Kinetic temperature of the gas

CR ionization rate
´ - -

Multiplicative factor of the galactic rate of ionisation caused

by CR 1.3 10 s17 1( )

UV radiation field strength Strength of the external UV radiation field strength acting on

the cloud

Rout [pc] Radius of the modeled cloud

Line width [km s−1] RADEX line width of observation

Observation input

Page2( )
Species list List of the species that have been configured

Transition list List of transition lines thahave been configured for a given

species

Observation inputs Space to fill in the observations, errors, and

choice of units for the observation

Options

Page3( )
Grid type Choice on whether to use coarse or fine grid

for the parameters being inferred

Informed starting position Choice on whether to use informed starting

positions or random starting positions

Session name Back end session name to allow the session to

be reloaded later

Number of walkers Number of walkers the MCMC should use

It is recommended by the package emcee to use twice as

many walkers as parameters being inferred

(
)

Number of steps choice of the number of steps an inference

should take before stopping and loading evaluation corner

plots

Inference

Page4( )
Start inference to start the MCMC inference or continue it

if a previous session is loaded

MCMC corner plot MCMC corner plots of previous steps, if

previous steps exist, or the starting positions if a new inference

is being started

Note. Options of inputs and outputs per page for UCLCHEMCMC.

Table 2
Parameter Ranges

Parameter [Units] Lower Bound Upper Bound

Volume density [cm−3] 5.0 × 104 1.0 × 107

Kinetic temperature [K] 5 20
UV radiation field [Habing] 0.1 10
Rout [pc] 0.0001 0.1
CR ionization rate [1.3 × 10−17s−1] 0.1 10

Note. Physical parameter range the inference is allowed to explore for both the
mock and observational inference.
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algorithm that an end user can easily change. They are (i) the
number of walkers that the inference should have, (ii) the number
of steps the inference should perform before saving, and (iii) the
name of the session. Naming the session allows for an inference to
be started again at a later time without having to reenter all the
previous parameters and observations. This was added in case the
code crashes, or if after evaluating the results it was determined
that the MCMC walkers could benefit from more steps to ensure

that the walkers converged. The starting positions of the MCMC
walkers can either be randomly determined or set to inform
starting positions, depending on the preference of the end users.
The details of how informed starting positions are calculated are
given in Section 2.3. The grid type option allows an end user to
choose the physical parameter space grid they wish to use for the
inference they are going to run, and the options are intended to be
created and managed by the end user. By default, a coarse and a

Table 3
Mock Data Used for the Evaluation

Species Transition Frequency (GHz) Line Width (km s−1) RADEX Value Mock Data (TMB) Units

CS 2, 0–1, 0 97.98095 1.0 2790.9 2412.4 ± 558.2 mK
SO 2, 2–1, 1 86.09395 1.0 1918.6 2553.0 ± 383.7 mK

2, 3–1, 2 99.29987 1.0 450.3 367.6 ± 90.0 mK
3, 1–2, 1 109.2522 1.0 185.5 222.3 ± 37.1 mK

o-H2CS 31,3 − 21,2 101.4778 1.0 130.6 151.6 ± 26.1 mK
31,2 − 21,1 104.6170 1.0 85.5 83.8 ± 17 mK

Note. Values of the mock data created for evaluation of UCLCHEMCMC using UCLCHEM and RADEX. The RADEX value column contains the value given by
RADEX, while the mock data column contains the same values with added Gaussian noise and the corresponding error values.

Figure 3. Posterior distribution function of the evaluation run performed on mock data. The histograms represent the PDF of volume density, kinetic temperature, UV
field factor, Rout and the CR ionization rate factor. The color bar shows the value ranges of the joint distribution functions. The dashed white lines in the joint
distributions and the dashed black lines in the PDFs represent the true value used to create the mock data.
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fine grid are provided to give an example of how they are meant
to be created. The discretization of the parameter space to grids
was implemented because chemical models with physical
parameters that differ only to a small degree would produce
nearly indistinguishable outputs, but would be considered separate
models by the code, which retrieves and stores models in the SQL
database. This would lead to models with minor differences in

parameters space being calculated despite producing indistin-
guishable outputs.

3. Application

In order to give an example of UCLCHEMCMC, we run
three inferences. One inference is on mock data that were

Figure 4. The radiation temperature, TR, calculated by RADEX against the energy of the upper state for the mock data and errors given to UCLCHEMCMC are shown
in black, and the data created when using the most likely parameter values from the 1D distributions from the inference of the mock data are plotted in blue. Red
represents the peak in the joint distribution of the CR ionization rate and UV radiation field while keeping the remaining parameters as they are for the previous model,
while green and fuchsia represent two additional points with values for the CR ionization rate and UV radiation field values in the elongated distribution of likely
values to show why the inference still gave some importance to these values.

Table 4
Observations Used for the Evaluation

Species Transition Frequency (GHz) Line Width (km s−1) Observation (Tmb) Units

CS 2, 0–1, 0 97.98095 0.64 ± 0.07 1226.5 ± 0.1 mK
SO 2, 2–1, 1 86.09395 0.42 ± 0.01 223.7 ± 5.9 mK

2, 3–1, 2 99.29987 0.45 ± 0.01 1422.5 ± 40.6 mK
3, 1–2, 1 109.2522 0.39 ± 0.01 176.1 ± 5.2 mK

HCS+ 2–1 85.34789 0.43 ± 0.01 246.8 ± 6.1 mK
OCS 6–5 72.97678 0.36 ± 0.01 106.3 ± 6.8 mK

7–6 85.13910 0.38 ± 0.01 87.4 ± 7.2 mK
8–7 97.30121 0.37 ± 0.01 70.5 ± 5.4 mK
9–8 109.4631 0.34 ± 0.04 49.4 ± 6.4 mK

o-H2CS 31,3 − 21,2 101.4778 0.44 ± 0.01 558.4 ± 11.7 mK
31,2 − 21,1 104.6170 0.44 ± 0.01 514.3 ± 12.0 mK

p-H2CS 30,3 − 20,2 103.0405 0.45 ± 0.02 536.9 ± 16.5 mK

Note. Observations collected from Vastel et al. (2014) and Vastel et al. (2018). o- and p- represent the ortho- and para-version of species, respectively.
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created by using UCLCHEM and RADEX because these two
codes are used in UCLCHEMCMC to perform the inference.
The second and third inference are for the prestellar core L1544
(Caselli et al. 2002), once considering the emission from only
one molecular species, and once with all sulfur-bearing species.
The data we used for L1544 can be found in Table 4 and
were used to infer the kinetic temperature, volume density, CR
ionization rate, and Rout. This object is a very well-studied
prestellar core located at R. A.= 05h01m11s.0, decl.= 25°07′00″
(Caselli et al. 2002; Vastel et al. 2014; Punanova et al. 2018 and
Vastel et al. 2018).

We use the same input parameter space for all inferences.
The exception is the UV radiation field, which we hold
constant for the inferences on L1544 as we expect the visual
extinction to be sufficiently high for changes in the UV to be
negligible. The ranges for the physical parameters can be found
in Table 2.

3.1. Mock Data Inference

First, we verify that UCLCHEMCMC performs as intended
by creating mock data using the same modeling codes that

UCLCHEMCMC uses to perform an inference. We add
Gaussian noise to the data with a standard deviation of 5%
for each emission line because this would make the mock data
errors equal to but slightly higher than the average of the
uncertainties on the L1544 observational data. We do this
because running an inference where the true values are known
and the data are model generated allows us to test whether
UCLCHEMCMC performs as intended when the models are
appropriate for to the data. As this is just an example case and
many different combinations of chemicals and transition lines
could be picked, we choose a subset of emission lines from the
observations we use for the inferences on L1544. In order to
create the mock data, we randomly chose physical parameters
that resulted in all emission lines having an observable flux.
The parameters we chose are as follows: a final volume density
1.0× 105 [cm−3], a kinetic gas temperature of 13 [K], a
radiation field of 3 Habing, a cloud radius of 0.08 pc, and a CR
ionization rate value of 2.6× 1017 s−1. The emission lines and
corresponding mock data values are found in Table 3, which
contains the exact values of each line given by UCLCHEM and
RADEX prior to adding noise, as well as the data with
Gaussian noise added and the corresponding uncertainties.

Figure 5. Posterior distribution function of the evaluation run performed on the emission lines from OCS only. The histograms represent the PDF of the volume
density, kinetic temperature, Rout, and the CR ionization rate factor, the color bar shows the value ranges of the joint distribution functions, and the dashed red line in
the PDF is the value with the highest probability.
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We run the inference, monitoring the chain of steps that each
walker has taken. The likelihood of accepting a new set of
parameters decreases as a function of the difference between
the likelihood of the current model and the new model. This
means that over time, the parameter space that is being
traversed by all walkers will decrease as the walkers find areas
of parameter space where the set of parameters produces
models with a higher likelihood. Once the walkers stop
reducing this parameter space, we stop the inference. Using
these chains from the inference, we then create the posterior,
shown in Figure 3. The distributions contain the true values,
which indicates that UCLCHEMCMC works as expected. In
order to validate this, we plot all mock observation lines against
the upper state energy, seen in Figure 4, and do the same for the
model values that are produced from UCLCHEMCMCʼs
parameters with the highest likelihoods in the 1D distributions.
When we do this, we see that all lines but one lie within the
uncertainties of the mock data.

We note that in the posteriors, there is a considerable
degeneracy between the UV field and the CR ionization rates.
Additionally, there is a clear peak in the joint distribution of the
CR ionization rate and UV radiation field. This peak is at a CR
ionization rate equal to the galactic value (CR= 1) and at a UV
radiation field strength of 2 Habing, but this peak does not have
the same value of the CR ionization rate as the parameter set

used to generate Figure 4 because this takes the most likely
value from the 1D marginalized distributions rather than the
overall most likely parameter set. To see how the emission
lines change along this extended distribution and how the
observations look at this peak in the joint distribution, we
include the emission lines of this peak and two additional
combinations of CR ionization rate and UV radiation field
strength in Figure 4, while holding all other parameters
constant. In looking at how the antenna temperature of the
emission lines compare between the models and the mock data,
it becomes quite clear that the values of the observations in this
distribution all show significant agreement with the mock data,
but that the peak in the CR ionization rate and UV radiation
field strength distribution produces observations that fit better
than the model created using the most likely parameter values
in the 1D distribution.

3.2. Inferring the Physical Parameters of the Prestellar Core
L1544

With verification of how well UCLCHEMCMC can perform
when using mock data, we now use real observations in order
to run another inference. The observations we use are from
Vastel et al. (2018), who present observations for two distinct
regions in the L1544 object. One region is a methanol shell that
is around 8000 au (Vastel et al. 2014) from the core. In this

Figure 6. TR over TR of OCS 6-5 against the upper state energy for emission lines of OCS found in Table 4, compared to the data of the best-fit model after running an
inference using only the OCS lines. All of the lines fit the observed line ratios quite well. Black represents the real data with error bars, and blue shows the best-fit
model.
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shell, UV photons can desorb methanol from the dust. The
other region is a dust peak situated at the center of the object.
We perform two inferences on the dust peak as there is a
collection of sulfur-bearing species, where we start by using
only the emission lines of OCS. In this first inference, we start
with very broad priors and do not include additional
information on the priors to show how UCLCHEMCMC can
perform. In an inference that is not designed to showcase the
performance, any prior knowledge would be used to inform the
ranges of the priors. We then follow this with an inference
using all sulfur-bearing species to serve as a test to inform us of
how well of an inference can be performed when UCL-
CHEMCMC is given unfavorable conditions. More chemical
species and emission lines are potentially unfavorable condi-
tions because UCLCHEMCMC may struggle to find a single
set of parameters that fits all lines at once. For a reference for
the values we expect the inference to estimate, we turn to
Vastel et al. (2018), who model the kinetic temperature and the
volume density of the dust peak to be around 7 K and
2× 106 cm−3, respectively.

As this is an example case of how to use UCLCHEMCMC,
we leave a large physical parameter range for the volume
density, Rout, and CR ionization rate value. We limit the kinetic
temperature to be between 5 and 30 K as at this temperature, a
single degree can make a difference to the diffusion and
desorption rates of various species, impacting the fractional
abundances of different species. The only two exceptions we
make on limiting parameters is that we left the UV radiation
field strength at the default value for UCLCHEM, as it is not a
parameter of interest for the dust peak of a prestellar core, and
we set the line width to the error-weighted mean of 0.37 km s−1

for the OCS-only inference.

We follow this by using all of the chemical lines found in
Table 4 for a second inference of the dust peak. We
intentionally use all of these lines as a stress test. For the
second inference, we make the assumption that these species
trace the same substructure, which we emphasize in the
inference by setting all line widths to 1.0 km s−1 in
UCLCHEMCMC. This could lead to an inference that is
unable to fit the observations as UCLCHEMCMC could
struggle to find one set of parameters that leads to emission
lines that match the observations.
The posterior of the limited inference can be found in

Figure 5. The distribution has a very broad range in volume
density and in CR ionization rate value and a strong peak in
kinetic temperature and a peaked area in Rout. This suggests
that there is a wide range of possible volume density and CR
ionization rate values that can describe the observa-
tions well.
In order to choose a good fit, we use previously modeled

values of the total column density along with the fractional
abundance of hydrogen to constrain the gas volume density.
Caselli et al. (2002) modeled a total column density of
4.4× 1022 [cm−2], which we combine with the peak value of
the Rout posterior to obtain a likely volume density of
106 [cm−3].
To validate that this is a good fit, we plot the emission line

ratios with respect to the most intense line OCS 6-5 against
the upper state energy to get Figure 6 to create a diagram
analogous to a rotation diagram. This diagram shows that the
modeled line ratios are within the estimated error bars of the
observed line ratios, which supports the accuracy of the
inference performed. A useful next step would be to remove
the volume density as a free parameter, and use the measured
column density to calculate it from Rout during another round

Figure 7. log(χ2) grid for the kinetic temperature and volume density using the column density from Vastel et al. (2018) for the six species that are used for the
MCMC inference. The lower value of the log(χ2) is fixed at 0 to allow a better comparison between each species while allowing a flexible upper end, as the large
ranges of log(χ2) values make it difficult to create an informative figure with a single range of values.
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of inference, with a finer grid in parameter space. Since this
is just an example case, we will instead move on to the stress
test of UCLCHEMCMC.

Prior to running this test, we calculate a χ2
fit of the volume

density and kinetic temperature using only the radiative transfer
code RADEX to serve as a baseline comparison to the
performance of UCLCHEMCMC on the observed data, as this
is a more common approach. To perform this fit, we take the
column densities determined by Vastel et al. (2018) through
radiative transfer modeling for each species in Table 4, and run
RADEX on a grid of kinetic temperatures and volume
densities. The results of this fit can be seen in Figure 7. The
χ2

fit is unable to find one set of parameters that agree with
each other for all lines. It also accepts a very large area of
parameter space as potential fits to each individual species,
severely limiting how helpful this fit is to any modeling effort.
In addition, this method requires that we either provide a
column density estimate or that we include a grid of column
densities over which to calculate, which would significantly
increase the calculation time as it would be adding an
additional dimension to the parameter space. We note,
however, that the speed at which these calculations were
performed is at least three orders of magnitude lower than a
traditional MCMC inference that does not use an SQL
database.

We perform the stress-test inference with the observational
data by using all species and emission lines found in Table 4.
As is the case with the χ2

fit, the stress-test inference is unable
to match all lines at once. The area onto which the MCMC
inference converges is a delta-like distribution on a single set of
parameters that we then use to model the emission lines. We
again plot the emission line ratios against the upper state
energy, this time with respect to the SO (2, 3)–(1, 2) line as it is
the strongest line, resulting in Figure 8. In this figure it is clear
that while one or two of the line ratios fit the observed ratios,
the vast majority of lines from the best-fit model do not match
the observations at all. This failure is expected as UCL-
CHEMCMC assumes that a simple homogeneous model
should fit the observations. As more species and transitions
are added, the assumption of a simple homogeneous model will
be broken. We include this example of a failed fit to assist users
of UCLCHEMCMC in understanding some of the limitations
and more importantly, as a cautionary note when trying to fit
multiple molecular transitions with one single gas component.
In addition, it is important to analyze the best-fit models and
not just assume that the posterior must be a good fit.

4. Summary

The publicly available MCMC inference and SQL database
managing tool UCLCHEMCMC is capable of inferring

Figure 8. TR against the energy of the upper state for all emission lines in Table 4, compared to the data of the best-fit model after running the stress-test inference.
While some lines almost fit their observed counterparts, it is clear that UCLCHEMCMC is unable to match all lines at once, which caused it to settle for a set of
parameters that allow each line to at least get somewhat close to the observations. Black represents the real data with error bars, and blue shows the best-fit model.
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physical parameters of astrochemical observations. This paper
presents the details necessary to understand the use, strengths,
and shortcomings of this tool. The management of the
database, using SQLite, increases the efficiency of parameter
inference as the tool is used. Using the MCMC inference
package emcee as well as decoupling the chemical code and
radiative transfer code from the inference also makes
UCLCHEMCMC capable of handling any other chemical
modeling or radiative transfer modeling tool.

We showed the outputs of UCLCHEMCMC when inferring
the physical parameters of mock data created using UCL-
CHEM and RADEX, detailing just how well this recovered the
physical parameters of the mock data. The use of the SQL
database in the inference has shown that when most of the
models that the inference searches for are in the database,
UCLCHEMCMC goes from taking 5185.33± 1041.96 s for 10
walkers to take 1000 steps to needing 68.89± 45.39 s, which is
a significant decrease in computational time. When inferring
the physical parameters of actual observations, we detailed
some of the issues that must be taken into consideration when
running this tool. Users should be aware that if they keep the
physical parameter ranges too small, then the inference may not
be able to find matching parameters, resulting in nonphysical
answers. We intend to add a fast prior predictive checking
functionality to UCLCHEMCMC. Additionally, giving too
many emission lines without taking into consideration that they
may arise from separate structures or that the combination of
emission lines requires physical parameters outside of the
inference range can cause UCLCHEMCMC to become unable
to find physical parameters that match all lines. Because of this,
we advise caution about using a long list of emission lines
without first studying whether these lines come from regions
within the object that have similar physical parameters, as this
tool will assume that they all come from one structure with one
set of physical parameters. When taking these factors into
consideration, UCLCHEMCMC can be a great asset in
inferring physical parameter ranges in which to start modeling
astrochemical environments.

This project has received funding from the European
Unionʼs Horizon 2020 research and innovation program under
the Marie Skłodowska-Curie grant agreement No 811312 for
the project “Astro-Chemical Origins” (ACO) as well as from
the European Research Council (ERC) under the European
Unionʼs Horizon 2020 research and innovation program
MOPPEX 833460.

ORCID iDs

Marcus Keil https://orcid.org/0000-0002-4948-7468
Serena Viti https://orcid.org/0000-0001-8504-8844
Jonathan Holdship https://orcid.org/0000-0003-4025-1552

References

Allodi, M., Baragiola, R., Baratta, G., et al. 2013, SSRv, 180, 101
Caselli, P., Hartquist, T. W., & Havnes, O. 1997, A&A, 322, 296
Caselli, P., Walmsley, C. M., Zucconi, A., et al. 2002, ApJ, 565, 331
de Mijolla, D., Viti, S., Holdship, J., Manolopoulou, I., & Yates, J. 2019,

A&A, 630, A117
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP,

125, 306
Goodman, J., & Weare, J. 2010, CAMCS, 5, 65
Harada, N., Nishimura, Y., Watanabe, Y., et al. 2019, ApJ, 871, 238
Holdship, J., Viti, S., Codella, C., et al. 2019, ApJ, 880, 138
Holdship, J., Viti, S., Jiménez-Serra, I., Makrymallis, A., & Priestley, F. 2017,

AJ, 154, 38
McElroy, D., Walsh, C., Markwick, A. J., et al. 2013, A&A, 550, A36
Nelson, B., Ford, E. B., & Payne, M. J. 2013, ApJS, 210, 11
Punanova, A., Caselli, P., Feng, S., et al. 2018, ApJ, 855, 112
Schöier, van der Tak, F. F. S., van Dishoeck, E. F., & Black, J. H. 2005, A&A,

432, 369
Taquet, V., Ceccarelli, C., & Kahane, C. 2012, A&A, 538, A42
ter Braak, C., & Vrugt, J. 2008, Stat. Comp., 18, 435
van der Tak, F. F. S., Black, J. H., Schöier, F. L., Jansen, D. J., &

van Dishoeck, E. F. 2007, A&A, 468, 627
Vastel, C., Ceccarelli, C., Lefloch, B., & Bachiller, R. 2014, ApJL, 795, L2
Vastel, C., Quénard, D., Le Gal, R., et al. 2018, MNRAS, 478, 5514
Viti, S. 2017, A&A, 607, A118
Wakelam, V., Herbst, E., Loison, J.-C., et al. 2012, ApJS, 199, 21

12

The Astrophysical Journal, 927:203 (12pp), 2022 March 10 Keil, Viti, & Holdship

https://orcid.org/0000-0002-4948-7468
https://orcid.org/0000-0002-4948-7468
https://orcid.org/0000-0002-4948-7468
https://orcid.org/0000-0002-4948-7468
https://orcid.org/0000-0002-4948-7468
https://orcid.org/0000-0002-4948-7468
https://orcid.org/0000-0002-4948-7468
https://orcid.org/0000-0002-4948-7468
https://orcid.org/0000-0001-8504-8844
https://orcid.org/0000-0001-8504-8844
https://orcid.org/0000-0001-8504-8844
https://orcid.org/0000-0001-8504-8844
https://orcid.org/0000-0001-8504-8844
https://orcid.org/0000-0001-8504-8844
https://orcid.org/0000-0001-8504-8844
https://orcid.org/0000-0001-8504-8844
https://orcid.org/0000-0003-4025-1552
https://orcid.org/0000-0003-4025-1552
https://orcid.org/0000-0003-4025-1552
https://orcid.org/0000-0003-4025-1552
https://orcid.org/0000-0003-4025-1552
https://orcid.org/0000-0003-4025-1552
https://orcid.org/0000-0003-4025-1552
https://orcid.org/0000-0003-4025-1552
https://doi.org/10.1007/s11214-013-0020-8
https://ui.adsabs.harvard.edu/abs/2013SSRv..180..101A/abstract
https://ui.adsabs.harvard.edu/abs/1997A&A...322..296C/abstract
https://doi.org/10.1086/324301
https://ui.adsabs.harvard.edu/abs/2002ApJ...565..331C/abstract
https://doi.org/10.1051/0004-6361/201935973
https://ui.adsabs.harvard.edu/abs/2019A&A...630A.117D/abstract
https://doi.org/10.1086/670067
https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F/abstract
https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F/abstract
https://doi.org/10.2140/camcos.2010.5.65
https://ui.adsabs.harvard.edu/abs/2010CAMCS...5...65G/abstract
https://doi.org/10.3847/1538-4357/aaf72a
https://ui.adsabs.harvard.edu/abs/2019ApJ...871..238H/abstract
https://doi.org/10.3847/1538-4357/ab1f8f
https://ui.adsabs.harvard.edu/abs/2019ApJ...880..138H/abstract
https://doi.org/10.3847/1538-3881/aa773f
https://ui.adsabs.harvard.edu/abs/2017AJ....154...38H/abstract
https://doi.org/10.1051/0004-6361/201220465
https://ui.adsabs.harvard.edu/abs/2013A&A...550A..36M/abstract
https://doi.org/10.1088/0067-0049/210/1/11
https://ui.adsabs.harvard.edu/abs/2014ApJS..210...11N/abstract
https://doi.org/10.3847/1538-4357/aaad09
https://ui.adsabs.harvard.edu/abs/2018ApJ...855..112P/abstract
https://doi.org/10.1051/0004-6361:20041729
https://ui.adsabs.harvard.edu/abs/2005A&A...432..369S/abstract
https://ui.adsabs.harvard.edu/abs/2005A&A...432..369S/abstract
https://doi.org/10.1051/0004-6361/201117802
https://ui.adsabs.harvard.edu/abs/2012A&A...538A..42T/abstract
https://doi.org/10.1007/s11222-008-9104-9
https://doi.org/10.1051/0004-6361:20066820
https://ui.adsabs.harvard.edu/abs/2007A&A...468..627V/abstract
https://doi.org/10.1088/2041-8205/795/1/L2
https://ui.adsabs.harvard.edu/abs/2014ApJ...795L...2V/abstract
https://doi.org/10.1093/mnras/sty1336
https://ui.adsabs.harvard.edu/abs/2018MNRAS.478.5514V/abstract
https://doi.org/10.1051/0004-6361/201628877
https://ui.adsabs.harvard.edu/abs/2017A&A...607A.118V/abstract
https://doi.org/10.1088/0067-0049/199/1/21
https://ui.adsabs.harvard.edu/abs/2012ApJS..199...21W/abstract

	1. Introduction
	2. UCLCHEMCMC
	2.1. Forward Modeling
	2.2. MCMC Inference
	2.3. Database
	2.4. Interface

	3. Application
	3.1. Mock Data Inference
	3.2. Inferring the Physical Parameters of the Prestellar Core L1544

	4. Summary
	References



