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ABSTRACT

We present a novel method for estimating galaxy physical properties from spectral energy distributions (SEDs) as an alternative
to template fitting techniques and based on self-organizing maps (SOMs) to learn the high-dimensional manifold of a photometric
galaxy catalog. The method has previously been tested with hydrodynamical simulations in Davidzon et al. (2019, MNRAS, 489,
4817), however, here it is applied to real data for the first time. It is crucial for its implementation to build the SOM with a high-
quality panchromatic data set, thus we selected “COSMOS2020” galaxy catalog for this purpose. After the training and calibration
steps with COSMOS2020, other galaxies can be processed through SOMs to obtain an estimate of their stellar mass and star formation
rate (SFR). Both quantities resulted in a good agreement with independent measurements derived from more extended photometric
baseline and, in addition, their combination (i.e., the SFR vs. stellar mass diagram) shows a main sequence of star-forming galaxies
that is consistent with the findings of previous studies. We discuss the advantages of this method compared to traditional SED fitting,
highlighting the impact of replacing the usual synthetic templates with a collection of empirical SEDs built by the SOM in a “data-
driven” way. Such an approach also allows, even for extremely large data sets, for an efficient visual inspection to identify photometric
errors or peculiar galaxy types. While also considering the computational speed of this new estimator, we argue that it will play a
valuable role in the analysis of oncoming large-area surveys such as Euclid of the Legacy Survey of Space and Time at the Vera C.
Rubin Telescope.

Key words. galaxies: fundamental parameters – galaxies: star formation – galaxies: stellar content – methods: observational –
astronomical databases: miscellaneous

1. Introduction

Redshift (z), stellar mass (M), and star formation rate (SFR) are
fundamental parameters in studies of galaxy evolution. Measur-
ing these quantities has been instrumental to the discovery of
the main sequence of star-forming galaxies (Brinchmann et al.
2004; Noeske et al. 2007; Elbaz et al. 2007; Daddi et al. 2007),
namely, a tight correlation between M and SFR pointing to a
“steady” mechanism of gas-to-stars conversion at work in sys-
tems that have gone through different evolutionary paths. Other
examples include the SFR and stellar mass functions, two demo-
graphics that can be computed for galaxies in different redshift
bins and are commonly used to either calibrate or validate cos-

mological simulations (e.g., Henriques et al. 2013; Furlong et al.
2015; Katsianis et al. 2017; Davé et al. 2017).

In the absence of spectroscopic data, which demand more
telescope time than broadband photometry, these three quanti-
ties can be derived by fitting galaxy templates to the observed
spectral energy distribution (SED). Those templates are built
via stellar population synthesis models (e.g., Bruzual & Charlot
2003; Maraston 2005; Conroy et al. 2009), assuming a grid of
ages and metallicity values, different star formation histories
(SFHs), and one or more options for dust attenuation (for a
review, see Conroy 2013). With respect to redshift and stellar
mass, SED fitting is a standard practice that produces robust
results even when the input photometry is limited to a few bands
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in the optical and near-infrared (NIR) regime (for a review, see
Salvato et al. 2019). The method is sub-optimal for constraining
SFR, unless far-infrared (FIR) data are included (Pannella et al.
2009; Buat et al. 2010; Riccio et al. 2021). However, sky cover-
age and depth of FIR ancillary data should match those of sur-
veys at shorter wavelengths, a condition that is satisfied in only
a few extragalactic fields.

Another way to estimate the SFR is to rely on machine
learning techniques (ML). For example, a galaxy catalog can
be processed through a neural network previously trained with
a sample of objects whose physical properties are already
known (Davidzon et al. 2019; Surana et al. 2020; Gilda et al.
2021; Simet et al. 2021). This means that the targets can be
compared to other observed galaxies, instead of synthetic tem-
plates, with the advantage of adhering more coherently to the
observational parameter space. In many cases, the training sam-
ple is also more accurate than standard templates because its
features come directly from high-quality data (e.g., a spectro-
scopic sample such as the Sloan Digital Sky Survey, Acquaviva
2016) instead of approximated models. On the other hand, such
a data-driven approach provides limited physical insights and
may introduce an observational bias if the ML algorithm is not
trained on a fully representative sample. A possible solution to
this drawback is to use a training sample built from cosmolog-
ical simulations (e.g., mock photometry or spectra, Lovell et al.
2019; Simet et al. 2021) even though providing galaxy models
with “observational-like” properties, as well as realistic error
bars, is a complex task (see discussion in Laigle et al. 2019).

The present study shows the advantages of a ML-based
method built on previous work published in Masters et al.
(2015), Hemmati et al. (2019a), and Davidzon et al. (2019) to
predict galaxy properties. The method involves dimensionality
reduction through self-organizing maps (SOMs, Kohonen 1981)
and has been previously tested in Davidzon et al. (2019) based
on a mock galaxy catalog (derived from hydrodynamical sim-
ulations, see Laigle et al. 2019). Knowing the intrinsic proper-
ties of those simulated galaxies, (Davidzon et al. 2019) proved
that the SOM can serve as an effective “manifold learning” tool
that is able to explore the complex, non-linear galaxy parameter
space and reproduce an approximated, but still accurate, version
in a low-dimensional space. We are now ready to apply the same
method to real data and judge its performance in a practical “user
case” situation.

In a nutshell, we used the SOM to analyze a multi-
dimensional space made by the combination of galaxy colors
in the observer’s frame between 0.3 and 5 µm. This data set is
a combination of two photometric catalogs in distinct survey
fields, already described in previous work (Mehta et al. 2018;
Weaver et al. 2022) and summarized here in Sect. 2. The SOM
returns an “unsupervised” classification of the input galaxy sam-
ple, namely, the various classes (which will be called “cells”)
are formed without making any comparisons to already classi-
fied examples. The second step does require supervision, since
at least a fraction of the galaxies require a label (from ancillary
data, especially Spitzer/MIPS) to determine the physical proper-
ties of each SOM cell. This set-up allows us to assign the fol-
lowing labels: z, M, SFR, to any new object projected onto the
SOM. More details about the method are provided in Sect. 3.

In Sect. 4, we verify that SOM-based estimates are more
precise than what would result from fitting a standard template
library to the same optical-NIR photometry. This section also
presents the resulting main sequence of star-forming galaxies up
to z = 2, and a comparison with previous studies where SFRs
have been derived in different ways. Further extensions and other

potential applications of our SOM-based method are discussed
in Sect. 5, along with a few caveats. We summarize our work
and draw our conclusions in Sect. 6.

Throughout this work we use a flat ΛCDM cosmology with
H0 = 70 km s−1 Mpc−1, Ωm = 0.3, ΩΛ = 0.7. All magnitudes
are in the AB (Oke 1974) system, and the initial mass function
(IMF) assumed here is the one proposed in Chabrier (2003). In
the quoted scaling relations between SFR and rest-frame lumi-
nosities, the latter are in units of L� ≡ 3.826 × 1033 erg s−1 for
the former to be in M� yr−1.

2. Data

The present study relies on two catalogs built from deep photo-
metric surveys in the Subaru XMM/Newton and Cosmic Evo-
lution Survey fields (Furusawa et al. 2008; Scoville et al. 2007,
SXDF and COSMOS, see respectively). The two extragalactic
fields, each of them on the order of a square degree, are partic-
ularly suited to our ML application: they can be easily used in
tandem because they have in common a subset of galaxy colors
spanning from UV to mid-infrared (MIR). In the present analy-
sis, we are especially interested in broadband photometry since
the galaxy colors derived from it are the features used as input
by the SOM. In the last two decades COSMOS has been tar-
geted by numerous telescopes, producing a wealth of ancillary
data beyond MIR. The observations in the COSMOS field are
also extremely deep, and likely to increase depth even further
in the near future owing to planned surveys with both existing
and oncoming facilities. For these reasons, a catalog of COS-
MOS galaxies is ideal for training and calibrating the SOM
(Sects. 3.1 and 3.2). On the other hand, SXDF galaxies serve as
a test sample to verify the reliability of our method (Sect. 3.3).
The advantages of such a strategy, relying on multiple layers of
independent data with increasing depth, have been illustrated for
instance, in Myles et al. (2021).

2.1. SXDF2018 photometric catalog

Published in Mehta et al. (2018), the “SXDF2018” photomet-
ric catalog includes optical images from the first data release
(DR1) of the Hyper-SuprimeCam Subaru Strategic Program
(HSC-SSP, Aihara et al. 2018) and MUSUBI, the MegaCam
Ultra-deep Survey with U-Band Imaging1 carried out at the
Canada-France-Hawaii Telescope (CFHT). In the NIR regime,
images come from the ultra-deep area of the UKIRT Infrared
Deep Sky Survey (UKIDSS-UDS, Lawrence et al. 2007) and
from the VISTA Deep Extragalactic Observations (VIDEO,
Jarvis et al. 2013). The entire area is also covered by the Spitzer
Space Telescope, with several IRAC programs documented in
Euclid Collaboration (2022). The broadbands used here, along
with their 5σ sensitivity limits, are listed in Table 1. We refer to
Mehta et al. (2018) for further details.

2.2. COSMOS2020 photometric catalog

COSMOS2020 is the latest photometric catalog released by
the COSMOS collaboration (Weaver et al. 2022). Two versions
of the catalog have been produced through different source
extraction methods. Here we use the Classic version based
on SourceExtractor (Bertin & Arnouts 1996) and IRACLEAN
(Hsieh et al. 2012), since that pipeline is similar to the one

1 W.-H. Wang et al. (in prep.).
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Table 1. Optical and NIR data building the observer-frame color space
explored by the SOM.

Instrument Band Central (a) COSMOS depth (b) SXDF depth (b)

λ [Å] 2′′ aper. [mag] 2′′ aper. [mag]

MegaCam/CFHT u 3858 27.7 27.93
Subaru/HSC g 4847 28.1 27.39

r 6219 27.8 26.91
i 7699 27.6 26.66
z 8894 27.2 26.07
y 9761 26.5 25.34

VISTA/VIRCAM Y 10 216 25.3/26.6 25.41
J 12 525 25.2/26.4 24.89
H 16 466 24.9/26.1 24.56
Ks 21 557 25.3/25.7 24.23

Spitzer/IRAC ch1 35 686 26.4 25.94
ch2 45 067 26.3 25.68

Notes. (a)Median of the transmission curve. (b)Depth at 3σ computed on
PSF-homogenized images (except for IRAC images) in empty apertures
with 2′′ diameter.

Fig. 1. Observational properties of the galaxy samples used throughout
this work. Upper panel: magnitude-redshift distribution of the COS-
MOS2020 galaxy sample used to train the SOM (blue color map with
hexagonal pixels) after pre-selection at Ks < 24.8 and log(M/M�) >
8.5. Individual sources with a 5σ detection in MIPS are overplotted
as orange dots. Lower panel: photometric redshift distribution of the
COSMOS2020 training set (blue histogram) and the SXDF2018 target
sample (green). These data sets are described in Sects. 2.1 and 2.2.

applied to SXDF20182 The COSMOS field is covered by the
same instruments and bands mentioned in Sect. 2.1, although
here they are generally deeper than in SXDF (see Table 1).
In particular, HSC-SSP images come from an updated release
(DR2, Aihara et al. 2019) while the NIR is covered by UltraV-
ISTA (McCracken et al. 2012) with an exposure time per pixel
>150 h (compared to the 10−20 h of VIDEO). The UltraVISTA
depth is not homogeneous, that is, there are “Deep” and “Ultra-

2 We also obtained the SOM from COSMOS2020-Farmer, and have
verified that the ML training in our analysis is stable against different
photometric versions.

Deep” areas but Shuntov et al. (2022) showed that at low redshift
they can be safely combined in a joint analysis, if this is lim-
ited to magnitudes brighter than the Deep 3σ limit (see Table 1).
Medium- and narrow-band images from Subaru and VISTA tele-
scopes are also available in COSMOS, as well as GALEX data
from Zamojski et al. (2007). These additional bands are taken
into account for template fitting (see below) whereas they are not
part of the SOM analysis. VISTA observations in COSMOS have
been carried out with a dual-layer strategy; therefore, the table
provides two values for Y , J, H, and Ks depths. More details
about COSMOS2020 can be found in Weaver et al. (2022).

2.3. Physical properties of COSMOS2020 galaxies

As the reference sample for SOM training and calibration, COS-
MOS2020 galaxies must be provided not only with broad-
band colors but also with measurements of key physical
properties. Most of this additional information is extracted by
fitting the observed SED with galaxy models (also known as
templates). Namely, the fitting code LePhare (Arnouts et al.
1999; Ilbert et al. 2006) is used with three different configu-
rations to derive: (1) photometric redshifts (zLePh); (2) stellar
masses (MLePh) and absolute magnitudes; (3) star formation rates
only for sources observed in FIR. Each step is summarized
below. Estimates (1) and (2) are described more extensively in
Weaver et al. (2022) while we implement the third step follow-
ing Ilbert et al. (2015). Since information on the FIR regime –
namely, a 24 µm detection with Spitzer/MIPS – is required to
constrain star formation, (3) can be applied only to a subsample
of galaxies (see Fig. 1).

Redshift. In this first run of LePhare, the observed SED is
interpolated by a library of 33 galaxy templates (originally pro-
posed in Ilbert et al. 2013). The intrinsic spectrum of these tem-
plates is modified by a dust screen ranging from E(B − V) = 0
to 0.5, with different options to model the extinction curve
(Prevot et al. 1984; Calzetti et al. 2000, and two variations of
Calzetti’s law including the 2175 Å bump). A complementary
library of stellar templates is used, together with other criteria3,
to remove stars from the catalog. After evaluating the χ2 of each
fit, the resulting zLePh estimates are defined as the median of the
redshift likelihood function, i.e. the combined probabilities from
the various models (each one ∝e−χ

2
).

Stellar mass and other physical properties. After fixing
the redshift of each source to zLePh, the LePhare code is used
to measure galaxy stellar mass. Templates optimized for such a
task are derived from Bruzual & Charlot (2003) models (BC03
hereafter) as done in Laigle et al. (2016), namely, with a grid of
44 time steps for eight star formation histories, two non-evolving
metallicity values (Z� and 0.2 Z�), and a range of dust extinction
parameters similar to the one adopted in the first configuration.
Absolute magnitudes in different broad-band filters, required to
compute rest-frame colors, are an additional output. They are
derived from the apparent magnitude that most closely samples
the desired rest-frame filter. For example, the observed i band
is used to calculate the rest-frame u magnitude for a galaxy at
zLePh ' 1. When needed, a k-correction is calculated from the
best-fit template, which also provides the apparent magnitude of
the object when SourceExtractor cannot measure it in any
band.

3 Namely, g − z vs. z − Ks selection and the stellar locus in half-
light radius vs. magnitude in HST/ACS and Subaru/HSC bands (see
Weaver et al. 2022).
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The same run of LePhare would also provide SFRLePh, but
we deem the FIR-based estimates more robust for the calibration
of our method as will be discussed in Sect. 3.2. Nonetheless,
the SFRLePh values are stored in output to compare to the SOM-
based estimates derived from the same photometric baseline.

Star formation from infrared continuum. A major role in
our analysis is played by the star formation tracer that lever-
ages the correlation between SFR and rest-frame emission in UV
and infrared (hereafter SFRUVIR). Interstellar dust absorbs stel-
lar light from UV to optical and re-emits those photons mostly
between 8 and 1000 µm, namely, in the infrared (IR) and sub-mm
regime. The IR integrated luminosity (LIR) is therefore closely
(albeit indirectly) linked with star formation activity. We derived
the LIR for COSMOS2020 galaxies as in Ilbert et al. (2015)
using FIR data as an observational constraint. In brief, we assign
a 24 µm flux to 28 347 objects over the whole COSMOS area
via a cross-correlation between COSMOS2020 sources and the
Spitzer/MIPS catalog from Le Floc’h et al. (2009). We cut the
parent sample at zLePh < 1.8 and signal-to-noise ratio S/N > 5 in
the 24 µm band. The redshift upper limit ensures that the poly-
cyclic aromatic hydrocarbons (PAH) complex at a rest-frame
of 6.2−7.7 µm does not contaminate the 24 µm measurements.
We also removed sources with an X-ray counterpart to mini-
mize contamination from their active galactic nucleus (AGN).
The remaining 22 571 MIPS galaxies constitute the calibration
sample to enable the SFR estimation with the SOM.

The LIR estimates are obtained by means of LePhare by
fitting Dale & Helou (2002) templates to the MIPS data4, then
integrating the best-fit model in the rest frame between 8 and
1000 µm. For 7% of them there is also a 5σ detection in
Herschel/PACS (either 100 or 160 µm from Lutz et al. 2011),
while 9% have a counterpart in Herschel/SPIRE (250, 350, or
500 µm from Oliver et al. 2012). During this procedure, the red-
shift is fixed to the zLePh value from the optical-NIR fitting. No
systematic effect is introduced when the 24 µm flux is com-
plemented with Herschel measurements up to 500 µm (Fig. 1
of Ilbert et al. 2015). Unobscured star formation is traced by
the luminosity in the near-UV band (LNUV), which is obtained
from the BC03 template fitting described above. Accounting for
both contributions, we eventually compute the total SFR as in
Arnouts et al. (2013):

SFRUVIR = K(LIR + 2.3LNUV), (1)

where K = 8.6 × 10−11. This equation traces star formation on a
∼100 Myr time scale. The capability of MIPS 24 µm to provide
reliable SFR estimates is also discussed in detail in Rieke et al.
(2009).

Alternate SFRUVIR estimates for both COSMOS and SXDF
galaxies are available from Barro et al. (2019), although only in
the sub-region that was also observed by the Cosmic Assem-
bly Near-infrared Deep Extragalactic Legacy Survey (CAN-
DELS, Grogin et al. 2011; Koekemoer et al. 2011). In addition
to ground-based facilities, CANDELS includes data from the
Hubble Space Telescope (HST) in both optical and near-IR
bands, which may generate some difference in template fitting
results (especially photometric redshifts). The ancillary Spitzer
and Herschel data in Barro et al. (2019) are similar to the one
used here. At z < 1.8 there are 509 (608) matches between
Barro et al. (2019) and our COSMOS (SXDF) catalog if we

4 Since Dale & Helou (2002) models start from 3 µm (rest frame), the
SED fitting may include IRAC data point as well. However, we prefer
to restrict the photometry to the FIR range for a more homogeneous
constraint.

require their photometric redshifts to be within ±30% of zLePh. In
COSMOS, after converting the two sets of SFRUVIR estimates to
a common framework5 we find a scatter of 0.17 dex and a small
systematic offset (−0.03 dex) due to a handful of objects over-
estimated by Barro et al. (2019) (Fig. B.2). Although the SOM
will be calibrated only with LePhare outcomes to ensure con-
sistency, these alternate estimates will play an important role for
testing (Sect. 4.2).

2.4. Selection functions

The COSMOS2020 training sample is limited to galaxies out-
side masked areas of the survey (i.e., avoiding the surround-
ings of bright stars6) and with zLePh < 1.8 to be consistent with
the MIPS-detected sample. In principle, it would be possible to
extend the SOM to higher redshift, but in that case the calibra-
tion would require a different SFR proxy (see Sect. 5.3). We also
cut the training sample at Ks < 24.8 to remove objects with a
low signal-to-noise ratio (S/N). Eventually, the COSMOS train-
ing sample includes 174 522 galaxies, with 13% of them being
MIPS-detected.

We apply a 3σ cut also to the SXDF2018 catalog, corre-
sponding to a Ks < 24.2 limit (see Table 1). Since the goal
is to replace LePhare physical properties with SOM estimates,
and not the photometric redshifts obtained beforehand, we have
the latter ones at our disposal to limit the SXDF2018 sample to
zLePh < 1.8 and exclude stellar-like objects. As a result, there
are 208 404 galaxies in the SXDF field used, as detailed in the
following.

3. Methods

3.1. Training the SOM with COSMOS2020

The SOM can identify data patterns in a multi-dimensional fea-
ture space by sampling it with an adaptive distribution of points
called “weights”7. During a training phase, the coordinates of
these weights in the multi-dimensional space are adjusted to
move them close to the input data, according to a convergence
criterion detailed in Davidzon et al. (2019). After that, the SOM
reproduces not only the “shape” of the input manifold but also
its “density”, that is, a larger number of test particles is located
where data are more clustered. The algorithm is self-organizing
because the training is unsupervised. The SOM maps the input
data set into a lower-dimensional space: first, its network is
arranged in a 2D geometry then data will be re-arranged as well,
each entry being associated with a given test particle. Despite
the discretization due to the finite number of test particles, the
dimensionality reduction preserves most of the topological struc-
ture of the original manifold. The 2D geometry we chose8 is a
square grid (see Fig. 2); therefore throughout this study we refer
to the SOM test particles as “cells”. With the manifold’s topol-
ogy mostly preserved, elements that are close to each other in the
higher-dimensional space are also neighbors in the grid, namely,

5 Same IMF, luminosity-SFR calibration, etc. (see Appendix B).
6 Masking is done by selecting FLAG_COMBINED==0 in the catalog.
7 Although it would be formally correct to define them as a network of
artificial neurons, we decided to use the term “weight”, so as not to mis-
lead the majority of readers who commonly associate “neural networks”
with a different class of machine learning architectures.
8 Other renderings (3D or even higher dimensions) are also allowed
but do not bring the same advantages, e.g., for human eye inspection.
More exotic geometries can also be used as long as they are equipped
with appropriate metrics.
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Fig. 2. SOM of COSMOS2020 galaxies at z < 1.8, selected as described in Sect. 3.1. The same grid is color-coded in three different ways, to show
the number of galaxies per cell (left panel), the similarity between galaxies in a given cell and the correspondent SOM weight (middle panel), and
the MIPS-detected objects with MLePh > 1010 M� (right panel). In each grid, empty cells are white. Left: handful of cells with only one or two
objects are colored in gray. Middle: similarity is quantified by means of Eq. (2). Throughout this work, the dimensions of the 2D grid are arbitrarily
labeled D1 and D2 since they have no physical meaning.

they belong to the same cell or two contiguous cells (see a ped-
agogical illustration in Fig. 3). We refer to the seminal work of
Kohonen (1981) for a more extensive explanation.

The feature space consists of eleven colors in the observer’s
frame, derived from the broadband filters listed in Table 1 and
paired in sequential order: u − g, g − r, . . . , Ks − ch1, ch1 − ch2.
Galaxies are associated with their nearest weight according to
their (11-dimensional) Euclidean distance. The ones linked to
the same weight are expected to have similar SEDs by construc-
tion (see Fig. 1 in Masters et al. 2015) modulo their brightness
(i.e., a normalization factor) and the scatter due to photometric
errors. The COSMOS2020 SOM is presented in Fig. 2.

The weight’s coordinates in the multi-dimensional space are
actually a set of eleven colors, which can be regarded as the “pro-
totype” SED of the cell. This terminology is the same used in
Davidzon et al. (2019, see their Table 1). Similarly to that study,
shape and size of the grid are chosen in order to minimize the
dispersion of data within a given cell, but at the same time to
avoid a large fraction of them being empty. The result is a con-
figuration with 80×80 cells, with nearly 94% of them containing
at least ten objects at the end of the training (Fig. 2, left panel).
Number counts vary across the grid by maximum an order of
magnitude and only 14 cells have less than three galaxies (one
of them being empty).

To quantify the accuracy of the 80×80 SOM grid in describ-
ing the COSMOS2020 manifold, we calculate the Euclidean dis-
tance between galaxies and the weight of the cell associated with
them. Namely:

∆ =

√∑
Ndim

( fi − wi)2, (2)

where fi is a galaxy’s feature in the ith dimension (out of Ndim =
11) and wi is one component of the weight representing the cell
where the galaxy lies. Across the grid the average ∆ per cell is <1
(Fig. 2, middle panel) as it should be if the scatter of observed
SEDs around their weight is dominated by photometric uncer-
tainties, which for the chosen broadband colors are typically
0.05−0.1 mag. A few cells, however, present larger ∆ values, an
indication they contain either a wider variety of galaxy types or
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Fig. 3. Illustration of the relationship between input features and the
SOM classification (made by the so-called “cells”). This simplified
example shows only three broadband colors in the observer’s frame,
for a random subsample of 10 000 COSMOS2020 galaxies.

SEDs with similar shapes but a low S/N ratio. As an example, a
couple of those cells will be inspected in Sect. 5.4. We also ver-
ify that galaxies that are close to each other in the feature space
turn out to be in the same (or nearby) cells, as partially shown
in Fig. 3. Another metric with which to quantify goodness of
fit is the reduced χ2 distance used, for instance, in Masters et al.
(2015). This is further discussed in Appendix B (see in particular
Fig. B.1).

To conclude the presentation of the training sample, the third
(right-hand) panel of Fig. 2 shows the MIPS-detected galaxies in
COSMOS. This subsample is spread over 3561 cells (55.6% of
the total) which are mainly located on the right half of the grid
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(see Fig. 2, right panel). One third of the cells probed by MIPS
galaxies contain only one of them. Most of these undersampled
cells define the boundaries of star-forming regions in the SOM,
while others are scattered across the left side of the grid, an area
that is scarcely occupied because of the MIPS selection function.
In fact, those are cells containing galaxies with i > 23 mag and
MLePh < 1010 M� (see discussion in Appendix B and Fig. B.3).
Most of them are expected to be fainter than the survey sen-
sitivity limit at 24 µm, as can be deduced, for instance, from
Le Floc’h et al. (2009) and Kokorev et al. (2021).

3.2. SOM calibration with physical properties

The cells in a trained SOM can be calibrated a posteri-
ori with redshift values (see e.g., Geach 2012; Masters et al.
2015) or other physical parameters (Hemmati et al. 2019a;
Davidzon et al. 2019). We choose the labels to be redshift, stel-
lar mass, SFR, and quiescent versus star-forming galaxy type;
these four “layers” of classification are shown with different
color codes in Fig. 4.

For a given cell, the label for each of these quantities is calcu-
lated using galaxies inside it. For redshift and stellar mass, this is
defined as the median of the zLePh and the normalized MLePh dis-
tribution, respectively (Fig. 4, upper panels). The reason for nor-
malizing the mass is discussed in Davidzon et al. (2019). Their
simulations show that when the SOM is trained with colors,
objects in the same cell have similar mass-to-light ratios while
still spanning a range of stellar masses (see Appendix B). We
proceed as in Davidzon et al. (2019), namely, by rescaling MLePh
estimates to 22.5 mag in the i band:

Mi=22.5 = 10+0.4(mi−22.5)MLePh, (3)

where mi is the original i-band magnitude of the given galaxy.
The median of the Mi=22.5 distribution in a given cell is used as its
label (Mlabel). In the upper-right panel of Fig. 4 the SOM is color-
coded according to that label set, showing a smooth transition
from 108 M� in the upper-left corner of the grid, corresponding
to z ∼ 0, up to 1012 M� in the bottom right. This trend follows,
as expected, the evolution in the z label: the higher the redshift,
the larger the stellar mass at the fixed 22.5 mag reference.

Regarding galaxy star formation, the calibration is done by
using only objects with an available SFRUVIR estimate. A rescal-
ing similar to Eq. (3) is applied for the same reason: galaxies in
any given cell have similar colors by SOM construction, but this
does not prevent them from freely spanning a certain magnitude
range. Therefore, we define:

SFRi=22.5 = 10+0.4(mi−22.5)SFRUVIR, (4)

and we attach a SFRlabel value to the cell based on the median of
the SFRi=22.5 distribution. We disregard cells containing only one
MIPS-detected galaxy. The resulting labels are shown in Fig. 4
(lower-left panel).

Each COSMOS2020 galaxy can also be classified as quies-
cent or active depending on its location in the rest-frame plane
NUV− r versus r−Ks (NUVrK, Arnouts et al. 2013). This diag-
nostic is one of the most common in the literature, together with
U − V versus V − J (UVJ, Williams et al. 2009). Either dia-
gram can single out quiescent galaxies from other types as the
former ones occupy a delimited locus in the color-color spaces.
The advantages of NUV− r with respect to U −V are discussed,
for instance, in Siudek et al. (2018) and Leja et al. (2019a). We
use the rest-frame NUVrK classification as in Ilbert et al. (2015),

where quiescent galaxies have:

(NUV − r) + C > 2.6
and
(NUV − r) + C > 2(r − Ks) + 1.7,

(5)

with C ≡ 0.17(t − tz=2) being a cosmic time-dependent cor-
rection to maintain consistent criteria across the whole redshift
range. From Eq. (5), we derive the fraction of quiescent galaxies
per cell ( fQ) and use it as the fourth label of the SOM (Fig. 4,
lower-right panel). In most of the cases the NUVrK classifica-
tion agrees well with the direct assessment of star formation:
86% of the cells with a large quiescent fraction ( fQ > 0.5)
have either a specific SFR (sSFR, defined as SFR/M) lower than
10−11 yr−1 or do not contain MIPS-detected objects. Some dis-
crepancy between the two indicators (i.e., MIPS-detected objects
in cells with low sSFR) can be due to an active galactic nucleus
(AGN) which has not been removed9 and is boosting the 24 µm
signal (see e.g. Delvecchio et al. 2017). Another possibility is
a break of the LIR–SFR correlation for post-starburst galaxies
(Hayward & Smith 2015). The 68 cells (out of 496) that have
fQ > 0.5 but show significant star formation activity (sSFR >
10−10 yr−1) are poorly sampled by the MIPS galaxies: most of
them contain only one MIPS galaxy, which may be an inter-
loper in that cell, for instance, owing to the similarity between
the SEDs of dusty, star-forming galaxies and the “red and dead”
ones (e.g., Arnouts et al. 2013). In the following we will opt for
a conservative approach and disregard SFR measurements from
cells with fQ > 0.9.

3.3. Predictions for a new data set

The key advantage of the SOM is that after the training, other
data sets can be “projected” onto the grid in a fast and efficient
way. Training is the most time-consuming part (0.3 CPU hour
in the COSMOS2020 case), while several thousands galaxies
can be subsequently projected in a few seconds. The additional
data set used here is the SXDF2018 galaxy catalog described
in Sect. 2. For sake of consistency, the properties of the SXDF
galaxies are derived as done in COSMOS2020 (Weaver et al.
2022, see also Sect. 2.3). However, the only quantity the SOM
method needs from the SXDF2018 catalog, besides the observed
colors, is redshift for the pre-selection mentioned above. Other
properties derived by LePhare, namely, stellar mass and SFR,
will be only used a posteriori to compare the two methods.

The procedure described in the following is not strictly
designed for SXDF. In principle, it can be applied to any survey
that includes the same features used to build the SOM. How-
ever, the mapping can be affected by non-negligible systematics
if the new survey has a very different set-up with respect to COS-
MOS2020, especially regarding its noise properties. This is not
an issue for SXDF2018, which has been built using the same
instruments, filters, and pipeline of the training data set.

We map the SXDF2018 sample using a k-dimensional tree10

with k = 5 to find the five cells with the closest weight to each
galaxy (including the cell that the galaxy is associated with).
As in Davidzon et al. (2019), we prefer to work with k nearest
neighbors instead of considering only the best matching cell, to
take into account observational uncertainties. Physical properties
can be predicted for any individual galaxy using the labels of its
five nearest cells. For example, the stellar mass estimate MSOM

9 COSMOS2020 includes a flag to clean the catalog from AGN.
10 Implemented in scikit-learn (Pedregosa et al. 2011).
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Fig. 4. Different sets of labels added to the SOM, after training it with COSMOS2020 data. Upper left: redshift labels assigned from the median
zLePh of galaxies in the given cell. Upper right: median log(Mlabel/M�) per cell, where the Mlabel values are galaxy stellar masses obtained after
rescaling every SED to i = 22.5 (Eq. (3)). Lower left: labels from the median SFRlabel per cell applying the same 22.5 mag rescaling as for stellar
mass (Eq. (4)); with respect to Fig. 2, a larger portion of the SOM grid is empty because we did not assign a SFRlabel to cells containing only one
MIPS galaxy. Lower right: fraction of quiescent galaxies per cell, according to the NUVrK classification (Eq. (5)).

is derived from the weighted mean of the Mlabel labels and read-
justing it from the reference i = 22.5 mag to the magnitude of
the target galaxy:

MSOM =

∑5
j=1

1
∆ j

Mlabel, j∑5
j=1

1
∆ j

× 10−0.4(mi−22.5), (6)

where ∆ j is defined as in Eq. (2) and corresponds to the jth
neighbor among the five nearest cells (including the one to which
the galaxy is attributed). The same applies to SFRSOM:

SFRSOM =

∑5
j=1

1
∆ j

SFRlabel, j∑5
j=1

1
∆ j

× 10−0.4(mi−22.5), (7)
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Fig. 5. Validation of the SOM estimates with “out-of-bag” objects.
The COSMOS2020 SOM described in Sect. 3 is built again ten times,
excluding every time ∼3000 galaxies randomly extracted from those
with a SFRUVIR. The figure compares SFRSOM and SFRUVIR for each
SOM realization (histograms of different colors). The Gaussian fit to
the ensemble of distributions (green line) has mean µ = −0.005 and
standard deviation σ = 0.205 dex.

with the caveat that one or more cells may not contain MIPS
objects and therefore have no SFRlabel, j defined (Fig. 4, lower-
left panel). When all the five neighbors are not labeled, a SOM
estimate cannot be assigned. The choice of the number of neigh-
bors is arbitrary, but increasing to more than five cells does not
change the results as the additional neighbors are further away
from the target galaxy’s cell and weighted in Eqs. (6) and (7)
with a much smaller 1/∆ j factor.

We also derive zSOM even though in principle we could
use zLePh, as the latter is required in input. This is intended to
avoid inconsistency between the various properties of any given
galaxy. Moreover, the choice allows us to generalize the method,
which could be used also when high-quality photometric red-
shifts are not available: in fact, the z < 1.8 cut could have been
implemented with inferior redshift measurements or even a color
selection (Guzzo et al. 2014).

For validation purposes, we also build ten SOMs trained
with COSMOS2020 after removing 3000 MIPS-detected galax-
ies randomly extracted each time11. These “out-of-bag” objects
belong to the MIPS parent sample, meaning that some of them
have S/N < 5 and would not contribute to the calibration
phase anyway. By construction, all the out-of-bag objects have a
SFRUVIR estimate that can be compared to the SFRSOM obtained
by projecting them on the respective SOM, similarly to what
is done for the SXDF2018 catalog. The log(SFRSOM/SFRUVIR)
distribution is the same in the ten realizations, modulo stochastic
fluctuations. By fitting them with a Gaussian function we find a
standard deviation of 0.205 dex and a negligible offset (−0.005)
with respect to the reference MIPS estimates (see Fig. 5). We
repeat the Monte Carlo experiment only in the left side of the
SOM that is undersampled by MIPS: for the galaxies that do
receive a SOM prediction – that is, at least one of their nearest
neighbors is labeled – we find that offset and scatter (µ = −0.005,
σ = 0.205 respectively) are almost the same as the global exper-

11 In general, every training of the SOM results in a different outcome
when the weights are initialized at random positions. For this task how-
ever, we force the iterative adaptation to start from the same configura-
tion of the reference SOM. Moreover, the number of galaxies removed
is so small compared to the whole training sample that the ten new
SOMs are almost indistinguishable from the original one.

iment. The analog procedure is performed to establish the MSOM
accuracy, dividing the out-of-bag sample in bins of stellar mass
and comparing predictions with MLePh. In this case the uncer-
tainties are µ = −0.018 and σ = 0.097 dex. Since they are cal-
culated for targets coming from the same parent sample of the
training galaxies, these values can be interpreted as lower limits
for the MSOM and SFRSOM uncertainties that would result when
projecting other data sets.

Error bars on an object-by-object basis can be provided in
different ways. Hemmati et al. (2019a) proposed a Monte Carlo
re-mapping of the target galaxy, each time perturbing its col-
ors within the corresponding 1σ uncertainty; the object is scat-
tered in nearby cells and the minimum and maximum (mass or
SFR) values it reaches are used as lower and upper limits of the
error bar. Speagle et al. (2019) adopt a different approach, which
assigns to each cell a probability of hosting the target galaxy
proportional to its χ2 (see Eq. (B.1)). We tried both methods and
found that they often provide significantly different error bars.
A possible explanation is the fact that (i) in the Monte Carlo we
perturbed colors independently (i.e., without taking into account
covariance) or (ii) the color error bars do not correspond pre-
cisely to a 68% uncertainty, resulting in a biased χ2. We pre-
ferred to invest more time exploring this issue, postponing the
ascription of error bars to MSOM and SFRSOM to a future study.

4. Results

In this section, our SOM-based analysis in SXDF is compared
to other methods that independently derived stellar masses and
SFR for the same objects. The alternate measurements for stel-
lar masses are produced by means of LePhare, which fits BC03
templates to SEDs that includes not only the data used in the
SOM but also UV photometry from GALEX, medium- and
narrow-bands in the optical, and IRAC channel 3 and 4. These
estimates are originally published in Mehta et al. (2018), but we
re-run LePhare to update some of its parameters to the actual
configuration used for COSMOS2020 (the redshift being fixed
at the same value used in Mehta et al. 2018). For the SFR com-
parison, we first compare to Barro et al. (2019), a study already
introduced above which is restricted to the CANDELS ∼200
square arcmin area within SXDF. Like in Mehta et al. (2018),
Barro et al. (2019) also exploit a set of observations larger than
the 12 broadbands colors used to feed the SOM. Their study
assumes the same cosmological parameters and IMF used here,
but other adjustments related to Eq. (1) are required to convert
their SFR estimates to a common ground. This homogenization
procedure is described in Appendix A. Another set of indepen-
dent estimates comes from spectroscopic data, where nebular
emission lines can be used as a proxy for the SFR.

4.1. Stellar mass estimates

The stellar mass comparison (Fig. 6) shows a good agreement
between MLePh and MSOM. The systematic offset between the
two, measured as log(MSOM/MLePh), is <0.02 dex. The relative
scatter of 0.25 dex is nearly symmetric, with the exception of a
∼3% for which MSOM is severely underestimated (i.e., more than
a factor 3). The majority of that subsample has 1.2 < zLePh < 1.8
and is located either along the borders of the grid (i.e., they suffer
from “boundary effects”) or in the central area characterized by
large ∆ values (see Sect. 5.4).

At a first glance, such an agreement may seem obvious
because the set of Mlabel used to derive individual masses in
the SOM is built from LePhare estimates (Eq. (3)). However,
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Fig. 6. Comparison between stellar masses obtained through standard
template fitting (MLePh) and the new method presented in this work
(MSOM). The figure shows the density map of 208 404 galaxies in the
SXDF field with the magnitude cut at Ks < 24.2. Upper panel: a solid
line marks the 1:1 relationship. Bottom panel: the logarithmic ratio
log(MSOM/MLePh) is shown as a function of log(MLePh/M�), the solid
line marks the zero offset while the two dotted lines are set at ±0.3 dex.

there are several deviations from the SED fitting performed by
LePhare that make the SOM method substantially different.
First, the smaller number of photometric data points used in the
latter, as emphasized above. In addition, the available “solutions”
in the SOM fit are much smaller, given the limited number of
cells used to describe the data manifold (6400 in total). On the
contrary, the synthetic templates used by LePhare are between
five and eight thousands at every fixed z step12 and over two mil-
lions in total.

We also notice that in the SOM method only the weights in
the surroundings of the galaxy target are relevant for the MSOM
calculation (see Eq. (6)), whereas there are no mass priors in
LePhare. In the library of the latter, the BC03 galaxy models
are all defined at 1 M�, but each of them can be rescaled to fit the
observed SED. This means that each template can span the entire
stellar mass range of the target pool, that is, it would be eligi-
ble to fit any observed galaxies irrespective of its mass (or other
characteristics). Moreover, the choice of either using or disre-
garding a SOM weight for a certain galaxy is modulated by the

12 The precise number of templates that LePhare can use at any given
z step depends on how many of them represent galaxies older than the
age of the universe at that redshift; in fact, those models are excluded
by default.

adaptive resolution of neighboring cells, namely, the fact that in
dense areas of the parameter space the SOM concentrates more
weights. Another distinctive feature of the SOM, which may be
regarded as an advantage or a shortcoming depending on the sci-
entific goal, is that its collection of “empirical” weights is lim-
ited by the survey’s characteristics (e.g., its selection function).
On the other hand a synthetic template library, at least theoret-
ically, may include models of known galaxy types that are not
observed in that survey (e.g., low-mass objects fainter than the
detection limit), but it may also miss real objects that have not
been correctly simulated as templates. Given these differences,
the small fraction of catastrophic errors and the overall tight 1:1
correlation are a remarkable confirmation of the effectiveness of
the SOM method.

4.2. SFR estimates

First, we compared the SOM estimates to the SFRUVIR ones
from Barro et al. (2019). The authors only analyze CANDELS-
UDS, which is about one-twentieth of the whole SXDF area. As
an additional restriction we select only the CANDELS galax-
ies with UV-to-FIR data available. Also given the SOM cut
at z < 1.8 and Ks < 24.23, there are only 608 galaxies in
common with Barro et al. (2019). For AGN contamination, we
consider the classification from Mehta et al. (2018) which is
similar to the one applied to the COSMOS2020 training sam-
ple. We also discard sources with discrepant redshift estimates,
that is, the absolute value of the difference between zLePh and
the photometric redshift from Barro et al. (2019) is greater than
0.3(1 + zLePh). The 608 sources are plotted in the left panel
of Fig. 7, showing a fairly good agreement: the −0.05 dex off-
set in log(SFRSOM/SFRUVIR) is comparable with the −0.03 dex
initially found in the CANDELS-COSMOS comparison13. The
SFR scatter (i.e., the standard deviation of the distribution in
the left panel of Fig. 7) is 0.28 dex, comparable to that of the
stellar mass distribution. The log(SFRSOM/SFRUVIR) histogram
(inset in the left panel of Fig. 7) features a tail of a few objects
that the SOM severely underestimates with respect to Barro et al.
(2019), many of them being very dusty (AV > 2 mag) according
to the latter. Dust correction is indeed one of the major param-
eters responsible for this kind of discrepancy, as discussed, for
instance, in Speagle et al. (2014).

Another star formation proxy that can be used for compar-
ison is the luminosity of Hα nebular emission line (LHα). We
assume SFRHα = 2.1 × 10−8 × LHα (Kennicutt 1998) after cor-
recting for dust attenuation in the host galaxy. The formula for
such a correction is the same as in Kashino et al. (2013), based
on the stellar color excess E(B − V) parametrized by LePhare
while measuring the photometric redshift.

It is more convenient to perform this test in the COSMOS
field instead of SXDF, because we have access to an unparal-
leled amount of spectroscopic data in the former. The most rel-
evant surveys to our purposes are zCOSMOS (Lilly et al. 1996),
3DHST (Brammer et al. 2012; Momcheva et al. 2016), KROSS
(Harrison et al. 2017), and FMOS (Kashino et al. 2019), target-
ing different galaxy types from z ∼ 0.1 up to 1.7. They have
been selected and merged into a single spectroscopic catalog in
Saito et al. (2020). Because of the overlap between these line
emitters and the SOM calibration sample, we prefer to compare
SFRHα versus SFRSOM for the out-of-bag galaxies of the SOM
bootstrap test (see Sect. 3.3 and Fig. 5). Assuming SFRHα to be

13 This is the residual offset after removing other sources of discrepancy
such as IMF and IR calibration (see Fig. B.2).
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Fig. 7. Quality assessments of the SFRSOM estimates using independent measurements from the literature as “ground truth”. Left panel: comparison
between SFRSOM and the template-based estimates from Barro et al. (2019, SFRUVIR) for 608 galaxies at z < 1.8 in the SXDF-CANDELS area
(colored dots). For sake of consistency, the Barro et al. (2019) estimates are converted to the same reference system of Ilbert et al. (2015), since the
latter has also been used to calibrate the SOM method (see Appendix A). Right panel: comparison to another star formation estimator, that is, Hα
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violet to red indicates the stellar mass of each galaxy according to the SOM method; the solid line is the 1:1 relation from which two dashed lines
are set at a distance of ±0.3 dex. Each panel also includes an inset that quantifies the dispersion between SFRSOM and the alternate estimate (red
histogram); the vertical dotted line marks the median offset, which is −0.05 dex for log(SFRSOM/SFRUVIR) and 0.07 dex for log(SFRSOM/SFRUVIR).

the “ground truth”, the comparison is a further validation of the
SFRSOM estimates, presented in the right panel of Fig. 7. The
resulting scatter (0.4 dex) and systematics (+0.07 dex) are rel-
atively contained considering the differences between the two
methods, especially the shorter time scale of star formation (on
the order of 10 Myr) probed by LHα. We also note that the
0.07 dex offset shown in the figure is mainly due to the most
massive galaxies, which may have a biased SFRHα: in fact, their
dust content is usually high and susceptible to be underestimated
by LePhare, whose templates are limited to E(B − V) ≤ 0.7
and may not assume the correct extinction law (Ilbert et al. 2010;
Walcher et al. 2011). Moreover, in (local) massive galaxies, neb-
ular extinction often adds a greater contribution to stellar dust
extinction (van der Giessen et al. 2022) and BC03 models do not
take this into account.

4.3. Main sequence of star-forming galaxies

With the SXDF2018 photometric redshifts, stellar masses, and
SFRs obtained through the SOM we can trace the main sequence
of star-forming galaxies (MS) and its evolution as a function of
cosmic time. The SFRSOM versus MSOM plane at different red-
shifts is shown in Fig. 8, where we choose the following bins
in order to ensure homogeneous time intervals: 0.3 < z ≤ 0.4,
0.5 < z ≤ 0.7, 0.9 < z ≤ 1.1, 1.4 < z ≤ 1.8. The four bins are
centered around median redshifts of z = 0.3, 0.6, 1.0, and 1.5 cor-
responding to t = 9.8, 7.7, 5.7, and 4.2 Gyr after the Big Bang.
The time step between the last two bins is the only one shorter
than 2 Gyr because of the z < 1.8 upper limit imposed by MIPS.
Galaxies at z . 0.2 are not included since COSMOS probes a
small cosmic volume below that redshift, thus losing most of its
statistical power. A more conventional binning is used later in this
section for the purpose of making a compare with the literature.
Similarly to the χ2 cut applied in many template-fitting studies
(see e.g., Bowler et al. 2015), we removef the “bad fit” objects
having ∆ > 5. This threshold rules out nearly 1% of the galaxies
whose SED is not well represented by the weight of their own cell.

9.0 9.5 10.0 10.5 11.0
log(MSOM [M ])

1.0

0.5

0.0

0.5

1.0

1.5

2.0

lo
g(

SF
R S

OM
 [M

 y
r

1 ]
)

t 9.7 Gyr (z 0.3)
t 7.7 Gyr (z 0.6)

t 5.8 Gyr (z 1.0)
t 4.1 Gyr (z 1.5)

Fig. 8. Evolution of the main sequence of star forming galaxies resulting
from the SOM-based measurement of the SXDF2018 catalog. Redshift
bins are chosen to correspond to four time steps separated by ∼2 Gyr,
whose color is indicated in the legend along with median redshift and
cosmic age. In each bin, the main sequence is identified as the most
prominent overdensity in the SFRSOM−MSOM plane (shaded areas repre-
senting density contours). Each overdensity peak is fit by Eq. (8) either
independently (solid lines) or simultaneously at all t (dashed lines).

To locate the MS we apply a procedure inspired by the MS
definition in Renzini & Peng (2015). In that study14, the MS nat-
urally emerges as a peak in the surface formed by all the galax-
ies in the 3D space SFR versus mass verus number of objects,
without any a priori separation between star forming and quies-
cent. In the Renzini & Peng (2015) framework the MS core is
the “ridge” of such a 3D peak, a line that is stable whether or not
the data set includes, for instance, post-starburst galaxies exiting
the MS. A similar approach, not requiring a preselection of the
star-forming sample, was recently proposed in Leja et al. (2021).
The SOM method, however, is not entirely free from selection

14 See, in particular, their Fig. 1.
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Table 2. Best-fit values of the free parameters in Eq. (8) to describe the
main sequence of star-forming galaxies at different redshifts.

z range 〈z〉 m0 m1 a0 a1 a2

0.30 < z < 0.40 〈0.34〉 0.44 0.0 0.7 0.19 0.0
0.50 < z < 0.70 〈0.60〉 0.44 0.1 1.6 0.20 0.6
0.90 < z < 1.10 〈0.99〉 0.38 0.0 2.1 0.18 0.0
1.40 < z < 1.80 〈1.53〉 0.06 0.0 1.3 0.14 0.0
0.30 < z < 1.80 – 0.75 0.0 3.2 0.17 0.0

Notes. Parameters in the bottom row result from the simultaneous fit to
all the four redshift bins.

effects because galaxies falling far from the labeled cells do
not obtain any SFRSOM estimate by construction. Irrespective
of that potential bias, which will be discussed in Sect. 5.2, the
SXDF2018 sample includes a wide range of galaxies, from star-
bursts above the MS to galaxies with low specific star formation
rates.

To identify the ridge of the star forming sequence we apply
the following procedure in every zSOM bin. First, a Gaussian
kernel density estimator15 is used to build a probability distri-
bution map of SXDF2018 objects in the log(SFRSOM) versus
log(MSOM) space. Each map is shown in Fig. 8 with isoden-
sity contours of different colors. Resampling them with a grid of
points equally spaced by 0.05 dex we find the ridge of the den-
sity peak (i.e., the “backbone” of the MS) and track its evolution
over ∼6 Gyr. The ridges in the four redshift bins are interpolated
by the same function used in Schreiber et al. (2015):

y = m − m0 + a0r − a1[max(0,m − m1 − a2r)]2, (8)

where r ≡ log(1 + z), m is the logarithmic stellar mass in
units of 109 M�, and y is the logarithmic SFR in M� yr−1. The
other five parameters (m0,m1, a0, a1, a2) are obtained via non-
linear least-square minimization using a trust region reflective
algorithm16. The best-fit values for the free parameters, listed in
Table 2, result into the solid lines shown in Fig. 8. We also fit the
four sequences together (dashed lines) obtaining the following
parameters: (m0,m1, a0, a1, a2) = (0.75 ± 0.04, 0.0 ± 0.2, 3.2 ±
0.2, 0.17 ± 0.04, 0.0 ± 0.5). The terms m1 and a2 being consis-
tent with zero indicates that there is no need for second-order
corrections to describe the MS turnover at high masses. This is
the major distinction with respect to the MS of Schreiber et al.
(2015), where the bending is more pronounced. In fact, thanks
to the stacking of Herschel images, (Schreiber et al. 2015) gain
sensitivity to measure also galaxies with very low sSFR. The
best-fit parameters they find are (m0,m1, a0, a1, a2) = (0.5 ±
0.07, 0.36 ± 0.03, 1.5 ± 0.15, 0.3 ± 0.08, 2.5 ± 0.06). For sake of
completeness, we also try a linear interpolation using the func-
tion y = (α0t+α1) log(M/M�)+(β0t+β1) as done in Speagle et al.
(2014, in Eq. (17)), but the goodness of fit is inferior to Eq. (8)
and, therefore, it is not shown in the figure.

We also select from the literature some of the most rel-
evant studies that have measured the MS between z = 0
and 2, namely, Whitaker et al. (2014), Schreiber et al. (2015),
Ilbert et al. (2015), Barro et al. (2019), Leslie et al. (2020). To
estimate galaxy SFRs those authors use different methods, all
based on FIR data with the exception of Leslie et al. (2020) per-
forming a radio analysis. Two of these studies deal with individ-
ual sources only (Whitaker et al. 2014; Barro et al. 2019) while
15 Namely, the gaussian_kde method (Scott 2015) from the scipy
suite (Virtanen et al. 2020).
16 Implemented in scipy Branch et al. (1999).

the other two include undetected galaxies by stacking either
3 GHz VLA (Leslie et al. 2020) or Herschel (Schreiber et al.
2015) images. Ilbert et al. (2015) derived the MS from MIPS-
detected galaxies but in an indirect way, through the SFR func-
tion. All the selected studies identify the MS locus by binning
their sample in stellar mass and then computing the median
SFR in each bin. Although such an approach is suboptimal from
a mathematical point of view (Steinhardt & Jermyn 2018), we
decided nonetheless to proceed in the same way as the other
authors have done in order to maintain coherence17.

The SOM results are in good agreements with the other MS
measurements (Fig. 9) showing that SFRSOM and MSOM esti-
mates are accurate not only when evaluated separately. Overall,
the differences between our MS and previous results are com-
parable with the differences between them, and smaller than the
1σ error bars that we defined as the 16th–84th percentile range
in each mass bin. There are, however, two visible systematics,
at both extremes of the probed mass range, which are worth
noticing. At the low-mass end, our median points slightly devi-
ate from the linear extrapolation of the MS. This is related to
a sample incompleteness in those mass bins and a consequent
skewness of the SFR distribution towards higher values. The
incompleteness is shown in Fig. 9 by white and orange filled
circles, marking bins in which the fraction of galaxies with a
defined SFRSOM drops below 50 and 70%, respectively18. The
other systematic effect concerns the most massive bin, which
at z > 1 is always located above the other studies (although
within ∼1σ from them, see Fig. 9). In general, our median SFRs
do not show the high-mass turnover observed in Ilbert et al.
(2015), Lee et al. (2015), and subsequent studies (see discussion
in Sect. 5.2). Besides that, the overall slope and redshift evolu-
tion of our MS agree with previous work confirming the reliabil-
ity of the SOM method.

5. Discussion

5.1. SOM-based estimates versus synthetic templates

To assess any improvement the SOM may provide over stan-
dard template fitting, the latter has to be compared to reference
estimates (Barro et al. 2019) as it has been done with SFRSOM
(Sect. 4.2). Figure 10 shows such a test in the overlapping part of
the SXDF field (see Appendix B for COSMOS). When exactly
the same 12-band photometry is used (cf. Table 1), the scatter
in log(SFRLePh/SFRUVIR) is significantly larger than what found
for the SOM-based method (cyan circles in Fig. 10). The dis-
tribution becomes narrower, and less skewed, if additional col-
ors (25 filters in total) are provided as input to LePhare (blue
squares in Fig. 10). Either way, the fit is performed without data
points in the FIR regime. For the 12-band fitting we run LePhare
using the same version and set-up of COSMOS2020, while the
fit to the extended photometry comes from Mehta et al. (2018).
Therefore, the latter estimates not only include ancillary data
(medium- and narrow-band filters from Subaru and VISTA tele-
scopes) but are also derived with a configuration of LePhare
that is optimized for SXDF2018. However, even in that case, the
template-based estimates are less precise than SFRSOM.

17 Before the actual comparison, however, we converted the results to
the same framework as described in Appendix A; see also Speagle et al.
(2014) for a thorough discussion about how to homogenize miscella-
neous data from the literature.
18 The fraction is calculated with respect to the total number of objects
in the given stellar mass bin and classified as star forming by Eq. (5).
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Fig. 9. Redshift evolution of the MS of star forming galaxies (see Sect. 4.3) as determined in the present work (red circles), Ilbert et al. (2015, blue
diamonds), Barro et al. (2019, pink squares), Whitaker et al. (2014, blue dotted line), Schreiber et al. (2015, brown solid line), and Leslie et al.
(2020, green dashed line). Our estimates stop at the z-dependent threshold for stellar mass completeness defined in Weaver et al. (2022). Their
error bars are the 16th–84th percentile range and each symbol is filled with a shade of red according to the completeness of the given mass bin; in
particular, dark red symbols represent >90% completeness, orange between 60 and 80%, while white-filled circles have .50% completeness (see
Sect. 5.2). Results from the literature are shown only when the median redshift of the given study is sufficiently close to ours (which is indicated
in the upper-left corner of each panel); the same measure may be repeated in more than one panel: for example, the MS of Barro et al. (2019) at
0.5 < z < 1 has a median redshift 〈z〉 = 0.8 and it is compared to our data both at 0.6 < z < 0.8 and 0.8 < z < 1.0.

The effective performance of our method is mainly due
to the empirical collection of galaxy prototypes that the
SOM creates during training (see also the “phenotypes” in
Sánchez & Bernstein 2019). Similarly to eigenvectors in a prin-
cipal component analysis, the SOM weights are adapted to the
observed sample so that “by construction” their colors represent
realistic SEDs, to which physical properties are attached. These
properties can be derived from scaling relations or other empiri-
cal recipes, which, despite their underlying assumptions, offer a
complementary approach to the use of stellar population synthe-
sis models.

In standard template fitting, the library is generated from the-
oretical models that might not be an accurate description of the
observed targets – or even of their parent populations – espe-
cially regarding their star formation scenarios. In fact, many tem-
plate libraries (including the one in Weaver et al. 2022) are built
by using a simplistic SFH parametrization (exponential-τ and
delayed-τ models, see Ilbert et al. 2013) with a limited num-
ber of time steps, which may be inadequate, for instance, for
starburst galaxies (Pacifici et al. 2013). Moreover, the physical
parameter space is sampled by a coarse grid of stellar metal-

licity and E(B − V) values, and there are limited options to
add nebular emission line contamination (Pacifici et al. 2015;
Yuan et al. 2019). Part of the parameter space covered by the
models might have no correspondence in the observed uni-
verse (see the discussion in Marchesini et al. 2010; Muzzin et al.
2013 concerning dusty, passive galaxy templates). Moreover,
the grid discretization may introduce severe biases, as investi-
gated in Mitchell et al. (2013). Besides these approximations,
the simplistic modelling of dust attenuation plays a major role
(Chevallard et al. 2013; Chevallard & Charlot 2016; Laigle et al.
2019).

To better visualize these concepts, we derive observed-frame
colors for the BC03 templates in the LePhare library, shifting
them from z = 0.2 to 1.8 with a linear increment of ∆z = 0.01.
Once projected on the COSMOS2020 SOM, these templates
occupy only a fraction of the grid (Fig. 11) even after perturbing
their photometry with Gaussian-shaped noise (0.05 mag stan-
dard deviation for every band). Their distribution (number of
templates per cell) is very different compared to that of COS-
MOS2020 galaxies (cf. Fig. 11 and the left-hand panel of Fig. 2).
Such a tension is not surprising because the sample of BC03
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Fig. 10. Comparison between Barro et al. (2019) and LePhare using
the same sample of 608 galaxies also shown in the left panel of Fig. 7.
The same BC03 library is fit by LePhare to the full photometric base-
line available in the SXDF2018 catalog (filled blue circles) and to the
12 filters only used in the SOM method (open cyan circles). Same
colors are used in the inset for the histograms showing the respective
log(SFRLePh/SFRUVIR) distributions; the log(SFRSOM/SFRUVIR) distri-
bution (red histogram, same as the inset in the left panel of Fig. 7) is
also included as reference.

colors is built with a flat redshift distribution and no differenti-
ation in the abundance of galaxy types. This has an impact on
the whole SED fitting process comparable to the bias from miss-
ing templates (empty cells in Fig. 11). Especially in codes like
LePhare, which do not take into account prior probabilities, if a
“family” of (z,M,SFR) models is over- or under-represented in
the library then the output quantities will be biased too.

The severity of this last issue shall decrease in future studies
owing to the expected improvement of telescope surveys, since a
higher photometric quality shall result in more robust likelihood
functions. In such a scenario, the likelihood would drive the SED
solution to eventually make the code less sensitive to the models’
priors, but if a model were completely missing from the library
(not just over- or underrepresented), then the problem discussed
above would persist in spite of the increased quality of the input
data.

A treatment of probability distribution functions including
probability priors is presented in Benítez (2000) and Tanaka
(2015) for redshift measurements only. The same Bayesian for-
malism is also the foundation of state-of-the-art SED fitting
codes to estimate physical properties, with notable examples
including BAGPIPES19 and Prospector20. Another distinctive
feature of these codes is the capability of using SFHs in flex-
ible bins of time (often designated as “non-parametric”, see
Leja et al. 2019b) or to include a large variety of SFHs from cos-
mological simulations (as in BEAGLE, see Chevallard & Charlot
2016). Also, the implementation of parametric SFHs has reached
a level of complexity higher than the previous generation of
software (see Carnall et al. 2019). This is however achieved at

19 Carnall et al. (2018).
20 Johnson & Leja (2017), Leja et al. (2017), Johnson et al. (2021).
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Fig. 11. BC03 templates from the LePhare library projected into the
SOM. The templates are shifted from z = 0.2 to 1.8 with steps of ∆z =
0.01, and perturbed with Gaussian noise to mimic real photometry. The
SOM is color coded to show their cell occupation, renormalized to the
number density of COSMOS2020 galaxies to make this figure directly
comparable with the left-hand panel of Fig. 2.

the expenses of computational speed. In that regard, the advan-
tage of SOM is well illustrated in Hemmati et al. (2019a): the
time to process 107 objects is less than 0.3 CPU hours, while a
typical Bayesian fitting run (e.g., Mehta et al. 2021) would take
a similar amount of time for a single object (V. Mehta, priv.
comm.). Such a trade-off may dramatically change in the future,
as cheaper machines (i.e., the possibility to rent or buy more
CPU time) and more efficient Bayesian methods become avail-
able. A promising example in this direction is the SED infer-
ence method proposed by Hahn & Melchior (2022) that employs
simulation-trained neural networks to accelerate the estimate
posterior probability distributions at the pace of 1 s per galaxy
(which despite the dramatic improvement would still exceed the
0.3 CPU hours of the SOM to analyze our sample).

In recent work, the SFRs derived from the Bayesian codes
mentioned above have been compared with other estimators. In
Carnall et al. (2019) galaxies in the GAMA survey (Baldry et al.
2018) are analyzed with BAGPIPES and then compared to SFR
measurements based on Hα flux, showing a large scatter (see
their Fig. 9) and a mass-dependent offset due to the fact the Hα
tracer is sensitive to more recent star formation episodes. The
test with GAMA galaxies is performed at z < 0.1, fitting bands
up to IRAC channel 4. These differences stand in the way of a
straightforward comparison with our SFRHα test (Fig. 7, right
panel) which, however, shows more consistency even though it
has been performed over a larger z range and without the use of
channel 3 and 4.

Another recent study (Leja et al. 2021) thoroughly inspects
physical quantities inferred by means of Prospector for
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Fig. 12. SFR vs. M plane of COSMOS2015 galaxies (colored circles)
as it results from the SED fitting performed by the Prospector code
(Leja et al. 2021). Only the objects cross-correlated to COSMOS2020
(0.6′′ searching radius) are shown, both those having a MIPS 24 µm
counterpart (in the upper panel) and objects without FIR detection
(lower panel). Each data point is color-coded according to the differ-
ence in SFR between Prospector and the SOM estimator. A dashed
line at constant sSFR = 10−11 yr−1 is plotted in each panel to guide the
eye.

3DHST and COSMOS2015 galaxies up to z ∼ 3. Unlike
the present analysis, their input photometry spans from UV to
24 µm (when available) and the emission in those bands is inter-
preted under the assumption of energy balance (similarly to
da Cunha et al. 2008). With this caveat in mind, we can com-
pare to Leja et al. (2021) by examining the COSMOS galaxies
Leja et al. (2021) have in common with our study. Among the
ones with a 24 µm detection (S/N > 5) we select 790 targets that
have been kept out-of-bag during the validation test in Sect. 3.3.
Another 16 729 galaxies in our catalog have no 24 µm counter-
part (or <5σ), but they are matched with a source in Leja et al.
(2021). For the former subsample, we find no significant system-
atics in log(SFRSOM/SFRProspector), along with a standard devia-
tion of 0.3 dex that is comparable with the typical SED fitting
statistical uncertainties (Fig. 12, upper panel). With respect to
the objects that are not detected in MIPS, we are able to confirm
the findings in Leja et al. (2021): when sSFRProspector & 1010 yr−1

there is a good agreement between the two techniques, whereas
below the MS, the SFRSOM values are systematically larger
(Fig. 12, lower panel). The average discrepancy increases from
2× to more than 10×, as we move towards lower levels of spe-
cific star formation. Such a trend is coherent with Prospector
non-parametric SFHs since their impact, compared to analytical
descriptions of SFH, is more pronounced for old galaxies that
have exited the MS.

Another reason behind the differences among the two meth-
ods is that galaxy models in Prospector are composed of a
combination of various stellar populations. Such a flexibility cor-
responds to a variable scaling factor in the SFR–LIR relationship,
which can be adjusted on an object-by-object basis instead of the
constant K factor used to calibrate the SOM (Eq. (1)). In fact,
the latter comes from studies based on simpler stellar population
synthesis models. The discrepancy, however, could be removed
by construction using Prospector to label the SOM instead of
the procedure summarized in Sect. 2.3. This option is further
discussed in Sect. 5.3.

5.2. Caveats in the SOM construction

The most entrenched limitations in the SOM method are the
ones inherited from training and calibration samples. In Sect. 4,
we shared the observation that many galaxies do not have an
assigned SFRSOM. The lack of estimates is due to the 24 µm flux
limit, which prevents the measurement of most of the low-SFR
galaxies with M < 1010 M�, leaving several SOM cells without
a SFRlabel. As a consequence, the SFR distribution in bins below
1010 M� is skewed towards higher SFR values, and the observed
MS departs from linearity (Fig. 9). This selection bias would
affect any MS measurement derived from the COSMOS MIPS
survey, irrespective of the method; with the SOM, the way data
are visualized makes easier to identify this kind of issues. Incom-
pleteness in the training sample is more difficult to quantify
because it is necessary to characterize the parent population from
which the sample is drawn. It is therefore challenging to estab-
lish, before starting the SOM construction, whether a certain
galaxy type has not been included in the training. Template fit-
ting does not have the same problem, since that particular galaxy
type can always be incorporated in the template library; the con-
cern in that case is how accurately that galaxy is modeled.

Another bias, more specific to the SOM method itself, is
caused by the mixture of different galaxy types in the same cell.
The main reason for such a contamination is the similarity of
diverse SEDs after photometric errors are taken into account.
This has been already shown in Speagle et al. (2019, particu-
larly in their Figs. 3 and 4), albeit, for a five-band data set,
which is more susceptible to SED degeneracy. In an ideal, noise-
less universe, the SOM classification is extremely accurate, as
shown in Davidzon et al. (2019) using a mock galaxy catalog
from hydrodynamical simulations. Hence, the necessity of using
deep, state-of-the-art data to minimize observational errors and,
consequently, the scatter introduced in the SOM. Cells with a
quiescent fraction of 0.25 < fQ < 0.75 (5% of the entire grid,
see Fig. 4) are another example of the SED mixing, indicating
that some galaxies with different NUV − r, r − Ks colors are
located together inside the same cell. This bias may affect more
seriously those calibrations relying on smaller samples, like SFR
in the present study. In cells occupied only by a handful of MIPS
galaxies, even a single interloper may have a strong impact on
the resulting SFRlabel. One way to find them is to look at some
property that is expected to be similar for all galaxies in the cell
(e.g., their sSFR). If the inspected object is an (e.g., 2σ) outlier
of the distribution, then it can be flagged as a potential interloper.
The suggested approach is only one of the possible solutions and
it does not work in some cases, for instance, in cells containing
only one or two MIPS galaxies. Nonetheless, we test it by re-
calibrating the SOM using sigma-clipped SFRUVIR distributions.
This effectively removes 2σ outliers in the cells where sigma
clipping is feasible. Since the general results of the analysis do
not change, we conclude that contamination bias does not have
a strong impact overall.

Instead of relying on galaxy physical properties, like in the
example above, we can find catastrophic errors in the SOM clas-
sification by inspecting galaxies with suspiciously large ∆ or χ2

distance (Eqs. (2) and (B.1), respectively) as done in Sect. 4.3.
Another way to mark unreliable SFRSOM estimates is according
to the number of cells contributing to Eq. (7): for some galaxies
not all the N neighbors may be labeled, potentially introducing
a bias. Such a bias, if present, must be of second order because
removing objects for which only one or two of the five neighbor
cells have SFRlabel defined, the MS locus does not change; the
only detectable change is a reduction in the error bars of Fig. 9.
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Fig. 13. Solid lines show the contour density map for the distribution
of SXDF2018 galaxies in the SFR–M diagram; this is fit by Eq. (8)
as described in Sect. 4.3 (dashed line). Filled circles are SFR median
in running bins of galaxies with SFRSOM/MSOM > 10−11 yr−1 (orange
symbols) and fQ < 0.5 (red). In both cases, error bars are calculated
with the 16th–84th percentile difference. The red circles are interpolated
by a linear function (dotted line).

Certain sub-samples of galaxies are, however, affected by
an ambiguous SOM classification besides the obvious interloper
cases. This is the case of the trend at the high-mass end of the
MS, already highlighted in Sect. 4.3. Since there is no clear-cut
separation between the star-forming and quiescent population in
the SOM, we impose a threshold ( fQ < 0.5) that is somewhat
arbitrary. Figure 13 illustrates the issue at 0.6 < z < 0.8: massive
galaxies with intermediate to low star formation, responsible for
the MS turnover at ∼5 × 1010 M�, are excluded by the fQ < 0.5
criterion. A less conservative constraint (sSFR > 10−11 yr−1)
does not remove those galaxies and would better identify the MS
turnover, becoming more in agreement with the MS determined
by the “selection-free” definition of Renzini & Peng (2015, see
Sect. 4.3). The same is observed in the other redshift bins.
Figure 13 also shows the general systematics induced by using
the median SFR in bins of mass: they locate the center of the MS
slightly below the locus traced by the highest density in galaxy
number density.

5.3. Calibration with other tracers

The estimates used as reference in Sect. 2.3 are not the
only option for calibrating our method. Relying on the same
optical-to-FIR data, we can use alternate fitting codes (e.g.,
Prospector) instead of LePhare. Besides that, owing to the
wealth of ancillary data in COSMOS, other proxies for stellar
mass and star formation can provide Mlabel and SFRlabel. This
is particularly evident for the latter, which can be derived, for
instance, from Hα nebular emission or by the radio continuum.
Other possibilities, such as the 21 cm atomic hydrogen or sub-
mm molecular gas transitions, are not included in the present
discussion for sake of simplicity and we address the reader to
Kennicutt & Evans (2012) for an exhaustive bibliography on the
various star formation tracers. Our goal in the present section is
not to repeat the analysis with another sets of MSOM, SFRSOM
estimates – but, rather, to show the capacity of different calibra-
tion samples to fill the SOM grid.

A technique for deriving SFRHα has been presented in
Sect. 4.2. Radio continuum emission is also correlated with

galaxy star formation (Condon 1992), but we do not calculate
SFRradio here since we aim at discussing the availability of data
rather than the final estimates. The latest, publicly available21

radio data for almost the entire COSMOS field come from inter-
ferometry in the 3 GHz band with the ESO Very Large Array
(Smolčić et al. 2017). Instead of extracting individual sources,
as done with both MIPS and spectroscopic tracers, we could
stack 3 GHz map cutouts centered at the position of SOM galax-
ies belonging to the same cell. This is the procedure adopted
by Leslie et al. (2020), which is similar to the 1.4 GHz stacking
described in Karim et al. (2011).

Figure 14 shows the coverage of potential calibrations with
either Hα or radio stacking, along with the actual FIR-based cali-
bration already presented in Fig. 4 (bottom-left panel). We high-
light only the cells that would benefit from a high-confidence
calibration, namely, those containing at least one galaxy with
Hα flux >2 × 10−17 erg s−1 cm−2, or with S/N > 3 in the 3 GHz
median stack. The figure of merit for radio stacking is done by
following the recipe (size of the cutouts, calculation of median
flux, etc.) in Leslie et al. (2020).

The most evident feature of Fig. 14 is the additional cover-
age provided by spectroscopic data, which gives us the capa-
bility of labeling 735 cells missed by the 24 µm calibration.
Most of them are in the area populated by low-mass galaxies
because of the surveys’ selection function targeting many emit-
ters with MLePh ' 109 M�. This shows how spectroscopic line
detection can be complementary to FIR imaging. The figure
of merit is expected to improve after next-generation spectro-
graphs will start operations. For example, Hα is inside the
wavelength range of the Multi-Object Optical and Near-infrared
Spectrograph (MOONS, Cirasuolo et al. 2014; Taylor et al.
2018) in low-resolution mode from z ∼ 0 to 1.7, with Hβ (pivotal
for dust correction) entering at z ∼ 0.3. The sensitivity and mul-
tiplex capability of the instrument22 shall enable a more exhaus-
tive labeling of the SOM grid (see discussion in Davidzon et al.
2019). Also, the grism spectrograph on board of Euclid23 could
be instrumental not only for filling the empty cells but also to
dramatically increase the statistics: between 32 000 and 48 000
galaxies per square degree are expected to be observed at 0.40 <
z < 1.8 with an Hα flux >5 × 10−17 erg s−1 cm−2 (Pozzetti et al.
2016).

The third tracer, based on 3 GHz stacking, provides an
SFRlabel for 510 cells, corresponds to ∼20% of the area actu-
ally sampled by previous calibrations. Very few cells (red pixels
in Fig. 14) are newly labeled by the radio sample, partly due to
the conservative S/N > 5 cut we imposed: if instead we also
allow stacked images with 3 < S/N < 5, then the number of
SOM cell probed by radio data nearly doubles. However, even in
that case, the expansion with respect to the original MIPS cali-
bration would be limited (only 65 additional SFRlabel) due to the
FIR-radio correlation and its strong dependency on stellar mass
(Delvecchio et al. 2021). Despite such a marginal expansion, it
is still useful to have various tracers superimposed on the SOM
for a better understanding of the galaxy parameter space. For
example, a difference between multiple SFRlabel values in the
same cell may help identify galaxy classes with rapidly vary-
ing SFH, leveraging the fact that those star formation tracers
probe different time scales (which can be taken into account as
in Sparre et al. 2015).

21 https://irsa.ipac.caltech.edu/data/COSMOS/tables/
vla/
22 See specifications at https://vltmoons.org/
23 https://www.euclid-ec.org/
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Fig. 14. Different calibration samples that may be used to label SFR
on the SOM. Cells containing galaxies from the original MIPS sample
(cf. Fig. 4) are colored in blue; cells containing spectroscopic galax-
ies with an Hα measurement and radio galaxies with a 3 GHz stacking
S/N > 5 are colored in green and red respectively. Colors combine by
following the standard RGB rules, e.g. a cell that can be calibrated by
both MIPS and Hα (MIPS and radio) is colored in cyan (magenta). A
handful of yellow pixels are cells that can be calibrated by only radio
stacking and Hα, while white pixels are cells in which all the three star
formation tracers are available. As the discussion in the main text is only
about coverage and not the actual SFRlabel values, these are not shown
in the present figure.

In Leslie et al. (2020), the stacking technique is instrumental
to probe the SFR–M plane beyond the boundaries of the original
Smolčić et al. (2017) sample, which is made by individual VLA
sources whose counterparts are mostly brighter than 22.5 mag
in IRAC channels 1 and 2. Moreover, the choice of adaptive
binning allows the authors to always gather several hundreds of
objects. In the finer grid of the SOM, galaxies that in Leslie et al.
(2020) belonged to a single (z,M) bin are now spread over sev-
eral cells, “diluting” the stacking signal. One route to solving
this problem involves the use of all SOM cells, each one with an
occupation probability weight (as in Speagle et al. 2019), instead
of assigning the target galaxy to its best-fit (but low-S/N) cell
only.

As an aside, we notice that a stacking strategy would be more
beneficial for the SFRUVIR calibration. The MIPS sample used in
Sect. 3.2 was pre-selected at S/N > 5 in the 24 µm band. A pre-
liminary inspection of sources below that threshold suggests that
the number of labeled cells may increase by ∼30% (compared to
Fig. 4) by using median SFRs from 24 µm stacking (calculated
as in Magdis et al. 2010).

5.4. Soundness checks using SOM

None of the three tracers we considered are able to fill the cen-
tral area of the SOM (around coordinates D1,D2 = 50, 40),
where the average intra-cell distance is particularly large (Fig. 2,
middle panel). This is another use of the SOM as a diagnostic

for peculiar SEDs (see also Hovis-Afflerbach et al. 2021, where
they apply dimensionality reduction to isolate catastrophic red-
shift errors). The bottom panel of Fig. 15 illustrates this point
through the galaxy sample inside one of those problematic cells
(the one with coordinates D1,D2 = 46, 34). The sample includes
56 objects at z ∼ 1.2 with similar colors. When the SEDs are
superimposed to their LePhare best-fit templates, we observe
that the UltraVISTA H band is systematically below the flux pre-
dicted by LePhare (see lower panel of Fig. 15). The correspond-
ing photometric uncertainty is also significantly larger than the
other UltraVISTA bands, always resulting in a S/N smaller than
2. Interestingly, Chartab et al. (in prep.) also reached the same
conclusion by analyzing H-band photometry with a different ML
technique, where these objects had escaped standard reliability
checks in Weaver et al. (2022).

Another problematic region according to Fig. 2 is the vertical
stripe of cells with D1 = 0 and 48 < D2 < 56, from which we
randomly select (D1,D2) = (0, 50) for inspection (middle panel
of Fig. 15). Galaxy SEDs inside that cell have a much larger dis-
persion than non-pathological cells (as the one displayed in the
upper panel of Fig. 15 for comparison). Despite the scatter, these
objects share a common characteristic, namely, an extremely red
yHSC − YVISTA color24 and a blue YVISTA − JVISTA. That color
excess can be attributed to nebular emission line contamination
in the YVISTA band. Indeed, galaxies in (D1,D2) = (0, 50) are
concentrated around two redshifts: z ∼ 1.15 and z ∼ 1.7, which
approximately correspond to a Y-band flux enhancement due to
Hβ (λ4863) and O[ii] (λλ3727, 3729) respectively. Hence, the
SOM diagnostic power can serve at the same time to identify
peculiar galaxy types like strong line emitters, but also to reveal
technical issues such as photometric redshift degeneracy.

6. Summary and conclusions

Compared to the body of work focused on ML methods to
measure galaxy redshifts, little progress has been made with
respect to other physical parameters, which are equally impor-
tant in galaxy evolution studies. Here, we continue the investiga-
tions presented in Masters et al. (2015), Hemmati et al. (2019a),
and Davidzon et al. (2019) to the point where we are now able
to exploit an unsupervised ML algorithm such as the SOM to
simultaneously derive galaxy redshift, stellar mass, and SFR.
This particular use of the SOM has already been described in
Davidzon et al. (2019), but so far has been applied only on mock
galaxy catalogs that, despite an advanced level of realism, cannot
replace the complexity of a test with actual observations.

To this purpose, in the present work, we used the new COS-
MOS2020 galaxy catalog (Weaver et al. 2022) up to z = 1.8,
together with the rich archive of complementary data available
for the COSMOS field. Not only the quality, but also the large
size of COSMOS observations make them an ideal training sam-
ple for the SOM. In our method, after the SOM dimensionality
reduction created a grid of 80× 80 cells, we labeled as many
cells as possible with reference values of z, M, and SFR. These
values are derived by means of ancillary data, in particular MIPS
24 µm from the S-COSMOS survey to constrain galaxy star for-
mation. Once the SOM was calibrated, we projected other galax-
ies onto the grid, obtaining an estimate of their zSOM, MSOM, and
SFRSOM depending on the cell to which each target has been
associated. We used SXDF galaxies, but any other galaxy sam-
ple can be measured as long as the targets have the requisite

24 Note that central wavelength and shape of these two Y bands are
different (see Fig. 2 in Weaver et al. 2022).
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Fig. 15. Inspection of three SOM cells with coordinates (D1,D2) =
[(30, 30), (0, 50), (46, 34)] on the 80 × 80 gird. The first cell (upper
panel) has been randomly selected among those with a small galaxy-
weight distance ∆ (cf. Fig. 2) while the middle and lower panels display
two cells located in areas with large ∆ values, to provide an insight on
SOM shortcomings (see Sect. 5.4). The number of galaxies in these cells
is respectively 16, 39, 56. In each panel, the solid line is the median of
the BC03 spectral models providing the best fit to each COSMOS2020
galaxy in the LePhare analysis; before calculating the median, all the
BC03 spectra (which include only the stellar component, not the nebu-
lar emission) have been rescaled to match 22.5 mag in the i band. Such a
rescaling also makes easier to compare spectral shapes from the differ-
ent panels. The gray shaded area encloses the 16th and 84th percentiles
of their distribution. The y-axis range in the upper panel is shorter to
zoom in the tight 16th–84th dispersion, which would be barely visi-
ble otherwise. Filled circles represent the observed photometry, color-
coded for the different bands (see legend); for sake of clarity they have
been horizontally shifted from the central wavelength of their band by
a random offset within ±3%. In the bottom part of each panel we report
the average error bars in the same color of their corresponding pho-
tometric band. Black crosses are the fluxes that would result from the
cell’s weight after training. All symbols are renormalized to the refer-
ence i = 22.5 mag.

features (in this case, broadband colors) to be projected into the
COSMOS-calibrated SOM. In our case, we also assumed photo-
metric redshift are known in advance to preselect galaxies below

z < 1.8. This requirement can be disregarded, as the SOM proved
to be efficient for redshift measurement too (Masters et al. 2015).
However, the other techniques also fix the redshift of their targets
before measuring the other physical parameters, therefore we did
the same here for sake of comparison.

The SOM is made by a fixed number of cells, each one
representing a specific combination of broadband colors (i.e., a
galaxy SED prototype). The galaxy properties in output are not
strongly discretized because they result from averaging several
cells (Eqs. (6) and (7)). Nevertheless, the SOM resolving power
is lower than other ML methods (in particular deep neural net-
works, see Simet et al. 2021) that describe physical parameters
with continuous functions. The SOM “gridding effects”, how-
ever, are counter-balanced by the advantage of building such a
grid in an unsupervised fashion, and the flexibility of assigning
different labels to it a posteriori. As an aside, we note that other
methods such as variational autoencoders (see Cheng et al. 2021,
for an application in the astronomical domain) may represent a
synthesis between the two approaches by offering both an unsu-
pervised (or semi-supervised) training and a regression analysis
with continuous functions.

We assessed the reliability of our procedure both by way
of comparisons to independent estimates and by means of a
bootstrap technique (i.e., out-of-bag targets from our COSMOS
sample). Most notably the galaxy SFR, generally difficult to
recover from optical-NIR fitting, can be measured with good
precision (<0.3 dex scatter, see Figs. 5 and 7) and is consis-
tent with SFR indicators based on FIR (only 0.05 dex offset
from Barro et al. 2019); even though in our SOM method, the
input photometry stops at IRAC channel 2. We also found a
good agreement between the SOM main sequence of star for-
mation and other MS studies from the literature, an indication
that the (zSOM,MSOM,SFRSOM) estimates provided by the SOM
are simultaneously accurate for most of the targeted objects.

The computation of physical parameters for 208 404 SXDF
galaxies took about 0.1 CPU hours. In addition to the com-
putational speed our method offers, other advantages shall be
emphasized:

– The quality of SFRSOM estimates is better than the results
obtained with LePhare, when compared to SFR val-
ues independently measured from UV-to-FIR photometry
(Barro et al. 2019). Concerning stellar mass estimates, we
found that MSOM and MLePh are in overall good agreement;
small discrepancies between the two could not be solved
because of the lack of a third set of M estimates to be
used as “ground truth”. Without advocating that LePhare
(or template fitting in general) should be superseded by the
novel method, our study demonstrates the benefits of a dual
approach with ML and standard template fitting working in a
complementary fashion. Indeed, as LePhare was instrumen-
tal in preliminary tests on the SOM (here, but also e.g. in
Hemmati et al. 2019b) the latter can help to better understand
caveats and limitations in template fitting (Sect. 5.1). The key
factor making our method competitive with respect to other
state-of-the-art fitting codes is that it does not rely on the tra-
ditional library of synthetic templates. Such a library can be
biased by the theoretical modeling assumptions (stellar pop-
ulation synthesis, dust prescriptions, etc.) whereas this new
fitting procedure is more data-driven, based on a set of galaxy
prototypes coming from the SOM classification of observed
SEDs (i.e., the cells and their weights).

– The robust performance of SOM does not imply that its out-
come is bias-free, that is, the systematics in the training sam-
ple may propagate to the target galaxy estimates and also the
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SOM labels have underlying assumptions (see e.g., Eq. (1)
for producing SFRlabel). However, the 2D rendering of the
SOM put us in a convenient position to solve the problem,
as it allows an effective visual inspection of the parame-
ter space. Section 5.4 showed an example of such applica-
tion, where we flag suspicious cells according to the average
galaxy-weight distance inside them. We were able to identify
not only issues due to corrupted photometry, but also galaxy
types whose SED is intrinsically peculiar (e.g., because of
nebular emission contamination).

– Moreover, a deeper insight into the galaxy parameter space
may result from the combination of multiple calibration sam-
ples. In fact, the labels used in the present analysis are not the
only option in COSMOS. In Sect. 5.3 we discussed two alter-
natives to SFRUVIR, since the star formation labels can also
be derived from either direct spectroscopic measurements
(SFRHα) or VLA 3 GHz image stacking (SFRradio). Having
more than one tracer helps, at least to some extent, to cali-
brate a larger fraction of the SOM grid, but the most impor-
tant advantage is the overlap of the different tracers: in a cell
with multiple layers of physical information, any similarity
(or tension) between them is informative about the galaxy
population inside that cell.

While discussing multiple calibration samples, we also take note
of the role that next-generation spectrographs such as MOONS
or the Prime Focus Spectrograph (PFS, Takada et al. 2014) will
play in the near future. With those facilities, an ambitious pro-
gramme such as the Complete Calibration of the Color-Redshift
Relation (C3R2, Masters et al. 2017) may extend its scope to
include the calibration of stellar mass and SFR over the entire
area of the SOM grid. Nonetheless, 24 µm calibration shall
remain a compelling option as the Mid-IR Instrument (MIRI25)
on board James Webb Space Telescope will supersede MIPS
images, also offering a choice among more broadbands (four of
them between 15 and 25 µm). The field of view of MIRI is only
74′′ × 113′′, but in spite of that it should be possible to assemble
a calibration sample of comparable size to the COSMOS one. In
fact, owing to the small cosmic variance of independent line of
sights (Moster et al. 2011), a hundred of well-separated point-
ings should be sufficient (see Trenti et al. 2011, for a similar
strategy with HST).

Irrespective of the preferred calibration strategy, the present
work is intended as a blueprint to develop ML-based software for
upcoming large-area photometric surveys. Scanning a few thou-
sands square degrees (as planned by the Euclid mission) or even
the entire sky (like the Rubin Observatory), those surveys will
decrease dramatically the (already small) ratio between well-
characterized spectroscopic galaxies and objects only described
by their broadband colors. In the SOM, the former ones would
only be needed for a training sample, proportionally much
smaller than the number of targets. Therefore, with modest
modifications, our method can be implemented, that is, in the
Euclid pipeline, deriving precise physical properties for billions
of galaxies (Euclid Collaboration, in prep.). The fact that the
method is computationally fast makes it particularly suited also
for time-sensitive surveys, in particular the Legacy Survey of
Space and Time (LSST, Ivezić et al. 2019).

SOM analysis of LePhare parameter space (Fig. 11) also
points towards another direction, that is, the development of
“hybrid software” that equips template fitting with manifold
learning tools in order to build and explore the template library

25 MIRI specifications are from the official documentation at
https://jwst-docs.stsci.edu/

more efficiently (see Speagle & Eisenstein 2017; Gilda et al.
2021). Moreover, galaxy models for measuring photometric red-
shift differ significantly from the ones used to derive stellar mass
and SFR. Attempts to realize a comprehensive set of templates,
able to estimate simultaneously the aforementioned properties,
have been recently pursued without exploiting ML algorithms
(e.g., Battisti et al. 2019). This issue is beyond the scope of
the present study, as we assumed a known redshift for each
galaxy – not necessarily a high-precision estimate, but we were
able to select z < 2 targets with sufficient confidence (see
also Hemmati et al. 2019b). Nonetheless, the SOM can also be
used without zLePh preselection by expanding the training to a
larger redshift range (up to z = 4−6, as in Masters et al. 2015,
2019; Davidzon et al. 2019) and including a stellar locus (e.g.,
Kim et al. 2015; Davidzon et al. 2017). In such a framework in
future studies, the number of high-z interlopers would be negli-
gible in most of the statistical applications.
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Appendix A: SFR-LIR relation in the literature

In the present study, and comparison papers, infrared luminosity
is used as a proxy of galaxy SFR. The SFR estimates considered
in Sect. 5 (see also Fig. 7 in Sect. 4) are based on one of the
following scaling relations:

– KK98 = 1.72 × 10−10 from Kennicutt (1998, K98) assum-
ing Salpeter IMF and using models of Leitherer & Heckman
(1995) for continuous bursts of age 10−100 Myr26.

– KB05 = 0.98 × 10−10 from Bell et al. (2005, B05) with
Pegase models27 assuming Kroupa IMF and constant SFH.

– KM11 = 1.48 × 10−10 from Murphy et al. (2011, M11), using
models from Starburst9928 with Kroupa IMF, Z�, and
continuous star formation up to 100 Myr age.

Our goal is to set a common ground for the comparison: results
from the literature obtained through either the K98 or M11 cal-
ibration shall be converted to B05, which is the one used in the
SOM method (Eq. 1). In our analysis, KB05 = 0.86 × 10−10,
because we convert the original value to Chabrier IMF follow-
ing Arnouts et al. (2013).

Inconsistencies between studies may persist if information
about the scaling relation and/or IMF conversion is lacking in
one of the articles. For example in Whitaker et al. (2012) the
authors cite K98 as the reference for the value 0.98 × 10−10

they use, which is actually KB05. In Barro et al. (2019) the
authors use K = 1.09 × 10−10 (Chabrier IMF) and quote K98
as the source. The same value is attributed to BC05 elsewhere
(e.g., Straatman et al. 2016) creating some confusion. We deem
Barro et al. to be correct, as 1.09 × 10−10 is indeed equal to
KK98×0.63, with 0.63 being the conversion factor from Salpeter
to Chabrier IMF provided in Madau & Dickinson (2014).

The IMF conversion itself is another source of discrepancy.
Using the prescription from Madau & Dickinson (2014), KB05
would become either 1.46×10−10 or 0.92×10−10 with Salpeter or
Chabrier IMF respectively. The latter can be directly compared
to the value provided in Arnouts et al. (2013), which is ∼10%
smaller. However, there is not a unique prescription: in the lit-
erature one can find other IMF conversions resulting e.g. into
KB05 = 1.33 (Cowie & Barger 2008) or 1.56 × 1010 (Franx et al.
2008), both for a Kroupa to Salpeter IMF conversion. It is
important to underline that every published value of KB05 (with
Salpeter IMF) we found in the literature remains . 30% smaller
than KK98, as also noted in B05. Also noteworthy is the fact that
when KM11 is retrieved from the review of Kennicutt & Evans
(2012, table 1) the KK98 conversion quoted along with that scal-
ing relation is potentially misleading29.

The IMF conversion factor is usually derived from stellar
population synthesis models, taking the ratio between a model
assuming Salpeter and its analog with Chabrier (or Kroupa)
IMF. Different conversion factors are originated from different
assumptions to build these stellar populations. For example, they
are often calculated after 100 Myr of stellar evolution “under the
assumption of a constant SFH” (e.g., Madau & Dickinson 2014).

26 Some articles report slightly different values, likely due to a different
L�, such as KK98 = 1.8 × 10−10 in Pérez-González et al. (2008).
27 http://www2.iap.fr/users/fioc/PEGASE.html
28 https://www.stsci.edu/science/starburst99/docs/
default.htm
29 Kennicutt & Evans explain in section 3.8 that their conversion factor,
namely Ṁ?/Ṁ? (K98), takes into account the difference between each
reviewed study and K98 in both the IMF and the star formation models.
Unfortunately, this detail is not noticed in table 1 (which is located at the
end of their article) and inattentive readers may misinterpret the values
reported in table 1.

This may not be appropriate for LIR, as the mean age of stars con-
tributing to that emission is 5 Myr (Kennicutt & Evans 2012). In
that case, the conversion factor from Salpeter to a bottom-lighter
IMF should be smaller.

In conclusion, we acknowledge that these discrepancies at a
few percent level play a secondary role in the analysis, compared
to the impact of other systematic effects due, for instance, to data
reduction or to the photometric redshift uncertainty propagating
into the M and SFR error budget. Nonetheless it is important to
clarify any ambiguity in the literature when the opportunity can
be taken, for future references but also for pedagogical purposes.

Appendix B: Additional tests for SOM
implementation

In Sect. 3.1, we computed ∆ distances to quantify how well the
SOM weights conform to the galaxy data manifold (see Eq. 2).
A variation of is a χ2 distance is:

χ2
SOM =

∑
Ndim

( fi − wi)2

ε2
i

, (B.1)

which takes into account not only the difference between
observed color ( fi) and SOM weight (wi) but also the photo-
metric error of the former (εi). This alleviates some of the ten-
sion highlighted in Fig. 2 (middle panel). In fact, the average
χ2

SOM/Ndim per cell (Fig. B.1) has a narrower spread and regions
(discussed in Sect. 5.4) as ∆ outliers are not as prominently high-
lighted here in Fig. B.1 because the large ( fi−wi)2 values in those
cells are compensated by the comparably large uncertainty in the
fi photometric measurement.
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Fig. B.1. Similarly to middle panel of Fig. 2, this plot show the SOM
grid color-coded according to the average χ2

SOM (see Eq. B.1) of galaxies
in a given cell, normalized by the number of dimension of the manifold
(Ndim = 11 colors).
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Fig. B.2. Comparison between two methods deriving SFR from rest-
frame IR, both applied to 509 galaxies at z < 1.8 in the COSMOS-
CANDELS area (red dots). The method used in the present work fol-
lows Ilbert et al. (2015) and is summarized in Sect. 3.2 (see Eq. 1). The
SFRUVIR estimates on the y axis are described in Barro et al. (2019).
A solid line shows the 1:1 relationship. The inset in the top-left cor-
ner shows a histogram of the difference between Barro et al. (labeled
SFRy) and our estimates (SFRx), and a vertical dashed line that marks
the median offset at −0.03 dex.

Thus, a combination of ∆ and χ2
SOM metrics is an efficient

way to separate issues related to observational (statistical) errors
versus intrinsic failures of the SOM when the weight is not close
enough to data despite the precision of the latter. Besides the
average in each cell, we can also inspect the reduced χ2 (i.e.,
χ2

SOM/Ndim, assuming Ndim degrees of freedom) of individual
galaxies to find which ones are misrepresented by their weight.
This happens at edges of the grid, for instance, where the SOM
is forced to pack together sparse objects from the outskirts of
the data distribution. A bad match between certain galaxies and
the weight linked to them can also concern cells in the interior
of the grid (see the cells marked in yellow in Fig. B.1) since a
non-linear manifold such as our 0 < z < 1.8 galaxy sample is
hard to describe with a relatively limited network of weights. It
is nonetheless reassuring that only 4.4% of the COSMOS2020
galaxies overall have χ2

SOM > 24.7; this should be the 99th per-
centile threshold of a χ2 distribution with Ndim = 11 degrees of
freedom: the fact that more than 1% of the sample exceeds the
threshold can be ascribed partly to the SOM modeling, which
is not expected to be a perfect description, but also to the fact
photometric errors may not be entirely accurate in the COS-
MOS2020 catalog30.

Another test we implemented concerns the Barro et al.
(2019) catalog, which is used in this work as an independent
source of information to verify the validity of SOM-based esti-
mates. Since the SOM method is calibrated with SFRUVIR mea-

30 In fact, the native error bars from SourceExtractor were consid-
ered underestimated by Weaver et al. (2022), and needed an adjustment
with heuristic boosting factors.
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Fig. B.3. A more detailed description of how galaxies with different
stellar masses are distributed across the SOM. Upper panel: Aver-
age log(MLePh/M�) of COSMOS2020 galaxies within the same cell,
coded according to the color bar above the SOM grid (white cells are
empty). Upper panel: Standard deviation of the same log(MLePh/M�)
distribution per individual cell, coded according to the color bar
above the SOM grid (also in this case, empty cells are colored in
white).
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sured as in Ilbert et al. (2015), any difference between that and
Barro et al. (2019) will propagate in the comparison between
SFRSOM and SFRUVIR from Barro et al. (2019). Figure B.2
shows our SFRUVIR versus Barro et al. values (after homogeniza-
tion, see Appendix A). The latter are obtained by averaging four
sets of FIR templates, including Dale & Helou (2002) which are
the ones we used. Another important distinction between our
approach and Barro et al. concerns objects with only the 24 µm
detection: they use an analytical prescription (Wuyts et al. 2011)
to convert the 24 µm flux into LIR, while we fit templates also
in that case. It is also possible that the input SEDs differ, for
example in Barro et al. (2019) the prior for the FIR photometric
extraction and deblending are the CANDELS sources. Neverthe-
less, the SFR estimates are in good agreement (Fig. B.2) with a

contained scatter comparable to the typical (0.3 dex) uncertainty
of this kind of measurement. Our SFRUVIR values are slightly
larger, by about 8% (0.03 dex in the logarithmic comparison in
the figure).

Another test we made is summarized in Fig. B.3. The goal
is to verify the “clustering” of low-mass galaxies in the SOM
grid, which alleviate the scatter in the rescaling process of
Eq. (3). Even though we did not use individual fluxes as fea-
tures, the clustering is a consequence of two combined proper-
ties: the relationship between colors and M-to-light ratio (e.g.,
Bell & de Jong 2000, 2001; Zibetti et al. 2009) and the dis-
tinctive M-to-light ratios that low-mass galaxies used as com-
parisons to those at M > 1010 M� (e.g. Bundy et al. 2006;
Moffett et al. 2016; Cui et al. 2021).
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