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ABSTRACT
Stars in globular clusters formed and evolved in the most extreme environment: high density
and low metallicity. If the formation of stars and planets are at all sensitive to environmental
conditions, this should therefore be evident in globular clusters. Observations have indicated
that hot Jupiters are at least an order of magnitude less prevalent in the central region of
the globular cluster 47 Tucanae than in the field. In this work, we explore the claims in the
literature for additional consequences for the low mass stellar initial mass function. Tidal
capture, the mechanism that produces X-ray binaries in globular clusters, applies also to
brown dwarfs (BDs). This process produces tight stellar-BD binaries that would be detectable
by transit surveys. Applying a Monte Carlo dynamical evolution model, we compute the
overall BD capture rates. We find that the number of captures is lower than previous estimates.
Capture efficiency increases steeply with stellar mass, which means that mass segregation
reduces capture efficiency as BDs and low mass stars occupy the same regions. The result
of this effect is that the current constraints on the short period companion fraction remains
marginally consistent with initially equal numbers of BDs and stars. However, our findings
suggest that expanding the sample in 47 Tuc or surveying other globular clusters for close
sub-stellar companions can yield constraints on the sub-stellar initial mass function in these
environments. We estimate the capture rates in other globular clusters and suggest that 47 Tuc
remains a promising target for future transit surveys.

Key words: stars: brown dwarfs, formation, kinematics and dynamics – globular clusters:
individual: 47 Tucanae

1 INTRODUCTION

One of the most important observable predictions for star formation
theory is the resulting spectrum of masses, known as the initial
mass function (IMF). The extreme ends of this distribution are
of particular interest for constraining star formation physics. At the
lowest masses, brown dwarfs (BDs) are thought to be approximately
as numerous in the Milky Way as hydrogen-burning stars (Chabrier
2003). However, what determines the IMF, and whether it varies
with environment, remain the topic of debate (see Krumholz 2014,
for a review).

BDs are usually defined to be objects less massive than re-
quired to burn ordinary hydrogen (. 0.08𝑀�) and greater than the
deuterium-burning limit (& 13𝑀J). If the IMF in this regime is set
by the local thermal Jeans mass, then the lower mass limit for frag-
mentation is set by the requirement that the centre of the clump can
cool (i.e. the opacity limit – Low& Lynden-Bell 1976). In this case,
as the metallicity increases, the cooling becomes more efficient and
the minimum mass for BDs decreases (Bate 2005). However, dy-
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namical processes and competitive accretionmight further influence
the distribution of stellar masses (e.g. Bonnell et al. 1997; Klessen
et al. 1998; Bonnell et al. 2008; Bate 2012). Dynamical interactions
can eject stars from their formation environment, shutting off accre-
tion and stunting growth before the hydrogen mass burning limit is
reached (Reipurth & Clarke 2001; Bate et al. 2002). Alternatively,
the photoevaporation of the gas in an accreting envelope due to irra-
diation by neighbouring OB stars can have a similar effect (Hester
et al. 1996; Whitworth & Zinnecker 2004).

The low-mass IMF appears to have a similar shape across nu-
merous local star forming regions (Andersen et al. 2008). However,
a number of regions also appear to exhibit deviations from a ‘uni-
versal’ IMF. Scholz et al. (2013) and Luhman et al. (2016) find that
the cluster NGC 1333 has a greater fraction of sub-stellar objects
than IC348, which is interpreted as evidence of enhanced low mass
star formation in dense environments. For the most massive and
dense local star forming region, the Orion Nebula cluster (ONC),
contradictory results have been inferred by different authors. Da
Rio et al. (2012) find a deficiency of BDs, in direct contrast to a
previously inferred enhancement (Muench et al. 2002). Such results
might be reconciled by a bimodal distribution, as found by Drass
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et al. (2016). In this case, the enhancement in occurrence rates at
the lowest BD masses may be the result of a distinct formation
mechanism, possibly within a protoplanetary disc.

The distinction between BDs and planets, while motivated by a
physical threshold,may not cleanly delineate formationmechanisms
(Chabrier et al. 2014). In particular, planets with masses greater
than ∼ 4𝑀J may form by gravitational instability rather than core
accretion (Schlaufman 2018). Interestingly, the masses of ‘planets’
thought to be responsible for the gaps observed in the dust emission
in protoplanetary discs with ALMA (e.g. ALMA Partnership et al.
2015;Müller et al. 2018) can be several Jupiter masses, approaching
or exceeding the canonical minimum BD mass (e.g. Haffert et al.
2019; Christiaens et al. 2019). The questions of BD and massive
planet occurrence rates may therefore be related.

Globular clusters are massive populations of stars that remain
bound against galactic tides despite their old ages.Having lowmetal-
licities and high densities, they represent the present day remnant
of formation in a completely different environment to local star
forming regions. As such, if the formation of stars or planets is in
any way dependent on environment, one should expect to see dif-
ferences in globular cluster populations with respect to those in the
field. Gilliland et al. (2000, hereafter GBG+00) presented a HST
survey of the globular cluster 47 Tuc in search of transiting giant
planets. The null result put upper-limits on the frequency of hot
Jupiters (with orbits . 10 days), suggesting a frequency at least
an order of magnitude lower than the solar neighbourhood average
(∼ 1 percent – Wright et al. 2012).

The potential significance of the dearth of low mass compan-
ions of stars in 47 Tuc compounds when one considers the potential
for tidal capture in such a dense stellar environment. Tidal capture
for close binary formation in globular clusters was suggested by
Fabian et al. (1975) as a means to explain their high observed X-ray
luminosity-to-mass ratios. This two-body capture mechanism has
since been incorporated into Monte Carlo simulations of globu-
lar clusters alongside three-body gravitational interactions between
‘point masses’ (Stodolkiewicz 1985, 1986). Bonnell et al. (2003,
hereafter BCB+03) pointed out that the same principle also applies
to the capture of BDs. This means that if the fraction of BDs that
formed in globular clusters is similar to the galactic field, then a
significant number of close BD binaries should also exist. Thus, the
absence of detected transits in 47 Tuc not only suggests a reduced
occurrence rate of hot Jupiters, but also a dearth of BDs.

In this mini-series of two papers, we explore the dearth of short
period sub-stellar companions in 47 Tuc in terms of the expected
rates of both BDs (this paper) and hot Jupiters (a second paper). To
this end we apply the Mocca Monte Carlo code (Hypki & Giersz
2013; Giersz et al. 2013) to accurately compute the theoretical cap-
ture and scattering rates over the lifetime of 47 Tuc. In this, the first
of the two papers, we focus on the possibility of tidal BD capture in
47 Tuc while a second paper w ill deal with the migration of massive
planets to short period orbits. We first discuss the theory of tidal
capture in Section 2. We then introduce our Monte Carlo model for
47 Tuc in Section 3. In Section 4we present the resultant BD capture
rates over the lifetime of 47 Tuc, compare to the observational con-
straints and discuss future observations and generalisation to other
globular clusters. Conclusions are summarised in Section 5.

2 TIDAL CAPTURE THEORY

2.1 Tidal capture cross section

The tidal capture condition for a star and BD pair is discussed in
detail by BCB+03; we briefly review the relevant equations here.
During the close passage between stars, the orbital energy can be dis-
sipated by non-radial oscillations within the stellar interiors (Robe
1968). It follows that if the passage is sufficiently close, the tidal
dissipation can result in capture and the formation of a tight binary.
Fabian et al. (1975) applied this mechanism to explain low mass
X-ray binaries found in globular clusters. We consider a primary
star of radius 𝑅∗, mass 𝑚∗. Then for a periastron distance 𝑎p during
an encounter with a much smaller (point) mass 𝑚, the condition for
capture can be approximated (Fabian et al. 1975):

𝑎p
𝑅∗

<
𝑎capt
𝑅∗

=

[
𝐺𝑚∗
𝑅∗𝑣2∞

𝑞(1 + 𝑞)
]1/6

(1)

where 𝑞 = 𝑚/𝑚∗, for secondary mass 𝑚, and 𝑣∞ is the relative
velocities of the two stars at infinite separation, 𝑎capt is the capture
radius. The pointmass approximation is justified since tides can only
be excited in a much smaller secondary if the impact parameter is
within the collisional cross section. Equation 1 remains valid for low
mass main-sequence primaries (𝑛 = 3/2 polytropes, Lee & Ostriker
1986).

The capture radius must also exceed the sum of the radii of
the two interacting bodies, otherwise the objects would collide (i.e.
periastron distance 𝑎p > 𝑅∗ +𝑅bd, where 𝑅bd is the BD radius). We
will hereafter assume that all BDs have 𝑅bd = 0.1 𝑅� . For a star
and BD pair the capture cross section is:

𝜎capt =

{
𝜎′
capt − 𝜎coll 𝜎′

capt > 𝜎coll

0 otherwise
, (2)

where 𝜎coll is the collisional cross section (including gravitational
focusing) and

𝜎′
capt = 𝜋𝑎2capt

[
1 + 2𝐺𝑚∗ (1 + 𝑞)

𝑣2∞𝑎capt

]
(3)

is the capture cross section if collisions are ignored.
Within theMocca framework, we implement the tidal capture

scenario in the sameway as stellar collisions (Freitag&Benz 2002).
In brief, this involves looping over all stars within a local subset
(‘zone’ – see Giersz 1998), and finding a corresponding BD pair at
random. We compute the local number density 𝑛bd of BDs in the
same way as stars in the Mocca framework. In brief, this involves
finding a number of the closest objects in cluster radius (𝑟) space and
normalising by the minimum spherical shell volume that encloses
them. The probability of capture between the pair is:

𝑃capt = 𝑛bd𝜎capt𝑣∞Δ𝑡, (4)

for time-step Δ𝑡. In this way, due to the normalisation by the BD
density, it is only necessary to loop over all stars and not both
stars and BDs. In the case of capture, a star-BD binary is produced
with a circular orbit (assuming a short circularisation time-scale)
and semi-major axis 𝑎bd = 2𝑎p (Mardling 1996). To determine 𝑎p
for a given encounter, we first draw the encounter cross section
uniformly between 𝜎coll and 𝜎′

capt, then assign the corresponding
𝑎p. Apart from for tidal capture scenarios, BDs are treated as main
sequence stars inMocca, with associated collision probabilities and
dynamical interactions.

MNRAS 000, 1–14 (2021)
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2.2 Capture rates

As discussed in Section 4.2, it is useful to not only compute the
cross section and capture probability for BD-star pairs in the Monte
Carlo simulation but also post-process the encounter probability for
individual stars. This allows us to compute the scaling of the capture
probability over the physical parameter space, where the Monte
Carlo may only yield a small number of encounters that result in
large uncertainties. Therefore we compute the encounter rates as a
function of stellar and environmental parameters in this section. We
make an analytic estimate assuming no collisions to give an intuition
as to how the capture rate scales (Section 2.2.2). We then compute
the capture rates with star-BD collisions included, demonstrating
how these collisions reduce the capture rates (Section 2.2.3).

2.2.1 Estimated encounter rate by BCB+03

Given a local velocity dispersion and BD density, the instantaneous
tidal capture rate for an individual star can be estimated. This rate
Γcapt is the rate at which neighbours pass within the effective cross
section for capture, equation 2. In general, if all objects havemass𝑚,
velocity dispersion 𝜎𝑣 and density 𝑛 then the encounter rate within
a given radius 𝑎enc can be written (Binney & Tremaine 2008):

Γenc = 16
√
𝜋 · 𝑛𝜎𝑣𝑎

2
enc ·

(
1 + 𝐺𝑚

2𝜎2𝑣𝑎enc

)
. (5)

In the gravitationally focused regime, the second term in brackets
dominates and Γenc ∝ 𝑎enc/𝜎𝑣 . If 𝑎enc = 𝑎capt − (𝑅∗ + 𝑅bd) is not
strongly dependent on 𝑣∞, then for BD density 𝑛bd the BD capture
rate for a star of mass 𝑚∗ is:

ΓBCB+03capt ≈ 1.4 × 10−4
(

𝑛bd
106 pc−3

)
×

×
(

𝜎𝑣

10 km s−1

)−1
𝑎enc
1 𝑅�

𝑚∗
1𝑀�

Myr, (6)

where BCB+03 apply this expression with fixed 𝑣∞ = 𝜎𝑣 =

10 km/s. Adopting equation 6 and assuming 𝑣∞ = 𝜎𝑣 to obtain
𝑎enc is accurate when the 𝜎𝑣 is sufficiently small – i.e. when
𝜎′
capt � 𝜎coll for 𝑣∞ ≈ 𝜎𝑣 . However, both 𝜎′

capt and 𝜎coll are
dependent on the relative velocities of the pairs, stellar mass and
radius in different ways, such that understanding the scaling of 𝜎capt
on these properties is non-trivial when 𝜎′

capt ≈ 𝜎coll for 𝑣∞ ≈ 𝜎𝑣 .
It is therefore unclear what kind of encounters dominate the overall
capture rate in general and we will find that 𝜎𝑣 significantly exceeds
10 km/s in our dynamical model for 47 Tuc. For this reason, wemust
generally integrate over the full differential capture rate, including
the capture cross section.

2.2.2 Analytic approximation without collisions

The differential capture rate as a function of the velocity at infinity
𝑣∞ is:

dΓcapt = 𝜎capt (𝑣∞; 𝑞, 𝑅∗) 𝑛bd 𝑣∞𝑔(𝑣∞;𝜎𝑣 ) dv∞ (7)

where

𝑔(𝑣∞;𝜎𝑣 ) =
𝑣2∞
2
√
𝜋𝜎3𝑣

exp

(
−𝑣2∞
4𝜎2𝑣

)
(8)

is the Maxwell-Boltzmann distribution, or the relative asymptotic
speed 𝑣∞ distribution for dispersion 𝜎𝑣 . In the limit 𝜎capt � 𝜎coll
(small 𝑣∞, large 𝑚∗) for the dominant capture scenarios, equation 7
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(c) Overall per star capture rates
Figure 1.Computations of the key quantities in determining the tidal capture
rates of BDs in a given stellar environment. Figure 1a shows the effective
cross sections of collision (dotted lines) and capture (solid lines) for varying
relative speeds at infinite separation. Figure 1b shows the corresponding
differential capture rates (equation 7) for different velocity dispersions. Fig-
ure 1c shows the integrals of this differential across all velocities (solid lines)
compared to the approximation in equation 9 (dotted lines). In all cases, the
lines are coloured by the assumed stellar properties. Results in Figures 1b
and 1c are shown for BD number density 𝑛bd/106 pc−3 = 𝑛bd,6 = 1 and
scale linearly with this value.

MNRAS 000, 1–14 (2021)



4 A. J. Winter et al.

can be integrated over all velocities to yield the analytic upper-limit
to the capture rate:

Γcapt < 3.7 × 10−7
[(

𝑅∗
1 𝑅�

)5
𝑚∗
1𝑀�

𝜎𝑣

10 km s−1
𝑞(1 + 𝑞)

]1/3
×

×
(
1 + 𝜙grav

)
·
(

𝑛bd
106 pc−3

)
Myr−1, (9)

where

𝜙grav ≈ 423 𝑞−1/6 (1 + 𝑞)5/6 ×

×
(

𝑚∗
1𝑀�

)5/6 (
𝑅∗
1 𝑅�

)−5/6 (
𝜎𝑣

10 km s−1

)−5/3
(10)

is the gravitational focusing factor. While these expressions are
approximate, they highlight three things:

(i) The relevant encounters are in practice always gravitationally
focused (𝜙grav � 1), independently of the type of star under con-
sideration, where we assume 𝑅∗ ∝ 𝑚

𝛽
∗ with 𝛽 ∼ 1. The velocity

dispersion required for 𝜙grav ∼ 1 is 𝜎𝑣 ∼ 100 km s−1.
(ii) The capture rate scales steeply with the mass (radius) of

the star: Γcapt ∝ 𝑞1/6𝑅5/6∗ 𝑚
7/6
∗ ∝ 𝑚

1+5𝛽/6
∗ . This steep scaling

highlights the importance of the mass function in assessing the total
number of encounters. In particular, for mass function b we have
Γcapt · b d𝑚∗ ∝ 𝑚

−𝛾
∗ d𝑚∗ for 𝛾 . 1, such that the integral diverges

for large𝑚∗. The overall capture rate is therefore initially dependent
on the choice of maximum stellar mass 𝑚max.
(iii) The capture time-scale (∝ 1/Γcapt) scales super-linearly

with the velocity dispersion (Γcapt ∝ 𝜎
−4/3
𝑣 ). The temporal and

spatial evolution of the local velocity dispersion within a globu-
lar cluster is therefore an important factor in determining capture
frequency.

2.2.3 Full calculation with collisions

The stellar mass and velocity dispersion become even more impor-
tant when one numerically integrates the full expression for equa-
tion 7. We show the relevant quantities in computing the capture
rate in Figure 1. The comparison of the cross sections for capture
and collisions are in Figure 1a. The collision cross section exceeds
the cross section for capture above some relative speed 𝑣∞, which
increases with stellar mass. The effect of this on the differential
encounter rate for given velocity dispersion 𝜎𝑣 is shown in Fig-
ure 1b, the form of which is non-trivially dependent on the stellar
properties.

The analytic approximation in the limit 𝜎coll � 𝜎capt (equa-
tion 9) is compared with this numerical integration in Figure 1c as
a function of the velocity dispersion. As 𝜎𝑣 becomes large, from
equation 1 we have that 𝑎capt/𝑅∗ becomes small for all possible en-
counters, such that neglecting collisions is not possible. The result
is a (stellar mass dependent) steep decline in the capture rate with
𝜎𝑣 , much steeper than the analytic approximation of Γcapt ∝ 𝜎

−4/3
𝑣 .

Since the approximation is only valid for smaller 𝜎𝑣 than is typ-
ical for globular clusters, we will hereafter always adopt the full
numerical integration when estimating capture rates.

The deviation from our approximation particularly affects the
lower mass stars, for which gravitational focusing becomes weaker
at a lower velocity dispersion relative to higher mass stars. The
decrease in capture efficiency for low mass stars is precipitous for
𝑚∗ . 0.5𝑀� , such that the stellarmass functionmust be considered
in order to compute global capture rates. We further consider how

Parameter Property Value
𝑁∗ Number of stars 2 × 106
𝑁bd Number of BDs 2 × 106
𝑁bin Number of binaries 4.4 × 104
𝑁pl Number of planets 2 × 104
𝑊0 Central concentration 7.5

𝑚br/𝑀� Break mass 0.8
𝑚max/𝑀� Max. mass 50

𝛼1 IMF slope 𝑚 < 𝑚br 0.4
𝛼2 IMF slope 𝑚 > 𝑚br 2.8

𝑇age/Gyr Age 12
𝑍/𝑍� Metallicity (dex) -0.6
𝑒0 Planet eccentricity 0.9

𝑎0/au Planet semi-major axis 5

Table 1. Initial condition parameters used for the Monte Carlo globular
cluster model discussed in the text. Where appropriate, choices are made to
match the model of GH11 for 47 Tuc. BDs and planets are the same except
that planets are initially companions to stars.

the evolving mass function alters the overall capture rates in Ap-
pendix A, where we justify adopting 𝑚∗ = 0.7𝑀� to approximate
the global capture rate over the lifetime of 47 Tuc.

3 DYNAMICAL MODELLING

3.1 Monte Carlo simulations

Simulating the dynamical evolution of globular clusters directly us-
ing 𝑁-body calculations over their ∼ 10 Gyr evolution is not com-
putationally practicable. For this reason, the Mocca code (Giersz
1998, 2001) has been developed as aMonte Carlo approach to statis-
tically computing the evolution of massive, dense stellar clusters by
solving the Fokker–Planck equation (see also Stodolkiewicz 1982).
This approach allows a fast and accurate calculation of the dynam-
ical evolution of the stellar population in a globular cluster over its
lifetime. The added bonus of using this code is that it has already
been applied to model the evolution of 47 Tuc (Giersz & Heggie
2011, hereafter GH11). We are therefore able to adopt the parame-
ters obtained in this previous modelling effort. Where appropriate,
we make similar comparisons to observational constraints as GH11.
Mocca has since been updated to incorporate the Fewbody code
(Fregeau et al. 2004; Fregeau 2012) into an improved prescription
for interactions between multiple systems, as described by Hypki
& Giersz (2013). Stellar evolution modules by Hurley et al. (2000,
2002) are used to compute single star and binary evolution. We
do not include tidal forces between a star and a companion in this
evolution.

3.2 Initial conditions for 47 Tuc

The initial conditions that we adopt are motivated by the findings of
GH11, who reproduced the key observable properties of 47 Tuc. The
main parameters are summarised in Table 1. The binary population
are drawn from a log-uniform distribution between 1−100 au. The
initial conditions include a number of choices that are somewhat
artificial (such as the low maximum stellar mass, small binary frac-
tion and no mass fallback for black hole formation). These choices
were invoked to reproduce the unusual surface brightness and ve-
locity dispersion profiles. A low binary fraction is also convenient
in our context, because we compute tidal capture rates only between
BDs and single stars. More recent models incorporating a higher

MNRAS 000, 1–14 (2021)
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Figure 2. Observational constraints on the dynamical properties of 47 Tuc compared to the results of our Mocca (Monte Carlo) model with the parameters
listed in Table 1. Figure 2a shows the visible surface brightness profile of the Monte Carlo model (red circles) compared to the observed profile found by Trager
et al. (1995, black crosses). The line-of-sight velocity dispersion is compared in Figure 2b, where the Monte Carlo results are again red circles. The relative line
of sight velocities measured by Gebhardt et al. (1995) are shown by faint points and the inferred dispersion shown as a black line. The sampling uncertainties
are indicated by dashed lines.

binary fraction and maximum stellar mass can reproduce the fre-
quency of special objects (e.g. black holes binaries and pulsars)
and central surface brightness, but do not presently reproduce the
observed surface brightness profile (A. Askar – private communi-
cation). The most important property for computing the BD capture
rate is the stellar density profile. We therefore retain the parameters
of GH11with whichwe find good agreement with the observed den-
sity and velocity dispersion profiles (see Section 3.3). Provisional
checks using the unpublished alternative models yield BD capture
rates similar to those we obtain with our fiducial model. However,
we emphasise initial conditions that can reproduce the properties
of globular clusters are degenerate. Although models that yield a
similar density profile probably yield similar capture rates (see dis-
cussion of caveats in Section 4.5), an extensive parameter study
investigating these choices is outside of the scope of this work.

We additionally include a BD population, with equal numbers
as the stars. The masses of the BDs have initial masses 𝑚bd =

0.079𝑀� , to ensure that their masses are lower than that of the
least massive stars. In the case that an object has a mass that exceeds
0.08𝑀� (for example, via a collision/merger), then the object is no
longer defined as a BD. The initial spatial distribution of BDs is
assumed to be the same as the stellar population (i.e. no primordial
mass segregation).

Finally, we add a population of ‘migrating planets’ around 1
percent of the initial stellar population. The orbital evolution of
this population will be considered in Paper II, but are not relevant
in this work. We adopt the same mass as the BDs for simplicity.
While this results in a greater mass ratio 𝑞 than for planets, the
scattering cross section for binaries is only weakly dependent on
the mass ratio, particularly for 𝑞 . 0.1 (Fregeau et al. 2004). We
initialise all of the planet orbits to have eccentricity 𝑒 = 0.9 and
semi-major axes 𝑎 = 5 au, reflecting a Jupiter analogue with high

eccentricity. Planets are paired with stars drawn from the same IMF
as single stars. Because the companion (planet) population is a small
fraction of the stellar population, as well as low mass and with
small semi-major axis compared to the binaries, this population
has a negligible influence on the overall evolution of the Mocca
simulation (confirmed by performing runs without them). We do
not include these systems in the tidal capture Monte Carlo routine,
although this too has a negligible effect on the overall capture rate
due to the low companion fraction. They are treated as binaries
within theMocca framework, undergoing single-binary and binary-
binary interactions integrated with Fewbody. We will only refer to
this population again in Paper II.

3.3 Comparison with observed properties of 47 Tuc

We wish to ensure that the model approximately reproduces the
key physical properties of 47 Tuc at its present age. These are the
stellar density and velocity dispersion profile. GH11 fitted their
models to the surface brightness profile as measured by Trager et al.
(1995) and the line-of-sight velocity dispersion inferred from the
measurements of Gebhardt et al. (1995). For direct comparison, we
perform the same comparisons for our model.

The 𝑉-band surface magnitude profile after integrating the
model for 12Gyr is shown in Figure 2a, adopting a distance of 4 kpc.
The profile is calculated by averaging over the 𝑉-band luminosity
contribution of concentric shells of stars for distance 𝑑 from the
cluster centre:

Σ𝑉 (𝑑) =
∑︁
𝑟𝑖>𝑑

𝐿𝑉

2𝜋𝑟2
𝑖

𝑟𝑖√︃
𝑟2
𝑖
− 𝑑2

. (11)
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We then convert this to a surface magnitude by the expression:

`𝑉 = 𝑉� − 2.5 logΣ′
𝑉 + 𝐴𝑉 , (12)

where 𝑉� = 4.80 is the solar 𝑉-band magnitude and Σ′
𝑉
is Σ𝑉 in

units of solar 𝑉-band luminosity per square arcsecond. We assume
small visual extinction 𝐴𝑉 . Commonly, the Harris (1996) value of
𝐸 (𝐵−𝑉) = 0.04 is used (although smaller value 𝐸 (𝐵−𝑉) = 0.024
may also be adopted – Crawford & Snowden 1975), to give 𝐴𝑉 ≈
0.12 for relative visibility 𝑅𝑉 = 3.1. Despite the updated version
of Mocca and the inclusion of BDs compared to GH11, we find
reasonable agreement between the model and the observed profile
obtained by Trager et al. (1995) similarly to GH11.

The line-of-sight velocity dispersion profile can be computed
in an analogous fashion to the surface brightness and is shown in
Figure 2b. The dispersion at projected separation 𝑑 from the centre
is the contribution of the projected contributions of the radial and
tangential velocities (𝑣𝑟 and 𝑣t respectively):

𝜎2
𝑣,los (𝑑) =

1
𝑛𝑑

∑︁
𝑟𝑖>𝑑

𝑑

𝑟𝑖

√︃
𝑟2
𝑖
− 𝑑2

[
𝑣2𝑟

𝑟2
𝑖
− 𝑑2

𝑟2
𝑖

+
𝑣2t
2

𝑑2

𝑟2
𝑖

]
, (13)

where

𝑛𝑑 =
∑︁
𝑟𝑖>𝑑

𝑑

𝑟𝑖

√︃
𝑟2
𝑖
− 𝑑2

. (14)

The corresponding observed dispersion can be extracted from the
measured line-of-sight velocities by computing the dispersion rel-
ative to the mean velocity, binned by separation from the cluster
centre. The comparison in Figure 2b shows that the two dispersions
are similar across the separations with observational constraints.
Given that both the surface density and velocity dispersion profiles
are comparable to the observational constraints, we adopt thismodel
without further (computationally expensive) parameter study.

3.4 Stellar density and velocity evolution

The main quantities of interest for computing the rate of close en-
counters in a stellar cluster are the local number density and velocity
dispersion. We post-process the output of our Monte Carlo integra-
tion to track the density and velocity dispersion evolution over the
12 Gyr lifetime of 47 Tuc. We divide the stars by cluster radii into
30 log-uniformly spaced bins between 10−1.5 and 101 pc, then nor-
malise the number in each shell by the volume to yield the density.
For velocity, we perform a similar binning but then compute the
dispersion 𝜎𝑣 in the one dimensional velocities:

√︃
𝑣2𝑟 + 𝑣2t , where

𝑣𝑟 is the velocity in the radial direction, and 𝑣t is the tangential
component (combined azimuthal and polar).

3.4.1 Density evolution

We show the density profile evolution in Figure 3, separated into
stars (dashed) and BDs (dotted). The initial core stellar density
distribution is 𝑛∗ ∼ 106 pc−3 within ∼ 0.5 pc, and stellar densities
& 105 pc−3 are retained for several Gyr. However, this is not true for
the BD population. During relaxation, dynamical interaction leads
to energy equipartition, resulting in lower masses being pushed to
regions of a shallower gravitational potential; this is known as mass
segregation (Binney & Tremaine 2008). By this process highest
density regions at the cluster centre are quickly vacated of BDs
to yield densities 𝑛bd . 105 pc−3 within ∼ 1 Gyr. This will have
significant consequences on the efficiency of tidal capture over the
lifetime of 47 Tuc (see Section 4.1).
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Figure 3. Density profile evolution for stars (dashed) and BDs (dotted) in
our Mocca model for the dynamical evolution of 47 Tuc. The lines are
shown every 500Myr, coloured by the time in the simulation. Both stars and
BDs initially have the same density profile.

3.4.2 Velocity dispersion evolution

The evolution of the velocity dispersion profile is shown in Figure 4.
In this case the velocity dispersion across the majority of the cluster
decreases as it relaxes. The very inner region retains a high velocity
dispersion, which is due to the fact that the majority of trajectories
passing through this region are at the pericentre of an eccentric
orbit. The physical (three dimensional) dispersion is a factor

√
3

greater than the one dimensional dispersion. However, the line-of-
sight dispersions inferred from radial velocity measurements and
our reconstructed ‘observation’ of the model (∼ 10−12 km s−1
in the central regions; Section 3.2) are lower again by a factor of
order unity. This is due to projection effects. The stellar density
profile means that the majority of stars are a few parsec from the
centre in three dimensions. When one infers the dispersion of radial
velocities at projected (two dimensional) separations smaller than
this, the measurements are mostly made for outer, lower velocity
stars that fall along the line-of-sight. Thus the apparent dispersion
is an underestimate of the physical one dimensional dispersion in
the central regions.

As a result of these considerations, the inner physical three
dimensional dispersion is much larger in the highest density regions
than the fiducial 10 km s−1 assumed by BCB+03. In Section 2.2
we show that the capture rate decreases much steeper than linearly
with 𝜎𝑣 . These two findings demonstrate why the approach we take
is necessary in computing accurate capture rates over the lifetime
of a globular cluster. A velocity dispersion of 𝜎𝑣 = 30 km s−1 can
result in order of magnitude decreases in the capture rate compared
to 𝜎𝑣 = 10 km s−1, depending on the stellar mass. The full, local
velocity dispersion evolution is therefore a necessary ingredient in
the calculations we perform.
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Figure 4. Velocity dispersion profile evolution in theMocca model for the
dynamical evolution of 47 Tuc. Lines are coloured by time in the simulation,
each separated by 500Myr.

4 RESULTS

4.1 Overall capture rate

The total number of BD captures in the Monte Carlo simulation of
47 Tuc is 377. In order to interpret this directly computed capture
rate, we take the density and velocity dispersion profiles from our
models to approximate the global capture rates by post-processing
the density and velocity dispersion profiles to obtain the encounter
rates according to equation 7. To perform this calculation, we need
to adopt an expression that encapsulates the stellar mass averaged
encounter rate:

Γ̂capt =

∫ 𝑚max

𝑚min

d𝑚∗ b (𝑚∗)Γcapt (𝑚∗), (15)

which strictly requires calculating the temporal and spatial evolu-
tion of the mass function b. However, we show in Appendix A
that if the mass function remains constant then after a short time-
scale (∼ 100 Myr) the removal of the most massive stars results in
Γ̂capt ≈ Γcapt (0.7𝑀�), which remains true over the majority of the
lifetime of 47 Tuc. This approximates the global temporal evolu-
tion of the mass function, but not the spatial variation. We will see
that the assumption of a spatially homogeneous mass function is an
important omission.

Integrating over equation 7 yields a local capture rate over
the dynamical history of 47 Tuc. The results of this calculation are
shown in the top panel of Figure 5. This in turn can be integrated to
give a global capture rate:

¤𝑁capt =
∫ ∞

0
d𝑟 4𝜋𝑟2 𝑛∗ (𝑟)Γ̂capt (𝑟), (16)

where we adopt the stellar mass averaged capture rate Γ̂capt ≈
Γcapt (0.7𝑀�) (see Appendix A).

The integrand of equation 16 is shown in the bottom panel of
Figure 5. The evolution of the capture rate reflects the fact that in
the early stages BDs occupy the central, high density regions, but
are quickly evacuated to the outer regions as the cluster becomes
mass segregated. During the segregation, the capture rate profile
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Figure 5. Top: The instantaneous rate Γcapt of tidal BD capture for a star
of mass 𝑚∗ = 0.7𝑀� with the mass-radius relation given by equation A2
at a given cluster radius within 47 Tuc. Contours are computed by integrat-
ing over equation 7 given the BD number density and velocity dispersion
shown in Figures 3 and 4 respectively. Bottom: The same countours but now
weighted by 4𝜋𝑟2𝑛∗, giving the estimated rate of overall tidal capture per
unit radius. This is an approximation for the integrand in equation 16.

quickly transitions from being centrally concentrated to relatively
flat with radius. In general, the capture rates are slightly lower than
the estimates by BCB+03 due to the considerations discussed in
Section 2.2; principally the strong dependence of capture efficiency
on the stellar mass and local velocity dispersion.

In Figure 6 we compare the result of the estimated encounter
rate computed using equation 16 (assuming a constant stellar mass
function over space and time) with the number of captures obtained
directly from the Monte Carlo simulation. The rate of capture is ini-
tially well reproduced by our estimate, but after approximately 1Gyr
we overestimate the global rate of captures. This highlights a prob-
lem with approximating the encounter rates: we have not accounted
for the segregation of stellar mass throughout the cluster (only the
BDs). Figure 7 shows the median stellar mass in radial bins over the
dynamical evolution of our Monte Carlo model. The model is not
initially segregated, which is why we have good agreement between
the Monte Carlo and the post-processed approximation. However, a
gradient in stellar masses quickly emerges as mass segregation op-
erates. The result is that lower mass stars preferentially occupy the
same regions as the BDs. Capture for low mass stars is inefficient
due to the steep decline in the cross section with decreasing stellar
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Figure 6.Cumulative number of tidal BD captures through the lifetime of 47
Tuc. The black line shows the result obtained directly from the Monte Carlo
calculation. The red line is an estimate using the local stellar/BD density
and velocity dispersion with equation 7, assuming𝑚∗ = 0.7𝑀� for all stars
(see discussion in Appendix A). The poor agreement after ∼ 1 Gyr is due to
stellar mass segregation (see text for details).
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Figure 7.Median stellar mass binned by radius from the cluster centre over
the lifetime of 47 Tuc in our Monte Carlo model. Lines are coloured by time
in the simulation, each separated by 500 Myr.

masswhen the local velocity dispersion is large (Section 2.2). Hence
the capture rates are further suppressed by the separation of the BDs
and high mass stars by which they can be efficiently captured.

4.2 Semi-analytic encounter rate calculations

The Monte Carlo approach we describe in Section 2.1 has the ben-
efit that we can generate a realistic number of capture or scatter-

ing events across a complex parameter space. However, there are
benefits to complementing the Monte Carlo with semi-analytical
estimates. In particular, this allows us to more easily understand
the scaling of the results with the stellar parameters and cluster
properties. In the Monte Carlo calculation, the number of events
may be low in some regions of parameter space (e.g. stellar mass
and position), which results in large uncertainties in recovering the
probability from sampling. To construct probability functions for
encounter rates, a better approach is to take a subset of stars at
the end of the simulation and track their encounter rate throughout
their lifetime. This has the added benefit that we can use the an-
alytic expressions to scale our results based on assumed physical
properties.

To recover the encounter rate evolution we must integrate over
orbits which are much shorter than is possible to temporally resolve
with the output time-step. At each snapshot we therefore recover
the orbital solution by first fitting an approximate analytic double
power-law density profile:

𝜌∗ =
𝑀s

4𝜋𝑎3s
(𝑟/𝑎s)−𝛼 (1 − 𝑟/𝑎s)𝛼−𝛽 (17)

to the stellar mass density, where 𝑀s, 𝑎s, 𝛼 and 𝛽 are fitting con-
stants. We then construct the corresponding spherically symmet-
ric potential using the TwoPowerSphericalPotential class of
Galpy1 (Bovy 2015). Although orbits in the potential described by
equation 17 are not closed, since the density and velocity dispersion
profiles are spherically symmetric we are only interested in the ra-
dial oscillations of the star with respect to the respect the centre of
mass of the cluster. We therefore define the period 𝑃orb for the star
to make a single epicycle. Then the orbitally averaged capture rate
at the specified time-step is:

〈Γcapt〉(Θ(𝑡step)) =
1

𝑃orb

∫ 𝑡step+𝑃orb

𝑡step

d𝑡 Γcapt (Θ(𝑡)), (18)

where 𝑡 is the time coordinate, 𝑡step is the time of the snapshot
and all other pertinent parameters are enclosed in Θ. In practice,
if the time-step between updating orbital solution Δ𝑡 < 𝑃orb, then
𝑃orb is replaced with Δ𝑡 in equation 18. The capture probability in
equation 18 is computed by integrating over equation 7 with the
BD density and velocity dispersion interpolated over radius space
at time 𝑡step. In this way, we can estimate the probability of capture
for a given star 𝑖 within a certain time 𝑇age:

𝑃capt,𝑖 = 1 − exp
[
−

∫ 𝑇age

0
d𝑡 〈Γcapt〉(Θ𝑖 (𝑡))

]
, (19)

where Θ𝑖 are now the star-specific and time-dependent parameters
that determine the capture rate. In practice, we apply equation 19 as
a sum over discrete time-steps to understand the variation in capture
rate with the properties of the star, particularly the stellar mass.

4.3 Brown dwarf capture and stellar mass

In this work, we have demonstrated the importance of stellar mass
for the rates of tidal BD capture. The sample of GBG+00 comprised
34, 091 stars in the 𝑉-band magnitude range 17.1 < 𝑉 < 21.1.
Based on the models of Bergbusch & Vandenberg (1992) for
[Fe/H]= −0.78 at 12 Gyr, the brightest stars included therefore
have mass 𝑚∗ ≈ 0.88𝑀� (approximately the turn-off from main
sequence for 47 Tuc) and the lowest masses are 𝑚∗ ≈ 0.52𝑀� . For

1 http://github.com/jobovy/galpy
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Figure 8. Cumulative distribution function of the masses of stars that cap-
ture a BD over the course of the Monte Carlo simulation of 47 Tuc. The
vertical red line is placed at 𝑚∗ = 0.88𝑀� , for which the visual magnitude
in 47 Tuc would be 𝑉 ≈ 17.1 according to the models of Bergbusch &
Vandenberg (1992). This is approximately the mass of the turn off from
the main sequence, which are the brightest stars included in the sample of
GBG+00. The vertical blue line is at𝑚∗ = 0.52𝑀� , which is approximately
the cut-off at lower stellar masses adopted by GBG+00, visual magnitude
𝑉 = 21.1.

comparison, we must therefore consider the capture probabilities in
this stellar mass range.

In Figure 8 we show the distribution of stellar masses for stars
that capture BDs in the Monte Carlo simulation. We find that many
of these captures are for stars of high mass that reach the end of
theirmain sequence lifetime by the present day. Indeed, in theMonte
Carlo simulation we find that 210/377 (56 percent) of the captured
BDs subsequently undergo a merger with their host due to stellar
evolution. The caveat for this finding is that the stellar evolution code
employed inMocca is not necessarily adapted to deal with close BD
companions. Whether a closely orbiting BD may survive the end
of the main sequence, for example, is therefore unclear. However,
we do not explore this concern in this work since GBG+00 only
included main sequence stars in their survey.

To illustrate how the capture rates vary as a function of stellar
mass and final position in the cluster, we compute the orbitally
averaged capture rates as outlined in Section 4.2. Despite the poor
estimate when averaging over the full mass function in Section 4.1
due to mass segregation, we can still estimate per star capture rates.
We draw a subset of 1000 stars from the final snapshot, chosen
semi-randomly to cover a range of stellar masses and radii within
the cluster. We then compute the orbitally averaged capture rate
〈Γcapt〉 as defined by equation 18, with the orbital solutions and
stellar mass updated every 500 Myr. A subset of five examples are
illustrated in Figure 9. We can then integrate these encounter rates
over the star lifetimes to give the capture probability (equation 19).

The resulting capture probabilities are shown in Figure 10. We
find that the probability of capture is a relatively weak function
of final location, with large scatter. This is the combined influence
of the mixing of the stellar population over time and the compet-
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Figure 9. Orbitally averaged BD capture rates for a subset of five stars over
the lifetime of 47 Tuc in our Monte Carlo model, where each star is shown
by a different colour line. The orbital solutions are updated every 500 Myr
and the resultant average capture rate at each update time is denoted by a
square marker.

ing influence of higher velocity dispersion and higher density on
the capture rates in the central region (see Section 2.2). However,
the capture efficiency remains a strong function of stellar mass.
Since masses are spatially segregated, this in turn influences overall
spatial dependence of the capture rate such that our assertion that
capture probability is not strongly dependent on position is some-
what dependent on sampling in mass-position space. Nonetheless,
in an observational context the mass and radial position can be
(approximately) measured, such that neither need be marginalized
out.

The exact scaling cannot be computed analytically because it
depends non-trivially on the local velocity dispersion evolution and
the degree of mass segregation. We therefore fit a function:

𝑃capt (𝑚∗) = 𝐴 ·
(

𝑚∗
1𝑀�

)𝛾
(20)

to the capture probabilities for main sequence stars using
optimize.curve_fit in theScipy software library (Virtanen et al.
2020). We obtain 𝐴 = 1.1 × 10−3 and 𝛾 = 2.7, with the resulting
evaluation of equation 20 shown as a red line in Figure 10.

4.4 Comparisons to observational constraints

4.4.1 47 Tuc

The absence of hot Jupiter detection by GBG+00 puts an upper
limit on both the fraction of hot Jupiters and tight BD binaries. A
close companion with radius 𝑅comp and separation 𝑎comp can only
be detected by transit if the line-of-sight inclination 𝑖 satisfies:

sin 𝑖 <
𝑅comp + 𝑅∗

𝑎comp
. (21)

GBG+00 adopt 𝑅comp = 1.3𝑅J and a period of 3.5 days, corre-
sponding to 𝑎comp ≈ 9 𝑅� for a star of mass 𝑚∗ ≈ 0.7𝑀� . These
assumptions lead to the conclusion that 10 percent of companions

MNRAS 000, 1–14 (2021)
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Figure 10. Probability that individual stars have captured a BD over their lifetimes in our dynamical model, as a function of stellar mass. Points are coloured
by their radius within the cluster at the end of the simulation. The solid red line is the best power-law fit, while the shaded red region is the mass range of the
GBG+00 sample. The corresponding expected range of values of 𝑃capt for the range of stellar masses surveyed by GBG+00 according to the power-law fit
(assuming equal numbers of BDs and stars) is shaded in blue. The upper limit on 𝑃capt inferred by non-detection in that sample is represented by the dashed
black line (𝑃capt = 4 × 10−4).

should have favourable alignment. This detection efficiency is re-
duced by a factor ∼ 2 when aggregating over the stellar radii and
time series noise in the sample. However, as noted by BCB+03, the
typical tidal capture separations (𝑎comp ≈ 4𝑅∗) are smaller than the
separations assumed byGBG+00. Given this orbit, both the geomet-
ric probability and the signal-to-noise are enhanced with respect to
the hot Jupiter estimates (see Figure 4 of GBG+00). BCB+03 esti-
mate a ∼ 20 percent detection probability for a tidally captured BD.
The non-detection of any transit therefore implies an upper limit on
the occurrence rate of short period BD binaries of . 4× 10−4. This
limit is represented by the horizontal dashed black line in Figure 10
and can be compared to the grey region which is the range of 𝑃capt
from equation 20 over the range of masses in the GBG+00 sam-
ple. The theoretical capture probabilities are approximately coinci-
dent with the empirical upper limit such that non-detection remains
(marginally) consistent with the present empirical constraints.

More generally, we can write the probability 𝑃nd of no detec-
tion given the number of survey stars 𝑁surv, the capture probability
𝑃capt and the effective detection efficiency 𝜖det:

𝑃nd =

(
𝑁surv
0

)
(1 − 𝜖det𝑃capt)𝑁surv . (22)

Adopting 𝜖det = 0.2 and scaling 𝑃capt in equation 19 by the ratio of
BDs to stars 𝑓bd ≡ 𝑁bd/𝑁∗ yields the results shown in Figure 11.
Adopting 𝑚∗ = 0.7𝑀� as a representative star in the sample of
GBG+00, we see that 𝑓bd . 1 to 2𝜎 significance with the current
sample of size 𝑁surv = 3.4 × 104. Increasing the available sample
size would (linearly) decrease the maximum 𝑓bd that is consistent
with non-detection. Future samples should focus on the most mas-

sive stars because these offer the best discrimination of the initial
BD-to-stellar ratio.

4.4.2 Other local globular clusters

To further motivate and guide future observations, we now estimate
the equivalent BD capture probabilities in 47 Tuc with respect to
other globular clusters. To do this, we adopt parameters from the
catalogue of Hilker et al. (2020), who fit N-body simulations to
observational data to yield physical property estimates for a large
sample, which have been made publicly available.2 As an order of
magnitude estimate, we can then write:

𝑃GCcapt ≈ 𝑃47Tuccapt
𝑛GC∗
𝑛47Tuc∗

(
𝜎GC𝑣
𝜎47Tuc𝑣

)−4/3
(23)

where the super-script ‘GC’ denotes an arbitrary globular cluster
value and the ‘47 Tuc’ super-scripts are the values for 47 Tuc. We
have assumed the power-law −4/3 in the velocity scaling, which is
the low velocity limit and somewhat shallower than the true scaling.
However,without fullmodelling it is not clearwhat absolute velocity
dispersion for the dominant capture encounters should be adopted.
For stars of mass 𝑚∗ ≈ 0.7𝑀� and 𝜎𝑣 . 50 km s−1 the scaling
we adopt is reasonable to make estimates in lieu of full dynamical
models. Note that the exact definitions of both the density 𝑛∗ and
velocity dispersion𝜎𝑣 onlymatter insofar as we can compare across

2 https://people.smp.uq.edu.au/HolgerBaumgardt/globular/
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Figure 11. The probability of not detecting any BD in a 47 Tuc-like globular
cluster given an initial BD-to-star ratio 𝑓bd ≡ 𝑁bd/𝑁∗.We have assumed that
the total detection efficiency of a transit is 𝜖det = 0.2. We show the present
sample size from the GBG+00 study in black and an order of magnitude
larger sample size in blue. The red lines represent the 2𝜎 (dashed) and 3𝜎
(solid) significance for non-detection. The stellar masses are chosen between
𝑚∗ = 0.52𝑀� and 𝑚∗ = 0.88𝑀� to bracket the mass range in the study
by GBG+00.
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Figure 12. Local globular cluster properties and the estimated capture BD
probability for a star of mass𝑚∗ = 0.7𝑀� if the BD-to-star ratio is 𝑓bd = 1.
Markers are coloured by the one-dimensional half-mass velocity dispersion
and sized proportionally to the total mass. 47 Tuc (NGC 104) is highlighted
in red and all values are summarised in Table 2.

all clusters, including our reference cluster 47 Tuc. We adopt the
half-mass quantities in the database of Hilker et al. (2020), wherein
the one dimensional velocity dispersions are quoted.

The relevant physical parameters for a subset of 17 globular
clusters within 7 kpc and with masses > 105 𝑀� are summarised in
Table 2 and represented in Figure 12.We have listed the approximate
number of stars 𝑁∗,0.52−0.88 in themass range surveyed byGBG+00
by integrating the mass function we assume for the 47 Tuc model,
truncated above 0.88𝑀� in the relevant range. A number of clusters
have significantly higher densities than 47 Tuc, in particular M 28,
M 62, Ter1, Ter 5 and Ter 9, which also have considerably higher BD
capture probabilities for similar 𝑓bd. However, these clusters are also
relatively close to the galactic centrewith lowgalactic latitude. Their
high densities, large distances and possible extinction make these
targets challenging for future transit surveys. A number of clusters
(e.g. NGC 6656, NGC 6752 and 𝜔 Cen) are relatively nearby and
have similar 𝑃capt to 47 Tuc, thus representing promising targets for
future transit surveys. However, overall, 47 Tuc remains possibly
the best target given it has a large number of high mass stars that
were not surveyed by GBG+00 and has the highest estimated 𝑃capt
of the globular clusters that are not in the galactic centre.

4.5 Caveats for capture rates

We have explored BD capture rates in detail and suggested that suf-
ficiently large transit surveys can put upper limits on BD formation
rates. However, it is possible that the present day short period com-
panion rates are influenced by other physical mechanisms. Factors
that may alter the rates of short period BD companions include
(although not necessarily limited to):

• Primordial mass segregation: We have demonstrated that once
a cluster become mass segregated, BD tidal capture becomes ineffi-
cient. If a population is primordially segregated, this would similarly
reduce the capture efficiency.

• Time-scale for circularisation: In Paper II we explore the time-
scale on which a migrating planet may undergo a dynamical pertur-
bation while circularising. Following BCB+03, we have assumed
that this time-scale is short for a tidally captured BD (Mardling
1996). However, if this is not the case then perturbations after the
initial tidal encounter may curtail tidal circularisation and there-
fore prevent the formation of the tight BD-star binary that can be
detected through transit.

• Tidal inspiral of BDs: Evidence for the correlation of hot
Jupiter occurrence with cold stellar kinematics may originate from
the inspiral of close companions onto the central star on Gyr
timescales (Hamer & Schlaufman 2019). If close sub-stellar com-
panions do inspiral on these time-scales, then a similar process may
operate on tidally captured BDs. However, hot Jupiters appear to be
retained in the dense cluster M67 (Brucalassi et al. 2016) which has
an age of ∼ 4.5Gyr, such that this would require a relatively narrow
range of inspiral timescales (see also discussion in Section 4.3 of
Winter & Alexander 2021).

• Evacuation of BDs: Apart from mass segregation due to two-
body relaxation, low mass stars and BDs can be further evacuated
from the central regions of the globular cluster by alternative heat-
ing mechanisms. For example, black hole subsystems may induce
dynamically heating and eject low mass objects such as BDs to the
cluster halo (Breen & Heggie 2013; Giersz et al. 2019). However,
this process occurs on a time-scale longer than the half-mass relax-
ation time-scale (∼ 3 Gyr for 47 Tuc). The time-scale on which the
majority of BD captures occurs in our models is . 2 Gyr, while
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Cluster 𝑑 [kpc] 𝑙 [◦] 𝑏 [◦] log 𝑁∗,0.52−0.88 log 𝑛∗,hm [pc−3] 𝜎𝑣,hm [km/s] log[𝑃capt (0.7𝑀�)/ 𝑓bd ]
NGC 104 (47 Tuc) 4.52 305.89 −44.89 5.73 2.35 3.65 −3.38
NGC 3201 4.74 277.23 8.64 4.98 1.49 2.83 −4.09
NGC 4372 5.71 300.99 −9.88 5.07 1.28 2.75 −4.28
NGC 4833 6.48 303.60 −8.02 5.09 2.06 3.26 −3.60

NGC 5139 (𝜔 Cen) 5.43 309.10 14.97 6.34 2.30 3.84 −3.46
NGC 6218 5.11 15.72 26.31 4.80 1.99 3.11 −3.64

NGC 6254 (M 10) 5.07 15.14 23.08 5.09 2.04 3.24 −3.62
NGC 6266 (M 62) 6.41 353.57 7.32 5.56 3.41 4.29 −2.41
NGC 6304 6.15 355.83 5.38 4.87 2.00 3.13 −3.64
Ter 1 5.67 357.56 0.99 4.95 2.97 3.80 −2.78
Ter 5 6.62 3.84 1.69 5.75 3.04 4.11 −2.76
Ter 9 5.77 3.60 −1.99 4.85 3.02 3.80 −2.73

NGC 6553 5.33 5.25 −3.02 5.23 2.26 3.43 −3.43
NGC 6626 (M 28) 5.37 7.80 −5.58 5.25 3.19 4.05 −2.60
NGC 6656 (M 22) 3.30 9.89 −7.55 5.45 2.29 3.52 −3.42
NGC 6752 4.12 336.49 −25.63 5.22 2.06 3.28 −3.60

NGC 6809 (M 55) 5.35 8.79 −23.27 5.06 1.54 2.91 −4.06

Table 2. Local globular cluster parameters from the N-body models of Hilker et al. (2020), selected to be closer than 7 kpc and more massive than 105 𝑀� .
The number of stars 𝑁∗,0.52−0.88 is estimated by dividing the total mass by 0.5𝑀� then multiplying by 0.297, the approximate fraction of stars with masses
0.52 − 0.88𝑀� . The stellar number density, 𝑛∗, and (one dimensional) velocity dispersion, 𝜎𝑣 are taken inside the half-mass radius. The last column is
obtained by scaling the results for 47 Tuc using equation 23.

segregation on longer time-scales may not strongly influence cap-
ture rates. Similarly, heating due to tidal shocks during to passages
through the galactic plane may operate time-scales comparable to
two-body relaxation (Gnedin et al. 1999). If these mechanisms sig-
nificantly reduce the stellar density after ∼ 12 Gyr, this would also
suggest a moderately higher initial stellar density required to re-
produce the present day density profile. These considerations may
therefore increase the initial capture rate and subsequently reduce it
due to enhanced mass segregation. We do not explore these possi-
bilities quantitatively in this work.

An absence of close sub-stellar companions would therefore
suggest either that BD formation is suppressed or that one of the
above processes (or unconsidered alternative) is operating. In any
case, non-detection in an increased sample of stars would require
explanation and future survey campaigns are therefore merited.

5 CONCLUSIONS

In this work, we have explored the apparent absence of close-in sub-
stellar companions in the globular cluster 47 Tuc from a theoretical
perspective. We applied a Monte Carlo model using the Mocca
code (Hypki & Giersz 2013; Giersz et al. 2013) for the dynamical
evolution of the globular cluster. Using this model, we compute the
rates of tidal BD capture over its lifetime.

Our results indicate lower capture efficiency than previous es-
timates (Bonnell et al. 2003). The reasons for this are subtle, but
fundamentally originate from the rapid decrease of the tidal cap-
ture cross section with decreasing stellar mass. This is particularly
true for environments with velocity dispersions as high as globular
clusters. Once mass segregation operates, BDs and low mass stars
are preferentially found in the same spatial location. Therefore the
global tidal capture efficiency drops precipitously, such that the cur-
rent constraints cannot rule out that the frequency of BDs in the
IMF is as high in 47 Tuc as in the galactic field.

These considerations also lead to a steep scaling of the capture
probability with stellar mass. For initial number of BDs 𝑁bd and
stars 𝑁∗, those stars that have not reached the end of their main

sequence have a lifetime capture probability:

𝑃capt = 1.1 × 10−3
𝑁bd
𝑁∗

·
(

𝑚∗
1𝑀�

)2.7
. (24)

The large exponent means that any constraints on the initial BD
ratio are strongly dependent on the mass function of stars that are
surveyed for close companions. For the typical masses of the stars
surveyed by Gilliland et al. (2000, 0.52𝑀� . 𝑚∗ . 0.88𝑀�) and
equal numbers of BDs and stars, this yields capture probabilities
that are comparable to the upper limit constraint on close sub-stellar
companions (𝑃capt . 4 · 10−4).

Finally we conclude that, while the current constraints on the
frequency of close sub-stellar companions cannot rule out that the
incidence of BDs in 47 Tuc is as high as it is in the field, stronger
constraints can be obtained by surveying a larger number of rel-
atively high mass stars. Such an exercise may also be achieved
aggregating across several globular clusters. We therefore estimate
the capture rates in local globular clusters for a similar mass range
of stars to those surveyed in 47 Tuc. The estimated capture rates
are summarised in Table 2. We suggest that 47 Tuc remains among
the most promising targets for follow up, with a convenient location
and a large number of relatively high mass stars that have not yet
been monitored for short period sub-stellar companions. A num-
ber of other globular clusters, such as 𝜔 Cen, may also represent
feasible targets for transit surveys. Our results offer motivation and
interpretation for future transit surveys of globular clusters.
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APPENDIX A: VARIABLE MASS FUNCTION

To quantify the degree to which the mass function determines the
capture rates, we define the average capture rate:

Γ̂capt (Θ) =
∫ 𝑚max

𝑚min

d𝑚∗ b (𝑚∗)Γcapt (𝑚∗;Θ), (A1)

where Θ is an arbitrary variable representing the remaining physi-
cal quantities that determine the local BD capture rate for a given
star. Here b (𝑚∗) is the stellar mass function. The initial mass func-
tion we adopt in our Monte Carlo model is a broken power-law
with parameters described in Table 1, between the minimum mass
𝑚min = 0.08𝑀� and maximum mass 𝑚max = 50𝑀� . For the pur-
poses of estimating the encounter rates, we adopt a simple mass-
radius relation:

𝑅∗ =
(

𝑚∗
1𝑀�

)0.8
𝑅� , (A2)

additionally fixing 𝑞 = 0.08𝑀�/𝑚∗ and 𝑅bd = 0.1 𝑅� to leave only
extrinsic properties (𝑛bd and 𝜎𝑣 ) in Θ. We show the product of the
per star capture rate and the initial stellar mass function (i.e. the
integrand of equation A1) in Figure A1a.

To approximate the decrease in the number of high mass stars
over time as they reach the end of their lifetimes, we truncate the
mass function above variable mass 𝑚max. We then compare the
Γ̂capt we obtain to that obtained when averaging over our initial
mass-function. The results are shown in Figure A1b, showing an
approximately order of magnitude decline in overall capture effi-
ciency as the massive stars are removed from the mass function.
This means that an accurate mass function over time is required to
estimate the total number of encounters. This would strictly require
resolving the functional form of the mass function, both locally and
over the lifetime of 47 Tuc. However, we also show that adopting
Γcapt (𝑚∗ = 0.7𝑀�) (blue line in FigureA1b) produces a reasonable
estimate of the overall capture rate after a short time (∼ 100 Myr),
once the most massive stars have reached the end of their lifetimes.
We therefore adopt this approximation for the overall capture rate
when we validate our Monte Carlo results in Section 4.1.
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Figure A1.Relative encounter rate with varying stellar mass (function). The
black lines in Figure A1a shows the capture rate (integral of equation 7) as a
function of stellar mass and corresponding radius given by equation 9, while
the red line shows the initial mass function we assume for the Monte Carlo
model. The blue lines show the product of the mass function and the capture
rate. In Figure A1b we show the variation of the overall capture rate Γ̂capt
integrated across all masses truncated above the upper mass limit 𝑚max.
The black lines are normalised by the equivalent capture rate with the initial
mass function (𝑚max = 50𝑀�) and the blue lines are normalised by Γcapt
for a single stellar mass (𝑚∗ = 0.7𝑀�). The vertical lines represent the
initial most massive star (red dotted), the most massive star after 100 Myr
(black dashed) and the most massive star after 1 Gyr (black dotted).
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