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ABSTRACT
The inspiral of supermassive black-hole binaries in gas-rich environment is driven by
the presence of an accretion disc and viscous interactions tend to align the spin of the
black holes with the orbital angular momentum of the disc. Recent work introduced a
new iterative approach to describe the alignment process and the resulting non-linear
evolution of the surrounding warped accretion disc. Their model predicted that black-
hole spins reach either full alignment or a ‘critical obliquity’ where solutions to the warp
equations cease to exist. In this paper, we show that this critical region corresponds to
the disc breaking phenomenon, where the disc is disrupted into two or more discrete
sections. We use 3D hydrodynamical simulations to (i) recover the predictions of the
semi-analytic model and (ii) unveil a richer phenomenology where the disc exhibits
either unsuccessful, single and multiple breaks. We additionally identify hydrodynamic
effects such as spiral arms that are able to stabilise the disc against breaking beyond
criticality. Our results show that when disc breaking occurs, the ability of black holes
and disc to align is compromised and in some cases even prevented as the binary
inspirals.

Key words: accretion, accretion discs — black-hole mergers — gravitational waves —
hydrodynamics

1 INTRODUCTION

Accretion discs play a pivotal role in a variety of astrophysi-
cal processes, ranging from planet formation to interacting
binary stars, and active-galactic nuclei (AGN) (Pringle 1981;
Frank et al. 2002). While accretion onto a single Newtonian
object results into a planar disc configuration, the presence
of external torques might induce a distorted, or ‘warped’,
structure. Known processes that can excite disc warps in-
clude higher-order harmonics of the central gravitational
potential (Tremaine et al. 2009), the presence of a binary
companions (Lubow & Ogilvie 2000), embedding in a stellar
clusters (Bregman & Alexander 2012), radiation pressure
from the central object (Pringle 1996), magnetic fields (Lai

1999), as well as relativistic effects (Bardeen & Petterson
1975).

General-relativistic frame dragging is at the heart of the
so-called ‘Bardeen-Petterson effect’. For a disc surrounding
a spinning black hole (BH), Lense-Thirring precession prefer-
entially dissipates angular momentum in a direction perpen-
dicular to the BH spin, thus acting towards aligning the disc
with the equatorial plane of the BH (Lense & Thirring 1918).
Crucially, the relevant precession frequency decreases rather
steeply with the distance from the BH (ΩLT ∝ 1/R3, where
R a radial coordinate; e.g. Kumar & Pringle 1985), implying
that momentum can be efficiently re-distributed only for gas
rings that are sufficiently close to the BH. While the inner
disc —up to the so-called ‘warp radius’— aligns with the
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BH spin, the outer disc maintains its generically misaligned
orientation. However, most of the angular momentum resides
in this outer disc that thus reacts by pulling the BH spin
toward a fully planar configuration (Rees 1976). For typical
AGN-disc parameters, this process takes place on a timescale
of 1− 10 Myr (Natarajan & Pringle 1998; Lodato & Gerosa
2013).

The Bardeen-Petterson effect has been invoked to ex-
plain misaligned jets in both AGNs (Caproni et al. 2006, 2007;
Falceta-Gonçalves et al. 2010) and microquasars (Maccarone
2002; Martin et al. 2008), as well as quasi-periodic oscillations
in X-ray binaries (Fragile et al. 2001) and the light curves
of some tidal disruption events (Lei et al. 2013). For discs
surrounding supermassive BH binaries, gas-driven spin align-
ment is thought to be a key process to prevent the ejections
of BH-merger remnants from their host galaxies following
relativistic recoils (Bogdanović et al. 2007; Miller & Krolik
2013; Dotti et al. 2010; Gerosa et al. 2015). The upcoming
gravitational-wave mission LISA (Amaro-Seoane et al. 2017)
has the potential of directly measuring the spin directions
of several of these systems, thus providing a complementary
probe to further test the occurrence of the Bardeen-Petterson
effect (Berti & Volonteri 2008; Sesana et al. 2014; Sayeb et al.
2021).

Building on earlier explorations by Scheuer & Feiler
(1996), Martin et al. (2007, 2009), and Tremaine & Davis
(2014), some of the authors recently presented a systematic in-
vestigation of the Bardeen-Petterson effect in accreting super-
massive BH binaries (Gerosa et al. 2020). They put forward
a one-dimensional (1D) numerical scheme that takes into
account, in a consistent fashion, both (i) the non-linear char-
acter of the fluid viscosities in warped configurations (Ogilvie
1999; Ogilvie & Latter 2013) and (ii) the combined effect
of the Lense-Thirring and companion torques. Their study
highlighted the occurrence of a ‘critical obliquity’ —a specific
region in the parameter space where solutions to the underly-
ing 1D boundary-value problem cease to exist. Hints of this
behaviour were previously reported by Tremaine & Davis
(2014) with a different numerical scheme. Gerosa et al. (2020)
conjectured that their numerical divergences correspond to
a physical scenario where the disk breaks into disconnected
regions, hindering the subsequent spin-alignment process.

In the context of BH accretion, disc breaking and tear-
ing has almost exclusively been explored using numerical
simulations. Nelson & Papaloizou (2000) conducted the first
three-dimensional (3D) simulations of a misaligned accre-
tion disc around a BH and found that the inner disc aligns
with the BH spin and the outer disc maintains its original
misalignment, in broad agreement with the theoretical ex-
pectations of the Bardeen-Petterson effect. Additionally, for
large initial misalignments, they found that the transition
between the inner and outer disc plane was no longer contin-
uous so that the disc was ‘close to breaking into two discrete
pieces’ (Nelson & Papaloizou 2000). The concept of disc
breaking was later expanded upon by Nixon et al. (2012),
who demonstrated that discs could tear into more than just
two pieces, and under certain circumstances could break into
precessing rings of gas. Breaking was further confirmed in
the wave-like regime by Nealon et al. (2015), suggesting that
disc breaking is an inevitable consequence of moderate to
strongly misaligned flows accreting onto rotating BHs. Disc
breaking has also been confirmed using both a grid based

magneto-hydrodynamic treatment (Liska et al. 2021) and
analytic arguments for discs subjected to a non-Keplerian
potentials (Doǧan & Nixon 2020).

In this paper, we investigate the interplay between disc
criticality and disc breaking. Guided by the 1D predictions of
Gerosa et al. (2020), we present a large suite of 3D smoothed
particle hydrodynamics (SPH) simulations of misaligned ac-
cretion discs surrounding spinning BHs in binary systems.
We confirm that (i) the occurrence of a critical obliquity cor-
responds to disc breaking and (ii) its importance increases
as the influence of the BH companion increases. Our sim-
ulations further allow us to unveil a richer phenomenology
which includes (iii) disc breaking into both single and mul-
tiple precessing rings as well as (iv) the stabilizing effect of
spiral arms in the disc. A future publication will make use of
these prescriptions to investigate the spin directions of large
populations of supermassive BHs and their relevance to the
LISA mission.

This paper is organised as follows. In Sec. 2 we briefly
summarise the physics of warped accretion discs and the
breaking conditions we employ. In Sec. 3, we present our
numerical implementation. In Sec. 4, we illustrate our main
results in terms of both disc morphology and BH spin align-
ment. In Sec. 5 and 6 we present our conclusions and highlight
prospects for future work in this area.

2 DISC BREAKING

In this section we summarise the relevant analytic framework
of warped discs around BHs that we will make use of in this
work. Consistent with most of the previous literature (but
see Raj & Nixon 2021), we use the terms ‘breaking’ and
‘tearing’ interchangeably to both describe discs that separate
into a discontinuous structure.

2.1 Defining a break

To define where and when the disc tears in our simulations
we consider both the mass surface density and warp pro-
files. First, we require that the surface density profile Σ(R)
present a sustained local minimum Σmin. This straightfor-
ward definition was also used by both Nixon et al. (2012)
and Nealon et al. (2015). Second, we consider the gradient
of the angular momentum profile (also refereed to as ‘warp
profile’, e.g. Lodato & Price 2010)

ψ(R) = R

∣∣∣∣∣∂L̂(R)

∂R

∣∣∣∣∣, (1)

where L̂ is the unit vector pointing in the direction of the disc
angular momentum. We require an increasing local maximum
ψmax to determine that disc breaking is occurring. This is
similar to previous work by both Nelson & Papaloizou (2000),
who considered a steep increase in the radial warp profile to
identify a potential break, and Raj & Nixon (2021).

With these two metrics in mind, we find that the out-
come of our simulations can be classified into the following
outcomes. These four scenarios are showcased in Fig. 1 and
a description of how we discriminate these can be found in
Sec. 3.4.
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Figure 1. The different disc structure in a simulations with warping, unsuccessful breaking, successful breaking/tearing with one ring and
successful breaking/tearing with multiple rings (left to right). The renderings in the top row show the x-y plane, with the BH oriented
such that J = (sin θ, 0, cos θ). The second and third rows show the surface density Σ and the warp profile ψ. The simulations used here,

from left to right, have parameters κ = 3.9 × 10−5 and θ = 60◦, κ = 1.2 and θ = 40◦, κ = 1.4 × 10−4 and θ = 80◦, κ = 2.6 × 10−1 and
θ = 60◦. All simulations are shown at t = 4.3 companion orbits.

(i) Warping : A disc that is not flat but does not show
signs of breaking. Here the angular momentum profile
varies as a function of radius, i.e. ψ(R) 6= 0, but there is
no indication of minima in the surface density profile.

(ii) Unsuccessful breaking : A disc that shows the charac-
teristics of breaking but does not actually separate
into distinct smaller discs. The warp profile shows a
local maximum with a corresponding local minimum
in the surface density profile. However, as the disc
evolves, ψmax may increase but Σmin does not continue
to decrease.

(iii) Successful breaking (single): A disc that shows the
characteristics of breaking with an increasing ψmax

and decreasing Σmin, successfully separating into two
smaller discs. In these simulations, Σmin continues to
decrease until Σmin ≈ 0.

(iv) Successful breaking (multiple): A disc that shows the
characteristics of breaking at many radii simultane-
ously. The warp profile has local maxima and the
surface density approaches zero at multiple locations,
leading to several rings tearing off the disc.

As shown in Fig. 1, the condition ψmax and Σmin are

strongly correlated. In the case that the disc is stable, there
is no or a weak ψmax and no Σmin. As this disc evolves ψmax

decreases, making the disc more stable against breaking (see
Sec. 5.4 for further discussion). In the case that the disc
is unstable, the disk starts to break when both the surface
density decreases and the warp profile increases at the same
radial location. The disc then actually separates if this process
continues until Σmin ≈ 0. Previous 1D analyses (Doǧan et al.
2015, 2018; Gerosa et al. 2020) could only perform a coarser
distinction between connected and disconnected discs. On the
other hand, the 3D hydrodynamical simulations presented in
this paper allow us to delineate between unsuccessful, single,
and multiple breaking.

2.2 Influence of the binary companion

Let us consider a BH of mass M and spin J = GM2χ/c
(where χ ∈ [0, 1] is the Kerr parameter) embedded in a disc
with Shakura & Sunyaev (1973) viscosity α. In the absence
of a binary companion, the disc angular-momentum profile
with radius is self-similar: BHs with different masses and
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spins will be surrounded by re-scaled versions of the same
gaseous structure (Scheuer & Feiler 1996; Martin et al. 2007).

If instead the BH is part of a binary system, the disc is
subjected to both the Lense-Thirring torque at small radii as
well as the tidal torque from the companion at large radii. In
this case the dynamics depends on the interaction between
the two external torques in the disc. Each torque has an
associated radius where it creates the largest warp; at RLT

the Lense-Thirring torque most strongly affects the warp
profile while at Rtid the tidal torque does the same. Following
Gerosa et al. (2020), we parameterise the interaction of
the binary by introducing the non-dimensional ‘companion
parameter’ κ with

κ =

(
Rtid

RLT

)−7/2

. (2)

We set RLT to be the reference radius such that RLT = R0.
The advantage of this parameterisation is that it encodes
information on the companion’s mass M? and orbital sep-
aration R?. In the notation of Gerosa et al. (2020), this
‘companion parameter’ reads

κ ' 0.66

(
M

107M�

)2 ( χ

0.5

)2( M?

107M�

)(
R?

0.1pc

)−3

×
(
H0/R0

0.002

)−6 ( α

0.2

)−3
[

ζ

1/(2×0.22)

]−3

, (3)

where

ζ =
2(1 + 7α2)

α2(4 + α2)
. (4)

where in the limit of α→ 0, ζ → 1/(2α) and κ ∝ α3. Here
H0/R0 is the aspect ratio set at radius R0 where the Lense-
Thirring torque most strongly warps the disc. From Eqs. (16)
and (20) in Gerosa et al. (2020), this radius is equivalent to

R0 =
GM

c2

(
H0

R0

)−4/3(
4χ

αζ

)2/3

. (5)

The case κ = 0 corresponds to the self-similar case of
a single BH, while larger values of κ correspond to configu-
rations where the companion BH strongly perturbs the disc
evolution. This could be due to the binary being massive
(large M,M?), the BH being more rapidly rotating (large χ),
the orbit being tight (small R?), the disc being thin (small
H0/R0), a low viscosity (small α), or some combination of
these. For binaries inspiralling under gas-assisted migration,
the parameter κ increases with time and may eventually lead
the system to criticality.

2.3 Break radius

If the disc breaks, this is likely to happen at a radius Rbreak

that maximizes the warp profile ψ. Martin et al. (2009)
estimated this location by matching the external torques due
to Lense-Thirring precession and the companion to find

Rbreak =

(
8G1/2M1/2JR3

?

3c2M?

)2/9

. (6)

In particular, Eq. (6) is independent of the disc viscosity
α. Therefore, we do not expect significant differences in the
location of the breaking radius if the disc is in the diffusive or
wave-like regime. However, we note that this prediction relies

solely on the balance between Lense-Thirring and companion
tidal torques and neglects, by definition, the response of
the disc to the warp propagation. Because of this, Eq. (6)
does not (somewhat unphysically) depend on the relative
inclination between the BH and the companion’s orbit. As
described below, the relative inclination does play a role in
the breaking dynamics (see also Fig. 1).

2.4 Disc backreaction

As the BH warps the disc, the disc reacts by aligning the BH
with its own angular momentum (Rees 1976). The evolution
of the angle θ between the BH spin J and the binary’s orbital
angular momentum L∗ is given by

d cos θ

dt
=

dĴ

dt
· L̂∗ . (7)

The change of angular momentum of the BH dJ/dt can be
calculated from the integral of the torque exerted by the disc
onto the BH (Gerosa et al. 2020)

dJ

dt
= −

∫ Rmax

Rmin

2G

c2
J × L

R3
2πRdR , (8)

where L is the angular momentum of the disc, |L| =
Σ
√
GMR and Rmin and Rmax are the inner and outer extent

of the disc.
Ideally, one would like to fully take into account the

back-reaction of the disc onto the BH and evolve the sys-
tem self-consistently. This was possible with the 1D scheme
of Gerosa et al. (2020) but they had to rely on a quasi-
adiabatic treatment and could only follow the evolution up
to the critical obliquity. Although tracking the binary inspi-
ral is prohibitive for our 3D simulations, one can still use
the above description to investigate how the spin aligns on
short timescales while the disc reaches its steady state. This
is measured from our simulations by assuming azimuthal
asymmetry to evaluate Eq. (8) and (7) for each simulation
snapshot (see Appendix A for a detailed explanation).

3 NUMERICAL SIMULATIONS

Our simulations are performed with the 3D SPH code Phan-
tom (Price et al. 2018). This code has been used extensively
to model inclined discs around BHs (Nixon et al. 2013; Nealon
et al. 2015), to examine disc breaking (Nixon et al. 2012;
Doǧan et al. 2015), and for comparison with analytical pre-
dictions of warped discs (Lodato & Price 2010).

We conduct a total of 143 simulations considering mul-
tiple viscosities, binary separations, disc aspect ratios and
inclinations. Here we detail the relevant aspects of the code
for our application and the initial conditions used in all of
our runs. Additionally, to the best of our knowledge a por-
tion of our parameter suite constitutes the thinnest discs
around BHs simulated to date with SPH (albeit marginally).
Simulations are run until they show successful breaking or
15 binary orbits. Although this is a short time compared to
the viscous time of the disc, the entirety of 143 simulations
required ∼ 2.5 million CPU hours (we discuss this limitation
in Section 5.4).

The vast majority of the discs in our parameter suite are
comfortably in the ‘diffusive’ regime, where α & H/R and the
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warp propagates diffusively (Papaloizou & Pringle 1983). For
the discs that have α ∼ H/R, we may expect tilt oscillations
to occur as seen by Ivanov & Illarionov (1997); Lubow et al.
(2002) and Nealon et al. (2015). However, our discs are often
not simulated until they reach a steady state and, as we will
discuss next, we set a slightly larger outer boundary than was
considered in these previous works. We thus do not expect
(nor do we recover) evidence of tilt oscillations here.

3.1 Black-hole modeling

In Phantom the rotating BH is modelled using a fixed
potential. To do this we use a post-Newtonian approximation
to model the potential of the rotating BH, achieved with
a first order in v/c correction in the momentum equation
(Nelson & Papaloizou 2000)

dv

dt
= −1

ρ
∇P + v × h−∇Φ + Svisc , (9)

where v, ρ and P are the gas velocity, density and pressure
respectively and Svisc is the viscous force per unit mass. The
term v × h represents the gravitomagnetic force per unit
mass, where

h =
2χG2M2

R3c3

(
Ĵ − 3

(Ĵ · r)r

R2

)
, (10)

r is the spherical coordinate vector, and R is the distance to
the primary BH. We use the modified potential of Nelson &
Papaloizou (2000)

Φ(R) = −GM
R

(
1 +

3Rg

R

)
, (11)

where Rg = GM/c2 is the gravitational radius of the BH.
While preventing the gravitational force from tending to in-
finity close to the BH, this expression also accurately recovers
both apsidal precession frequency at large radii and the sign
of the nodal precession frequency. We note that the modified
potential looses accuracy for R . 10Rg but this is within
our numerical accretion radius.

We note that using a fixed potential limits our simula-
tions, in that physically it is equivalent to assuming that the
primary BH is located at the centre of mass of the binary
system. To respect this assumption, we only consider systems
with a mass ratio M?/M ≈ 0.01 and a low disc mass such
that the centre of mass of the system is within the accretion
radius of the BH (see Sec. 3.2). We vary the other parameters
entering Eq. (3) to span a wide range of κ values, above and
below criticality.

3.2 Initial conditions

Each of our simulations is initialised with a disc and binary
companion in orbit around the primary BH. Here we detail
the properties of the initial conditions, noting that simula-
tions are non-dimensionalised by using κ from Eq. (3). Our
parameters and the corresponding values of κ are summarised
in Table 1.

The disc is initialised as a flat disc in the x-y plane
(i.e., in the plane of the binary orbit) with a mass of 10−6M .
This disc mass is deliberately low to respect our assumption
of using a fixed potential and to avoid any back-reaction

effect on the properties of the binary companion. The surface
density profile is given by

Σ(R) = Σref

(
R

Rref

)−1
(

1−
√
Rin

R

)
, (12)

where the normalisation Σref is determined from the disc
mass, Rref = 30Rg is the reference radius, and Rin = 15Rg

is the inner edge of the disc. The outer radius of the disc
Rout is set to either 150Rg or 250Rg depending on the orbit
of the companion (cf. Table 1). Our results are reported in
orbits of the binary companion, with all simulations running
for a minimum of 3 orbits of the binary or ∼150 orbits at
Rref .

We assume that the disc is vertically isothermal, such
that the sound speed in the disc can be described by
cs(R) = cs,ref(R/Rref)

−q with q = 3/4. Here cs,ref is deter-
mined by the disc thickness (aspect ratio), with (Href/Rref) =
0.01, 0.03, 0.05 and 0.08 set at the reference radius Rref (cf.
Table 1). While these values are relatively large for AGN
discs (Haiman et al. 2009), we are limited by our numerical
resolution to H/R & 0.01. We stress that the dynamics only
depend on the companion parameter κ: results obtained with
larger aspect ratio will still be robust for discs with a lower
H/R but the same value of κ.

We model the viscosity in the disc using the Shakura
& Sunyaev (1973) prescription, with α = 0.05, 0.10, 0.15
and 0.20. This is implemented in Phantom using the shock
viscosity term described by Price et al. (2018) (but see also
Artymowicz & Lubow 1994; Murray 1996; Lodato & Price
2010). The artificial viscosity coefficient αAV is related to the
physical viscosity by

α ≈ 1

10
αAV
〈h〉
H

, (13)

where 〈h〉 is the shell-averaged smoothing length. For a given
resolution determined by 〈h〉/H, we set αAV to give the
targeted α. Price et al. (2018) suggests that αAV & 0.1 is
necessary to resolve the physical viscosity and for all of
our simulations we have αAV & 0.85. Our choice of surface
density and sound speed power-law profiles implies that α
varies with radius throughout the disc following a power-law
with index −1/6 (Lodato & Price 2010). Once simulations
begin evolving, we find that 〈h〉/H becomes roughly constant
across the vast majority of the disc (except where breaking
occurs), essentially removing any radial variation in α.

In the simulations the BH has a spin of χ = 0.9 and the
mass is set to M = 1 (alongside G = c = 1), noting that for
our figures we rescale it to M = 107M�. To accommodate a
relative inclination between the disc and BH, the spin angular
momentum vector of the BH is set to Ĵ = (sin θ, 0, cos θ)
where θ is the relative inclination. Thus a BH with θ = 0
would have spin along the z axis relative to a disc that is
initialised in the x-y plane. Material that falls inside Rin is
accreted without further checks.

We restrict the mass of the binary companion to be
relatively low to accommodate our use of a fixed BH potential
(see Sec. 3.1). For all of our simulations, the mass of the
binary companion is set to M? = 10−2M and the semi-major
axis R? = 250, 398Rg as in Table 1. The binary companion
is initially set on a circular orbit neglecting the disc mass
in the x-y plane. The accretion radius of the companion
is set to 0.25 of the Hill radius, equivalent to 14.6Rg for
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κ R?/Rg Rout/Rg α Href/Rref R0/Rg H0/R0 θ N

3.9×10−5 398 250 0.10 0.08 19.2 0.089 20◦–160◦ 14

1.4×10−4 398 250 0.05 0.05 25.9 0.052 20◦–160◦ 12

1.7×10−4 398 250 0.15 0.08 26.8 0.082 20◦–160◦ 15

5.9×10−4 250 150 0.05 0.05 25.9 0.052 10◦–160◦ 10

2.7×10−3 398 150 0.10 0.05 49.3 0.044 20◦–160◦ 13

1.2×10−2 398 250 0.15 0.05 68.5 0.041 20◦–160◦ 11

2.8×10−2 398 250 0.20 0.05 83.0 0.039 20◦–160◦ 10

2.6×10−1 398 250 0.10 0.03 136.8 0.021 20◦–160◦ 14

1.2 398 250 0.15 0.03 190.3 0.019 20◦–160◦ 14

2.1×104 250 150 0.10 0.01 1.2 × 103 0.0040 20◦–160◦ 11

9.2×104 250 150 0.15 0.01 1.7 × 103 0.0036 20◦–160◦ 10

2.2×105 250 150 0.20 0.01 2.1 × 103 0.0034 20◦–160◦ 9

Table 1. Summary of the initial conditions of our simulations, ordered by increasing κ. Here κ is a measure of the relative influence of
the secondary [cf. Eq. (3)], R? is the binary separation, Rout is the outer radius of the disc, α is the disc viscosity, Href/Rref the disc

aspect ratio at Rref , R0 is the Lense-Thirring radius [cf. Eq. (5)], H0/R0 is the disc aspect ratio at R0, θ is the initial inclination between
the disc and BH, and N is the number of simulations we have completed in the listed θ range. The simulations in the upper (lower) part
of the table are presented in Fig. 3 (Fig. 4).

R? = 398Rg and 9.2Rg for R? = 250Rg, in line with previous
guidance by Nealon et al. (2018). Although the orbit of the
companion is free to evolve and feels the back-reaction from
the disc, this effect is negligible due to the low mass ratio
(Mdisc/M? = 10−4).

Accurately resolving the disc is crucial to recovering
disc breaking (Nealon et al. 2015). We use N = 5 × 106

particles for each simulation, which ensures that the discs
are well resolved. To check this we measure the average
smoothing length to disc scale height ratio 〈h〉/H as in
Lodato & Price (2010). The disc is discretised into 300 radial
annuli and the particle properties in each annuli averaged to
produce radial profiles. To take into account the warping of
the disc, we additionally measure the disc scale height from
the instantaneous warped mid-plane. We meet the resolution
criteria 〈h〉/H < 0.5 in all but the innermost region of the
disc across all of our simulations.

3.3 Evaluating the companion parameter κ

In order to scale our simulations consistently with the de-
scription of Gerosa et al. (2020), we need to evaluate κ which
in turn depends on both R0 and H0/R0. To connect these
parameters, we use the analytic expression of the aspect ratio

H

R
=
Href

Rref

(
R

Rref

)1/2−q

, (14)

and Eq. (5), solving for R0 in terms of Rg. This yields

R0 =

(
4χ

αζ

)(
Href

Rref

)−2(
Rref

Rg

)−1/2

Rg , (15)

where (Href/Rref) is the aspect ratio at the reference radius
in our simulation initial conditions. From R0, one can then
evaluate H0/R0 from Eq. (14) and thus κ from Eq. (3). The
resulting values are reported in Table 1.

3.4 Quantifying a breaking disc

Given the size of our parameter suite, we desire an automated
process to identify if and where any given simulation exhibits
tearing. Based on the criteria highlighted in Sec. 2.1, we
consider either unsuccessful or successful tearing to occur
when we find a radially correlated local minimum in Σ and
local maximum in ψ —that is, where a given Σmin and ψmax

occur at the same R. In particular, we consider these to be
at the same radii when they are within three radial bins of
each other, corresponding to 1% of the full radial domain.
Successful tearing occurs when additionally Σmin ≈ 0, which
we accept when Σ drops below 10% of the maximum of the
initial surface density profile.

Our discs feature spiral arms at large radii due to the
tidal interaction with the binary. Crucially, these can be
picked up as false positives by the above criteria. We thus
also require that ψmax > 1.0 to confirm tearing, as most the
spirals tend to be associated with values of ψmax that are
considerably lower. All borderline cases were also visually
inspected. We use this procedure across our simulations for
all time-steps to identify and locate the breaking radius.

4 RESULTS

4.1 Qualitative behaviour

Figure 2 shows a demonstrative selection of the discs from
our simulated suite. Broadly speaking, all of our simulations
evolve similarly, with a warp developing in the inner regions
while the outer disc is shaped by the tidal interaction with
the binary companion.

Within the first couple of orbits, the binary companion
induces two spiral arms which tends to be more pronounced
in the simulations with the smaller aspect ratio. As expected,
the structure of the spiral arms is not affected by the relative
inclination of the primary BH and are sustained throughout
the duration of the simulations (irrespective of whether the
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Figure 2. Density renderings for a representative set of our suite of 143 simulations showing examples of warping, unsuccessful breaking
and successful breaking. Common to all simulations are the spiral arms at the outer disc edge driven by the tidal interaction with the
BH companion (shown in green). Top to bottom the view alternates between the x-y and the x-z plane. The colour scale shows column

density in kg/m2 and all panels are shown on the same spatial scale. Simulations are shown at their end time (different for each). A
summary of the full suite is shown in Fig. 3.
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disc tears or not). Additionally, the orbit of the binary does
become inclined slightly, but this is a small effect (. 1◦).

The inner disc evolution depends on whether the disc
warps, breaks into two sections, or breaks into multiple rings
(cf. Fig. 1). In all cases, the inner region (R . 50Rg) shows
evidence of a warp within the first couple of orbits of the
binary companion. As the disc continues to evolve, numerous
discs in our suite show visual evidence of break. For those
that show multiple rings, as in previous work we find that
the rings tear off successively from the inner region outwards
(e.g. Nixon et al. 2013). The thickness of the sections that
tear off correspond to the disc thickness, with thinner rings
forming for those discs with the smaller aspect ratio. The
broken components precess differentially resulting in a range
of misalignments relative to the outer disc. In a handful of
simulations, the broken ring or disc also exhibits some local
asymmetric perturbations but these are short lived.

By the end of our simulations the entire disc has tilted
away from its initial orientation in the x-y plane, but the
final inclination depends on whether the disc has broken or
not. In the cases where the disc has not broken, the outer
edge of the disc is almost co-planar with the orbit of the
binary and the inner region is warped. Alternatively, when
the disc tears, the outer disc has an inclination that lies
between that of the binary companion and the equatorial
plane of the BH, with the inner broken regions more strongly
misaligned (for example, see the lower row of Fig. 2).

4.2 Testing the semi-analytic predictions

Figure 3 summarises our results for the different κ values
and relative inclinations θ. Overplotted on Fig. 3 are the
semi-analytic predictions by Gerosa et al. (2020) for where
disc breaking should occur for each of the α values considered.
Here we have used their β = 3/2 solutions (in their notation,
β is the power-law index of the viscosity profile) but note
that this choice does not alter our conclusions. The solid lines
indicate the locations of the critical obliquity: for each value
of α, 1D solutions cannot be found in the central shaded
region of the plot bounded by the two solid lines.

Overall, we find very good agreement between the 1D
analytic prediction from Gerosa et al. (2020) and the results
of our 3D hydrodynamic simulations. In the region where
Gerosa et al. (2020) predicts breaking, we additionally distin-
guish cases of unsuccessful tearing, successful breaking and
breaking with single vs. multiple rings. Far from criticality
(i.e. above and below the solid lines), simulated discs tend to
warp without breaking (squares in Fig. 3). The semi-analytic
approach correctly describes the transition to a different
regime characterised by either unsuccessful (pentagons) or
breaking (diamonds or stars). Once the inclination is greater
than criticality, we find that whether discs break into two or
many discs depends on their disc properties and not their
relative inclination.

Overall, we thus confirm that the critical obliquity does
indeed correspond to disc breaking.

4.2.1 Large aspect ratios, H/R

We do identify some cases where the 3D and 1D results
differ substantially. Across our full parameter suite we do

not observe breaking in any of the discs with H/R = 0.08.
This suggests disagreement with the semi-analytic model, in
particular for the discs with κ = 3.9× 10−5 and 1.7× 10−4

and lower inclinations. This discrepancy is unlikely to be due
to the κ and α values used, as the κ = 1.4×10−4 series has a
similar κ and a lower α but good agreement. We also dismiss
any resolution effects because these discs are thicker than the
rest of our suite and thus present slightly better numerical
resolution than the thinner discs. For these disc parameters,
the simulations are also comfortably in the diffusive regime
so we can safely disregard any potential issues due to wave-
like behaviour. We thus conclude that the semi-analytic
calculation, which is inherently designed to a model a disc-
like structure, has an additional limitation in assuming that
the disc is sufficiently thin. For the other parameters that
we have held constant (i.e. R∗), this limitation corresponds
to roughly H/R ∼ 0.08. In support of this we find good
agreement with the semi-analytic model for our H/R = 0.05
discs and excellent agreement when H/R = 0.03.

4.2.2 Large companion parameters, κ

We additionally run three sets of simulations at very large
values of κ > 104, summarised in Fig. 4. Here the influence
of the binary companion is much larger and our correspond-
ing R0 values are well outside the outer radius of the disc
(c.f. Table 1). Such large R0 values are problematic when
comparing to the semi-analytic model, as the current imple-
mentation of Gerosa et al. (2020) assumes that R0 is located
within the disc. For the runs presented earlier (κ . 1.2), the
combination of the dimensionless scaling and radial range
resulted in an inner boundary that was consistent with the
inner boundary in our 3D simulations. If κ is orders of magni-
tudes larger, however, their inner boundary falls well outside
the inner boundary we have adopted. For example, with
κ = 2.1× 104 the inner boundary assumed by Gerosa et al.
(2020) sits at 123Rg which is almost at our simulated outer
disc edge of 150Rg. A direct comparison between the two
approaches is thus not possible for these large-κ, large-R0

sets of simulations.
Despite this, at high κ we find that Fig. 4 still shows that

for moderate to large inclinations we can expect breaking
and for small inclinations, the disc to remain stable. We thus
expect our predictions in relation to the BH disc alignment
to be indicative even at higher κ (see Section 4.5).

4.2.3 High viscosity, α

We additionally have two sets of simulations that have α =
0.2, which at low κ do not necessarily show agreement with
the semi-analytic model. For the case with κ = 2.8× 10−2

and α = 0.2 this is particularly surprising because the semi-
analytic model should work quite well at low κ and high α.
As before, for these discs we can rule out any differences
due to our numerical implementation as the cause of this
discrepancy. However, consideration of the surface density
profiles suggests that the inner regions — where we expect
breaking to occur — is rapidly accreted. Figure 5 compares
two Σ profiles for simulations with α = 0.05 and α = 0.2. In
the low α case the disc shows clear breaking at ≈ 50Rg and
there is still a significant amount of material inside this radius
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Figure 3. Comparison of our 3D hydrodynamical simulations to the 1D semi-analytic prediction by Gerosa et al. (2020) as a function of
κ (Eq. 3) and the initial BH misalignment θ. Here the behaviour of the disc in our simulations is coded with warped discs as squares,
unsuccessful breaking as pentagons, successful breaking into two discs with diamonds, and tearing into many rings as stars. The shaded

regions indicate the critical region identified by Gerosa et al. (2020) where 1D disc solutions cannot be found. Colours represent the
viscosity of the discs.
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Figure 4. Same as Fig. 3 but for additional simulation sets with

higher κ which violates the assumption of the semi-analytic 1D

model. Even at these large κ values We still find evidence of disc
breaking in our 3D simulations.

making up the inner ring. The high α case has accreted much
more material from the inner edge, potentially prohibiting
the ring from breaking off.
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Figure 5. Surface density profiles showing that at high α the

material where we might expect to see disc breaking is rapidly
accreted. Here the simulations both have θ = 80◦ with α = 0.05,
κ = 1.4 × 10−4 and α = 0.2, κ = 2.8 × 10−2. Both simulations

are shown at 5.2 orbits.

4.3 Location of the break radius

Figure 6 shows a representative sample of the location of
the breaking radius for our simulations. We find that, when
breaking starts, the radius at which it occurs depends on
the inclination but the relationship is unclear. The measured
break radius is also systematically smaller than the prediction
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Figure 6. Location of the breaking radius measured in the sim-

ulations scaled by its predicted location, Eq. (6). We show our
simulations with unsuccessful and successfully broken discs with
κ = 2.6 × 10−1. In the early stages of these simulations there
appears to be a dependence on the inclination. Retrograde discs

(stars) consistently break at larger radii than their prograde coun-
terparts (circles).

of Eq. (6). In most cases, the breaking radius decreases with
time, although the opposite happens for a few runs (e.g.
θ = 40◦, 140◦ in Fig. 6). Both of these observations are likely
a consequence of the short duration of our simulations, as we
only aim to demonstrate stability against breaking. Overall,
we find that the disc breaks at a location that is up to ∼ 5
times smaller than the prediction by Martin et al. (2009).

Across our parameter suite we consistently find that
the break radius for retrograde discs is larger than for
their prograde counterparts. Figure 7 shows an example
prograde/retrograde pairing (with κ = 1.45 × 10−2 and
θ = 90◦ ± 40◦). The disc structure only differs in the inner
regions with the retrograde case breaking at a slightly larger
radius. Gerosa et al. (2020) finds that these cases are per-
fectly symmetric, with an identical dynamics. However, the
direction of the spirals relative to the BH spin does depend
on whether the BH is prograde or retrograde and thus breaks
this assumption of symmetry. This an exclusively 3D effect
that cannot be captured with simpler 1D models. We confirm
this behaviour for all of our prograde/retrograde pairings and
note that, even though the details of the breaking are slightly
different, the prediction of whether the disc will break or not
is robust (Fig. 3).

The predicted value of Rbreak in Eq. (6) is independent
of viscosity. In Fig. 8, we compare two of our simulations
with α = 0.05, H/R = 0.05 and κ = 1.4× 10−4 vs α = 0.2,
H/R = 0.01 and κ = 2.2 × 105. Here we hold θ = 40◦ and
R∗ (and thus the external torques) as constant. The lower
α case demonstrates tearing while the higher α case shows
evidence of trying to tear but ultimately is unsuccessful, cf.
Fig. 3. This demonstrates that our simulations are consistent
with predictions from both Martin et al. (2009) and Gerosa
et al. (2020): while successful disc tearing depends strongly
on the disc viscosity, the radius where it tears does not.
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Figure 7. Comparing the density evolution of a pro-

grade/retrograde pair of simulations after three companion orbits.
While the 1D treatment implies perfect symmetry, in 3D simula-
tions this is broken by the spirals induced by the binary companion.

The prediction of whether the disc will break or not remains ro-
bust, see Fig. 3, although these discs break at slightly different
locations. The simulations shown here have κ = 1.45 × 10−2 and

θ = 90◦ ± 40◦.

4.4 Spiral arms can prevent disc tearing

Here we further investigate our simulation with κ = 1.4×10−4

and θ = 40◦, which we identify as unsuccessfully breaking.
Figure 9 shows the evolution of the surface density and warp
profiles throughout this simulation (purple curves). As the
warp propagates from the inner region, it grows in amplitude
with a peak at R ∼ 130Rg, until it reaches the region where
the spiral arms are located. Upon meeting the spiral arms just
before R ∼ 200Rg, the warp sharply decreases in amplitude
and breaking is halted. This simulation thus suggests that
the spiral arms can stabilise the disc against breaking when
the disc is set to break near or beyond them. Such an effect
is likely due to the local variations in the disc viscosity: spiral
arms increase the local viscosity and a larger viscosity makes
it harder to break the disc (e.g. Fig. 3). We note that this
effect can be captured only using hydrodynamical simulations
and is thus absent in the predictions of Gerosa et al. (2020).

To further investigate this behaviour, Fig. 9 also shows
a second simulation (green curves) where the companion
is placed at a larger radius R? = 597Rg resulting in κ =
4.3 × 10−5. With the increased separation, the companion
has a weaker effect on the disc, the spiral arms are weaker,
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Figure 8. Location of signatures of tearing for simulations with

the same BH and binary torque but different viscosities. Here the
simulation with α = 0.05 has κ = 1.4 × 10−4 and α = 0.2 has

κ = 2.2 × 105. Although only the lower α disc successfully tears,
both show indications of tearing at the same radius, simultaneously
confirming the predictions by Martin et al. (2009) and Gerosa

et al. (2020).

and one would anticipate that it is harder to break the disc.
However, Fig. 9 shows that the disc breaking is actually more
successful (ψ ∼ 1.5) in the case with the larger separation and
weaker spiral arms. Figure 10 displays the density rendering
of these comparison simulations at the same time as the
final time-step shown on Fig. 9. In the case with the strong
spiral arms (R? = 398Rg) we find only unsuccessful breaking,
whilst in the case with weak spiral arms (R? = 597Rg) there
is a break forming in the disc — indeed roughly at the
location of the spiral arms.

This point illustrates that, while the parameter κ cap-
tures the qualitative occurrence of the breaking, a more
complex dynamics is present and can only be captured with
detailed simulations.

4.5 Disc-black hole alignment

We now calculate d cos θ/dt (cf. Sec. 2.4 and Appendix A)
to evaluate how disc breaking affects alignment between the
disc and BH. In Fig. 11 we show two representative sub-sets
of our simulations with all discs prograde and κ equal to
either 1.4 × 10−4 or 2.6 × 10−1. While both sets contain
simulations that have both warping and successful breaking,
the discs in the low κ set only include discs with a single
break while the high κ only presents multiple breaks.

When the disc remains warped with no signs of breaking
(dotted lines, Fig. 11), d cos θ/dt is an increasing function that
appears to asymptote to a value that is in fair agreement from
the prediction from Gerosa et al. (2020). As soon as a disc
shows signs of successful breaking (solid lines), our measure
for d cos θ/dt develops strong oscillations on a timescale set
by the precession of the inner broken disc, with d cos θ/dt at
its lowest when the inner disc(s) most strongly oppose the
outer disc.
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Figure 9. Surface density (Σ, top panel) and warp profiles (ψ,
bottom panel) for discs with θ = 40◦, κ = 1.4 × 10−4 (‘Strong

spirals’, purple) and θ = 40◦, 4.3 × 10−5 (‘Weak spirals’, green).
Solid (dashed) lines are computed at t = 4 orbits (t = 10 orbits)
of the closer companion. The spirals are located at R ∼ 180Rg.
Disc breaking is more successful in the case where the spirals are
weaker as shown by the greater warp amplitude.

The amplitude of the oscillations depends on whether
the disc has broken into two smaller discs (upper panel, low κ)
or multiple rings (lower panel, high κ). We can understand
this by considering Eq. (8), where we integrate from the
inner edge to the outer edge of the disc. When the inner
disc breaks and precesses, it can develop opposing angular
momentum to the outer disc. Thus when we evaluate Eq. (8),
it is possible that the contribution of the inner disc cancels
out part of the contribution of the outer disc in the integral —
particularly when we take into account the R−3 dependence
of the Lense-Thirring torque.

In the case that there is a single break, the inner disc
has a relatively large radial extent and thus holds an ap-
preciable fraction of the total disc angular momentum. Our
estimation of d cos θ/dt for these discs is mostly governed
by the orientation of the inner disc and has a large ampli-
tude. If instead there are multiple rings, each of these is
radially narrower and so hold a smaller fraction of the total
disc angular momentum compared to the single-break case.
Additionally, they precess with a rate determined by their
radius and so have a range of orientations. Configurations
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Figure 10. Breaking can be prevented by local hydrodynamical

structures, like the spirals driven by the interaction with the
binary companion. Upper and lower panel show a mass rendering
of the simulations with θ = 40◦ and κ = 1.4 × 10−4, 4.3 × 10−5,

respectively, at the same timestep of the dotted lines in Fig. 9.
Increasing the binary separation reduces the strength of the spirals,
making it easier to break the disc even though κ decreases.

where they oppose each other are also possible. This leads to
an oscillatory modulation on the d cos θ/dt profile, with the
oscillations reflecting the opposing angular momenta from
the sum of the rings.

This behaviour is replicated across our parameter suite.
For discs with one break we find that d cos θ/dt is slowed
and alignment between the disc and BH may be prevented.
For discs with multiple rings, alignment between the outer
disc and BH is hindered but not necessarily prevented.

5 DISCUSSION

5.1 Limitations of the 1D model

Our comparison in Fig. 3 highlights the limitations of the
semi-analytic model of Gerosa et al. (2020). As expected,
at large values of κ the boundary assumptions of the 1D
model mean we cannot compare directly. Additionally, we
may expect non-axisymmetric effects to play a major role
when the companion has such a strong influence. Here our
simulations still recover combinations of stable and broken
discs, with the broken discs at higher inclinations. Our results
thus suggest that even when the companion has a strong
influence, disc breaking can inhibit the alignment between
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Figure 11. Predicted BH-disc alignment for simulations with one

break (upper panel, κ = 1.4 × 10−4) and multiple breaks (lower
panel, κ = 2.6 × 10−1). In each panel discs that have not broken

are shown with a dotted line. The oscillatory profiles reflect the

precession of the broken disc segments. Here we only show the
prograde cases for clarity but note that the retrograde cases are
qualitatively similar.

the disc and the BH. At this extreme we do note that our
assumption of a fixed potential may become problematic
(but see Sec. 5.3).

We do not recover the predicted breaking for very thick
(H/R = 0.08) or large viscosity discs (α = 0.2). In the former
case, this is likely to be because the disc is thick enough
that it has violated the assumption inherently made in the
semi-analytic model that the disc is thin, even though the
calculation of κ depends on the aspect ratio. In the latter
case this is likely due to the inner part of the disc accreting
rapidly, preventing a ring from successfully breaking off.

5.2 Numerical viscosity at low α

A potential cause for any discrepancy between the 1D semi-
analytic model and the results of our simulations could be
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our modelled value of α. While Lodato & Price (2010) demon-
strates that the α prescription in our simulations is appropri-
ate (down to smaller α than we have used here), this has not
yet been confirmed in presence of a break. Prior to break-
ing, the disc is continuous and resolved and so the viscosity
treatment is robust. After the break has occurred, at the
location of the break we have locally poor resolution which
can naturally lead to higher local viscosity with our chosen
viscosity implementation. In practice, this may mean that
the low-α cases might appear to be more viscous than we
expect, increasing the angle of criticality and moving points
to larger κ in Fig. 3. We speculate this is the cause of the
slight discrepancy observed for α = 0.05 and κ = 1.4× 10−4,
but note that this does not appear to be an issue with any
of our other sets.

5.3 Assumption of a fixed potential

As introduced in Sec. 3.1, we use a fixed potential to model
the primary rotating BH. Using a fixed potential in this
manner is common; for example in other SPH codes (Nel-
son & Papaloizou 2000), in grid codes (Dyda & Reynolds
2020) and applications other than accretion discs (Bonnerot
et al. 2016). A consequence of this approach is that it is
equivalent to assuming the primary BH is the centre of mass
of the binary system. For the parameters we have chosen
(see Table 1), the centre of mass of our simulation is within
3.8Rg of the primary BH. This is well within our numerical
accretion radius of 15Rg and so will not significantly impact
the simulated disc evolution.

5.4 Long term behaviour

With (unfortunately) finite computational time at our dis-
posal, we have chosen to run more simulations with different
parameters for a shorter time rather than fewer simulations
for longer times. This means that our simulations run for a
timescale that is much shorter compared to both the viscous
time of the disc or the binary inspiral time. However, for
the vast majority of our simulations we do not require long
time-scales to confirm if the disc is stable to breaking or not.

In the instance that the disc is unstable (i.e. in the re-
gion of the parameter space well beyond criticality), breaking
occurs within a few orbits and we do not have to simulate
further. Confirmation that breaking occurs on a few dynam-
ical time-scales rather than the viscous time-scale can be
inferred from Fig. 8, where we see signatures of breaking
for discs with high and low viscosities at the same num-
ber of companion orbits. If instead the disc is stable, a low
amplitude ψ(R) profile (e.g. Fig. 1) develops without local
maxima. As the disc evolves, the ψ(R) profile decreases in
amplitude, moving the disc further towards stability (e.g.
Doǧan et al. 2018). With no changing external torques to
influence the disc, this profile continues to decrease and it
becomes increasingly stable against breaking. The difference
in the evolution of the ψ(R) profile for the stable/unstable
cases is the primary feature we test for when we summarise
our results in Fig. 3.

The only discs in our suite that would benefit from
longer simulation times are those that show unsuccessful
breaking. We identify numerous cases of unsuccessful break-
ing where the disc is moving towards breaking, stalls and

then subsequently stabilises. While we have made every effort
to rule out that these discs are simply in the early stages of
a successful break, the intriguing subtleties of this behaviour
deserve further attention.

5.5 Isothermal equation of state

The semi-analytic model of Gerosa et al. (2020) assumed a
locally isothermal equation of state - that is, the temperature
varies as a function of radius but does not allow for any
disc heating. In order to compare with our 3D numerical
simulations, we then assume the same equation of state which
results in the disc thickness being kept constant at a given
radius. While this is valid up until the point in our simulation
where the disc breaks, it is not clear that this holds once the
disc has broken. The broken disc geometry naturally leads to
large relative velocities, and when these are of order of the
Keplerian velocity these could easily lead to strong shocks.
Such shocks may heat up the disc, altering the disc geometry
and properties significantly.

Although assuming a particular equation of state is
unlikely to be correct after the disc has broken, to date it is
the most widely adopted approach (e.g. Nelson & Papaloizou
2000; Ogilvie & Latter 2013; Tremaine & Davis 2014; Nealon
et al. 2015; Liska et al. 2021; Doǧan & Nixon 2020, amongst
others). Simulations that include radiative transfer will be
able to account for heating due to shocks as well as any
viscous heating or cooling that may occur in the broken
disc. While this is not necessary for our comparison with
the semi-analytic model and does not affect our assessment
of whether the disc breaks or not, it should be taken into
account when considering subsequent detailed evolution of
broken discs.

6 CONCLUSIONS

In this work we have considered the structure of a misaligned
accretion disc surrounding BHs in binary systems. With our
suite of 143 SPH simulations we have shown that:

(i) The ‘critical obliquity’ first identified by Tremaine &
Davis (2014) and explored at length by Gerosa et al.
(2020) does indeed correspond to disc breaking/tearing,
where the disc separates into distinct segments.

(ii) Our numerical simulations recover the qualitative pre-
dictions of the 1D semi-analytic model, with the mutual
inclination that causes disc breaking decreasing with
increasing κ and decreasing α.

(iii) At the same time, 3D hydrodynamics allows us to
unveil a richer phenomenology. Disc breaking hinders
(and in some cases can prevents) alignment between
the disc and the BH. The difference in this behaviour
depends on the whether the disc breaks into two discs
or multiple precessing rings.

(iv) Hydrodynamic effects not taken into account by the
semi-analytic model such as spiral arms are able to
stabilise the disc against breaking.

Our results have strong implications for inspiralling
binary BHs. Most current models are based on the idea that
the lighter binary member accretes more than its heavier
companion (a.k.a. ‘differential accretion’, e.g. Gerosa et al.
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2015; Siwek et al. 2020; Sayeb et al. 2021), predicting that BH
binaries should reach their merger phase with the primary’s
(secondary’s) spins aligned (misaligned) with the orbital
angular momentum of the binary. Once the critical obliquity
is included in this picture, disc breaking implies that spin
alignment is slowed if not completely prevented for a specific
subset of systems. Although further modeling is necessary
to understand the full repercussions of our findings, this
opens for the exciting prospect of exploiting future LISA
measurements of precessing binary BHs to infer details on
the dynamics of warped discs in gas-rich galaxies.
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APPENDIX A: SPIN-ALIGNMENT
IMPLEMENTATION

Here we describe our method for calculating d cos θ/dt as a
function of time for each disc. Importantly, although Eq. (8)
could in principle be calculated as a sum over particles, we
instead calculate it over annuli as we describe here. We begin
with a standard discretisation of the disc into N concentric
annuli, following Lodato & Price (2010). Here particles are
binned into their respective annulus by their spherical radius
because this accounts for any warped or misaligned disc
structure. We assume azimuthal symmetry and average the
properties of the particles in each annulus to recover the
disc properties as a function of radius. While we note this is
not strictly accurate as the spiral arms are not azimuthally
symmetric, this best matches the 1D approach of Gerosa
et al. (2020) which we are comparing to and the perturbations
introduced by the spirals represent a small contribution to
d cos θ/dt.

With this discretisation, one has Σi and l̂i for each
annulus i. We then write Eq. (8) in its similarly discretised
form

dJ

dt
=

4πG

c2

N∑
i

J ×Li

R2
i

. (A1)

where the angular momentum density is given by Li =
Σi

√
GMRi l̂i (note this is not the same as mr×v calculated

on each individual particle). We then need to calculate the
time derivative of the unit spin angular momentum,

dĴ

dt
=

1

J

(
dJ

dt
− Ĵ

dJ

dt

)
, (A2)

which follows from J = JĴ . The last term in Eq. (A2) rep-
resents the change in the magnitude of the BH spin angular
momentum. However, by definition, the Bardeen-Petterson
torque (dJ/dt) is always perpendicular to J . We thus use
only the first term to calculate the alignment, with

d cos θ

dt
=

1

J

dJ

dt
· L̂∗ . (A3)

The last term is calculated from L∗ = M?R?×V?, where V?

is the binary’s velocity relative to the primary. We complete
the above procedure for each output of our simulation, to
give d cos θ/dt as a function of time for each disc, as shown
in Fig. 11.
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