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ABSTRACT

Context. Life is distinctly homochiral. The origins of this homochirality are under active debate. Recently, propylene oxide has been
detected in the gas-phase interstellar medium (ISM). The enantiomeric composition of ISM propylene oxide may be probed through
circular polarization measurements, but accurate estimates of the circular dichroism properties of the microwave transitions of propy-
lene oxide are not available.
Aims. Our aim is to develop a model of the circular dichroic activity in torsion–rotation transitions of closed-shell chiral molecules
such as propylene oxide. With this model we can estimate the viability, and optimize the observation strategies, of enantiomeric excess
detection in ISM propylene oxide.
Methods. Circular dichroism in spectral lines manifests through the simultaneous interaction of an electromagnetic radiation field with
the molecular electric dipole moment and magnetic dipole moment. We developed techniques to quantify electric dipole and magnetic
dipole moments of torsion–rotation transitions by expanding on earlier modeling of the electric and magnetic dipole properties of
single torsion–rotation levels. To model the circular dichroism properties of propylene oxide, we used these techniques in combination
with ab initio quantum chemical calculations.
Results. The expressions for the dichroic activity of the microwave transitions of torsionally active molecules are derived. We find
that the torsional motion of molecules exhibiting internal rotation contributes significantly to the total magnetic moment. We present
estimates for the dichroic activity of the torsion–rotation transitions of propylene oxide. We predict that the circular polarization frac-
tions of emission lines of enantiopure propylene oxide relevant to astronomical detections are on the order of 10−6.
Conclusions. Due to the low predicted circular polarization fractions, we conclude that enantiomeric characterization of propylene
oxide in the gas phase of the ISM is impossible with the current astronomical observation techniques. We suggest that only chiral
radical species may be viably employed for purposes of enantiomeric excess detection. We estimate that laboratory experiments may
be successful in detecting the enantiomeric composition of a mixture of propylene oxide through microwave dichroism spectroscopy.

Key words. astrochemistry – molecular data – polarization – ISM: molecules

1. Introduction

Homochirality is a key feature of life on Earth, and is hypoth-
esized to be an indicator of extraterrestrial life (Avnir 2020).
While the origins of the homochirality of life are under active
debate (Boyd & Famiano 2018), past analyses of carbonaceous
chondrites revealed chiral asymmetry in organic matter (Cronin
& Pizzarello 1997), suggesting that the trait of homochirality
that characterizes life on Earth might have cosmochemical ori-
gins. The recent detection of propylene oxide towards Sgr. B2(N)
marked the first chiral molecule to have been discovered in the
gas phase of the interstellar medium (ISM; McGuire et al. 2016).
This discovery opens up the possibility of probing its possible
chiral asymmetry through polarization measurements.

While the production of ISM propylene oxide is suggested
to yield a racemic mixture (Bergantini et al. 2018), chiral asym-
metry may be produced through chirally selective photolysis by
circularly polarized electrons (Ulbricht & Vester 1962; Dreiling
& Gay 2014) or circularly polarized light (Flores et al. 1977;
Modica et al. 2014). A slight chiral asymmetry may be sub-
sequently enhanced through enantioselective surface chemistry
(Gellman et al. 2015). Models of the chirally selective chemistry

in the ISM may be constrained if the enantiomeric composition
of propylene oxide can be probed.

Enantiomeric excess may be observed through polariza-
tion measurements. The transfer of radiation through a non-
racemic compound is characterized by the production of circular
polarization at its transition frequencies (Eyring et al. 1968;
Holzwarth et al. 1974). Chiral compounds that have an enan-
tiomeric excess are dichroic because of the electromagnetic
(EM) radiation’s simultaneous interaction with the molecular
electric and magnetic dipole moment (Polavarapu 2018). Lab-
oratory measurements of chiral compounds have successfully
indicated an enantiomeric excess through the observation of
circular dichroism in electronic (Eyring et al. 1968; Caldwell
1969) and vibrational (Holzwarth et al. 1974; Stephens 1985)
transitions.

Propylene oxide in the ISM has been detected in its torsion–
rotation transitions. While both the electronic (Turchini et al.
2004; Stranges et al. 2005; Garcia et al. 2014; Contini et al. 2007;
Rizzo & Vahtras 2011) and vibrational (Polavarapu et al. 1985;
Kawiecki et al. 1988; Bloino & Barone 2012) optical activity
of propylene oxide have been characterized, the circular dichro-
ism of its torsion–rotation transitions has yet to be investigated.
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Laboratory experiments on the optical activity of any microwave
transition are yet to be performed. The circular dichroism proper-
ties of rotational transitions have been investigated theoretically
(Salzman & Polavarapu 1991; Salzman 1997), but these studies
did not include the contribution of molecular torsional motion to
the optical activity. Determining the viability of the astronom-
ical detection of chiral asymmetry in propylene oxide requires
accurate theoretical modeling of the dichroic properties of its
torsion–rotation transitions.

In this paper, we investigate the dichroic properties of the
torsion–rotation transitions of propylene oxide and discuss
the possibility of detecting a possible enantiomeric excess in
the ISM through the partial circular polarization of propylene
oxide emission. In Sect. 2, we discuss the theory behind the
emergence of circular polarization in the emission of a chiral
molecule characterized by enantiomeric excess. In Sect. 3, we
discuss the torsion–rotation structure of propylene oxide. In
addition, we outline the quantum chemical methods that we
used to compute the relevant electric and magnetic properties of
propylene oxide. We also present the proper theory to compute
the dichroic properties of the torsion–rotation transitions of
a torsionally active molecule. We present the results of our
calculations in Sect. 4. In Sect. 5, we discuss the implications
of the dichroic properties of the torsion–rotation transitions
for astronomical searches for chiral asymmetry in the ISM gas
phase. We conclude in Sect. 6.

2. Theory

We set out to evaluate the possibility of detecting enantiomeric
excess in propylene oxide in the ISM through polarization obser-
vations. The astronomical emission of propylene oxide occurs
in the microwave region, and is associated with torsion–rotation
transitions. To characterize the production of polarization in
astronomical propylene oxide emission, we revise the (polarized)
radiative transfer equation through a chiral medium in the fol-
lowing subsection. The production of circular polarization at
the transition frequencies of a chiral molecule is the product
of the simultaneous interaction of the electromagnetic radiation
with the molecular electric dipole and magnetic dipole moments.
In Sect. 2.2, we review the theory of the electric dipole and
magnetic dipole moment of torsionally active molecules.

2.1. Radiative transfer and circular dichroism

The transfer of electromagnetic radiation through a medium with
chiral molecules is characterized by the production of circular
polarization at the transition frequencies of the chiral molecule,
called circular dichroism, and the rotation of linear polariza-
tion away from the transition frequencies, called optical rotation.
These two effects are the products of the simultaneous interac-
tion of the electromagnetic radiation with the molecular electric
dipole and magnetic dipole moments, and are related to each
other through the Kramers–Kronig relations. Circular dichroism
of microwave transitions is the preferred method of astronomical
chirality detection as this effect occurs at the transition frequen-
cies specific to the (chiral) molecule, and it does not require a
linearly polarized background radiation field.

In Appendix A, we derive the polarized radiative trans-
fer equation for a chiral molecule. There are other thorough
derivations of interaction of radiation with chiral molecules
(see, e.g., Polavarapu 2018), but here we present the polarized
radiative transfer in a formalism that will be more familiar
to astrophysicists. We favor this formalism as it is more suit-
able to astrophysical conditions, where both the emission and

absorption properties of the medium need to be incorporated in
the radiative transfer equation.

We consider a transition between lower state, which we
denote by its angular momentum, j1, and upper state, j2. The
dichroic properties of the transition have their origin in the
simultaneous interaction of the electric dipole and magnetic
dipole moment with the electromagnetic (EM) field. The rela-
tive interaction rate of that interaction, compared to the regular
electric dipole interaction rate, is (in SI or CGS units)

g
j2, j1
Kuhn =

2Im
(
µ j2, j1 m∗j2, j1

)
c|µ j2, j1 |

2 . (1)

The relative interaction rate is dimensionless and is called
the Kuhn dissymmetry factor. The Kuhn dissymmetry factor
is dependent on the transition electric and magnetic dipole
moments, µ j2, j1 and m j2, j1 , and is normalized by the speed of
light, c. In the method section and in Appendix B, we describe
how the transition electric and magnetic dipole moments may be
computed for a torsion–rotation transition. The equation describ-
ing the transfer of (polarized) radiation for a chiral molecule,
over the optical depth τν, is derived in Appendix A, and reads

d
dτν

(
Iν
Vν

)
= −

(
1 g

j2, j1
Kuhn

g
j2, j1
Kuhn 1

) (
Iν
Vν

)
+ S ν

(
1

g
j2, j1
Kuhn

)
, (2)

where Iν and Vν are respectively the Stokes parameters at fre-
quency ν, which represent the total (unpolarized) specific inten-
sity, and the circular polarization. In Eq. (2), S ν is the source
function given in Eq. (A.6).

A transition is circularly dichroic if Kuhn’s dissymmetry fac-
tor, g j2, j1

Kuhn, is nonzero. From its definition, we readily observe
that it is only nonzero for molecules that are chiral; the electric
dipole and magnetic dipole moment operators are respectively
antisymmetric and symmetric under an inversion operation, so
Kuhn’s dissymmetry factor is opposite for two enantiomers and
cancels out for a nonchiral molecule or a racemic mixture. From
the radiative transfer equation, we note that the fractional cir-
cular polarization of an optically thin transition approaches its
dissymmetry factor in the case of a homochiral sample. For an
absorption line, the fractional circular polarization approaches
Kuhn’s dissymmetry factor times the optical depth.

2.2. Electric and magnetic properties of propylene oxide

The properties relevant to the circular dichroism of a chiral
molecule are the electric dipole and magnetic dipole moments.
The electric dipole moment results from the separation of posi-
tive and negative charges in the molecule. The magnetic dipole
moment of a closed-shell molecule such as propylene oxide is
the result of the differential motion of its charged particles. The
electric dipole moment of a molecule may be derived with rel-
ative ease from the line strengths of its transitions (Townes &
Schawlow 1955). The magnetic dipole moment, on the other
hand, is dependent on the motion of the nuclei and electrons,
and its evaluation involves rigorous modeling of the often cum-
bersome rotational dynamics of that molecule. In this paper we
are interested in propylene oxide, which is a torsionally active
molecule, exhibiting internal rotational motion.

The full derivation of the magnetic dipole moment of tor-
sionally active molecules was first presented by Huttner &
Flygare (1969) for a molecule with its principal a-axis along
the torsional-axis. Later, Sutter & Guarnieri (1970) generalized
this to a molecule with an arbitrary torsional-axis. The magnetic
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dipole moment of a torsionally active molecule can be character-
ized by the rotational g-tensor, g, and the torsional b-vector, b,
which are dimensionless tensors that relate the molecular (inter-
nal) rotation to its magnetic dipole moment through (Sutter &
Guarnieri 1970; Lankhaar et al. 2018)

m̂ = −
µN

~
gĴ − f

µN

~

[
b − gλ

] (
p̂γ − ρ · Ĵ

)
, (3)

where Ĵ and p̂γ are the rotational and torsional angular momen-
tum operators, µN and ~ are the nuclear magneton and the
reduced Planck constant, f is a dimensionless factor that depends
on the ratio of the moments of inertia of the rotating top and
frame, λ is the unit vector in the direction of the internal rota-
tion, and ρ is a vector dependent on the relative inertia of the
internal rotation group and the molecule.

The magnetic dipole moment of a torsion–rotation level can
be evaluated from the rotational g-tensor and torsional b-vector.
While the rotational g-tensor can be accurately determined
through quantum chemical modeling (Flygare & Benson 1971;
Sauer 2011), no such methods exist to numerically compute the
torsional b-vector. There have been some experimental efforts
to measure the torsional b-vector of molecules exhibiting inter-
nal rotation. Engelbrecht et al. (1973) determined the torsional
b-vectors of some simple molecules exhibiting internal rotation.
Recently, Takagi et al. (2021) measured the torsional b-vector
of methanol, a torsionally active molecule whose Zeeman effect
can be detected in its strong maser lines (Lankhaar et al. 2018;
Vlemmings 2008).

Evaluating the magnetic dipole moment of a torsion–rotation
level or transition requires evaluating Eq. (3) in a torsion–
rotation basis using angular momentum algebraic techniques.
The proper theory of evaluating torsion–rotation level spe-
cific magnetic dipole moments from the rotational g-tensor and
torsional b-vector is presented in Lankhaar et al. (2018). In
Appendix B we expand on Lankhaar et al. (2018), and derive
the expressions of magnetic dipole and electric dipole moment
matrix elements that are general to torsion–rotation transitions.
We furthermore dedicate particular attention to the antisymmet-
ric part of the rotational g-tensor, because of the sensitivity
of Kuhn’s dissymmetry parameter to it. To model the antisym-
metric part of the rotational g-tensor, we follow the early work
of Eshbach & Strandberg (1952), who pointed out the need to
symmetrize the coupling of the magnetic field to the rotational
angular momentum.

3. Methods

In the following, we present the methods that we used to com-
pute the dichroic activity properties of propylene oxide. First,
we discuss the modeling of the torsion–rotation structure of
propylene oxide. After that, we discuss the electronic structure
methods that we used to obtain the magnetic coupling tensors. In
Appendix B, we present the proper angular momentum algebra
to find their matrix elements in the basis that we used to obtain
the torsion–rotation structure.

3.1. Torsion-rotation structure of propylene oxide

Propylene oxide is an asymmetric rotor molecule that is torsion-
ally active about its C–CH3 bond, where the internal rotation
is hindered by a three-fold barrier of 947.8 cm−1 (Swalen &
Herschbach 1957). The internal rotation of the methyl group is
associated with a potential with three equivalent minima, result-
ing in the splitting of each rotational state in two degenerate

torsion–rotation states of E-symmetry, and one torsion–rotation
state of A-symmetry. Spectroscopic studies of the microwave
spectrum have been performed in the torsional ground state
(Swalen & Herschbach 1957; Mesko et al. 2017) and in the
excited torsional state (Stahl et al. 2021). The Hamiltonian that
we used to model the torsionally active propylene oxide is
described in Swalen & Herschbach (1957). We obtained torsion–
rotation eigenstates through a modified internal axis method
(Woods 1966; Vacherand et al. 1986; Hartwig & Dreizler 1996),
where the rotational part of the Hamiltonian is set up in the prin-
cipal axis system, where the inertia tensor is diagonal, while the
internal rotation Hamiltonian is set up in the rho-axis system
(Hougen et al. 1994) and rotated to be later incorporated into the
total Hamiltonian. We used the fitting constants of Mesko et al.
(2017) to set up the torsion–rotation Hamiltonian of propylene
oxide. The eigenfunctions of the torsion–rotation Hamiltonian
were expanded in a basis of |J(K)M〉 |vτ(K)σ〉 functions. The
functions |J(K)M〉 are the regular symmetric top wave func-
tions, with angular momentum J and body-fixed and space-fixed
projection quantum numbers, K and M. These functions are
expanded with the torsional functions |vτ(K)σ〉, which are deter-
mined for each K, and have the torsional quantum number vτ
and symmetry quantum number σ. The torsional functions are
a linear combination of ei(3q+σ)γ functions, where σ = 0 corre-
sponds to A-symmetry states and σ = ±1 to the (degenerate)
E-symmetry states, and q is an integer and truncated at |qmax|,
which we chose to be 10.

3.2. Electric and magnetic properties of propylene oxide

The rotational g-tensor was obtained from ab initio elec-
tronic structure calculations with the program package CFOUR
(Stanton et al. 2009). Calculations with CFOUR were carried out
at the coupled-cluster level of theory including single and double
excitation with perturbative treatment of the triples contribu-
tions [CCSD(T)], on a correlation-consistent polarized triple-
zeta (cc-pVTZ) basis set. The rotational g-tensor was calculated
for ten torsional angles γ. We fitted the torsionally dependent
rotational g-tensor elements to sinusoidal functions,

gi j(γ) =

2∑
n=0

(an cos 3nγ + bn sin 3nγ), (4)

where γ = 0 corresponds to the eclipsed configuration. We
obtained excellent fits of the ab initio data to the expansion
functions. In Table 1 we report the fitting parameters. For most
elements the variation with the torsion angle is around 10–20%
of the torsionally averaged rotational g-tensor, while for the gaa
and gac elements the γ-variation is larger than the average value.
The calculation of the torsional b-vector has not been imple-
mented in available quantum chemical program packages. The
torsional b-vector was estimated following a procedure similar
to that used in Lankhaar et al. (2018) for the similar molecule
methanol. The torsional b-vector was assumed, b = gγλ, to lie
along the internal rotation axis, λ. The factor gγ was put at
0.34, close to the g-factor of a general methyl group. The λ =
(λa, λb, λc) = (0.8843, 0.0104, 0.4668) vector was taken from
Mesko et al. (2017). For the electric dipole moment, we used
the experimentally determined electric dipole moment vector
(µa, µb, µc) = (0.95, 1.67, 0.56) D (Swalen & Herschbach 1957;
Mesko et al. 2017). The ρ-vector and f -factor that are relevant to
the magnetic interactions and energy spectrum are from Mesko
et al. (2017) and are ρ = (ρa, ρb, ρc) = (0.1007, 0.0030, 0.0173)
and f = 1.0997.
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Table 1. Coefficients an and bn (see Eq. (4)) describing the γ-dependent rotational g-tensor elements calculated ab initio.

a0 a1 b1 a2 b2

gaa −1.250 × 10−3 −1.326 × 10−3 9.141 × 10−4 3.096 × 10−6 3.096 × 10−6

gbb −3.067 × 10−3 1.138 × 10−3 −8.918 × 10−5 −7.406 × 10−5 −7.406 × 10−5

gcc 3.895 × 10−3 6.323 × 10−4 −2.804 × 10−4 −4.408 × 10−5 −4.408 × 10−5

gab 1.726 × 10−2 −6.126 × 10−4 1.795 × 10−4 −6.341 × 10−6 −6.341 × 10−6

gba 3.306 × 10−2 −4.181 × 10−4 4.178 × 10−4 5.284 × 10−5 5.284 × 10−5

gac 2.758 × 10−4 −6.126 × 10−4 1.795 × 10−4 −6.341 × 10−6 −6.341 × 10−6

gca 5.171 × 10−2 −1.836 × 10−3 5.421 × 10−4 −1.988 × 10−5 −1.988 × 10−5

gbc −1.673 × 10−3 −3.358 × 10−4 −4.402 × 10−6 1.731 × 10−5 1.731 × 10−5

gcb −1.874 × 10−3 −3.762 × 10−4 −5.026 × 10−6 1.941 × 10−5 1.941 × 10−5

Notes. The components of the rotational g-tensor are dimensionless, and are defined with respect to the principal axes a, b, and c.

Table 2. Circular dichroism properties of the propylene oxide
microwave transitions, as observed by McGuire et al. (2016).

Transition ν0 (GHz) A ji (s−1) gKuhn

312 → 303 14.048 4.157 × 10−8 2.888 × 10−7

211 → 202 12.837 3.327 × 10−8 2.750 × 10−7

110 → 101 12.072 2.854 × 10−8 2.663 × 10−7

Notes. Only the line center frequency is reported, but it should be noted
that the two symmetry species of each line, A and E, are slightly dis-
placed in frequency. The Einstein A coefficient, A ji, is reported for each
line, as is Kuhn’s dissymmetry factor, gKuhn.

The values for the electric dipole moment, rotational g-
tensor, and torsional b-vector were used in conjunction with
the model on the torsion–rotation structure of propylene oxide
to compute the magnetic and electric dipole moments of
the torsion–rotation transitions of propylene oxide. We used
Eq. (B.3) to compute the reduced electric dipole moment of a
torsion–rotation transition, while Eqs. (B.10) were used to com-
pute the reduced magnetic dipole moments. The dichroic prop-
erties of the torsion–rotation transitions were subsequently char-
acterized by computing their dissymmetry factors using Eq. (1).

4. Results

McGuire et al. (2016) observed three torsion–rotation transi-
tions of propylene oxide towards Sgr. B2(N) using the Green
Bank Telescope. Through chemical and radiative transfer mod-
eling, Das et al. (2019) identified other potentially observable
transitions in ALMA bands 3 and 4. Recently, coefficients for
the detailed excitation modeling of ISM propylene oxide have
been presented (Dzenis et al. 2022). Tables 2 and 3 give an
overview of the line properties and circular dichroism charac-
teristics of the observed microwave transitions and the predicted
ALMA band 3 and 4 transitions, respectively. All the investi-
gated transitions are in the torsional ground state. Even though
the A- and E-species of a particular transition are slightly dis-
placed in frequency, we do not report these as individual lines,
as the displacement is smaller than typical turbulent broadening
in the ISM. We therefore denote transitions by their total rota-
tional angular momentum, J, and the projection on the principal
axes, Ka and Kc: JKa,Kc . Kuhn’s dissymmetry factors for sym-
metry types A and E are almost identical in all the investigated
transitions. This is a result of the high barrier to the internal

rotation. We therefore report a single dissymmetry factor per
transition.

The circular dichroism properties are fully contained in
Kuhn’s dissymmetry factor of the transition. An order of mag-
nitude estimate puts the dissymmetry factor on the order of
∼10−5. Most of the torsion–rotation transitions of propylene
oxide have Kuhn’s dissymmetry factors that are an order of mag-
nitude smaller than this estimate, due to the large electric dipole
moment of propylene oxide and its relatively small rotational
g-tensor.

Dissymmetry factors on the order of 10−6 do not produce
astronomically detectable circular polarization. Only those tran-
sitions with electric dipole moments that are more than three
orders of magnitude lower compared to strong transitions, transi-
tions that are almost forbidden, show high dissymmetry factors.
In Table 4, we list a range of such lines. A Kuhn dissymme-
try factor of ∼1 is predicted for these lines, and the emission of
an enantiopure compound through these transitions is expected
to be completely circularly polarized. However, due to their low
transition probabilities, several orders of magnitude lower than
regular transition lines, forbidden lines are extremely weak and
accordingly undetectable in astrophysical regions.

Because of the minor energy difference between the two tor-
sional symmetry states and the relatively high internal rotation
barrier of propylene oxide, we investigated the relative contribu-
tion of the internal rotation on the total magnetic dipole moment.
We find that the magnitude of the magnetic dipole moment that
is due to the torsional motion and the coupling between the tor-
sional and rotational motion, is about half of the total magnetic
dipole moment. Even though the internal rotation barrier is high,
and the difference between the two symmetry states is limited,
the contribution of the molecular torsional motion to the mag-
netic dipole moment is still significant and should therefore be
modeled rigorously.

5. Discussion

We investigated the possibility of detecting enantiomeric excess
through the measurement of circular dichroism in ISM propylene
oxide. Propylene oxide in the ISM is observed in its microwave
transitions, which are between torsion–rotation states. To date,
no experiments have been performed to measure and character-
ize circular dichroism in microwave transitions. Therefore, we
characterized the circular dichroism of the microwave transi-
tions of propylene oxide through theoretical means. This entailed
developing the proper theory behind the circular dichroism
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Table 3. Circular dichroism properties of the propylene oxide
(sub)millimeter transitions in ALMA bands 3 and 4 as reported in Das
et al. (2019).

Transition ν0 (GHz) A ji (s−1) gKuhn

162 15 → 161 16 85.166 2.464 × 10−6 1.113 × 10−6

71 7 → 61 6 85.484 2.998 × 10−6 7.508 × 10−8

174 14 → 173 15 85.856 5.499 × 10−6 1.137 × 10−6

42 2 → 31 3 88.348 3.861 × 10−6 5.109 × 10−7

73 5 → 63 4 88.655 2.791 × 10−6 4.585 × 10−8

74 4 → 64 3 88.599 2.298 × 10−6 4.417 × 10−8

74 3 → 64 2 88.602 2.299 × 10−6 4.424 × 10−8

71 6 → 61 5 90.475 3.551 × 10−6 1.022 × 10−7

172 16 → 171 17 90.723 2.821 × 10−6 1.178 × 10−6

71 7 → 60 6 91.338 7.928 × 10−6 1.454 × 10−6

80 8 → 71 7 94.046 8.620 × 10−6 1.758 × 10−6

33 1 → 22 0 96.421 1.031 × 10−5 1.224 × 10−7

185 13 → 184 14 97.912 8.298 × 10−6 1.295 × 10−6

80 8 → 70 7 98.662 4.708 × 10−6 4.763 × 10−8

82 7 → 72 6 100.647 4.722 × 10−6 2.712 × 10−8

81 8 → 70 7 102.189 1.161 × 10−5 1.691 × 10−6

52 3 → 41 4 103.094 4.958 × 10−6 0.718 × 10−6

145 9 → 144 10 103.205 8.886 × 10−6 1.352 × 10−6

62 5 → 51 4 105.436 7.160 × 10−6 1.019 × 10−6

90 9 → 81 8 107.006 1.354 × 10−5 1.978 × 10−6

43 2 → 32 1 108.983 1.197 × 10−5 3.460 × 10−7

43 1 → 32 2 109.161 1.201 × 10−5 3.447 × 10−7

92 8 → 82 7 113.086 6.834 × 10−6 2.151 × 10−8

91 9 → 80 8 113.153 1.646 × 10−5 1.927 × 10−6

97 2 → 87 1 113.828 2.902 × 10−6 4.335 × 10−8

94 6 → 84 5 114.013 5.923 × 10−6 4.871 × 10−8

94 5 → 84 4 114.032 5.926 × 10−6 4.922 × 10−8

176 11 → 175 12 126.748 1.637 × 10−5 1.631 × 10−6

104 6 → 94 5 126.783 8.571 × 10−6 5.279 × 10−8

146 8 → 145 9 127.852 1.562 × 10−5 1.643 × 10−6

156 10 → 155 11 127.659 1.599 × 10−5 1.641 × 10−6

166 11 → 165 12 127.378 1.626 × 10−5 1.638 × 10−6

96 3 → 95 4 128.563 1.201 × 10−5 1.651 × 10−6

106 5 → 105 6 128.488 1.315 × 10−5 1.650 × 10−6

136 7 → 135 8 128.075 1.521 × 10−5 1.646 × 10−6

136 8 → 135 9 128.098 1.521 × 10−5 1.646 × 10−6

126 6 → 125 7 128.249 1.468 × 10−5 1.647 × 10−6

101 9 → 91 8 128.226 1.039 × 10−5 0.998 × 10−7

126 7 → 125 8 128.259 1.468 × 10−5 1.648 × 10−6

106 4 → 105 5 128.486 1.314 × 10−5 1.650 × 10−6

110 11 → 101 10 132.291 2.801 × 10−5 2.424 × 10−6

63 4 → 52 3 133.620 1.683 × 10−5 0.797 × 10−6

119 2 → 109 1 139.105 1.408 × 10−6 4.403 × 10−8

119 3 → 109 2 139.105 1.408 × 10−6 4.403 × 10−8

118 3 → 108 2 139.132 6.380 × 10−6 4.478 × 10−8

118 4 → 108 3 139.132 6.380 × 10−6 4.478 × 10−8

116 6 → 106 5 139.230 9.535 × 10−6 4.760 × 10−8

116 5 → 106 4 139.231 9.535 × 10−6 4.760 × 10−8

114 7 → 104 6 139.567 1.186 × 10−5 5.732 × 10−8

167 10 → 166 11 151.282 2.545 × 10−5 1.922 × 10−6

147 8 → 146 9 151.617 2.399 × 10−5 1.925 × 10−6

137 7 → 136 8 151.740 2.301 × 10−5 1.927 × 10−6

87 1 → 86 2 152.055 1.231 × 10−5 1.930 × 10−6

87 2 → 86 3 152.055 1.231 × 10−5 1.930 × 10−6

Table 3. continued.

Transition ν0 (GHz) A ji (s−1) gKuhn

125 8 → 115 7 152.058 1.466 × 10−5 5.346 × 10−8

125 7 → 115 6 152.064 1.467 × 10−5 5.362 × 10−8

112 10 → 101 9 155.301 2.518 × 10−5 2.237 × 10−6

131 13 → 120 12 158.512 5.118 × 10−5 2.860 × 10−6

Notes. Only the line center frequency is reported, but it should be noted
that the two symmetry species of each line, A and E, are slightly dis-
placed in frequency. The Einstein A coefficient, A ji, is reported for each
line, as is the Kuhn dissymmetry factor, gKuhn.

Table 4. Circular dichroism properties of some forbidden lines of
propylene oxide (sub)millimeter transitions.

Transition ν0 (GHz) A ji (s−1) gKuhn

22 0 → 20 2 46896.200 1.402 × 10−14 5.708
32 1 → 30 3 47168.500 3.542 × 10−14 5.697
43 1 → 41 3 90187.900 5.972 × 10−13 3.039

Notes. Only the line center frequency is reported, but it should be noted
that the two symmetry species of each line, A and E, are slightly dis-
placed from each other. The Einstein A coefficient, A ji, is reported for
each line, as is the Kuhn dissymmetry factor, gKuhn.

properties of torsion–rotation transitions, which had not been
established before. In the following we discuss the implications
of our results for the possibility of detecting chiral asymmetry
in propylene oxide by means of astronomical circular dichroism
measurements and laboratory circular dichroism measurements.
Thereafter, we put the developments of the theory behind cir-
cular dichroism properties of microwave transitions presented in
this paper in the context of previous works.

We characterized the circular dichroism properties of the
torsion–rotation transitions, using quantum-chemical techniques
to determine the magnetic properties, in conjunction with accu-
rate modeling of the torsion–rotation structure of propylene
oxide. This method has been shown to be highly accurate when
modeling the molecular rotational Zeeman effect (Flygare &
Benson 1971; Sauer 2011), which is a property that is related to
circular dichroism. The torsional contribution to the magnetic
dipole moment (and circular dichroism) cannot be computed
using available quantum-chemical techniques, but rather was
estimated to be close to the magnetic dipole moment of a gen-
eral torsionally active methyl group. Engelbrecht et al. (1973)
measured the torsional magnetic dipole moments due to the
internally rotating CH3 groups of nitromethane and methyl-
boron-difluoride, and found them to be close (within 5%)
to the magnetic dipole moment of methane. Recent work of
Takagi et al. (2021) shows that for methanol, the torsional mag-
netic dipole moment associated with its CH3-group is two-thirds
of the magnetic dipole moment of methane. Considering this
error margin, and the relative contribution of the torsion to the
total magnetic dipole moment, we conservatively predict an error
of 10–15% on our estimates of the circular dichroism properties
of the microwave transitions of propylene oxide. We estimate that
ISM propylene oxide exhibiting an enantiomeric excess would
produce circular polarization fractions in its torsion–rotation
transitions on the order of 10−6–10−8. We find that the circular
dichroism of propylene oxide is too weak for it to be astro-
nomically detectable. With current sensitivity limits on circular
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polarization fractions of ∼10−3, no currently existing astronom-
ical detection technique exists that can measure such low levels
of circular polarization.

Even if astronomical polarization instruments were avail-
able that could detect circular polarization fractions on the order
of 10−6, the contamination of the circular polarization by the
nonparamagnetic Zeeman effect due to the ISM magnetic field
would be significant. The circular polarization produced through
the Zeeman effect for a nonparamagnetic molecule such as
propylene oxide, at submillimeter frequencies, with a line width
and magnetic field typical of the ISM, is

[
pV

]
Zeeman ' 3.3 × 10−6 ḡ

(
∆vFWHM

1 km s−1

)−1 (
ν0

10 GHz

)−1
(

B
100 µG

)
,

where ḡ is the transition g-factor. It should be mentioned here
that the circular polarization signal from the Zeeman effect is
expected to exhibit an S -shaped profile, being oppositely polar-
ized in the red and blue part of the line, while the circular
polarization due to dichroism is expected to yield an even profile
that follows the regular line profile.

Characterizing the enantiomeric composition of the gas-
phase ISM may be achieved if a chiral radical species were
found. Endowed with a paramagnetic magnetic dipole moment,
radicals are significantly more dichroic, with dissymmetry fac-
tors on the order of ∼10−2. Such dissymmetry factors lead to
circularly polarized emission lines of a few percent for mixtures
with an enantiomeric excess.

Detecting and characterizing the enantiomeric composition
of a compound through circular dichroism measurements is a
proven method in laboratory environments. However, such lab-
oratory experiments have only been established for optical and
vibrational transitions. Successful experiments to characterize
circular dichroism in the (torsion-)rotational transitions, which
occur in the microwave region of the EM spectrum, chiral
molecules have not been reported yet. Laboratory experiments
should be able to detect the circular polarization fractions on
the order of 10−6, which we predict for some torsion–rotation
transitions of propylene oxide. Additionally, any contribution
of the Zeeman effect to the circular polarization of spectral
lines may be mitigated by experimentally compensating for the
Earth’s magnetic field. However, in order to detect and char-
acterize chiral asymmetry through microwave lines, laboratory
experiments may perhaps defer to the measurement of optical
rotation, which is related to the circular dichroism by a Kramers–
Kronig transformation. Significant optical rotation on the order
of a radian may be achieved at optical depths of ∼1/g j2, j1

Kuhn, which
should be realizable in laboratory experiments. Alternatively, if
an experiment is set up where the microwave transition lines are
detected in significant absorption, with optical depths �1, this
will enhance the polarization fraction to ∼g j2, j1

Kuhnτν.
It has been suggested that nonracemic chiral mixtures

may give rise to detectable circular polarization in their
microwave transitions (Salzman & Polavarapu 1991; Salzman
1997). Through theoretical efforts similar in spirit to those
described in this paper for microwave transitions of nontorsion-
ally active molecules, Salzman & Polavarapu (1991) predicted
dissymmetry factors that are of the same order of magnitude
as the dissymmetry factors that we predict for propylene oxide.
We expanded on their theory in that (i) we consider the con-
tribution of the torsional magnetic dipole moment, and (ii) we
rigorously implemented the proper symmetrization of the anti-
symmetric contribution to the magnetic dipole moment. Even

though the internal rotation of propylene oxide is hindered by a
high barrier, we find that the effect of the torsional motion on
the magnetic properties is significant, contributing close to half
of the total magnetic dipole moment. We therefore strongly sug-
gest rigorously modeling the torsion–rotation dynamics and its
contribution to the magnetic dipole and electric dipole moments
when characterizing the circular dichroism properties of (high
barrier) hindered internal rotor molecules.

Recently, there have been major advances in the detection
of chiral asymmetry in compounds via microwave spectroscopy
(Patterson et al. 2013; Patterson & Doyle 2013). Through a three-
wave mixing scheme, where the EM waves are resonant with
a-, b-, and c-type transitions (Townes & Schawlow 1955), a
signal may be generated that is proportional to µaµbµc. For a
chiral compound, the product µaµbµc is opposite for the two
enantiomers, which makes this experiment sensitive to an enan-
tiomeric excess (Patterson et al. 2013). Such innovative schemes
may be manifested in laboratory experiments, where one can
exert control over the phase of an EM wave, but have little utility
in astrophysical situations.

6. Conclusions

The expressions for the dichroic activity of torsionally active
molecules were derived. Theoretical expressions for the Kuhn
dissymmetry factor of microwave transitions had been derived
previously (Salzman & Polavarapu 1991), but we expanded on
these earlier modeling efforts by (i) extending the optical activ-
ity due to the magnetic dipole moment with the contribution of
the torsional motion and (ii) performing the proper symmetriza-
tion of the interaction with the magnetic field, as prescribed
by Eshbach & Strandberg (1952). We used the newly derived
expressions, in combination with ab initio modeling of the rele-
vant coupling parameters, to characterize the optical activity of
the torsion–rotation transitions of propylene oxide. The results
of our calculations are presented for observed and predicted
propylene oxide transitions in Tables 2–4.

With the results of Tables 2–4, we predict the fractional
circular polarization of a torsion–rotation line due to an enan-
tiomeric imbalance of propylene oxide. We find that for the range
of propylene oxide lines that have been predicted and observed,
the predicted circular polarization fraction is on the order of
10−6−10−8. Observing such polarization fractions is beyond the
current capabilities of modern telescopes. Additionally, circu-
lar polarization produced by the Zeeman effect is expected to
be of similar magnitude under ISM conditions. Even so, the
two effects can be disentangled due to their different spec-
tral manifestations. While the circular polarization profile due
to circular dichroism is expected to follow the line shape, the
Zeeman circular polarization is expected to have an S -shaped
profile. Forbidden lines may show significant polarization frac-
tions, but the astronomical observation of forbidden transitions
in low-abundance species such as propylene oxide is not feasi-
ble. Detection of enantiomeric excess in the gas-phase ISM with
currently available observation techniques can only be achieved
using a chiral radical species.

Laboratory measurements of circular dichroism in vibra-
tional transitions are able to reach the sensitivity required to
detect circular dichroism in microwave transitions (Polavarapu
2018). In principle, experiments to directly measure the cir-
cular dichroism of microwave transitions should be feasible.
These experiments would be complementary to other detec-
tion techniques of chiral asymmetry via microwave spectroscopy
(Patterson et al. 2013; Patterson & Doyle 2013). The theory
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presented in this paper provides a solid theoretical underpinning
for circular dichroism measurements in microwave transitions.

Acknowledgements. Support for this work was provided by the Swedish Research
Council (VR) under grant number 2021-00339. Simulations were performed on
resources at the Chalmers Centre for Computational Science and Engineering
(C3SE) provided by the Swedish National Infrastructure for Computing (SNIC).
Gerrit C. Groenenboom and Ad van der Avoird are acknowledged for helpful
comments on a first draft of the manuscript.

References
Avnir, D. 2020, New Astron. Rev., 101596
Bergantini, A., Abplanalp, M. J., Pokhilko, P., et al. 2018, ApJ, 860, 108
Biedenharn, L. C., Louck, J. D., & Carruthers, P. A. 1981, Angular Momentum in

Quantum Physics: Theory and Application (Reading, MA: Addison-Wesley)
Bloino, J., & Barone, V. 2012, J. Chem. Phys., 136, 124108
Blum, K. 1981, Density Matrix Theory and Applications, Physics of Atoms and

Molecules (New York: Plenum)
Boyd, R. N., & Famiano, M. A. 2018, Creating the Molecules of Life (IOP

Publishing)
Caldwell, D. J. 1969, J. Chem. Phys., 51, 984
Contini, G., Zema, N., Turchini, S., et al. 2007, J. Chem. Phys., 127, 124310
Cronin, J. R., & Pizzarello, S. 1997, Science, 275, 951
Das, A., Gorai, P., & Chakrabarti, S. K. 2019, A&A, 628, A73
Dreiling, J., & Gay, T. J. 2014, Phys. Rev. Lett., 113, 118103
Dzenis, K., Faure, A., McGuire, B. A., et al. 2022, ApJ, 926, 3
Engelbrecht, L., Sutter, D., & Dreizier, H. 1973, Z. Naturforsch. A, 28, 709
Eshbach, J. R., & Strandberg, M. W. P. 1952, Phys. Rev., 85, 24
Eyring, H., Liu, H.-C., & Caldwell, D. 1968, Chem. Rev., 68, 525
Flores, J. J., Bonner, W. A., & Massey, G. A. 1977, J. Am. Chem. Soc., 99, 3622
Flygare, W., & Benson, R. 1971, Mol. Phys., 20, 225
Garcia, G. A., Dossmann, H., Nahon, L., Daly, S., & Powis, I. 2014, Phys. Chem.

Chem. Phys., 16, 16214
Gellman, A. J., Tysoe, W. T., & Zaera, F. 2015, Catal. Lett., 145, 220
Hartwig, H., & Dreizler, H. 1996, Z. Naturforsch. A, 51, 923
Hilborn, R. C. 1982, Am. J. Phys., 50, 982
Holzwarth, G., Hsu, E. C., Mosher, H. S., Faulkner, T. R., & Moscowitz, A. 1974,

J. Am. Chem. Soc., 96, 251
Hougen, J., Kleiner, I., & Godefroid, M. 1994, J. Mol. Spectrosc., 163, 559
Huttner, W., & Flygare, W. H. 1969, Trans. Faraday Soc., 65, 1953
Jackson, J. D. 1998, Classical Electrodynamics, 3rd edn. (New York: Wiley)

Kawiecki, R. W., Devlin, F., Stephens, P., Amos, R., & Handy, N. 1988, Chem.
Phys. Lett., 145, 411

Lankhaar, B., Groenenboom, G. C., & van der Avoird, A. 2016, J. Chem. Phys.,
145, 244301

Lankhaar, B., Vlemmings, W., Surcis, G., et al. 2018, Nat. Astron., 2, 145
Loudon, R. 2000, The Quantum Theory of Light (Oxford University Press)
McGuire, B. A., Carroll, P. B., Loomis, R. A., et al. 2016, Science, 352, 1449
Merzbacher, E. 1961 Quantum mechanics. (Jones & Bartlett Publishers)
Mesko, A., Zou, L., Carroll, P. B., & Weaver, S. L. W. 2017, J. Mol. Spectr., 335,

49
Modica, P., Meinert, C., de Marcellus, P., et al. 2014, ApJ, 788, 79
Patterson, D., & Doyle, J. M. 2013, Phys. Rev. Lett., 111, 023008
Patterson, D., Schnell, M., & Doyle, J. M. 2013, Nature, 497, 475
Polavarapu, P. L. 2018, Chiral Analysis: Advances in Spectroscopy, Chromatog-

raphy and Emerging Methods (Elsevier)
Polavarapu, P., Hess Jr, B., & Schaad, L. 1985, J. Chem. Phys., 82, 1705
Rizzo, A., & Vahtras, O. 2011, J. Chem. Phys., 134, 244109
Rybicki, G. B., & Lightman, A. P. 2008, Radiative Processes in Astrophysics

(John Wiley & Sons)
Salzman, W. 1997, J. Chem. Phys., 107, 2175
Salzman, W., & Polavarapu, P. 1991, Chem. Phys. Lett., 179, 1
Sauer, S. P. 2011, Molecular Electromagnetism: A Computational Chemistry

Approach (Oxford University Press)
Stahl, P., Arenas, B. E., Zingsheim, O., et al. 2021, J. Mol. Spectrosc., 378, 111445
Stanton, J., Gauss, J., M.E., H., & Szalay, P. 2009, CFOUR, Coupled-Cluster

techniques for Computational Chemistry
Stephens, P. J. 1985, J. Phys. Chem., 89, 748
Stranges, S., Turchini, S., Alagia, M., et al. 2005, J. Chem. Phys., 122, 244303
Sutter, D., & Guarnieri, A. 1970, Z. Naturforsch. A, 25, 1036
Sutter, D., & Flygare, W. 1976, in Bonding Structure. Topics in Current Chem-

istry, 63, eds. D. Craig, D. Mellor, R. Gleiter, et al. (Berlin, Heidelberg:
Springer) 89

Swalen, J. D., & Herschbach, D. R. 1957, Chem. Phys., 27, 100
Takagi, K., Tsunekawa, S., Kobayashi, K., Hirota, T., & Matsushima, F. 2021, J.

Mol. Spectrosc., 377, 111420
Townes, C., & Schawlow, A. 1955, Microwave Spectroscopy, (McGraw-Hill

Book Company)
Turchini, S., Zema, N., Contini, G., et al. 2004, Phys. Rev. A, 70, 014502
Ulbricht, T., & Vester, F. 1962, Tetrahedron, 18, 629
Vacherand, J., Van Eijck, B., Burie, J., & Demaison, J. 1986, J. Mol. Spectrosc.,

118, 355
Vlemmings, W. 2008, A&A, 484, 773
Woods, R. C. 1966, J. Mol. Spectrosc., 21, 4

A126, page 7 of 10

http://linker.aanda.org/10.1051/0004-6361/202244295/1
http://linker.aanda.org/10.1051/0004-6361/202244295/2
http://linker.aanda.org/10.1051/0004-6361/202244295/3
http://linker.aanda.org/10.1051/0004-6361/202244295/3
http://linker.aanda.org/10.1051/0004-6361/202244295/4
http://linker.aanda.org/10.1051/0004-6361/202244295/5
http://linker.aanda.org/10.1051/0004-6361/202244295/5
http://linker.aanda.org/10.1051/0004-6361/202244295/6
http://linker.aanda.org/10.1051/0004-6361/202244295/7
http://linker.aanda.org/10.1051/0004-6361/202244295/8
http://linker.aanda.org/10.1051/0004-6361/202244295/9
http://linker.aanda.org/10.1051/0004-6361/202244295/10
http://linker.aanda.org/10.1051/0004-6361/202244295/11
http://linker.aanda.org/10.1051/0004-6361/202244295/12
http://linker.aanda.org/10.1051/0004-6361/202244295/13
http://linker.aanda.org/10.1051/0004-6361/202244295/14
http://linker.aanda.org/10.1051/0004-6361/202244295/15
http://linker.aanda.org/10.1051/0004-6361/202244295/16
http://linker.aanda.org/10.1051/0004-6361/202244295/17
http://linker.aanda.org/10.1051/0004-6361/202244295/18
http://linker.aanda.org/10.1051/0004-6361/202244295/18
http://linker.aanda.org/10.1051/0004-6361/202244295/19
http://linker.aanda.org/10.1051/0004-6361/202244295/20
http://linker.aanda.org/10.1051/0004-6361/202244295/21
http://linker.aanda.org/10.1051/0004-6361/202244295/22
http://linker.aanda.org/10.1051/0004-6361/202244295/23
http://linker.aanda.org/10.1051/0004-6361/202244295/24
http://linker.aanda.org/10.1051/0004-6361/202244295/25
http://linker.aanda.org/10.1051/0004-6361/202244295/26
http://linker.aanda.org/10.1051/0004-6361/202244295/26
http://linker.aanda.org/10.1051/0004-6361/202244295/27
http://linker.aanda.org/10.1051/0004-6361/202244295/27
http://linker.aanda.org/10.1051/0004-6361/202244295/28
http://linker.aanda.org/10.1051/0004-6361/202244295/29
http://linker.aanda.org/10.1051/0004-6361/202244295/30
http://linker.aanda.org/10.1051/0004-6361/202244295/31
http://linker.aanda.org/10.1051/0004-6361/202244295/32
http://linker.aanda.org/10.1051/0004-6361/202244295/32
http://linker.aanda.org/10.1051/0004-6361/202244295/33
http://linker.aanda.org/10.1051/0004-6361/202244295/34
http://linker.aanda.org/10.1051/0004-6361/202244295/35
http://linker.aanda.org/10.1051/0004-6361/202244295/36
http://linker.aanda.org/10.1051/0004-6361/202244295/36
http://linker.aanda.org/10.1051/0004-6361/202244295/37
http://linker.aanda.org/10.1051/0004-6361/202244295/38
http://linker.aanda.org/10.1051/0004-6361/202244295/39
http://linker.aanda.org/10.1051/0004-6361/202244295/40
http://linker.aanda.org/10.1051/0004-6361/202244295/41
http://linker.aanda.org/10.1051/0004-6361/202244295/42
http://linker.aanda.org/10.1051/0004-6361/202244295/42
http://linker.aanda.org/10.1051/0004-6361/202244295/43
http://linker.aanda.org/10.1051/0004-6361/202244295/44
http://linker.aanda.org/10.1051/0004-6361/202244295/45
http://linker.aanda.org/10.1051/0004-6361/202244295/46
http://linker.aanda.org/10.1051/0004-6361/202244295/47
http://linker.aanda.org/10.1051/0004-6361/202244295/48
http://linker.aanda.org/10.1051/0004-6361/202244295/48
http://linker.aanda.org/10.1051/0004-6361/202244295/49
http://linker.aanda.org/10.1051/0004-6361/202244295/50
http://linker.aanda.org/10.1051/0004-6361/202244295/50
http://linker.aanda.org/10.1051/0004-6361/202244295/51
http://linker.aanda.org/10.1051/0004-6361/202244295/52
http://linker.aanda.org/10.1051/0004-6361/202244295/53
http://linker.aanda.org/10.1051/0004-6361/202244295/54
http://linker.aanda.org/10.1051/0004-6361/202244295/54
http://linker.aanda.org/10.1051/0004-6361/202244295/55
http://linker.aanda.org/10.1051/0004-6361/202244295/56


A&A 666, A126 (2022)

Appendix A: Radiative transfer and circular
dichroism

In the following we derive the circularly dichroic radiative trans-
fer equation of chiral molecular spectral lines. In contrast to
similar derivations of circular dichroic activity of electronic and
vibrational transitions (Polavarapu 2018), we work in a formal-
ism that will be more familiar to astronomers. We favor this
formalism as both the emission and absorption properties of the
medium are incorporated in the radiative transfer equation. We
consider the interaction of an EM wave, composed of an electric
field, E, and a magnetic field, B, with a molecule that possesses
an electric and magnetic dipole moment, µ and m. Because the
interaction of the EM wave with the electric dipole moment is
much stronger than with the magnetic dipole moment, the latter
interaction is often ignored. However, without the magnetic field
component, light is not chiral, and circular dichroism does not
emerge as a feature of the radiation transfer. Therefore, in this
work, we will not make that simplification. We note the interac-
tion Hamiltonian of a molecule interacting with an external EM
field, in the dipole approximation (Loudon 2000)

Ĥint = −µ · E − m · B =

(
µ+1 + i

m+1

c

)
E−1 +

(
µ−1 − i

m−1

c

)
E+1,

(A.1)

where we use the relation between the electric and magnetic field
components of an EM wave as B = c−1 k̂× E, where k̂ is the unit
vector in the wave propagation direction and c is the speed of
light, and where we use CGS units. We give the components of
the electric field and molecular properties in a spherical basis
ê±1 = ∓2−

1
2 (êx ± iêy) and ê0 = êz. The unit vector êz is cho-

sen along the wave propagation direction, while êx and êy are
perpendicular to each other and to ê0. For the purpose of this
elementary derivation, we consider a monochromatic EM wave
at (natural) frequency ω that is traveling along the ẑ-direction,
so that its electric field components are E±1 = Re[E±1e−iω(t−z/c)],
where E±1 are the complex amplitudes.

We consider a transition between two states that are sepa-
rated in energy by ~ω0, and that have angular momentum, j1,
and j2. For our purposes it is important to pay more attention
to the degeneracy of the rotational levels. A level j is split up
into [ j] = 2 j + 1 sublevels denoted by the magnetic quantum
number m: | jm〉. So, to resolve the degeneracy of the transition
states, we consider the transitions | j1m1〉 ↔ | j2m2〉, over which
we will later average. The interaction between the EM wave and
the molecule gives rise to a transition between j1 and j2 when
the EM wave frequency, ω, approaches ω0. Fermi’s golden rule
puts the transition rate at (Merzbacher 1961)

Γ j1m1→ j2m2 =
π

~2

∫
dω

∣∣∣∣∣〈 j2m2| E
∗
−1(µ+1 + i

m+1

c
)

+E∗+1(µ−1 − i
m−1

c
) | j1m1〉

∣∣∣∣∣2 δ(ω − ω0)). (A.2)

In order to obtain matrix elements of the electric dipole and
magnetic dipole moments, we use the Wigner–Eckart theorem
(Biedenharn et al. 1981; Blum 1981),

〈 j2m2|µ±1| j1m1〉 = µ j2, j1

√
3(−1) j2−m2

(
j2 1 j1
−m2 ±1 m1

)
, (A.3a)

〈 j2m2|m±1| j1m1〉 = m j2, j1

√
3(−1) j2−m2

(
j2 1 j1
−m2 ±1 m1

)
, (A.3b)

where the entity in brackets is the Wigner 3 j symbol, and µ j2, j1
and m j2, j1 are the reduced matrix elements of the electric and
magnetic dipole moments. In Appendix B, we derive detailed
expressions to quantify the reduced matrix elements for a partic-
ular torsion–rotation transition. The rate of absorption from the
level | j1m1〉 to all possible levels in j2, is

Γ j1m1→ j2 =
∑
m2

Γ| j1m1〉→| j2m2〉

=
π

3[ j1]~2

{[
|µ j2, j1 |

2 +

∣∣∣∣∣m j2, j1

c

∣∣∣∣∣2] (|E+1(ν)|2 + |E−1(ν)|2
)

+2Im
(
µ j2, j1 m∗j2, j1

c

) [
|E+1(ν)|2 − |E−1(ν)|2

]}
= B j1→ j2

([
1 + R j2, j1

m.d.

]
Iν + g

j2, j1
KuhnVν

)
, (A.4a)

where R j2, j1
m.d. = c−2|m j2, j1 |

2/|µ j2, j1 |
2 is the ratio of the magnetic

to the electric dipole moment transition strength, and g
j2, j1
Kuhn =

2c−1|µ j2, j1 |
−2Im

(
µ j2, j1 m∗j2, j1

)
is the Kuhn dissymmetry factor. The

Stokes parameters are related to the electric field amplitudes
as Iν = c/8π(|E+1(ν)|2 + |E−1(ν)|2) and Vν = c/8π(|E+1(ν)|2 −
|E−1(ν)|2) and are given for frequency ν = ω0/2π. The Einstein
B coefficient is defined as B j1→ j2 = 8π2

3[ j1]~2c |µ j2, j1 |
2. Similar to the

rate of absorption, the rate of stimulated emission events can be
derived to be

Γ j2m2→ j1 = B j2→ j1

([
1 + R j1, j2

m.d.

]
Iν + g

j1, j2
KuhnVν

)
, (A.4b)

where it should be noted that g j2, j1
Kuhn = g

j1, j2
Kuhn. The rate of spon-

taneous emission bears a close relation to the rate of stimulated
emission.

The interactions of the radiation field with the chiral
molecule, whose rates are given in Eqs. (A.4), will manifest
in the transfer of polarized radiation. It can be noted from
Eqs. (A.4) that the absorption of Stokes V radiation occurs at
a rate of g j2, j1

Kuhn times the absorption of Stokes I radiation. Sim-
ilarly, the production of Stokes V radiation occurs at a rate of
g

j2, j1
Kuhn times the production of Stokes I radiation through stimu-

lated and spontaneous emission processes. More specifically, the
change in flux density, per optical depth, may be noted

d
dτν

(
Iν
Vν

)
= −

(
1 g

j2, j1
Kuhn

g
j2, j1
Kuhn 1

) (
Iν
Vν

)
+ S ν

(
1

g
j2, j1
Kuhn

)
, (A.5)

where dτν = κνds is the optical depth over an infinitesimal
distance ds, and

κν =
hν
4π

B j1→ j2

(
n j1 −

[ j1]
[ j2]

n j2

)
φν

is the absorption coefficient (Rybicki & Lightman 2008), depen-
dent on the number densities, n j, of levels j1 and j2 and the
line profile φν. The quantity S ν is the source function, which is
defined by the ratio of the emission to the absorption coefficient
(Rybicki & Lightman 2008),

S ν =
2hν3

c2

[
[ j2]n1

[ j1]n2
− 1

]−1

, (A.6)

which approaches Planck’s function for a thermalized transition.
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Appendix B: Electric and magnetic dipole moments
of torsion–rotation transitions

The electric dipole moment results from the separation of posi-
tive and negative charges in the molecule and may be computed
as µ =

∑
j q jr j, where q j is the charge of particle j and r j

is its position. The magnetic dipole moment of a closed-shell
molecule such as propylene oxide is the result of the differential
motion of its charged particles. The classical definition of the
magnetic dipole moment of a set of moving charged particles is
(Jackson 1998)

m =
1
2

∑
j

q j(r j × u j), (B.1)

where u j is the velocity of particle j. For a molecule such
as propylene oxide, the motion of the nucleus is determined
by its rotational motion, and by the internal rotational motion.
Lankhaar et al. (2018) derived the magnetic dipole moment of
a torsionally active molecule. We recall here the expressions for
the magnetic dipole moment (see Eqs. 1-2 of Lankhaar et al.
2018), but separate them into the terms

m = mR + mRT + mT, (B.2a)

mR
q =

µN

2~

∑
q′

(
gqq′ Ĵq′ + (−1)q′−q Ĵq′gq′q

)
, (B.2b)

mT
q =

fµN

2~

(
b′q p̂γ + p̂γb′q

)
, (B.2c)

mRT
q = −

fµN

2~

∑
q′

(
b′qρq′ Ĵq′ + (−1)q′−q Ĵq′ρq′b′q

)
, (B.2d)

which are analogous to a purely rotational magnetic dipole
moment, a purely torsional magnetic dipole moment, and the
remaining rotation-torsion contribution. The separation into
these terms will allow a clearer treatment of the angular momen-
tum algebra later on. We note in Eqs. (B.2) the spherical element,
q, of the angular momentum operator, Ĵq, and the torsional
momentum operator, p̂γ (for a definition, see Lankhaar et al.
2018). The tensors g and b are the (rank 2) rotational g-tensor and
the (rank 1) torsional b-vector (Sutter & Flygare 1976; Lankhaar
et al. 2018). The ρ-vector is defined in Lankhaar et al. (2018).
The quantity µN is the nuclear magneton, ~ is the reduced Planck
constant, and f is a dimensionless factor that depends on the
ratio of the moments of inertia of the rotating top and frame
(for a definition, see Lankhaar et al. 2018; Hougen et al. 1994).
We symmetrized the magnetic dipole moment interactions of
Eqs. (B.2) as prescribed in Eshbach & Strandberg (1952).

We derive the matrix elements of the electric dipole and
magnetic dipole moment operators that are relevant to transitions
between the two states, which are denoted JA/E

KaKc
→ J′A/EK′aK′c

, where
J is the total angular momentum, Ka and Kc are the projections
of the angular momentum on the principal a and c axes, and
A/E denotes the symmetry type. As discussed in section 3.1, the
eigenfunctions of the torsion–rotation levels are expanded in a
basis of | j(k)m〉 |vτ(k)σ〉 functions. In the following we discuss
the matrix elements of the electric and magnetic dipole moment
operators in these basis functions.

Electric dipole moment. The general matrix element of the
transition electric dipole moment can be factorized,

〈 j1(k1)m1, vτ(k1)σ|µq|v
′
τ(k2)σ, j2(k2)m2〉 =

〈vτ(k1)σ|v′τ(k2)σ〉 µ j1k1, j2k2 〈 j1m1|T̂1q( j1, j2)| j2m2〉 , (B.3)

because the torsional part does not interact with the electric
dipole operator as we neglected any dependence of it on the
torsional angle. We use the Wigner-Eckart theorem for the rota-
tional part, which we formulate in terms of the rank 1 irreducible
spherical tensor operator T̂1q( j1; j2), which is defined following
Blum (1981), by

T̂LP( j1; j2) =
∑
m1m2

| j1m1〉 〈 j2m2| [L]1/2(−1) j1−m1

(
j1 L j2
−m1 P m2

)
,

(B.4)

where L is the rank and P its projection. We note the rotation
of the electric dipole moment (rank 1 tensor) between the space-
fixed (SF) laboratory frame and body-fixed (BF) principal axis
frame as µSF

q =
∑

k D(1)∗
kq (χθφ)µBF

q , in terms of Wigner D-matrix
elements of the Euler angles χ, θ, and φ. We can express the
Wigner D-matrix elements in terms of the irreducible tensor
operators of Eq. (B.4) (see also equation (B5) of Lankhaar et al.
2016). The irreducible matrix element is then readily derived as

µ j1k1, j2k2 =

√
[ j1][ j2]

3
(−1) j1−k1

∑
k

(
j1 1 j2
−k1 k k2

)
µk, (B.5)

where the sum over k runs over all the principal axis components
(in a spherical basis) of the electric dipole tensor.

Magnetic moment. In Eq. (B.2), we formulated the magnetic
dipole moment in terms of a purely rotational magnetic dipole
moment, torsional magnetic dipole moment, and the residual
torsion–rotation magnetic dipole moment. We begin by deriv-
ing expressions for the matrix element of the pure rotational
magnetic dipole moment. We accounted for the dependance of
the rotational g-tensor on the torsional angle by expanding it as
gqq′ =

∑2
n=−2 einγg(n)

qq′ . We then factorize:

〈 j1(k1)m1, vτ(k1)σ|mR
q |v
′
τ(k2)σ, j2(k2)m2〉 =

µN
2~

∑
n 〈vτ(k1)σ|einγ |v′τ(k2)〉

×

(∑
q′

〈
j1(k1)m1

∣∣∣∣ g(n)
qq′ Ĵ

′
q + (−1)q′−q Ĵq′g

(n)
qq′

∣∣∣∣ j2(k2)m2

〉)
. (B.6)

We note that a rotation of the rotational g-tensor, gqq′ =∑
kk′ D(1)∗

qk (χθφ)gBF
kk′D

(1)
q′k′ (χθφ), can be decomposed into a rotation

of its three irreducible elements (L = 0, 1, 2). Coupling these to
the rotation operator yields

〈 j1(k1)m1|
∑

q′
g(n)

qq′ Ĵq′ | j2(k2)m2〉

=
∑

L

g(L),(n)
j1k1, j2k2

〈
j1m1

∣∣∣∣ [T̂L ⊗ Ĵ
]1

q

∣∣∣∣ j2m2

〉
, (B.7a)

〈 j1(k1)m1|
∑

q′
(−1)q′−q Ĵq′g

(n)
qq′ | j2(k2)m2〉

=
∑

L

(−1)Lg(L),(n)
j1k1, j2k2

〈
j1m1

∣∣∣∣ [Ĵ ⊗ T̂L

]1

q

∣∣∣∣ j2m2

〉
, (B.7b)

where we use a short-hand notation for the product of the
rotational tensors irreducible elements[
ÂL1 ⊗ B̂L2

]L

M
=

∑
m1m2

CL1 L2 L
m1 m2 M ÂL1m1 B̂L2m2 ,
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where CL1 L2 L
m1 m2 M is a Clebsch-Gordan coefficient. The elements

of the reduced rotational g-tensor read

g(L),(n)
j1k1, j2k2

= (−1)L

√
[ j1][ j2]

[L]
(−1) j1−k1

∑
Q

(
j1 L j2
−k1 Q k2

)
g(n)

LQ,

(B.8)

where g(n)
LQ =

∑
kk′ (−1)1−k′C1 1 L

−k k′ Qg
(n)
kk′ are the irreducible ten-

sor elements of the rotational g-tensor in the body-fixed frame.
As expected, the sum of both parts of mR cancel each other
out at uneven (antisymmetric) L. However, it should be noted
that the angular momentum operators, Ĵ and T̂L, do not com-
mute for L = 1. We note the commutation relation between a
tensor operator and the spherical components of the angular
momentum operator (see Eq. (3.210) of Biedenharn et al. 1981),
[Ĵm, T̂JM] =

√
J(J + 1)CJ 1 J

M m M+mT̂J,M+m, from which we derive[
T̂L ⊗ Ĵ

]1

q
−

[
Ĵ ⊗ T̂L

]1

q
= −
√

2T̂1qδL,1.

Using angular momentum algebra we can couple the product

〈 j1m1|
[
T̂L ⊗ Ĵ

]1

q
| j2m2〉 = (−1)1+ j1+ j2

√
[ j2][L] j2( j2 + 1)

×

{
j1 j2 L
1 1 j2

}
〈 j1m1|T1q| j2m2〉 , (B.9)

where the entity between the curly brackets is a Wigner 6 j-
symbol. Putting Eqs. (B.6)–(B.9) together, we derive the matrix
element of the pure rotational magnetic dipole moment:

〈 j1(k1)m1|mR
q | j2(k2)m2〉 =

µN

~

∑
n

einγ

g(1),(n)
j1k1, j2k2
√

2
+ (−1) j1+ j2

∑
L=0,2

×g(L),(n)
j1k1, j2k2

√
[ j2][L] j2( j2 + 1)

{
j1 j2 L
1 1 j2

})
〈 j1m1|T1q| j2m2〉 .(B.10a)

The rotation-torsion residual contribution to the magnetic dipole
moment has a similar form to the rotational magnetic dipole
moment. Replacing the g-tensor elements gqq′ → bqρq′ we
arrive, after performing similar angular momentum algebraic
manipulations, at the expression

〈 j1(k1)m1|mRT
q | j2(k2)m2〉 =

fµN

~

∑
n

einγ

ζ(1),(n)
j1k1, j2k2
√

2
+ (−1) j1+ j2

∑
L=0,2

×ζ(L),(n)
j1k1, j2k2

√
[ j2][L] j2( j2 + 1)

{
j1 j2 L
1 1 j2

})
〈 j1m1|T1q| j2m2〉 , (B.10b)

where the elements ζ(L),(n)
j1k1, j2k2

have the same definition as

Eq. (B.8), only replacing g(n)
LQ with ζ(n)

LQ =
∑

kk′ C1 1 L
k k′ Qρkb(n)

k′ .
Finally, we work out the pure torsional contribution to the

magnetic dipole moment. Here, the matrix element can be
factorized as

〈 j1(k1)m1, vτ(k)σ|mT
q | j2(k2)m2vτ(k)σ〉 =

fµN

2~

∑
n

× b(n)
j1k1, j2k2

〈vτ(k)σ| p̂γeinγ + einγ p̂γ|v′τ(k2)σ〉 〈 j1m1|T1q| j2m2〉 ,

(B.10c)

where the Wigner–Eckart theorem for the rotational part of the
operator is of a similar form to the electric dipole operator, and

the elements b j1k1, j2k2 have the same definition as Eq. (B.5),
replacing the electric dipole moment elements µk with the tor-
sional b-vector elements. Expressions to evaluate the torsional
elements 〈vτ(k)σ|p̂γeinγ|v′τ(k2)σ〉 and 〈vτ(k)σ|einγ|v′τ(k2)σ〉 can be
found in Lankhaar et al. (2016).
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