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Abstract

There exists much uncertainty surrounding interstellar grain-surface chemistry. One of the major reaction
mechanisms is grain-surface diffusion for which the binding energy parameter for each species needs to be known.
However, these values vary significantly across the literature which can lead to debate as to whether or not a
particular reaction takes place via diffusion. In this work we employ Bayesian inference to use available ice
abundances to estimate the reaction rates of the reactions in a chemical network that produces glycine. Using this
we estimate the binding energy of a variety of important species in the network, by assuming that the reactions take
place via diffusion. We use our understanding of the diffusion mechanism to reduce the dimensionality of the
inference problem from 49 to 14, by demonstrating that reactions can be separated into classes. This dimensionality
reduction makes the problem computationally feasible. A neural network statistical emulator is used to also help
accelerate the Bayesian inference process substantially. The binding energies of most of the diffusive species of
interest are found to match some of the disparate literature values, with the exceptions of atomic and diatomic
hydrogen. The discrepancies between these two species are related to the limitations of the physical and chemical
models. However, the use of a dummy reaction of the form H+X⟶ HX is found to somewhat reduce the
discrepancy with the binding energy of atomic hydrogen. Using the inferred binding energies in the full gas–grain
version of UCLCHEM results in almost all the molecular abundances being recovered.

Unified Astronomy Thesaurus concepts: Astrostatistics strategies (1885); Bayesian statistics (1900); Reaction rates
(2081); Astrochemistry (75); Dark interstellar clouds (352); Interstellar abundances (832)

1. Introduction

Interstellar dust plays a very significant role in the rich
chemistry that is produced in the interstellar medium. In fact, it
is widely believed that complex organic molecules (COMs)
form on interstellar dust (Herbst & van Dishoeck 2009; Caselli
& Ceccarelli 2012). In certain cases, grain-surface reactions are
more efficient than gas-phase reactions, due to the dust grains
acting as energy sinks. However, there exists much debate
about the stage of star formation during which these molecules
are produced. While modeling has shown that molecules such
as glycine can be formed during the warm-up phase of star
formation (Garrod 2013), there is also evidence that suggests
that dark interstellar cloud conditions would suffice (Ioppolo
et al. 2020).

Bayesian inference can be used to estimate reaction rate
parameters using observations. While this tool has become a
staple in many areas of astrophysics, it is only recently that it
has found use cases in astrochemistry (Makrymallis &
Viti 2014; Holdship et al. 2018; de Mijolla et al. 2019; Heyl
et al. 2020). In Holdship et al. (2018), reaction rates were
inferred using a toy network. In Heyl et al. (2020), the topology
of this network was also considered, specifically the placement
of constraints within the network. Both of these works
considered the rates of the reactions, without considering the
actual, underlying reaction mechanisms. However, it was noted
in both works that the paucity of grain-surface species

abundances means that many of the reaction rates will remain
undetermined, due to the high levels of degeneracy. This work
seeks to circumvent this issue by using the physics of the grain-
surface diffusion mechanism to reduce the number of free
parameters and therefore break this degeneracy.
To better understand the importance of various reactions, it

is important to have knowledge of the binding energies on dust
grains of the species involved. Molecular binding energies
provide an upper temperature limit at which the species is still
active on the grain surface before it desorbs into the gas phase
(Penteado et al. 2017). As such, having accurate molecular
binding energy values is crucial when modeling grain-surface
chemistry, as Penteado et al. (2017) showed that the grain-
surface chemistry was very sensitive to the values of the
binding energy. A variety of approaches have been taken to
determine the binding energies, ranging from experimental
approaches (He et al. 2016) to density functional theory
(Ferrero et al. 2020).
However, despite the various approaches used to estimate

binding energies, there is still significant uncertainty when it
comes to their values. In this work, we use the Bayesian
framework to estimate the binding energies of species. This is
an important quantity, as it represents the mobility of the
species on a dust grain. The values of the binding energies of
species differ significantly across the literature (McElroy et al.
2013; Penteado et al. 2017; Wakelam et al. 2017). This high
level of disagreement may be due to differing modeling and/or
experimental approaches which cannot necessarily be recon-
ciled. By using measured abundances of some grain-surface
species, we are looking to provide estimates of binding
energies with uncertainties.
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However, Bayesian inference typically has a long run time,
that is dependent on both the number of dimensions that are
being explored as well as the time taken per forward model
evaluation. A higher dimensionality means that the Bayesian
inference sampler requires more samples to converge to a
stationary posterior distribution. We reduce the dimensionality
of our problem by utilizing physical considerations of the
reaction mechanism. This also reduces the total time taken for
the inference. We also use statistical emulation to reduce the
time further by decreasing the time taken per forward model
evaluation. This is particularly relevant when performing the
inference multiple times, given that each inference run calls the
forward model tens of thousands of times.

We begin by first explaining the chemical code and network
that will be used in this work in Section 2. Additionally, we
describe the grain-surface diffusion mechanism that lies at the
heart of our investigation. We will explain how we can make
approximations regarding a species’ mobility to estimate the
binding energy of said species. In Section 3, we will discuss
how statistical emulation can be leveraged to accelerate the
running of the forward model, before describing how Bayesian
inference will tie all of this together in Section 4. Following
this, we will present the resulting binding energies estimates
using this method in Section 5. In Section 6, we then look to
see how well we are able to recover abundances when we run a
full gas–grain chemical code using the estimated values.

2. The Chemical Code and Network

2.1. The Chemical Model and Code

The code that was used was based on the gas–grain chemical
code UCLCHEM (Holdship et al. 2017).

The surface chemistry is modeled through the rate equation
approach. The code has to solve a system of coupled ordinary
differential equations of the form

( )å å= - - +
¹

dn

dt
k n n n k n k n k n , 1i

l m
lm
i

l m i
i r

r r i i i i
,

des ads
,gas

where k ilmis the reaction rate of the reactions between species l
and m to produce species i, ni is the abundance of species i, kr
represents the reaction rates of all reactions where species i is
consumed as a reactant, and ki

des and ki
ads represent the

desorption and adsorption rates of the species. The coupled
differential equations represent the formation and destruction
mechanisms for all the relevant species.

However, in order to reduce the run time of the inference
process, some changes had to be made to reduce the time taken
for UCLCHEM to run. These are described in detail in
Holdship et al. (2018) but are outlined briefly here.

The code that was used considered only grain-surface
chemistry to reduce the complexity of the system of coupled
ordinary differential equations. However, it was important to
still include the key processes that couple the gas and grain
chemistry. It should be noted that the final two terms in
Equation (1) represent the net flux of gas-phase molecules
adsorbing into the grain surface. As such, if one only wishes to
consider grain-surface chemistry, then one just needs to
parameterize this net “freeze-out.” The net freeze-out was
found by running a single point model of the full gas–grain
version UCLCHEM. The net movement of each species
between the gas and grain phases as a function of time was
then extracted. Only the species which were deposited in

abundances relative to nH greater than 10−7 on the grains were
included. These species were: H, O, OH, C, CO, N, CH, and
CH3. These were all species that would form in the gas phase
and were involved in the reactions listed in Table 1. The freeze-
out rates were inserted as source terms into the grain-surface
models. The freeze-out of the more complex species was not
considered, as these species were unlikely to form in the gas
phase at 10 K. The advantage of doing this is that one avoided

Table 1
Reactions Used in this Work

Reaction No. Reaction
E

E
b

D

1 H + H ⟶ H2 0.6
2 O + H ⟶ OH 0.6
3 OH + H ⟶ H2O 0.6
4 CO + H ⟶ HCO 0.6
5 HCO + H ⟶ H2CO 0.6
6 HCO + H ⟶ H2 + CO 0.6
7 H2CO + H ⟶ H3CO 0.6
8 H2CO + H ⟶ HCO + H2 0.6
9 H3CO + H ⟶ CH3OH 0.6
10 CO + OH ⟶ HOCO 0.5
11 CO + OH ⟶ CO2 0.5
12 HOCO + H ⟶ H2 + CO2 0.6
13 HOCO + H ⟶ HCOOH 0.6
14 N + H ⟶ NH 0.6
15 NH + H ⟶ NH2 0.6
16 NH2 + H ⟶ NH3 0.6
17 C + H ⟶ CH 0.6
18 CH + H ⟶ CH2 0.6
19 CH2 + H ⟶ CH3 0.6
20 CH3 + H ⟶ CH4 0.6
21 CH4 + OH ⟶ CH3 + H2O 0.6
22 NH2 + CH3 ⟶ NH2CH3 0.5
23 NH3 + CH ⟶ NCH4 0.5
24 NCH4 + H ⟶ NH2CH3 0.6
25 NH2CH3 + H ⟶ NCH4 + H2 0.6
26 NH2CH3 + OH ⟶ NCH4 + H2O 0.5
27 NCH4 + HOCO ⟶ NH2CH2COOH 0.5
28 OH + H2 ⟶ H2O 0.35
29 O + O ⟶ O2 0.6
30 O2 + H ⟶ HO2 0.6
31 HO2 + H ⟶ OH + OH 0.6
32 HO2 + H ⟶ H2 + O2 0.6
33 HO2 + H ⟶ H2O + O 0.6
34 OH + OH ⟶ H2O2 N/A
35 OH + OH ⟶ H2O + O N/A
36 H2O2 + H ⟶ H2O + OH 0.6
37 N + N ⟶ N2 0.6
38 N + O ⟶ NO 0.6
39 NO + H ⟶ HNO 0.6
40 HNO + H ⟶ H2NO 0.6
41 HNO + H ⟶ NO + H2 0.6
42 HNO + O ⟶ NO + OH 0.6
43 HN + O ⟶ HNO 0.6
44 N + NH ⟶ N2 0.6
45 NH + NH ⟶ N2 + H2 0.5
46 C + O ⟶ CO 0.6
47 CH3 + OH ⟶ CH3OH 0.6
48 NH + CO ⟶ HNCO 0.5
49 ⟶+ ++ -NH HNCO NH OCN3 4 0.35

Note. Taken from Ioppolo et al. (2020) and Linnartz et al. (2015). The values
of E

E
b

D
used for the more mobile species for each diffusion-based reaction are

given. Reactions 34 and 35 are not assumed to be diffusive reactions.
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needing to consider the system of ODEs for gas-phase
reactions, thereby significantly reducing the computational
complexity.

The code models the surface chemistry of a collapsing dark
cloud from a density of 102–106 cm−3 over 10 million yr at 10
K. As in Holdship et al. (2018), the model reaches its final
density at 6 Myr, but the chemistry continues to evolve at
constant velocity until the age of the cloud reaches 10Myr. The
grains start off as bare grains, with the freeze-out of the gas-
phase species acting as source terms for the grain-surface
chemistry.

2.2. The Chemical Network

Our network is composed of radicals that react to form
glycine, the simplest amino acid. The reactions that make up
this chemical network are shown in Table 1. The grain-surface
network used in this work is based on the one used in Ioppolo
et al. (2020) with the final two reactions being taken from
Linnartz et al. (2015). In Ioppolo et al. (2020), laboratory and
chemical modeling found that the first 47 reactions were able to
produce glycine in dark interstellar conditions, long before the
warm-up phase of star formation, without requiring any
energetic input (Ioppolo et al. 2020). This is in contrast to
previous work that assumed that the formation of glycine
required an increased temperature as well as energetic
processing (Garrod 2013). Based on Ioppolo et al. (2020), it
was expected that this network would be sufficient to learn
about COMs in the prestellar phase with the help of observed
abundances. Reactions 48 and 49 were included, as they
involved species already present in the network. Furthermore,
one of the end products, NH+

4 , had a constraint on its
abundance that could be used for the Bayesian inference to
further constrain the parameters.

2.3. Grain-surface Chemistry

2.3.1. Grain-surface Diffusion

An understanding of the actual grain-surface mechanisms
will prove crucial in this work. The diffusion mechanism
described in Hasegawa et al. (1992) was implemented in
UCLCHEM in Quénard et al. (2018).

According to the mechanism, the rate at which two species A
and B react via diffusion is given by

( )
( )k=

+
k

k k

N n
, 2

A B

AB AB
hop hop

site dust

where Nsite is the number of sites on the grain surface and ndust
is the number density of dust grains.

In Equation (2), kXhop is the thermal hopping rate of species X
on the grain surface defined as

⎜ ⎟
⎛

⎝

⎞

⎠
( )n= -k

E

T
exp , 3X b

hop 0
gr

where Eb is the diffusion energy of the species, Tgr is the grain
temperature and ν0 is the characteristic vibration frequency of
species X. The diffusion energy is typically taken to be a
fraction of the species binding energy, ED. There is debate
surrounding the value of the fraction E

E
b

D
, though there is

agreement that it should be in the range 0.3–0.8, with lower
values in this range being more appropriate for stable

molecules (Penteado et al. 2017). However, it has been found
that for O and N atoms, a ratio of 0.55 is more suitable
(Minissale et al. 2016a). In this work, we follow the convention
adopted by Jin & Garrod (2020) where the ratio was set to
equal 0.6 for atomic species and 0.35 for stable species. For all
other species, a value of 0.5 was used. For each reaction, the
value of E

E
b

D
for the more mobile species is given in Table 1. The

reason we only consider the value of this ratio for the more
mobile species is given in Section 4.5. The characteristic
vibration frequency, ν0, is defined as

( )n
p

=
k n E

m

2
, 4b s D

0 2

where kb is the Boltzmann constant, ns is the grain site density,
and m is the mass of species X.
Finally, κAB, which provides the reaction probability, is

taken to be


⎜ ⎟

⎛

⎝
⎜ ⎛

⎝
⎞
⎠

⎛

⎝

⎞

⎠

⎞

⎠
⎟ ( )k m= - -

a
k E

E

T
max exp

2
2 , exp , 5b A

A
AB

gr

where ÿ is the reduced Planck constant, μ is the reduced mass,
EA is the reaction activation energy, kb is Boltzmann’s constant,
and a= 1.4Å is the thickness of a quantum mechanical barrier.
The reaction probability is effectively a competition between
the first term, which is the quantum mechanical probability of
tunneling through a rectangular barrier of thickness a, and the
thermal reaction probability, the second term.

2.3.2. Reaction–diffusion Competition

A correction needs to be made to κAB to account for the fact
that species might diffuse or evaporate instead of reacting with
each other. This correction is the reaction–diffusion competi-
tion (Chang et al. 2007; Garrod & Pauly 2011). The reaction
probability is defined to be

( )k =
+ +

p

p p p
, 6AB

final reac

reac diff evap

where preac, pdiff, and pevap represent the probabilities of species
A and B reacting, diffusing, and evaporating per unit time,
respectively. These quantities are defined as

( ) ( )n n k=p max , 7A B
reac 0 0 AB,

( )= +p k k 8A B
diff hop hop

and

⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
( )n n= - + -p

E

T

E

T
exp exp . 9A D

A
B D

B

evap 0
gr

0
gr

In Equation (2), κAB is replaced with kAB
final.

At 10 K, we observe that the rate of evaporation is far lower
than the rates of diffusion and reaction, so will be neglected
throughout this work.
As most of the reactions in Table 1 are radical–radical, it was

assumed that their activation energies were 0 K. Even for
reactions involving a known reaction barrier, such as reaction
5, it was found that preac? pdiff, which means the activation
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energy barrier is lower than the diffusion barrier. As such,
k 1AB

final . This “diffusion-limited regime” corresponds to the
situation where the diffusion process is the rate-limiting step
and is due to the fact that the temperature being considered is
10 K.

3. Statistical Emulation

Statistical emulation involves fitting a statistical function to
match the inputs and outputs of a forward model (Grow &
Hilton 2018). The advantage in doing so is that one replaces the
slow-to-evaluate forward model with the fitted emulator in
order to save time. This becomes particularly significant when
multiple evaluations of the forward model are required, such as
in Bayesian inference which typically involves calling the
forward model hundreds of thousands of times. Statistical
emulators have primarily been used in the past in cosmology
(Auld et al. 2007; Schmit & Pritchard 2017; Rogers et al. 2019;
Wang et al. 2020), but have also recently found use in
astrochemistry (de Mijolla et al. 2019; Holdship et al. 2021). In
our case, the forward model requires solving a coupled system
of ODEs of the form given in Equation (1). The evaluation of
the forward model can be time consuming, especially if this has
to be repeated multiple times as would be the case for Bayesian
inference. This proves to be particularly important for the
analysis we do in Appendices A and B. In this case, a statistical
emulator would be particularly useful, as it can interpolate
within the range of input values considered. This is
computationally faster than making use of the original forward
model for evaluation.

There are a number of algorithms that can be used for the
purposes of emulation. One particularly popular one is the
Gaussian process emulator, which has found widespread usage
(Kennedy & O’Hagan 2001; Rogers et al. 2019; Pellejero-
Ibañez et al. 2020). An inherent advantage is the ability of this
sort of emulator to quantify the uncertainty associated with the
regression. This allows for the use of an acquisition function
that iteratively improves the emulator approximation by
sampling points in areas of high uncertainty (Rogers et al.
2019; Pellejero-Ibañez et al. 2020). However, a disadvantage is
that the emulation process scales badly as the cube of the
number of training points (Pellejero-Ibañez et al. 2020). This is
in contrast to neural network emulators, which will be used in
this work. Neural networks aim to fit the relationship between
the inputs and outputs of the model without considering the
uncertainty of the approximation. Neural networks do not
struggle as drastically with an increase in training points. A
higher number of training points will ensure better model
performance as the emulator, which is the reason that we
elected to use neural networks.

3.1. Training the Emulator

In order to be able to use the emulator, it must first be trained
on some data. It is important that the sampling is done in such a
way that the entire parameter space is explored. One cannot
simply use random uniform sampling, as each point is drawn
independently of the others. This can result in the training
points being clustered. This has the consequence of the
emulator attempting to match the training data more in these
regions, thereby introducing bias in other less well-covered
regions of the parameter space. A Latin hypercube sampling
scheme was used (McKay et al. 1979) and implemented using

the Python surrogate modeling toolbox (Bouhlel et al. 2019).
As both the input and output parameters span several orders of
magnitude, the emulator was trained to learn the mapping
between the logarithm of these two. The training data set
spanned the prior range for each parameter. Given that a log-
uniform prior between 10−15 and 100 was used for the
Bayesian inference (see Section 4.2 for details), this ensured
that any conceivable input to the emulator from the inference
was within the prior range, as outside that range the posterior is
zero due to the prior being zero. The parameter ranges defined
the range of values over which the emulator could interpolate.
The emulator was not needed to extrapolate, as the range of the
prior was covered.
Choosing the number of training points is a crucial

parameter. It is clear that increasing the amount of training
data will improve the emulator’s performance. However, this
will also result in the time taken for training increasing. As
such, a balance needs to be struck. Figure 1 shows the mean-
squared error (MSE) on a test set as a function of the number of
training points. It was found that using 150,000 training points
was sufficient. By evaluating these points on a single Research
Capital Investment Fund node with 40 cores, the training time
was about 30 minutes.

3.2. The Neural Network

In this work, an artificial neural network was used as the
emulator. To improve the neural network’s performance, the
input log rates were scaled to lie between zero and one. A five-
layer neural network was used with the three hidden layers
containing 512, 256, and 128 neurons, respectively. The
hyperbolic tangent was used as the activation function. The
scikit-learn package was used to train the emulator (Pedregosa
et al. 2011). To avoid overfitting to the training data, the
training process was terminated when the validation error
stopped decreasing by at least 0.01.

4. Bayesian Inference

4.1. Introduction to Bayesian Inference

The aim of this work is to deduce the reaction rates of the
reactions in this network, which we represent as a vector,
k= (k1, k2...k49), and use these inferred reaction rates to
determine the binding energies of diffusive species. This is
initially a 49-dimensional inference problem. The code used
takes this vector as an input and outputs the abundances of all
the species in this network, which is represented by the vector
Y= (Y1, Y2...Y35). There exist measurements for the abun-
dances of a subset of the molecules in this network. These form
the data d, which are listed in Table 2.
Bayes’ Law can be used to determine the probability

distribution of the reaction rates given the data

( ∣ ) ( ∣ ) ( )
( )

( )=k d
d k k

d
P

P P

P
, 10

where P(k|d) is the posterior probability distribution, P(k) is the
prior, P(d|k) is the likelihood, and P(d) is referred to as the
evidence. The prior distribution encodes our initial knowledge
of the values of the reaction rates. The likelihood provides the
likelihood of the data as a function of the reaction rates. The
likelihood provides information about the physical model under
consideration. The evidence serves as a normalizing factor, as it
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represents the marginalized likelihood. The posterior distribu-
tion represents the updated probability distribution of reaction
rates given the data, information encoded in the prior
distribution, and the physical model.

4.2. Implementation

To obtain the posteriors of the reaction rates, a prior must be
specified. As has been done previously, a log-uniform prior
was chosen, so as to equally weight rates over different orders
of magnitude. However, a different range is chosen compared
to Holdship et al. (2018) and Heyl et al. (2020) to
accommodate the fact that the reaction rates, k, are normalized
by the cloud density. Additionally, it was found by Holdship
et al. (2018) and Heyl et al. (2020) that the probability density
is very low in the range 10−30

–10−15. As such, a log-uniform
prior between 10−15 and 100 was used.

We assume that the measurements are Gaussian based on the
fact the distribution of reported measurements such as in
Whittet et al. (2011) are not strongly skewed but instead are
reasonably well fit by Gaussians with the parameters we
include in our data table. A Gaussian likelihood function was
used:

⎜ ⎟
⎛
⎝

⎞
⎠

( ∣ ) ( ) ( )
ps s

= -
-

=

d kP
d Y1

2
exp

2
, 11

i

n

i

i i

i1

2

2

d

where nd is the number of observations and σi is the uncertainty
of the ith observation. Only the species for which there are
abundances are multiplied over. Table 2 contains species for
which we have abundances with Gaussian uncertainties.
Observed abundances will be referred to as constraints in this
work as they constrain the prior parameter space of reaction
rate posteriors.
Boogert et al. (2015) also contains upper limits for the

abundances of some species of interest. The upper limits for
O2, N2, H2O2, and glycine are also included in Table 2.
Equation (11) can be rewritten to account for these upper
limits, as was done in Holdship et al. (2018).

⎜ ⎟
⎛
⎝

⎞
⎠

( ∣ ) ( ) ( ( ))
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1

2

2
1

d

i

where δi is 1 for observed species and 0 for species with upper
limits. Notice that in this case that nd is the number of
observations as well as upper limits. Ci is the upper limit of that
species and S(Ci) is the survival function, which is defined as

⎜ ⎟⎜ ⎟
⎛

⎝

⎛
⎝

⎞
⎠

⎞

⎠
( ) ( )

s
= - +

-
S C

C Y
1

1

2
1 erf , 13i

i i

i
UL

where erf is the error function and si
UL is taken to be one-third

of the upper limit. The value of σi is to account for the fact that

Figure 1. A plot of the mean-squared error of the emulator as a function of the number of training points used to train the emulator. The shaded area represents the
95% confidence interval around the mean-squared error.

Table 2
Abundances and Uncertainties

Species Abundances Relative to H Source

H2O (4.0 ± 1.3) × 10−5 Cloud
CO (1.2 ± 0.8) × 10−5 Cloud
CO2 (1.3 ± 0.7) × 10−5 Cloud
CH3OH (5.2 ± 2.4) × 10−6 Cloud
NH3 (3.6 ± 2.6) × 10−6 LYSOs
CH4 (2.3 ± 2.1) × 10−6 LYSOs
HCOOH (2.4 ± 1.3) × 10−6 LYSOs
NH+

4 (3.8 ± 1.5) × 10−6 Cloud
O2 <60 × 10−6 Comet
N2 <0.1 − 28 × 10−6 Comet
H2O2 <0.6 − 8 × 10−6 Comet
NH2CH2COOH <0.1 × 10−6 Comet

Note. Constraints used adapted from Boogert et al. (2015). There were two
distinct values for the upper limit on the abundance of O2, so the higher one
was selected.
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there might be some level of uncertainty on the value of the
upper limit.

In order to sample the posterior, the PyMultiNest Python
package was used (Buchner et al. 2014), which is a wrapper for
the MultiNest package (Feroz & Hobson 2008; Feroz et al.
2009, 2019), which implements nested sampling (Skilling
2006). A Python wrapper of the UCLCHEM code was created
using F2Py. The input was the vector of reaction rates k.

4.3. Degeneracy Problem

Before performing the inference, it is important to consider
the problem in more depth. There are 49 parameters to
estimate, but there are only 12 measurements. As was observed
in Holdship et al. (2018) and Heyl et al. (2020), having far
more parameters than constraints introduces a significant
amount of degeneracy into the problem. Some rates of
reactions do not influence the abundances of species with
constraints. As was observed in Holdship et al. (2018), this will
result in the majority of reaction rate posteriors being uniform.
Additionally, many posteriors will only deviate weakly from
uniformity. This was found to be the case for linear reaction
chains with successive hydrogenations, such as the successive
hydrogenation of CO to form methanol. The degeneracy
stemmed from the fact that the reactions were tightly coupled.
Provided one rate took a minimum value and acted as the rate-
limiting step, the other reaction rate was free to vary above this
minimum rate. The high level of degeneracy inherent to this
problem meant that despite running a sampler for several
weeks, it never converged.

4.4. Degeneracy Solution

To reduce the degeneracy of the problem, one can exploit
information about the underlying grain-surface diffusion
mechanism. Ultimately, the reaction rate is strongly dependent
on the hopping rates of the reactant species, which, assuming
the grain temperature is constant, implies that the reaction
rate is set by the binding energies. Given the strong
dependence of the hopping rate on the binding energy, it is
clear that a small difference in the binding energy between
two species will mean that the hopping rate of the more mobile
species (the one with the lower binding energy) will dominate
the reaction rate. In Equation (2), this corresponds to

k kA B
hop hop and yields

( )k=k
k

N n
, 14

A

AB AB
final hop

site dust

where we see that this equation only depends on the hopping
rate of species A. Recall that k 1AB

final in the diffusion-limited
regime.

Based on this, one can separate reactions into various
classes, depending on which of their reactants is more mobile.
Even though the actual values of the binding energies will
differ across the literature (see Penteado et al. (2017), for a
discussion on this), most works agree on the “hierarchy” of
mobility—that is, which of the two species is more mobile. By
making an assumption or by considering literature values, one
can make a decision on which species should be treated as
more mobile. In this work, the more mobile species was
assumed to be the one with the lower binding energy in at least
two of Penteado et al. (2017), UMIST, and Wakelam et al.
(2017). The groupings used are shown in Table 3. For reactions

34 and 35, one does not expect diffusion to be the dominant
reaction mechanism. However, since this is the diffusion-
limited regime, one can assume that these two reactions will
have the same reaction rate.
The major implication is that this now allows for the

calculation of a species’ binding energy. In fact, provided that
species is far more mobile, one can calculate that species’
binding energy. What one finds is that the reaction rates of
many reactions are effectively only dependent on the binding
energy of the same species. As such, the dimensionality of the
problem is significantly reduced, as one simply needs to
determine the binding energies of the more mobile species.

4.5. Deriving the Binding Energies

Binding energy values vary greatly across the literature.
Their values can determine whether or not a reaction can occur
efficiently via diffusion. For example, in Ioppolo et al. (2020),
it is stated that 10 K is too low a temperature for any species
other than the atomic hydrogen to diffuse. However, a
statement such as this one assumes a value for the binding
energy of hydrogen and that it is far lower than the binding
energies for other species. While many works state the binding
energy of H to be 650 K, many others find that species such as
O and N have comparable binding energies (Penteado et al.
2017).
Our goal is to determine the binding energies of various

species. In this work, we will be inferring reaction rates for the
various reactions and use these to solve for the binding
energies. The quantity k varies as a function of time, as seen in
Equation (2) due to the dependence on the total hydrogen
number density. However, by multiplying by nH on both sides,
one obtains

( )
( )k¢ = =

+
k k n

k k

N
, 15H

A B

n

n

AB AB AB
hop hop

site
H

dust

where n

nH

dust is a constant. Note now that the expression on the

right-hand side only consists of constants. This implies that ¢kAB

is constant with respect to the density of the cloud. While ¢kAB
can still be interpreted as a reaction rate, it has units of s−1.
Due to the exponential dependence of the hopping rates on

the binding energies, one finds that in most cases, one species
dominates the reaction rate. If species A has a binding energy
of, say, 500 K and species B has a 10% higher binding energy,
then A’s hopping rate is almost 150 times greater, due to the
low grain temperature of 10 K. This difference will only get
larger as the binding energies under consideration increase.

Table 3
Main Reaction Groupings

Grouping Reactions in Group

Hydrogenations 1–9, 12–20, 24, 25, 30–33, 36, 39–41
Oxygenations 29, 42, 43
Nitrogenations 37, 38, 44
CO-based reactions 10, 11, 48
OH+OH 34, 35
CH3-based reactions 22, 47

Note. Groupings are separated by the molecule that the literature suggested was
more dominant. Any reaction not included in this table had its reaction rate
inferred separately.
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Hence, we can state that k kA B
hop hop and then determine the

binding energy of the species by substituting Equation (3) into
Equation (14):

⎜ ⎟
⎛

⎝

⎞

⎠
( )

k
p¢ = -k

n N

n

m

k n

E

f

E

T2
exp , 16

H b s

b
A

b
A

AB
dust site

AB

2

gr

where the corresponding value of =f E

E
b

D
is used, depending on

the species under consideration. This equation cannot be solved
analytically, so has to be solved numerically.

4.6. Constraints

The final component required to perform Bayesian inference
is the data, which in this case would be measured abundances
of species. A number of constraints for molecules in this
network can be found in Boogert et al. (2015), which provides
the median abundance as well as lower and upper quartile. As
in Holdship et al. (2018), we assume the measurements are
Gaussian distributed, which implies the median is the mean.
Additionally, the upper and lower quartiles are 0.68σ from the
mean. Using this information, the abundances used in this work
are listed in Table 2. We combine measured molecular ice
abundances from the dark, quiescent cloud as well as large
young stellar objects (LYSOs). We observe that the species
CO, CO2, H2O, CH3OH, and NH+

4 have similar abundances in
quiescent clouds and LYSOs. Using this, we assume that other
species, which have only been detected in LYSOs, will have
broadly similar dark cloud abundances. We argue that while
chemistry is expected to happen during the warm-up phase for
LYSOs, this will be relatively short lived, and any abundances
will likely have been built up during the cold phase of star
formation. However, even though the warm-up phase will be
shorter, the chemical timescales will decrease due to the
reaction rate’s dependence on temperature. Overall, while there
is justification for using LYSO abundances for dark cloud
conditions, it should be noted that we are adding additional
uncertainty to our analysis.

5. Results

5.1. Highest Density Regions

Parameter estimates are typically quoted by considering the
marginalized posterior distributions. The important quantities
to estimate are typically the mean and variance. However, one
must be careful when estimating these quantities, as depending
on how broad and asymmetric the posterior space is around the
maximum-posterior value, these might not be meaningful
quantities. To determine useful estimators, one can choose to
only consider the highest density region (HDR) of the
posterior.

For a probability density function f (x) for some random
variable X, the 100(1− a)% HDR is the subset R( fa) of values
in X such that

( ) ( ) ( )= R f x f x f: , 17a a

where fa is the largest constant that ensures that the probability
of being in R( fa) is greater than 1-a (Hyndman 1996). In other
words, the HDR allows one to only consider a subset of the
posterior density function that has a value greater than some
threshold fa.

5.2. Reaction Rate Marginalized Posteriors

We find that all 14 parameter distributions are nonuniform.
As such, this means that we have gained information about the
entirety of our 49D reaction network. By exploiting our
knowledge of the grain-surface diffusion mechanism and
assuming that reaction rates are dominated by the diffusion
rates of a subset of molecules, we have been able to
significantly reduce the dimensionality of our problem, there-
fore making it computationally tractable for the sampler.
Figures 2 and 3 show the marginalized posterior distributions
for the reaction rates with the 65% HDR being the shaded
regions when we use the likelihoods expressed in
Equations (11) and (12). For all of the posteriors, the 65%
HDR lies away from the boundaries of the uniform distribution,
implying that our choice of prior was appropriate. We choose
not to consider 2D marginalized posterior distributions, due to
the fact that the parameters correspond to groups of reactions as
opposed to individual reactions. We consider the frequentist
properties of the estimators in Appendix A.
There are some noticeable differences in the marginalized

posterior distributions when the upper limits are included. The
fact that the oxygenation and nitrogenation reaction rate
distributions do not significantly change with the inclusion of
the upper limits on O2 and N2 is surprising. One would expect
that the reactions O+O⟶ O2 and N+N⟶ N2 would be
the dominant formation mechanisms. As such, it is possible
that the upper limits on the abundances of these species may
not be constraining enough to affect the obtained posterior
distributions. In Appendix B we explore the distribution of the
maximum-posterior binding energy as we vary the weak
constraints for the aforementioned four species with upper
limits. We also consider how the relative uncertainty on these
four abundance measurements affects the obtained values.
We observe that the posterior for the reaction rate of

hydrogenation is the most constrained in that it rules out more
of the prior parameter space than any of the other posteriors do.
In Heyl et al. (2020), the lower uncertainty on hydrogen’s
posterior was related to the size of the constraints on the species
formed by hydrogenation, in particular the constraint on water,
which is known to have an abundance greater than 0 at the 3.1σ
level. It would make sense that this low level of uncertainty on
the constraint drives the low uncertainty on the hydrogenation
reaction rate posterior, as it penalizes the likelihood function
more. In the limit of the uncertainties on the molecular
abundances going to zero, one would expect the posterior
distribution of the relevant reaction rate to look like a Dirac
delta function.

5.3. Binding Energy Posteriors

The advantage of inferring the reaction rates as opposed to
directly inferring the species binding energies is that the
reaction rate posteriors make no assumption about the exact
nature of the reaction mechanism. One can then select specific
reactions that one believes occur via diffusion, thereby
reducing the dimensionality of the problem. The list of species
that were thought to diffuse is listed in Table 4. These are
calculated from the reaction rate posteriors by solving
Equation (16), with the posteriors shown in Figure 4. In
Table 4, these binding energies are compared to the values used
in McElroy et al. (2013), Penteado et al. (2017), and Wakelam
et al. (2017). We make use of the posteriors obtained using

7

The Astrophysical Journal, 931:26 (16pp), 2022 May 20 Heyl, Holdship, & Viti



Equation (12). This first round of inference is referred to as
“Binding Energy 1.” We observe that there are no significant
differences in the binding energy distributions for most species
when we include the upper limits, with the exception of CH3,
for which we see that the inclusion of the upper limits results in
a significantly decreased estimated binding energy.

For most of the species for which there are literature binding
energies, there is an agreement with at least one literature value
and the uncertainty of the values is lower than the spread of
literature values. No values for the binding energies of NCH4

and NH2CH3 were found in the literature. The binding energies
for O and N were both found to be lower than that of H. This is
surprising as the reactions of the species with H were classified
as hydrogenations in Table 3.

However, the binding energies of H and H2 were found to
differ greatly from the literature binding energies. For the latter,
this is related to the fact that there is only a single reaction that
H2 is consumed in: OH+H2⟶ H2O. The production of
water is likely to be dominated by hydrogenation, due to the
fact that H is so much more abundant. Furthermore, for this
reaction H2 must compete with many other molecules to react
with OH. As such, the amount of water produced through this
pathway is less than the amount produced through hydrogena-
tion, which means its reaction rate will be lower than it should
be. This results in the high binding energy.
For some of the species, there is a large variance in the

posteriors. This can be attributed to the lack of enough
constraints in the network. To demonstrate this, the upper limits

Figure 2. Marginalized posterior distributions for the first eight reaction rate parameters.
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on the species N2, O2, H2O2, and glycine were replaced with
weak constraints that were derived by halving the upper limit
with a 50% relative uncertainty. It was found that the
uncertainties for most species substantially decreased. This
could be attributed to the fact that most of the constrained
species were formed through hydrogenation, hence why
hydrogen’s binding energy is so much more well constrained.
This appeared to suggest that the inclusion of these constraints
of species not formed solely through hydrogenation would help
reduce the variance.

It should be noted that even among the literature values,
there is not always agreement on the values of the binding
energies. The tension in the values can be attributed to varying

assumptions made about the grains, such as the ice composi-
tion. Additionally, recent work by Bovolenta et al. (2020) and
Grassi et al. (2020) suggests that it might be more appropriate
to consider binding energy distributions that vary as functions
of the individual binding site. In our work, we have assumed
that there is a single binding energy value, which implies that
the grains are uniform in nature. In reality, this is unlikely to be
true and will need to be accounted for in future work.

6. The Binding Energy of Hydrogen

We observe that, despite the high precision of the
hydrogenation rate estimate, the binding energy of hydrogen

Figure 3. Marginalized posterior distributions for the remaining six reaction rate parameters.
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is inaccurate and does not match any of the literature values
within the error. We now look to address this.

The rate equation approach does not consider positional
dependence of species, i.e., it assumes everything can react
with everything else on the grain. This might be problematic
for H, as there is so much of it, but only a small amount is on
the grain mantle. This will not be considered here, as it is
outside the scope of the work.

A rigorous solution would be to account for the formation
and subsequent chemical desorption of H2. This would take H
out of the system and might be more physically realistic. Most
of the products of hydrogenation in this network are species for
which we have abundances. This means that in order to satisfy
all these constraints, the hydrogenation rate posterior will be far
too well constrained. Note that this reaction network is not
complete. We can choose to add a “dummy reaction” of the
form H+X⟶ HX to represent all the possible reactions
involving hydrogen. Notice that these will not necessarily all
involve hydrogenation of grain species, but will also include
desorption of the produced species. This is why the dummy
reaction is not assumed to have the same reaction rate as all the
hydrogenations. By leaving the reaction rate of the dummy
reaction as an additional free parameter, we can increase the
variance of the posterior distribution of hydrogenation and
therefore its binding energy posterior.

6.1. Including Chemical Desorption of H2

The energy released in the reaction of H+H⟶ H2 can
cause the product to desorb into the gas phase. An estimate for
the fraction of H2 released was determined by Minissale et al.
(2016b) to be


⎜ ⎟
⎛
⎝

⎞
⎠

( )h = -
D

E N

H
exp , 18D

R
CD

dof

CD

where ED is the desorption energy of the reacting species ΔHR

is the enthalpy of the reaction, Ndof= 3× natoms and òCD is the
fraction of kinetic energy the product has as it bounces off the
grain surface to escape the potential well. The latter is defined

as

 ( )
( )

( )=
-
+

m M

m M
, 19CD

2

2

where m is the mass of the product and M is the effective mass
of the grain surface, which is taken to be 120 amu in this work.
For the chemical desorption of H2, ηCD was found to be

roughly 0.9 and this additional loss term due to desorption was
included in the differential equation for H2. However, it was
found to not have a significant impact on the reaction rate and
binding energy posteriors. This was a surprising result, but was
attributed to the fact that there is far more H in the system than
any other species, including H2.
It is also possible that H2 formation via this reaction is

dominated by the Eley-Rideal mechanism, in which a gas-
phase molecule reacts with a grain-surface species (Ruaud et al.
2015; Jin & Garrod 2020). This would indicate a weakness of
the computational model used which decouples the gas and
grain chemistries. While this was done in order to significantly
reduce computational run time and therefore significantly
reduce the run time for the Bayesian inference, highly abundant
species such as H and H2 are likely to not be accurately
described by a decoupled model as they are likely to move
between these two phases quite a bit.

6.2. Including a Dummy Reaction in the Network

We consider the effect of including the dummy reaction
H+X⟶ HX on the entire network. The posteriors for the
reaction rates are shown in Figures 2 and 3 with the
corresponding binding energy posteriors being shown in
Figure 4 and listed in Table 4 as “Binding Energy 2.”
Hydrogen is a unique species, as it is so much more

abundant than any other species. Combining this with its higher
mobility means that it can react with a wide range of species on
the grain. As such, it is important to try and accurately model
its behavior on the grain by accounting for all the possible
reactions it can participate in. This dummy reaction acts as a
sink for all the excess reactions by accounting for all the other
reactions it can participate in.

Table 4
Binding Energies Obtained for Various Species

Species Binding Energy 1 (K) Binding Energy 2 (K) Penteado (K) Wakelam (K) UMIST (K)

H -
+1099 57

33
-
+1016 68

65 650 ± 100 650 600

O -
+824 109

180
-
+805 97

88 1660 ± 60 1600 800

N -
+894 202

326
-
+932 130

102 715 ± 358 720 800

C -
+1336 160

136
-
+1361 256

124 715 ± 360 10000 800

CO -
+1009 123

158
-
+1018 135

91 1100 ± 250 1300 1150

CH -
+1160 240

130
-
+1107 162

228 590 ± 295 925 925

CH3 -
+1088 242

375
-
+1133 288

350 1040 ± 500 1600 1175

CH4 -
+1343 200

765
-
+1327 139

153 1250 ± 120 960 1090

H2 -
+1719 356

377
-
+1976 283

184 500 ± 100 440 430

NH -
+1172 325

307
-
+1115 254

351 542 ± 270 2600 2378

NCH4 -
+1265 354

206
-
+1046 222

326 L L L
NH2CH3 -

+1694 355
486

-
+1581 427

544 L L L

Note. Binding energies obtained through the use of Bayesian inference as well as values from Penteado et al. (2017), McElroy et al. (2013), and Wakelam et al.
(2017). The first set of predicted binding energies comes from performing Bayesian inference on the standard network, while the second set of predictions stems from
including the dummy reaction H + X ⟶ HX. With the exception of H, most of the other binding values match at least one literature value. For most of the species,
the uncertainty on the binding energy values is lower compared to the spread of literature values. No values for the binding energies of NCH4 and NH2CH3 were found
in the literature.
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There are some differences between the previous posteriors
and the ones produced using the dummy reaction. As expected,
the hydrogenation reaction rate’s posterior sees an increase in
its variance. This then translates to an increase in the estimated
variance of hydrogen’s binding energy. This is not unexpected.
Since both X and HX are unconstrained, the amount of
hydrogen that is consumed by this reaction is also uncon-
strained. Therefore, this places a significant uncertainty on the
amount of hydrogen that is available for other reactions,
thereby inflating the uncertainty. However, even with this
increased variance, the binding energy from Penteado et al.
(2017) is not matched within the error. For many of the other
parameters, we observe a decrease in the variance of the

posteriors through the inclusion of the dummy reaction, with
CH4 seeing its HDR size shrink significantly through this
hydrogen sink. A similar observation can be made for the
binding energy posteriors of O, N, CH3, and CO.

7. Application to a Gas–Grain Chemical Code

In this section, we will look to use the binding energies
obtained in this work in a full version of the gas–grain chemical
code UCLCHEM. This is a form of model checking. To do
this, we sample from the binding energy posteriors in Figure 4
and input these into UCLCHEM. We aim to determine how
well the abundances of species of interest are recovered when

Figure 4. Marginalized posterior probability distributions (PPDs) for the binding energies of the species of interest. The marginalized posterior distributions are also
plotted for the case where a dummy reaction for hydrogen is included in the network.
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the binding energies obtained in this work are inputted into the
full gas–grain version of UCLCHEM. Figure 5 shows the time
series evolution of the fractional abundances of H2O, CO, CO2,
CH3OH, NH3, CH4, and HCOOH, with the 95% confidence
interval for the time series also shown. These are species from
Table 2 that have observed abundances, not simply upper limits
that have been converted into weak measurements. The only
species with an observed value that has not been included is
NH+

4 , but this is not expected to form via diffusion. The
purpose of this section is to see how well the inferred binding
energy values help in recovering the abundances in a general
gas–grain network. We observe that at late times, the final

abundances of most of the species become less affected by the
binding energies than for earlier times, suggesting that we
approach an equilibrium point at a temperature of 10 K. If we
were to consider a warmer core, it is likely that our final
abundances would be different.
The final abundances of H2O, CO2, CH3OH, CH4, and

HCOOH match the measured values, within the 1σ error. This
is not the case for NH3 and CO. The final abundance for NH3 is
1.2σ from the mean, which is a relatively small discrepancy.
On the other hand, CO’s final abundance is 4.6σ from the
mean. One possible reason for this is that all the other
molecules which are constrained are stable molecules that are

Figure 5. Time series of the fractional abundances for H2O, CO, CO2, and CH3OH. The binding energies for each species were sampled from the marginalized
posterior distributions and inputted into the full UCLCHEM code. The horizontal shaded regions are the corresponding measured molecular abundances with their
67% confidence interval. The time series are plotted with their 95% confidence intervals.
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unlikely to be depleted sufficiently at 10 K. In contrast, CO is a
radical and is likely to react with other radicals. The fact that
CO appears to be overproduced here suggests that the network
being employed is incomplete. A more complete network
would have more CO-based reactions that would lower the CO
abundance. Despite an incomplete network, uncertain elemen-
tal abundances, or the gas–grain decoupling all contributing to
this systematic error, the final abundance for CO is still a
sensible value. Overall, knowledge of the diffusion mechanism
has allowed us to not only reduce the dimensionality by
grouping reactions but also recover the observed values more
precisely compared to Holdship et al. (2018), where each
reaction rate was inferred separately.

However, despite the discrepancy with CO, the binding
energies obtained using the decoupled code provide reasonable
results when input into the full gas–grain chemical code. The
next step would be to infer the binding energies directly from
the full gas–grain code, though this is complicated by the fact
that each evaluation of UCLCHEM, which models the full
evolution of the cloud, takes of the order of a minute,
suggesting a statistical emulator might need to be used to
perform the inference in a reasonable amount of time.

8. Conclusions

In this work, we used the diffusion mechanism formalism to
significantly reduce the dimensionality of the inference
problem, reducing the number of reaction rates to be estimated
from 49 to 14. A statistical emulator was trained to further
reduce the time taken per forward model evaluation. It was
found that the reaction rate of many reactions is ultimately
driven by the hopping rate of the more mobile species, thereby
allowing us to group several reactions into classes. In doing so,
the reaction rate posteriors obtained could be converted into
binding energy posteriors for the corresponding mobile species
driving the reaction.

This approach yielded binding energy values that were
consistent with literature values. The notable exceptions were
the binding energies of H and H2, whose binding energy values
were found to be significantly higher than other literature
values. This discrepancy was attributed to issues relating to the
chemical model used, which decoupled the gas and grain
chemistries in the interest of reducing the time taken for the
evaluation of the forward model and therefore the time taken
for the inference process. While chemical desorption was found
to not have a significant effect on the discrepancy, using a
dummy reaction of the form H+X⟶ HX to account for all
the possible other reactions involving H somewhat reduced the
discrepancy, but not enough.

This work has developed an important step in estimating
reaction rate parameters using Bayesian inference. It was seen
that dimensionality will scale slower than the number of
reactions. This reduces the number of samples that are needed
to reach a stationary posterior. This approach can be trivially
expanded to include more complex reaction networks. This will
prove particularly important in the context of considering the
formation chemistry of glycine or other amino acids. The
formation routes are likely to contain a large number of
diffusion reactions. However, inferring the reaction rates will
not become unfeasible, due to how the dimensionality scales
with the number of reactions.

In Section 7, we sampled from the obtained binding
energy posteriors and input these binding energies into the

full gas–grain version of UCLCHEM. We found some
agreement between the obtained molecular abundances and
the observed values. However, if one wished to infer from
UCLCHEM directly, one would need to account for the fact
that the inference process would take longer, on account of one
evaluation of the full version of UCLCHEM taking of the order
of a minute compared to the 0.5 seconds that is typical of the
simplified code used in this work. Future work will look to
employ statistical emulation to the full version of UCLCHEM
to circumvent this problem. Alternative sampling techniques
that are adaptive could be utilized to improve emulator
performance, even for the emulator in this work (Gramacy &
Lee 2008).
Further work will need to consider larger grain-surface

networks and include gas chemistry. Additionally, one should
look to consider other nondiffusive grain-surface reaction
mechanisms. Expressions for these reaction rates have been
formulated in Jin & Garrod (2020). Including these would
ensure that a more accurate picture of the chemistry would be
obtained. It would also be interesting to investigate the validity
of the claim that the measurements are Gaussian distributed, as
this has a direct impact on the formulation of the likelihood
function. This assumption would have an impact on the
posteriors obtained. There exist various methods to perform
Bayesian inference without requiring the specification of a
likelihood function, such as approximate Bayesian computa-
tions that are the focus of current work.
Further work would also need to address the lack of

sufficient abundance data. It is clear that the abundances of
more species need to be known in order to better constrain the
reaction rate posteriors as well as the binding energy posteriors.
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Appendix A
Evaluating the Frequentist Properties of the Bayesian

Estimators

In this section, we seek to determine whether the constraints
imposed are significantly influencing the resulting posterior
distribution. To determine this, we run the forward model using
reaction rates drawn from a Gaussian distribution with a mean
value equal to the maximum-posterior reaction rate obtained in
this work (which represents the “true” reaction rate) and a
standard deviation equal to 1. Bayesian inference was then used
to recover these reaction rates. This was repeated 20 times
using the statistical emulator. The strip plots in Figure 6 show
the values of the reaction rates recovered with the associated
uncertainties. This analysis is meant to demonstrate to what
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extent the constraints imposed by Equation (12) are influencing
the posteriors obtained.

It becomes clear that the extent to which the constraints
affect the posteriors depends on the parameter. For the
hydrogenation reaction rate, we see that the 65% highest
density regions contain the true reaction rates used in the
simulation 65% of the time, that is for 13 of the 20 strips. We
find that the high-density regions are jittered around the true
value, suggesting there is no bias. Overall, what we find is that
the constraints are significantly influencing the hydrogenation
reaction rate posterior. This is perhaps unsurprising given that

most of the constrained species are products of hydrogenation.
It is also for this reason that the binding energy for hydrogen
has the lowest uncertainty.
However, when the other posteriors are considered, it is clear

that there is a greater level of prior domination. While the HDRs
are all significantly smaller than the prior range from−15 to 0, we
still find that within the HDR the posteriors are not as sharp as for
the hydrogenation. This can be confirmed visually by considering
the posteriors shown in Figures 2 and 3. While some of the strips,
such as for CO-based reaction, show more jitter around the true
value, it is clear that more data is required to counter the influence

Figure 6. A strip plot of how well the reaction rates are recovered when the forward model is run with some noise on the reaction rates. The vertical black line in each
plot represents the “true” reaction rate.
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of the prior distribution. However, we observe that there is no bias
in the obtained posteriors.

Appendix B
Determining the Effect of Constraints on the Inferred

Binding Energy Values

We observed that the inclusion of upper limits in the
likelihood function given by Equation (12) did not have a
significant bearing on the binding energy posterior distribu-
tions. This suggests that the upper limits listed in Table 2 for
N2, O2, H2O2, and glycine may not be sufficiently constraining.
In that case it might be more useful to have abundance
measurements for these species. To test the effect of these
abundance values on the obtained binding energies, we ran the

inference 1000 times using the statistical emulator and plotted
the distribution of the maximum-posterior binding energy
values in Figure 7. For each inference run, the constraints for
each of the species with upper limits in Table 2 were taken to
be a random value between 0 and the upper limit. These
abundance values were sampled uniformly in this range. The
relative error on these four measurements varied to equal 50%,
33.3%, and 20%. The relative errors are represented as ò.
We observe that the size of the relative errors has some

bearing on the maximum-posterior binding energy values
obtained as well as the spread of values. For most of the
species, we observe that there is a significant increase in the
spread of inferred values. This demonstrates the importance of
detecting further grain-surface species in order to better
constrain the binding energy values.

Figure 7. Distributions of the maximum-posterior binding energies obtained when the constraints on N2, O2, H2O2, and glycine are varied.
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