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Abstract
Through the quantification of physical activity energy expenditure (PAEE), health care
monitoring has the potential to stimulate vital and healthy ageing, inducing behavioural
changes in older people and linking these to personal health gains. To be able to mea-
sure PAEE in a health care perspective, methods from wearable accelerometers have
been developed, however, mainly targeted towards younger people. Since elderly sub-
jects differ in energy requirements and range of physical activities, the current models
may not be suitable for estimating PAEE among the elderly. Furthermore, currently
available methods seem to be either simple but non-generalizable or require elaborate
(manual) feature construction steps. Because past activities influence present PAEE,
we propose a modeling approach known for its ability to model sequential data, the
recurrent neural network (RNN). To train the RNN for an elderly population, we used
the growing old together validation (GOTOV) dataset with 34 healthy participants of
60 years and older (mean 65 years old), performing 16 different activities. We used
accelerometers placed on wrist and ankle, and measurements of energy counts by
means of indirect calorimetry. After optimization, we propose an architecture con-
sisting of an RNN with 3 GRU layers and a feedforward network combining both
accelerometer and participant-level data. Our efforts included switching mean to stan-
dard deviation for down-sampling the input data and combining temporal and static
data (person-specific details such as age, weight, BMI). The resulting architecture pro-
duces accurate PAEE estimations while decreasing training input and time by a factor
of 10. Subsequently, compared to the state-of-the-art, it is capable to integrate longer
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activity data which lead to more accurate estimations of low intensity activities EE. It
can thus be employed to investigate associations of PAEE with vitality parameters of
older people related to metabolic and cognitive health and mental well-being.

Keywords Recurrent neural networks · Physical activity energy expenditure ·
Accelerometer · Wearables · Indirect calorimetry · Monitoring older adults

1 Introduction

At older age, the extension of health span and maintenance of mobility are of great
importance for the quality of life. Regular physical activity (PA) of moderate intensity
is known to offer positive effects on the reduction of disease incidence and mortality
risk (Manini et al. 2006; Chen et al. 2012; Cicero et al. 2012; Petersen et al. 2012).
To quantify and monitor the intensity of PA, estimation of energy expenditure dur-
ing physical activity is an obvious necessity. By monitoring physical activity energy
expenditure (PAEE), older people may better engage in physical activities, leading to
better health and reduced (multi)morbidity and mortality risk (Manini et al. 2006).

PAEE is one component of total energy expenditure (TEE), where TEE is the
sum of PAEE, resting energy expenditure (REE or RMR) by a fasted individual, and
thermic effect of food (TEF). One way to measure PAEE is using direct calorimetry
and measurements of heat production, but expensive equipment is required. Also, the
Doubly LabeledWater Technique (DLW) provides an accurate technique of TEE esti-
mation from where PAEE can be estimated, however, similar to direct calorimetry, it
requires sophisticated lab-based equipment to analyse urine samples. Therefore, indi-
rect calorimetry (Leonard 2012) is commonly used, which involves the measurement
of oxygen and carbon dioxide exchange by ventilated mask or hood.

Because such forms of calorimetry cannot be performed under free-living condi-
tions, methods to estimate PAEE from wearable accelerometers have been developed
(Lyden et al. 2011; Staudenmayer et al. 2009; Ellis et al. 2014; Montoye et al. 2017a;
Caron et al. 2020;O’Driscoll et al. 2020). This formof indirect calorimetry is estimated
by accelerometer data and their combinations with physiological measurements such
as heart rate, and individual-level data (demographic, anthropometric) using both lin-
ear and non-linearmethods (Liu et al. 2012). For example, linear ormultiple regression
methods can be used to estimate PAEE (Lyden et al. 2011), but also non-linear ensem-
bles like random forest regressors (Gjoreski et al. 2013; Ellis et al. 2014; O’Driscoll
et al. 2020) and deep learning method such as artificial neural networks (ANN) (Stau-
denmayer et al. 2009;Montoye et al. 2017a) and convolutional neural networks (CNN)
(Zhu et al. 2015) have been employed. Good estimates of PAEE can be derived from
accelerometry data.

Since the majority of currently available methods to estimated PAEE from
accelerometer data are mainly developed and tested on a young or middle-aged popu-
lation (Montoye et al. 2017a; Caron et al. 2020), these models may not be suitable for
estimating PAEE among the elderly. This is due to the fact that the elderly differ in
energy requirements (Roberts and Dallal 2005; Hortobágyi et al. 2003), expenditure
(Frisard et al. 2007; Knaggs et al. 2011), and range of physical activities (Jones et al.

123



A recurrent neural network architecture to model physical... 479

2009; Martin et al. 2014) while it is also seen that the older the individuals tent to
spend more time in sedentary activities (van Ballegooijen et al. 2019).

There are twomain drawbacks in the currently availablemethods. First, while linear
models are pretty simple to deploy and use, they are unable to fit to all the activities (van
Hees et al. 2009). Second, the non-linear can be quite elaborate and computationally
intensive, since they require steps of features construction and selection in order to
capture the temporal nature of the accelerometer signal. Thus, a PAEE modeling
method that does not require any sophisticated or handcrafted pre-processing is called
for, in addition to the development and testing of the model on older adults.

Therefore, we propose a neural network modeling approach that is known for its
ability to model sequential data, the Recurrent Neural Network (RNN). The RNN is a
network architecture that can deal with raw sensor data orminimum feature extraction,
and can model temporal data by sequential processing. The nature of the processing
in RNNs provides the possibility to remember information from the near as well as
distant past, which is an advantage in comparison to ANN or CNN. Because past
activities influence present PAEE, RNN modeling seems to be an excellent fit.

To train the RNN for application on an elderly population, we used the Grow-
ing Old Together Validation (GOTOV) dataset (Paraschiakos et al. 2020) with 34
healthy participants of 60 years and older (mean 65 years old), performing 16 differ-
ent physical activities. This dataset is one of the first datasets publicly available with
a focus on physical activity modeling of the elderly, both for activity recognition and
energy expenditure. It includes multiple sensors (accelerometry, indirect calorimetry,
physiological measurements) placed at multiple body locations. In the current study,
we used a combination of accelerometers placed on wrist and ankle (GENEActiv),
because accelerometers combined on hand and foot can be good PAEE estimators
(Dong et al. 2013; Ellis et al. 2014). Furthermore, Montoye (Montoye et al. 2017a, b)
argues that bothwrist and ankle separately produce the best PAEE estimations. Finally,
the measurements of energy counts (per-breath calories) were collected by means of
the medical-grade COSMED device (McLaughlin et al. 2001).

Our proposed RNN architecture exploits Gated Recurrent Units (GRU) layers
combined with a shallow ANN in order to make use of both accelerometer and
participant-level data (age, gender, weight, height, BMI). This means that both tempo-
ral data and attribute-value data are given as input to the model and it combines them
to give estimates of PAEE. In more detail, the model takes as an input sequences of
temporal data representing a time window of past accelerometer, and creates output-
features that are combined with the participant-level data in order to produce a PAEE
estimation.

Summarising, the main contribution of this paper is the development of a novel
PAEE modeling architecture without any sophisticated feature construction step
focused on a population group that is often overlooked: adults over 60 years of age.
The specific contributions of our work are the following:

1. We propose an original GRU-based approach for modeling PAEE, and demonstrate
its efficacy in an elderly population. Once before, an RNN-based approach has been
used for PAEE estimation (Mardini et al. 2020) combining LSTM and CNN layers.
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While we will demonstrate that LSTMs work equally well on our dataset, we have
adopted GRUs for reasons of higher efficiency.

2. We prove that using statistical dispersion metrics like standard deviation to down-
sample the accelerometer data can significantly improve the accuracy achieved,
while reducing the training time by approximately 10 times while using 10 times
less data, compared to averaging (mean).

3. We show that longer windows of prior sensor (up to 2min) lead to better PAEE
estimation, and that GRU model based on standard deviation can deal with these
longer windows efficiently.

4. We demonstrate how the addition of participant-level data (for example age and
weight of a subject) can improve the sensor-based model.

The rest of the paper is structured as following. Section 2 presents the related
work, while Sect. 3 presents the dataset used for model development. Then, Sect. 4
discusses themethodological steps needed tomodel PAEE, such asmodel architecture,
data preparation (including the predictors down-sampling steps),model evaluation and
experimental pipeline. This is followed by the results section (Sect. 5) presenting the
main findings of our analysis. Finally, our findings,modeling strengths and limitations,
and our future work is discussed in Sect. 6.

2 Related work

In the past few years, multiple PAEE methods have been developed, ranging from
simple linear regression and linear mixed models (Montoye et al. 2017a) to non-linear
ones, based on machine learning (Montoye et al. 2017a; Ellis et al. 2014; Zhu et al.
2015). Here, we give a short introduction of these by examining their modeling aspects
in detail. Table 1 displays the three publications explained in this sections and their
modeling set-ups.

Montoye et al. (2017a) already provided an interesting comparison of multiple
PAEEmethods. In this work, a linear regression model (LM) was compared to a linear
mixed model (LMM), and a shallow artificial neural network (ANN). These models
were developed in a dataset of N = 40 healthy participants (≈ 50% female) between
ages 18 and 44 years (mean = 23.7). The dataset included recordings from 4 different
accelerometers on the right hip, right thigh and both wrists, while a portable metabolic
analyser on their backs connected to a breathing mask. The participants performed a
90-min semi-structured protocol of 13 activities of different intensity levels, such as
lying down, sitting, household, climbing stairs, walking, jogging, stationary cycling
and others in order and duration as determined by the participant.

In order to train the different models, time-domain predictor features of 30 non-
overlapping seconds were developed per device. The features were chosen based
on previous work of the authors and included: mean, standard deviation, minimum,
maximum, co-variance of adjustment windows, and 10th, 25th, 50th, 75th and 90th
percentiles per acceleration axis (triaxial accelerometers were used).While, as a target
variable, they used 30 s of aggregated MET1 values, synchronous with the predictors.

1 Metabolic Equivalent of Task, where 1 MET at rest (e.g. sitting) equals 1 Kcal/kg/h.
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Table 1 State-of-the-art methods and their characteristics

Publication Montoye et al. (2017a) Ellis et al. (2014) Zhu et al. (2015)

N 40 40 30

Age 23.7 35.8 27.8

Body Location Hip, thigh, wrists Hips, wrist Waist

Features 36 time domain 45 time and freq-domain –

Window 30s 1min 5.12 s

Anthropometrics False False True

Methods LM, LMM, ANN RF CNN

Based on these, the different models (LM, LMM, ANN) were trained per device,
where the two different ANNs developed were based on prior work of Staudenmayer
et al. (2009).

Themodelswere compared per body location using Pearson correlations, rootmean
squared errors (RMSE) and bias. The model correlations ranged from 0.82 to 0.89
and RMSE ranged from 1.07 to 1.31 MET for the four accelerometers with the ANN
models, whereas the linear models (LM and LMM) from 0.71 to 0.88 and RMSE
ranged from 1.11 to 1.61 MET. The differences between the ANN and the linear
models (LM and LMM) were statistically significant for the wrists while for the thigh
there was no significant difference for all models and for the hip only one of the ANNs
had higher correlations and lower RMSE than the linear models.

Similar to Montoye et al. (2017a) and Ellis et al. (2014) developed a random for-
est regressor (RFr) and compared it to the ANN approach of Staudenmayer et al.
(2009). This time, a broader set of features is used, N= 45, with both time- and
frequency-domain features computed from non-overlapping windows of 1 minute.
The majority of these features were aggregations of signal vector magnitude (SVM
=

√
x2 + y2 + z2) and angular features that capture orientation information of the

accelerometer. Adding to that, participants wore a heart rate (HR) monitor and an
extra feature of HR is included. The dataset included recordings from N = 40 healthy
participants (≈ 50% female) with mean age = 35.8 years, wearing two accelerom-
eters (both hips and dominant wrist) and a portable indirect calorimeter. Participants
performed 3 household activities (out of a set of 5) and 3 locomotion activities (slow
walk, brisk walk, treadmill jog) for 6min each.

The RFr model was developed by learning 500 regression trees with a minimum
leaf size of 5 using MET values as a target. Then, the predictions were evaluated
on the minute level using the leave-one-subject-out (LOSO) cross validation proce-
dure by measuring the bias, standard error and the RMSE. During the experiments,
Ellis et al. compared how the models perform for a single body location, but also
by combining them, and by adding HR data. In terms of RMSE, the RFr approach
outperforms the ANN ones with an RMSE= 1.00 versus an RMSE between 1.12 and
1.35. Furthermore, about the body-locations, placing an accelerometer on the right or
left hip produces similar performance to the wrist. However, when wrist and right hip
are combined, the performance improves significantly compared to the single body
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location. Finally, when HR data are included, both for one the body location set-up or
for multiple, the performance further improved significantly.

The above work exploits handcrafted features in order to estimate PAEE, while the
recent advances in deep learning give us the advantage to automate this procedure
and extract complex features of sensor data while training. Zhu et al. (2015), such a
method is introduced where a convolution neural network (CNN) architecture is used
on a dataset of N = 30 healthy subjects (≈ 33% female) with ages between 19 and
45 years (mean age = 27.8). The subjects performed a 30-min protocol of 6 activi-
ties (walking, climbing stairs, running, static standing/sitting, riding elevator) inside
and outside a regular hospital facility. During the data collection, the subjects were
equipped with a smartphone with triaxial accelerometer, placed in a waist pouch, and
a portable indirect calorimeter that also records HR. Additionally, anthropometric fea-
tures (height, weight, age, gender, etc.) per participant were included in the modeling
procedure.

Before training, the triaxial accelerometer data (50 Hz) were transformed into
sequences of 256 samples representing a time window of 5.12 s. As target data, the
output of the indirect calorimeter (Kcal/min) was used, aggregated to the same rate
as the accelerometer sequences. The trained CNN consisted of 2 convolution layers
connected with one dense layer that takes as input the concatenation of the CNN fea-
tures with the anthropometric data. The first CNN layer employs 8 filters of kernel
size 5 and a pooling factor of 2, while the second CNN layer has 4 filters of size 5 and
the same pooling factor, and the dense layer had a size of 400 nodes. As activation
functions, both CNN layers used tanh while for the dense layer no activation function
is used (linear transformation layer). Unfortunately, other important hyperparameters
like the number of epochs and batch sizes during training, were not reported.

Their model was evaluated with LOSO cross-validation by measuring the RMSE
and it was also compared to an activity-specific linear regression model and an ANN
approach using handcrafted features. Overall, their CNN approach shows the lowest
RMSE (≈ 1.12) while the activity-specific one follows with RMSE = 1.59 and the
ANN with RMSE = 1.79. When the models are tested per clusters of activities still,
the CNN clearly outperforms both models in every activity cluster.

Concluding, different statistical or machine learning seem to estimate PAEE quite
well. However, it is quite challenging to compare their reported performances since
they are developed on (1) different datasets, (2) using data from accelerometers on
different body locations (hip, thigh, waist, wrist), and (3) down-sampled these to
different windows (from 5s to 1min). For this reason, in Sect. 5.5, we try to fairly
compare all the above including our proposed method using a similar settings. In order
to cope with the aforementioned challenges, we will develop all the methods using the
same dataset [GOTOV (Paraschiakos et al. 2020)] with accelerometers on the ankle
and wrist.

3 Dataset

The dataset used for our experiment is part of the Growing Old Together Validation
(GOTOV) study. The GOTOV dataset is designed to develop both activity recognition
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(Paraschiakos et al. 2020; Okai et al. 2019) and energy expenditure models that will
serve multiple free-living ageing studies with similar population and devices (van de
Rest et al. 2016; Westendorp et al. 2009; Wijsman et al. 2013). The dataset includes
calorimetry measurements combined with the ankle and wrist accelerometer, among
other data and since June 2020, is freely available in the 4TU data repository.2

3.1 Study population

Theparticipants in theGOTOVstudy responded to advertisements onbulletin boards in
public spaces in the city of Leiden, the Netherlands. People were eligible to participate
in the study if they:

1. were older than 60 years old.
2. had a healthy to overweight BMI3 between 23 and 35kg/m2.
3. had no restrictions in their movement caused by health conditions.
4. owned and had access to their own bicycle.

A total of 35 individuals (14 female, 21 male) between the ages 60 and 85 years
old (mean 65) and mean BMI 27 kg/m2 were recruited. Besides age, gender, height
and weight, no additional clinical information was recorded on the participants. The
GOTOV study was approved by the Medical Ethical Committee of LUMC (CCMO
reference NL38332.058.11).

3.2 Data collection protocol

The 35 participants performed a set of 16 activities according to a specific protocol of
approximately 90min. The 16 activities were performed successively for specific time
windows and with short breaks of standing still in between (1 minute). A researcher
monitored the activities duration without giving any instructions or illustrations of the
activities and wrote down their starting and ending timestamp. The activity protocol
took place at two locations; indoors and outdoors of the Leiden University Medi-
cal Center (LUMC) facilities. The indoor activities consisted of lying down, sitting,
standing, walking stairs and several household activities, such as dish washing, stak-
ing shelves and vacuum cleaning. The indoor activities were performed in a room
equipped with all the necessary instrumentation. The outdoor activities included dif-
ferent types of walking slow, normal, fast, as well as cycling. A visual example of the
procedure can be found in a recorded video.4 The detailed protocol of the activities
performed is described in Table 2, have in mind that between every two activities there
was a break of 60 s standing, but in Table 2 this is represented only once, at the second
row. Other than that, due to adverse weather conditions, only 25 out of 35 participants
were able to perform the outdoor activities (walking, cycling).

2 DOI link: https://doi.org/10.4121/12716081.
3 Body-Mass Index, the body mass divided by the square of the body height.
4 https://youtu.be/jvx5FGhqPxw.
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Table 2 Activities and their duration performed in the GOTOV protocol

Activity (s) Description

Light jumping (20 s) Synchronising sensors

Standing (60 s) Get some rest between activities

Steping (60 s) A step test on a step (∼ 20 times)

Sedentary activities (180 s each) 1. Lying down (left and right)

2. Sitting on a sofa (legs on)

3. Sitting on a sofa (legs on the ground)

4. Sitting on a chair while working

Walking stairs up (20 s) Ascending two flights of stairs

Household activities (180 s each) 1. Washing dishes (while standing)

2. Stacking shelves with books

3. Vacuum cleaning

Walking outside (300 s each) 1. Slow pace

2. Medium pace

3. Fast pace

Cycling outside (900 s) Participant’s pace in normal traffic conditions

Fig. 1 GOTOV study devices and their body location (Paraschiakos et al. 2020)
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Time

Fig. 2 Model input per device for the different activity groups

3.3 Devices and body locations

During the data collection, the participant used 4 different devices in 6 body locations
(see Fig. 1). The set of devices included both accelerometers and sensors measuring
physiological indicators, e.g. indirect calorimetry (VO2, VCO2), breathing rate (BR)
and heart rate (HR). In this study, we focus on the data coming from accelerometers
and indirect calorimetry. This is mainly motivated by the fact that the models will
serve existing free-living studies using the same sensor setup.

Accelerometry The GENEActiv accelerometers placed on ankle wrist (a and w in
Fig. 1) were used in order to recognise and measure activity levels of the participants.
The GENEActiv accelerometers provided triaxial (x,y,z) acceleration measurements
(±8 g) with a sampling rate of 83 Hz. In order to create a recognisable pattern in
data for synchronisation, the participants started the sequence of activities with a light
jumping for 20 s while waving arms. The recorded signal of ankle and wrist per axis
is presented in Fig. 2.

Indirect calorimetry The volume of oxygen (VO2) and carbon dioxide (VCO2) was
measured per breath continuously during the activities, with a short break between the
indoor and outdoor part of the protocol. The calorimetry measurements were obtained
through the COSMED K4b2 (McLaughlin et al. 2001) device, with a portable unit on
the torso and a flexible mask covering the participant’s nose and mouth (K4 in Fig. 1).
The mask is connected to the portable unit that contains O2 and CO2 analysers, a
sampling pump, a barometric sensors and electronics. The gas analyser measures the
exchange of oxygen and carbon oxygen (in mlkg−1) and outputs PAEE metrics such
as energy expended per minute, EEm in Kcal per minute, or per hour, EEh in Kcal
per hour or MET, where 1 MET at rest equals 1 Kcal/kg/h. Measurements in these
three units can be straightforwardly translated between one another. The COSMED
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Table 3 Description of the final study population and their average COSMED measurements

Indoors (12 Activities) Outdoors* (4 Activities) Total (16 Activities)

N (female %) 13 (27%) 18 (46%) 31 (35%)

Age in years (SD) 66.8 (4.5) 64.9 (4.4) 65.7 (5.0)

Height in cm (SD) 172.1 (8.3) 176.2 (7.4) 174.5 (7.9)

Weight in kg (SD) 82.2 (13.5) 83.7 (10.2) 83.1 (11.5)

BMI in kg/m2 (SD) 27.7 (3.5) 26.9 (2.0) 27.2 (2.7)

EEm in Kcal (SD) 2.9 (0.4) 6.1 (0.9) 3.8 (1.1)

BR in breaths per sec (SD) 0.30 (0.05) 0.39 (0.04) 0.31 (0.04)

*4 out of 18 participants with outdoor activities did not perform cycling (1 female)

metrics are calculated per breath based on formula that combines VO2 and VCO2
measurements and is similar5 to the Weir formula (Weir 1949):

Metabolic rate (calories per minute) or EEm = 3.94 V O2 + 1.11 VCO2

The output from this sensor in EEm, see Fig. 2, was used as our target for training
and evaluating our PAEE estimation models. The sampling rate (SR) of the target is
equal to the breathing rate of the participant and depends also from the activity at a
specific moment. This results in an SR that is not stable, with a mean SR among all
existing data being equal to 0.3 Hz.

Before every individual started the sequence of activities, the system was manually
calibrated according to the manufacturer instructions. If a device was severely limiting
a participant’s movement (COSMED unit and battery weighs 1.5 kg), it was removed
and the participant was excluded from our current analysis.

3.4 Resulting dataset

Therewere 35 participants recruited in theGOTOVdataset, fromwhom31participants
had both COSMED (indirect calorimetry) and GENEActiv (ankle, wrist accelerom-
eter) data. Of those, there were 13 participants with only indoor activity data, so 12
out 16 activities. Finally, for all the other participants with both indoor and outdoor
activities, there were 4 participants that did not perform the outdoor cycling activity.

Table 3 presents the participant-level data of this study and the average measure-
ments of COSMED. In detail, in the first block it displays the number of female
participants out of the total 31 participants, and the average (mean and SD) age,
height, weight and BMI. Furthermore, we can see the average EEm measurements by
COSMED and breathing rate (sampling rate) for indoors, outdoors and total. From
that, it is observed that there is a clear difference between the indoors and outdoors
measurement in terms of EEm, where the mean outdoor EEm measurement is a bit
more than double that of the indoor. This is something expected since the outdoormea-

5 COSMED uses a slightly different estimation (unknown formula) giving an average overestimation of
approx. 0.0098976 cal compared to Weir.
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Fig. 3 Trend of indoor activities Energy Expenditure (y-axis) across Age, Height, BMI and Gender

surements include high intensity activities such as walking and cycling with a bigger
range of EEm values compared to the indoors that have a smaller range. Similarly, the
breathing rate is higher for the outdoor activities, which implies more data inputs for
the same window of time when compared to the indoors (outdoors EEm SR higher
than indoors), again as expected.

In total, the data set includes 2.8 hours of sedentary activity (MET< 1.5), 5.4 hours
of light activity (1.5 ≤ MET < 4), 1.8 hours of moderate (4 ≤ MET < 6) and 0.73
hours of vigorous activity (6 ≤ MET). An initial view of the dataset is presented in
Fig. 3, where the indoors energy expenditure measurements is plotted against gender,
age, height and body composition per participant. We plotted the indoors EEm since
all 31 participants had indoors COSMED data. From the plots, we see that the trends
from the GOTOV dataset confirm what is known from the literature. In detail:

– EE decreases with age (Frisard et al. 2007; Roberts and Dallal 2005).
– EE increases with height (Hills et al. 2014).
– EE increases with body composition (BMI) (Weinsier et al. 1992).
– EE in males is on average higher compared to the female participants (Keys et al.
1973).

4 Methodology

In this section, we explain the methodological contributions of the paper. In detail, we
describe our model choice and its architecture. Following that, we analyse the steps
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Fig. 4 Proposed model architecture combining both temporal and static data. The grey layers are sufficient
when only temporal data are used (no static data)

of data preparation and their different combinations. Then, the training and evaluation
process is explained. Finally, we summarise the experimental setup.

4.1 Modeling architecture

A Recurrent neural network (RNN) is a type of artificial neural network that has the
ability to ‘remember’ older information from sequences. In more detail, an RNN con-
tains feedback loops within its hidden layers whose activation at each time depends
on that of the previous layer (Chung et al. 2015). Consequently, RNNs have a mod-
eling advantage when used on sequential or temporal data over traditional ANNs.
RNNs have been used for a variety of tasks, both regression and classification, such as
natural language processing (Li and Xu 2018), speech recognition (Lee et al. 2018),
in clinical application (Tomašev et al. 2019), and more recently, activity recognition
from accelerometer data (Edel and Köppe 2016; Guan and Plötz 2017) and modeling
of long-term human activity (Kim et al. 2017). Because PAEE is influenced by past
activities (lag effect), RNNs could be a suitable modeling candidate for tackling the
challenge of PAEE estimation.

Traditional RNN networks are known to struggle with information from long
sequences due to the so-called vanishing gradient problem (Hochreiter 1998). The
most popular solution to this problem is introducingLong Short TermMemory (LSTM)
or Gated Recurrent Unit (GRU) layers. LSTM and GRU layers contain cells that act
either as memory or gates controlling the information flow to the next layers. LSTMs
contain 3 gates, namely, forget, input and output, while GRUs have only 2 gates, the
reset and update gate. The reset gate controls which of the memory cell information
needs to be forgotten. The update gate controls which information needs to be updated.
This allows them to remember long sequences of information without losing relevant
information. Adding to that, in a recent work of ours (Okai et al. 2019), we tested
different RNN architectures with either LSTM or GRU layers for the task of activity
recognition with predictors missing data. Based on these experiments we proved that
RNNs with GRU layers and a proper architecture are robust for such a task.
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Table 4 Proposed model architecture and training parameters

Input 1: Sequential data

Layer Nodes Kernel regularizer (L2) Dropout

GRU1 32 0.0001 0.5

GRU2 256 0.0001 0.5

GRU3 32 0.0001 0.5

Layer Nodes Activation function Dropout layer

Denseseq 32 ReLU –

Input 2: static data

Layer Nodes Activation function Dropout layer

Densesta 32 ReLU –

Concatenate inputs

Layer Nodes Activation function Dropout layer

Dense1 32 ReLU 0.2

Dense2 16 ReLU 0.2

Model output: linear

Training parameters

Batch size Epochs Optimizer Opimizing variable

512 50 Adam Mean squared error (MSE)

As a result, our proposed RNN architecture is based on our recent work (Okai et al.
2019) and consists of an input layer followed by 3 GRU layers with 32, 256 and 32
nodes respectively, 2 dense layers with 32 and 16 nodes and an output layer (see Fig. 4
grey layers). Models are trained to minimize the mean squared error (MSE) using the
optimization method Adam (Kingma and Ba 2015). To prevent over-fitting, a dropout
ratio of 0.5 (50%) is applied to all three GRU layers. In Table 4, we describe in detail
the different parameters chosen.

In order to test if participant-level data could improve PAEE estimation, we con-
catenated the aforementioned RNN setup with a single feedforward network, into the
final architecture demonstrated in Fig. 4. The reason behind such an architecture is the
need to model two types of data, temporal (sensor measurements, activities) and static
data (participant-level). Therefore, we feed the accelerometer sequences to the GRU
layers and at the same time, we feed the static data to a feedforward network. This
feedforward network consists of an input layer and a hidden layer with 32 neurons.
The output layers of both networks were concatenated and connected to 2 dense layers
consisting of 32, and 16 neurons respectively, see Table 4. Finally, the output layer is
made up of only a single neuron, which is used to predict the COSMED EEm values.
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4.2 Data preparation and choices

In order to build PAEE estimation models using RNNs, there is a need for several
transformations both in the predictors data (accelerometers, activities, participant-
level data) and the target (COSMED EEm). As a first step, the target and numeric
predictor data were z-normalized to have zero mean and a standard deviation of 1.
Additionally, in order to model discrete predictors, like gender or activity class, label
encoding was used (with values in [0, n] with n being the number of values).

4.2.1 Indirect calorimetry as target data

COSMED produces energy expenditure measurements per breath, meaning that the
target doesn’t have a fixed sampling rate. On average, the COSMED sampling rate is
0.3 Hz, which means one input approximately every 3.3s, see EEm signal in Fig. 2. In
order to stabilize the sampling rate for the training, we down-sampled the COSMED
signal to 0.1 Hz by taking the mean of every interval of 10 s. This way, we avoid
the creation of more training data in periods with higher breathing rate, but we also
smooth the outlier EEmvalues occasionally produced byCOSMED. Finally,we assign
a sequence of predictors per EEm value which captures the movements that preceded
the EEm measurement (see box C of Fig. 5).

4.2.2 Predictors data to sequences

To train the RNN model, we need to build sequences, where each is associated with
one EEm measurement. A sequence is defined as a finite list of inputs arranged in a
definite order (Volchan 2002). For our problem, the order of inputs is based on time.
The sequences represent the predictors data in the time immediately before every
EEm measurement in windows of time, with specific number of inputs and resolution
(sampling rate).

We have two types of inputs in our network. First, the activity data is of temporal
nature, notably the accelerometer data include three numeric time series inputs for
every device (see ankle, wrist in Fig. 2) and the activity labels (a discrete sequence).
Second,we have the participant-level data that includes demographic information (age,
gender) and body composition information (height, weight, BMI), as static attribute-
value data. Figure 5 shows the different elements and steps taken to transform this data
to training sequences. In detail, I, II, III, and IV in Fig. 5 display the different types
of input, while for the accelerometer data (I I ), we display the extra steps needed in
order to transform the signal to training sequences. In the following paragraphs, we
explain the different sequence configurations developed and tested.

Accelerometers In order to transform the accelerometer signal into training sequences,
see light shading in box A, Fig. 5, we need to decide on the number of inputs to be used
(sequence size of the RNN), the length of the window that those will represent (time
interval) and the resolution (sampling rate). These 3 variables are inter-connected, as
presented in the following equation:
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Fig. 5 Building sequences for temporal data

SR = Sequence Size

Window Size
,

where Window Size is calculated in seconds. For example, if we want a sequence
with a size of 480 inputs to represent a time window of 240 s (4min), we will need
to down-sample the accelerometer data from 83 Hz (original SR) to 2 Hz, since the
sampling rate (SR) depends on both sequence and window size.

On the one hand, longer sequences allow for higher sampling rates in the accelerom-
eter data, but they will produce longer training times. On the other hand, for a fixed
sequence size, a choice of longer time windows will result in lower sampling rate.
Nevertheless, the choice of window length is crucial since long enough windows are
needed in order to include any PAEE bias from activities performed further in the past.
We experimented with different sequence sizes representing different intervals of time
(time windows) and data resolutions. The down-sampling decisions are displayed in
box B of Fig. 5.

In order to adjust the predictors to the given sequence sizes and window lengths,
we need to down-sample the accelerometer data to the desired SR (B, Fig. 5). For
this down-sampling, which aggregates several values into a single one, we compared
two different aggregation approaches, one that uses the mean function, and one that
makes use of statistical dispersion functions (standard deviation, interquartile range,
percentiles difference).

Ourmotivation to use statistical dispersionmeasures comes from the fact that PAEE
depends on the range ofmovement and therefore dispersionmeasures aremore suitable
for this task than the mean. As an example, see Fig. 6 where aggregated accelerometer
values with mean and standard deviation (SD) are compared. Here, we can observe
that during walking, the 3 axes of the ankle signal aggregated by SD (Ankle SD in
figure) correlate nicely with the values of EEm compared to the Ankle Mean signal
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Fig. 6 The ankle and wrist accelerometer signal down-sampled to 1 input every 2.4 s (our optimal down-
sampling) with mean and SD, compared to the recording of COSMED

which is represented in a more linear way. Similarly, during household activities, the
Wrist SD correlates with EEm much more thanWrist Mean does.

As a simple example, let’s consider 2 differentmovements represented in 2windows
of accelerometer data, W1 and W2. Let the windows also have different ranges of
movement represented by only 2 values, x1 ∈ {−2, 2} and x2 ∈ {−4, 4}. As a result,
the energy spent for the movement in W1 would be lower than in W2 since the effort
needed to go from −2 g to 2 g is lower than the effort needed to go from −4 g to 4
g. However, the mean magnitude in both windows is equal (meanw1 = meanw2 = 0).
On the other hand, the standard deviation of these ranges are different, SDw1 = 2 and
SDw2 = 4, which correctly captures of the relative expected energy spent per window.
Concluding, the signal aggregated with statistical dispersion functions is more likely
to capture the variation of PAEE compared to the ones of mean. For this reason, in
this work we want to test this hypothesis (see Sect. 5).

Participant-level data Combined with the accelerometer data, we test whether
participant-level data like demographics (age, gender) and anthropometric features
(height, weight and BMI), see Table 3, could contribute to PAEE estimation (I V ,
Fig. 5). For this reason, we had to prepare such data input and combine it into the
data sequences. The anthropometric data were z-normalized to have zero mean and
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Table 5 Table of time spent and
EEm (Kcal/min) per activity

Activity Time (h) EEm (SD)

Lying down 0.8 (7.4%) 2.4 (1.1)

Sitting 1.6 (14.8%) 2.0 (1.0)

Standing 2.5 (23.2%) 3.2 (1.7)

Household 2.2 (20.4%) 3.5 (1.6)

Walking 2.3 (21.4%) 5.2 (2.1)

Cycling 1.3 (12.1%) 8.2 (3.0)

Jumping 0.1 (0.6%) 3.1 (1.7)

a standard deviation of 1 and the gender was hard encoded. This way the model will
take as an input a sequence of accelerometer data and the details of the corresponding
participant.

Activity classes data Finally, we would like to test whether adding symbolic data in
the form of a label describing current or past activities can be beneficial to estimate
PAEE (IV, Fig. 5), when combined with either accelerometer data only, or with both
accelerometer and participant-level data, as seen before in Bonomi et al. (2009) and
Altini et al. (2015). In order to obtain such activity labels, we had to predict the activity
types using learned activity recognition methods. We need to derive the labels from
the acceleration data, since they will not be available in a free-living scenario either.

For this goal, we used a previously developed and published method that was
already tested with the GOTOV devices (Paraschiakos et al. 2020). This model can
produce activity predictions per second with an accuracy of more than 90% based
solely on ankle and wrist accelerometers for 7-class activity classification. Through
this model, we can predict the following 7 classes: lying down, sitting, standing,
household, walking, cycling and jumping. Having the activity labels predicted per
second, we encoded them and combined them with the accelerometer sequences as
input to our model. Table 5 summarises the predicted classes and presents also some
statistics about their EEm cost.

4.3 Training and evaluation

We trained and tested our models using Leave One Subject Out cross validation
(LOSO-CV). This means that we train using all subjects (participants), leaving the
data of one subject out as a test set. We then iterate the process in order to test all
subjects separately. The aim of this type of cross-validation is that we emulate the
future situation where we would like to process as yet unseen subjects. The LOSO-
CV process prevents training set leakage within a subject, as normal cross-validation
procedures might allow. Additionally, during training, 2 participants were selected as
validation set, one with only indoor activities and one with all activities. These 2 sets
were randomly chosen per subject and were the same across the different model set-
tings tested in order to have fair comparisons. All models were trained for 50 epochs
with a batch size of 512. After testing 4 different batch sizes (64, 128, 256, 512) we
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Fig. 7 Three examples of MSE error (left) and loss (right) during training for 50 epochs. The orange lines
represent the evolution of MSE and loss for the training set and the blue for the validation set accordingly

selected the max (512) since the accuracy gain for the smaller ones was too little com-
pared to the cost of training time. Similarly, we tested three sizes of training epochs
(50, 100, 200) and it was proven that, with our optimal set-up of SD-aggregated sig-
nal, 50 epochs were enough for the model to converge while the cost of extra training
epochs was not translated to significant performance gains. This can also be seen in
Fig. 7 where the mean squared error (MSE) and loss evolution during training of 3
LOSO examples is presented.

We would also like to point out that the model’s validation and test sets during
LOSO-CV are used with their original sampling rate (once per breath). This means
that we trained our models using the smoothed EEm values with a stable SR (0.1
Hz), as indicated in the previous section, but we evaluate them per breath (COSMED
recordings). This way, we can see which model can fit better the input data since
we evaluate our models by measuring their performance on the original EEm values,
including the extreme COSMED measurements.
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Hence, to get the overall performance of amodel, we train 31 different models using
LOSO-CVandwe report their aggregated (median) result, asRootMeanSquaredError
(RMSE) and R-squared (R2). Additionally, we compute the RMSE and R2 separately
for indoor andoutdoor data. There aremultiple reasons behind this decision. First, since
there are participants without outdoor data and there is a clear difference between EEm
levels with the indoor ones (see Tables 3, 5), we can see how ourmodels behave on low
and high-intensity activities separately. Additionally, it is suggested in the literature
(van Hees et al. 2009) that PAEE estimation of sedentary or low-intensity physical
activities (typically performed indoors) is still a challenging task since their differences
in acceleration magnitude are minor. Finally, our main focus is to estimate PAEE of
older individuals and it is observed that this group of people spends significantly more
time in sedentary or low-intensity activities (van Ballegooijen et al. 2019).

4.4 Experimental pipeline

In this section, we explain the experiments performed, the motivation behind their
set-up and their order.6

Optimise data input First, we tested the architecture with only accelerometer data
(grey in Fig. 4) comparing the different accelerometer aggregation functions into time
windows of different sequence size and resolution (SR). The aggregation functions
tested were mean, standard deviation (SD), interquartile range (IQR), and difference
between 5th and 95th percentile (PD), with:

– sequence sizes of 10, 50, 160 and 480 inputs per sequence, and
– window lengths, for each sequence size, of 1, 2, 4, and 8min.

Here, in order to avoid training and testing 4× 4× 4 = 64 different combinations
of sequence size, window length, and aggregation function, we optimize the search
process by first comparing all aggregation functions with the longest sequence size
(480) representing the 4-min windows. Since we observed that the sequences built
with statistical dispersion functions had very similar performance, we subsequently
fix our dispersion measure to SD, and compared this with Mean for the remaining
combinations (2 functions ×9 combinations = 18 in total). In the end, when the
optimal setting of window and sequence size is found for the SD andMean, we tested
them also for the IQR and PD aggregations. The training parameters used were a
batch size of 512, for 50 epochs for all experiments since we observed that with this
combination the model converged faster.

Anthropometrics and activity classes dataAs a second analysis step, we testedwhether
the addition of participants-level data or the predicted activity classes improves the
performance. In order to do that, we make use of the complete architecture and param-
eters presented in Fig. 4 and Table 4 and the best combination of aggregation function
(SD), window size (w = 2min) and sequence size (N = 50), as concluded from the
step above. In the end, we compare the performance of this model set-up using: (1)

6 To make our experiments, scripts and results accessible to other researchers (open-source) we share them
on the following git repository, https://github.com/parastelios/GOTOV_PAEE_publication.
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Table 6 Table of architectures
tested at ablation study

Architecture GRU layers Dense layers Data

5xGRU_3xDense 1, 1, 2, 3, 3 Seq, sta, 1, 2 a, w

4xGRU_3xDense 1, 1, 2, 3 Seq, sta, 1, 2 a, w

3xGRU_3xDense 1, 2, 3 Seq, sta, 1, 2 a, w

3xGRU_2xDense 1, 2, 3 Seq, sta, 1 a, w

2xGRU_3xDense 1, 2 Seq, sta, 1, 2 a, w

2xGRU_2xDense 1, 2 Seq, sta, 1 a, w

1xGRU_2xDense 1 Seq, sta, 1 a, w

3xGRU_3xDense_a 1, 2, 3 Seq, sta, 1, 2 a

3xGRU_3xDense_w 1, 2, 3 Seq, sta, 1, 2 w

1xGRU_2xDense_a 1 Seq, sta, 1 a

1xGRU_2xDense_w 1 Seq, sta, 1 w

The number and descriptions of the layers refer to the ones in Fig. 4
and Table 4. Data refers to ankle (a) and/or wrist (w) inputs used for
training

accelerometer and participants level data (GRUI D) and (2) accelerometer, participant-
level and activity classes data (GRUI D_AC ).

Ablation study Subsequently, we performed an ablation study for our proposed archi-
tecture, and we tested our model against different RNN layers. For these experiments
we used the best combination of data resolution and data combination as found in the
previous steps. For the ablation study, we tested 2 more coomplicated and 3 simpler
architectures of our model by excluding different layers of our model. The different
architectures are presented in Table 6. Additionally, we compared the performances of
our proposed model (3xGRU_3xDense) to the minimal one (1xGRU_2xDense) using
data (train and test) from ankle or wrist alone. Themotivation behind this is to test how
robust each architecture is to training data from only ankle or only wrist since in our
previous work (Okai et al. 2019), the maximum (3xGRU_3xDense), was proven to be
robust to missing data for a classification task (activity recognition) and that is why it
was selected. Furthermore, most of PAEE related work tests models that exploit data
from single devices and we would like to compare our model to theirs (see Sect. 2).
Finally, we tested our maximal architecture with two different types of RNN layers,
the long short term memory (LSTM) and simple RNN layers. For all experiments, we
compared the performance using both R-squared and RMSE for all activities, and for
indoor and outdoor ones separately.

Compare to related work Following to ablation study, we compared our proposed
model against state-of-the-art methods as presented in Sect. 2. We trained a linear
model (LM), a linear mixed model (LMM), a random forest regressor (RFr), an arti-
ficial neural network (ANN) and a convolutional neural network (CNN) using our
dataset. In detail, we tested the LM, LMM and ANN as presented in Montoye et al.
(2017a) with the proposed set of 30 time-domain features for non-overlapping win-
dows of 30 s per device. In order to have comparable results, we used the same set
of features to train an RFr similar to the one that Ellis et al. (2014) introduced but
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using 1000 trees (compared to 500) as O’Driscoll et al. (2020) recently presented to
be more robust. Finally, we trained a CNN as presented in Zhu et al. (2015) using both
the authors’ data resolution with a window of 5.12 s for sequences of size 256 inputs,
and our approach of down-sampled predictors with standard deviation for a window
of 2min and a sequence size of 50 inputs. About that, since the authors did not include
the number of epochs and batch size, we decided to train the CNN for 50 epochs and
a batch size of 512, similar to our GRU approach.

Here, we need to clarify that all of the above publications (Montoye et al. 2017a;
Ellis et al. 2014;Zhu et al. 2015) recommendmodelswith data froma single accelerom-
eter placed at different body locations per study. Even when multiple devices exist,
only (Ellis et al. 2014) combined them and tested their performance against the single
ones. In contrast, our purpose in this work is to predict PAEE by combining the data
of ankle and wrist and not compare them separately. However, in order to compare our
work to the above methods, we also trained our optimal architecture with only ankle
or wrist data.

Demonstrate the model’s use in the future Finally, we test our selected model’s per-
formance over different EEm aggregation windows and activity types. The motivation
behind this is twofold. First, we wanted to test how our model performs in a free-living
setting where breathing rate is not included, and second, in order to have comparable
results to the literature where models are evaluated in aggregated windows of 30s or
1min. In particular, we report the performance across different EEm windows from
the original COSMED sampling rate (breath by breath), to 10, 30 s and 1, 5, 60min
aggregations and per activity type. This way, we can have an idea of how our approach
can be used to estimate PAEE of longer windows.

5 Results and discussion

In this section, we present and discuss the results of the experiments performed. First,
we discuss the training input optimisation (Sects. 5.1, 5.2), followed by the results of
the ablation study (Sects. 5.3, 5.4) and the comparison of our results to related work
(Sect. 5.5). Finally, we demonstrate the results of our suggested model for different
windows of PAEE aggregations and activities (Sect. 5.6).

5.1 Standard deviation as optimal aggregation function

Here, we present the performance of the different input data setups. Since it is not
feasible to display all 64 combinations tested, Table 7 displays the best setup per
aggregation function. In the first column, the aggregation function is displayed, fol-
lowed by its resulting best data setup (sequence size, window length, sampling rate
distribution). Then we compare their R2 and RMSE in total, indoor, and outdoor activ-
ities. Additionally, the last column indicates the significance of the difference between
mean and the rest functions in terms of R2, using a paired t-test.

Examining Table 7, we observe that models built with statistical dispersion func-
tions outperform significantly the one using the mean, for α = 0.05, all p-values are
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Table 7 Comparing the performance of different data setups

Model R2 inR2 outR2 RMSE inRMSE outRMSE p-Value

Mean SeqSize = 480

WinSize = 4min 0.38 0.23 0.38 1.46 1.24 2.32 –

SR = 2Hz

SD SeqSize = 50

WinSize = 2min 0.45 0.31 0.33 1.35 1.16 2.03 0.01*

SR = 0.42Hz

IQR SeqSize = 50

WinSize = 2min 0.41 0.29 0.33 1.39 1.18 2.15 0.02*

SR = 0.42 Hz

PD SeqSize = 50

WinSize = 2 min 0.43 0.30 0.28 1.36 1.17 2.03 0.01*

SR = 0.42 Hz

The p-value corresponds to the paired t-test of mean with SD, IQR, in terms of R2, with * pointing out
when p < 0.05

significant. Additionally, when we feed our model with SD-aggregated accelerometer
data instead of averaging, not only is the model’s performance significantly improved,
but this improvement is achieved by using approximately 10 times less input data
(sequences of 50 versus 480 inputs) and double the window size (4 versus 2min),
leading to approximately 10 times lower training time. This is because statistical dis-
persionmetrics can represent the original signal in amore characteristic way compared
to averaging with mean (Lyden et al. 2011).

In detail, for the estimation of PAEE using the developed RNN, a two-minute win-
dow can be represented by statistical dispersion functions using only 50 inputs per
sequence without significant loss of accuracy compared to windows down-sampled by
averaging. This is of importance when applying the RNNmodel to data sets with large
sample size, e.g. intervention studies (hundreds of participants or more) or epidemio-
logical studies like UKBiobank (thousands) (Sudlow et al. 2015). Accurate estimation
of PAEE in such studies will be relevant so that personal advise can be given to older
persons with respect to the most effective and still achievable beneficial changes in
lifestyle. This sums up to a computationally efficient and accurate method to estimate
PAEE in older adults.

Furthermore, comparing the models built with SD, IQR and PD, there is no clear
performance difference. That is because all three measures are similar in behaviour,
and their main differences are in the magnitude of training values. Based on that, if we
have to choose one of them, we believe that the SD model seems to be slightly better
than the others, both in terms of R2 and RMSE. Adding to that, SD is more intuitive as
a metric compared to IQR and PD. Therefore, for the rest of our analysis, we will focus
on the model built with the following settings for accelerometer data: (1) a sequence
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Table 8 Comparing models with participant-level data and/or activity classes

R2 inR2 outR2 RMSE inRMSE outRMSE p-Value

GRU 0.45 0.31 0.33 1.35 1.16 2.03 –

GRUI D 0.55 0.41 0.36 1.25 1.09 2.05 0.02*

GRUAC 0.42 0.32 0.35 1.33 1.14 1.96 0.38

GRUI D_AC 0.50 0.33 0.40 1.29 1.13 2.00 0.30

The p-value corresponds to the paired t-test of GRU (only accelerometry data) with any data addition,
GRUI D (accelerometer and participant-level data), GRUAC (accelerometer and activity class data), and
GRUI D_AC (accelerometer, participant-level and activity classes), in terms of R2, with * indicating when
p < 0.05

size of 50 inputs, (2) representing a time window of 2min, (3) down-sampled to a
resolution of SR = 0.42 Hz with SD.

5.2 Adding participant-level data results in better PAEE estimation

Table 8 demonstrates the effect of participant-level data and activity classes in our
RNN model to estimate PAEE (first row marked GRU). The addition of participant
level data (such us age, sex, height, weight, and BMI) improves the results, both in
terms of R2 andRMSE error (GRUI D model). Inmore detail, themodel’s performance
improves significantly (p = 0.02) from 0.45 (GRU) to 0.55 (GRUI D) for R2, while for
RMSE the error decreased from 1.35 Kcal/min to 1.25. This development is mainly a
result of the improved performance in the lower intensity activities (indoor activities),
where RMSE decreased from 1.16 to 1.09 Kcal/min and R2 from 0.31 to 0.41. This
is quite an important observation since it is mentioned in the literature that estimating
PAEE of lower intensity activities is challenging (van Hees et al. 2009) and it seems
that anthropometric data can help in this respect.

On the other hand, adding activity labels doesn’t seem to improve the results
(see GRUAC in Table 8), where the R2 drops (not significantly though), and RMSE
increases. Interestingly, the addition of (predicted) activity classes, even when com-
bined with participant-level and accelerometer data (model GRUI D_AC ), did not
produce any significant improvement to our model (R2 = 0.50, (p = 0.3)). This
is a notable observation for our architecture since it contradicts with what is shown in
previous work (Bonomi et al. 2009; Altini et al. 2015). It seems that the way RNNs
model the input sequences and its ability to ‘remember’ past information, the exact
activity labels are not needed for efficient PAEE estimations. Therefore, when the
objective is only PAEE estimation and not its association with specific activities, there
is no need for applying activity recognition algorithms beforehand. Still, we need to
mention that our dataset might not be ideal in order to prove this point, since activity
windows are not equal and the breaks between each activity are not long enough to
avoid the PAEE lag effect.
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Table 9 Comparing the different architectures of the ablation study, where t is the average training time
per run in seconds

Architecture R2 inR2 outR2 RMSE inRMSE outRMSE t (s)

5xGRU_3xDense 0.51 0.38 0.41 1.38 1.12 1.87 732.8

4xGRU_3xDense 0.49 0.40 0.45 1.41 1.13 1.92 656.5

3xGRU_3xDense 0.55 0.41 0.36 1.25 1.06 2.05 607.4

3xGRU_2xDense 0.5 0.39 0.42 1.28 1.09 1.97 589.8

2xGRU_3xDense 0.47 0.35 0.39 1.41 1.15 1.92 237.2

2xGRU_2xDense 0.52 0.37 0.44 1.30 1.08 2.00 191.6

1xGRU_2xDense 0.52 0.39 0.46 1.32 1.09 1.99 98.2

3xGRU_3xDense_a 0.50 0.33 0.35 1.32 1.09 2.00 377.1

3xGRU_3xDense_w 0.41 0.23 0.29 1.37 1.25 2.17 352.1

1xGRU_2xDense_a 0.45 0.27 0.42 1.38 1.16 2.03 60.8

1xGRU_2xDense_w 0.25 -0.01 0.02 1.57 1.35 2.60 56.6

5.3 Ablation study

For the ablation study, we are comparing our proposed architecture against simplified
architectures to determine whether the increased complexity is warranted. As Table 9
demonstrates, in terms of R2 and RMSE, the proposed architecture is optimal (R2 =
0.55, RMSE= 1.25), although reasonably similar results could be obtainedwith archi-
tectures with fewer layers, e.g. 2 GRU layers and 2 dense layers (2xGRU_2xDense). In
more detail, separating indoor and outdoor activities, we note that simpler architectures
with fewer GRU layersmight perform better on outdoor activities, with the best results
obtained by the simplest architecture tested 1xGRU_2xDensewith an R2 = 0.46. This
probably has to do with the fact that smaller networks are more robust against overfit-
ting. On the other hand, for the challenging task of estimating PAEE of lower intensity
activities (indoor activities), an extra GRU layer, as in the proposed model, is still the
best option with an R2 = 0.41. Still, adding 2 further GRU layers has no beneficial
effect estimating indoor activities PAEE, see 5xGRU_3xDense.

Subsequently, we study the benefits of two devices versus only a single device on
the ankle or wrist. The results demonstrate that a moderate price is paid for remov-
ing one device from the proposed architecture [from R2 = 0.55 to R2 = 0.50
for 3xGRU_3xDense_a (−9%), and R2 = 0.41 for 3xGRU_3xDense_w (−25)%],
whereas for 1xGRU_2xDense, removing a device incurs a large penalty: from
R2 = 0.52 to R2 = 0.45 for 1xGRU_2xDense_a (−13.5)%, and R2 = 0.25 for
1xGRU_2xDense_w (−52%). We see the same phenomenon in RMSE and within the
indoor and outdoor activities, showing that the proposed architecture is more robust
against removal of a device.

All in all, we observe that our proposed architecture (bold in Table 9) has a small
advantage over the others, so if optimal accuracy is a priority, this architecture is the
model of choice. However, if efficiency is important, quite reasonable results can still
be obtained with smaller architectures. We feel the decent accuracy across the board
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Table 10 Comparing the different RNN layers

RNN layer R2 inR2 outR2 RMSE inRMSE outRMSE

GRU 0.55 0.41 0.36 1.25 1.06 2.05

LSTM 0.48 0.40 0.41 1.29 1.07 1.98

simpleRNN 0.13 −0.35 −0.05 2.02 1.66 2.62

is due to the rich representation of data (SD, 2-minute windows and anthropometric
data). There appears to be no added benefit for larger networks than the proposed one,
although larger models still work reasonably well. Moving on to the bottom half of
Table 9, where data from a single device is used, the proposed architecture (top two
rows) handles the loss of data better than a smaller architecture (bottom two rows).
This advantage was expected since we selected this architecture (3xGRU_3xDense)
based on previous work of ours (Okai et al. 2019), where it was proven to be robust for
the task of activity recognition under missing data. Concluding, if training speed is the
priority, the simpler architectures are still reasonably accurate, but if there is a need
for a model to be robust to data loss and lower intensity activities (indoor activities),
the proposed one is preferred.

5.4 Comparing different RNN layers

Adding to the ablation study, we replaced the GRU layers on our proposed architec-
ture with 2 other RNN layers, the LSTM and simple RNN. The results in Table 10
demonstrate that interchanging the GRU layers with LSTM ones will not cost much of
performance (R2 = 0.49) compared to the ones of simple RNN that did not manage to
fit at all (R2 = 0.12). However, training the same model with LSTM layers compared
to GRU is more costly since every epoch takes almost 3 times longer than with the
GRUs. Based on that, using GRU layers, we manage to have a better performance
with a lower computational cost.

5.5 Our proposedmodel versus the state-of-the-art

In order to fairly compare our best model (GRUI D) to the ones presented in related
work (see Sect. 2), we performed our analysis in two steps. First, we compared our
architecture to the convolution architecture proposed by Zhu et al. (2015) and then to
themodels proposed byMontoye et al. (2017a) and Ellis et al. (2014) (LM, LMM,RFr,
ANN). We divided our analysis this way since the CNNs are tested with the original
EEm (breath rate) while the rest of the methods are tested with 30-s aggregations of
the target.

In detail, we tested the CNN using two different data settings, one with windows
of 5.12 s for a sequences of 256 inputs (CNN5 sec), as suggested by the authors, and
one with our best data set-up of 2-min windows aggregated with SD and sequence
size = 50 (CNN2min). Table 11 demonstrates in terms of R2 the performance per
model and per devices. It is clear that the CNN developed with the short window of 5 s
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Table 11 Comparing R2 score of our proposed model (GRUI D) to CNN5sec for windows of 5 s (Zhu et al.
2015 set-up) and CNN2min with 2-min window

Ankle & wrist Ankle Wrist

Method R2 inR2 outR2 R2 inR2 outR2 R2 inR2 outR2

GRUI D 0.55 0.41 0.36 0.50 0.33 0.35 0.41 0.23 0.30

CNN5 sec 0.29 −0.12 0.21 0.20 −0.13 0.19 −0.05 −0.45 −0.08

CNN2min 0.49 0.28 0.36 0.37 0.23 0.24 0.29 −0.19 −0.05

Table 12 Comparing R2 score of our proposed model (GRUI D) with RFr-random forest regressor (Ellis
et al. 2014), LMM-linear mixed model, ANN-artificial neural network and LM-linear regression (Montoye
et al. 2017a), using 30-s features

Ankle & wrist Ankle Wrist

Method R2 inR2 outR2 R2 inR2 outR2 R2 inR2 outR2

GRUI D 0.72 0.60 0.56 0.65 0.53 0.62 0.55 0.40 0.49

RFr 0.55 0.30 0.43 0.57 0.23 0.43 0.33 0.03 0.17

LMM 0.43 −0.07 0.47 0.29 −0.26 0.41 0.24 −0.19 −0.22

ANN 0.37 0.06 0.27 0.50 0.12 0.45 0.20 −0.26 0.24

LM 0.35 −0.12 0.45 0.24 −0.37 0.41 0.22 −0.37 −0.12

(CNN5 sec) fails to explain enough of the EEm variation for all set-ups. On the other
hand, the CNN2min has a somewhat comparable performance to our set-up (GRUI D)
for ankle and wrist data combined, with an R2 = 0.49 versus R2 = 0.55. However,
when we compare per single device, the GRUI D set-up clearly outperforms the CNN
with R2 = 0.50 for ankle and R2 = 0.41 for wrist, compared to the CNN with
R2 = 0.37 and R2 = 0.29, for ankle and wrist respectively.

To conclude, when our approach is compared to another deep learning approach,
we see that the performance of our model outperforms the one of the CNNs both
in combined ankle and wrist, as well as when compared to single-device settings.
Remarkably, we can observe here too the effect that our robust representation of data
(similar to the ablation study) has on the performance of the tested CNN model.
Furthermore, it is clear that using longer windows of training data, down-sampled
with SD, gives a big advantage in explaining PAEE variance.

Next, Table 12 demonstrates the performance of the proposed model and the meth-
ods trained with handcrafted features and both tested with 30-s EEm aggregations.
Here, we observe that our method clearly outperforms all others discussed above. In
detail, the GRUI D model manages to explain almost 72% of the total EEm variation
(aggregated EEm) when both ankle and wrist predictors are used, while the second
best (RFr) explains only 55%. When data from indoor activities only is used for test-
ing, our model captures 60% of EEm variation which is double the second method
(RFr) in performance. Similar to that, when data from ankle or wrist alone are used,
our model explains more than 50% of aggregated EEm variation, with R2 = 0.65 for
ankle and R2 = 0.55 for wrist.
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Fig. 8 Scatter plot of mean true over mean predicted EEm, per participant (left) and activity (right)

When comparing the rest of the methods, the random forest regressor (RFr) clearly
outperforms LMM,ANN and LMwith an R2 = 0.55 for the ankle and wrist combined
predictors and R2 = 0.57 for the ankle only. Interestingly, ANN performs pretty well
when only ankle predictors are used for training with an R2 = 0.50, however this per-
formance is mainly based to the higher intensity activities (outdoor walking, cycling)
since inR2 = 0.12 while outR2 = 0.45. Still, when wrist and ankle are combined,
ANN’s performance drops to R2 = 0.27. On the contrary, the LMM manages to cap-
ture quite well the variation of the outdoor EEm for both ankle and wrist predictors
combined (R2 = 0.47) and for ankle alone (R2 = 0.41). Finally, we observe for all
models that using wrist features alone is not enough to explain enough of the EEm
variation.

Summarizing, comparingourmodel tomethods that use a set of handcrafted features
as predictors, it is clear that our approach outperforms the rest of themodelingmethods.
This is probably due to our approach being able to incorporate longer windows of
predictors data. This way, EEm bias from a longer activity time is taken into account.
In order to fairly compare our model with the other modeling choices, we had to test
our model in aggregated windows of the target (30-s aggregations). Such aggregation
has the effect of smoothing the per-breath PAEE measurements, creating a less noisy
target. As a result, the over- or under-estimations are also smoothed out and the model
performance seem improved. This model application is close to how we intend to use
our model with free-living accelerometer data in the future. Therefore, in next section,
Table 12 we also present the performance of our approach with similar scenarios of
target aggregation.

5.6 Demonstration of GRUID model estimating PAEE

To appreciate the general performance of the GRUI D model, consider Figs. 8 and 9. In
Fig. 8, we see two scatter plots of the average true over average predicted EEm value
per participant (left) and per activity class (right). In the left plot, the dots (in blue)
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Fig. 9 True versus Predicted EEm per breath for participants with lowest (top), median (middle) and higher
(bottom) R2 examples, when indoor and outdoor activities are included

display the participants with both indoor and outdoor activities, while the diamonds
(in green) represent participants with only indoors data. Adding to that, the trend line
(in red) is used to compare the predictions to the main diagonal (blue, representing
x = y) which is the ground truth. From that, we observe that our model has on average
a good fit. However, it slightly overestimates the lowest EEm values (red line above
main diagonal) and underestimates the highest ones (red line belowmain diagonal). In
the right plot of Fig. 8, we can observe that our model captures really well the average
EEm per activity since the average PAEE estimated for all the activities is either on
or really close to the ground truth line. However, evaluating the performance over one
activity class averages out a lot of the EEm signal.
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Table 13 Comparing true and predicted EEm over different aggregations

Aggregation R2 inR2 outR2 RMSE inRMSE outRMSE

Per breath 0.55 0.41 0.36 1.25 1.09 2.04

10s 0.65 0.51 0.50 0.95 0.89 1.58

30s 0.72 0.60 0.56 0.82 0.74 1.40

1min 0.78 0.67 0.62 0.76 0.64 1.34

5min 0.82 0.78 0.63 0.62 0.48 0.97

60min 0.86 – – 0.40 – –

Adding to that, in Fig. 9,we plotted the predicted over true PAEE (COSMED)values
(recordings per-breath) for 3 participants that performed both indoor and outdoor
activities and have theworst,median and best fit, R2 = 0.35,R2 = 0.55 andR2 = 0.80
respectively. Here, we see that the model overall captures nicely the trend of the true
EEm, as the black line (predictedEEm) follows the longer-termchanges of the grey line
(trueEEm).However, the short-termbehaviour of the target is not captured sufficiently,
except for the sudden changes. We need to point out here that, while our models are
tested on the real data (per breath), they were trained with averaged EEm values of
10 s both for smoothing out any non-generalizable noise (high peaks in grey in Fig. 9)
of the data and for training with a stable sampling rate, since COSMED produces data
per breath. As a result of this choice, we can see that our predicted EEm values do not
capture the high-frequency fluctuations, but follow the average trend on a 10-second
scale. Finally, the gap in the middle of the plots is the transition in the protocol from
indoor to outdoor activities, where no COSMED measurements took place.

Subsequently, in Table 13, we present the performance of the GRUI D model by
different target aggregations. We aggregated the original and predicted EEm values at
10 and 30, and at 1, 5 and 60min. This is really useful, since in a free-living setting,
the model will be used to estimate PAEE for aggregated windows. From Table 13,
it is observed that even with the shorter window of aggregation (10 s) the model’s
performance improves substantially both for R2, from 0.55 to 0.65, and RMSE, from
1.25 to 0.95 Kcal/min. Additionally, for commonly used time frames of 30-second
and 1-minute windows (Staudenmayer et al. 2009; Montoye et al. 2017a; Ellis et al.
2014; O’Driscoll et al. 2020), the model has an RMSE of only 0.86 and 0.76 Kcal/min
respectively with the predictions explaining more than 70% of the original EEm signal
variation for both aggregations, with R2 = 0.78 for the 1min.

Finally, we can observe that our model has different performance for indoor and
outdoor activities. In detail, when comparing windows of 30 s, for indoor activities the
RMSE is equal or less that 1.0 Kcal/min, while for outdoor activities, RMSE is much
higher (walking RMSE = 1.20; cycling RMSE = 1.50), see Table 13. Characteris-
tically, when we compare our model’s performance per participant, we see a slight
overestimation of EEm for those with only indoor activities (low-intensity activities)
and a slight underestimation for those with high average EEm, see Fig. 8. Especially,
when ordering by R2 (see Fig. 10), we can clearly see that for participants with lower
median EEm, the model explains less of its variance (lower R2), while for participants
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Fig. 10 Box plots of mean True EEm per participant ordered by R2

with longer range of EEm values, the model does capture the variation. This may be
due to the fact that for low EEm values, even a small RMSE error can lead to lower R2.
We indeed observe lower RMSE for indoor activities, while they produce lower R2

values. We conclude that the proposed RNN model on average performs reasonably
well for both high and low intensity activities (see Fig. 8). Because estimating PAEE
from sedentary or low-intensity activities is considered challenging (van Hees et al.
2009), our proposed RNN model makes an important contribution.

6 Conclusion and future work

In this paper, we developed and tested a recurrent neural network architecture based
on an efficient down-sampling method that incorporates standard deviation for down-
sampling the input data to estimate physical activity energy expenditure within an
elderly population. This approach is based on accelerometers at two body locations
(wrist and ankle) and is able to take advantage of long time windows of predictor
data (2min to predict reasonably accurately the PAEE of older individuals. Moreover,
the inclusion of participant-level data like age, gender and body composition further
improved the accuracy of PAEE estimation, especially in activitieswith lower intensity
ranges.

In summary, the results of this study demonstrate that RNNs incorporating GRU
layers can solve the challenge of PAEE estimation.While they do not require any com-
plex feature construction steps and can be trained with lower-resolution accelerometer
data, if this is down-sampled with statistical dispersion metrics, RNNs produce PAEE
estimations similar or better than competingmethods. BecauseRNNs take into account
longer windows in activity history without increasing the size and dimensionality of
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their input, we believe that such modeling techniques are attractive when applied to
free-living accelerometer data that is collected in a continuous way. Subsequently, our
proposed down-sampling using statistical dispersion metrics (like standard deviation)
proves to be really efficient since we achieved better results using ten times less data
compared to averaging. Additionally, this strategy gives us the advantage of incorpo-
rating longer windows of prior sensor data with lower computational cost which also
lead to better PAEE estimation. Finally, adding participant-level data (age, weight,
height) when training our model can improve PAEE estimation significantly.

During the development of ourmodels,we realized that theGOTOVdataset involves
some data collection limitations. Indirect calorimetry was collected in a continuous
way with only small breaks in between (max 1 minute). The rather small breaks
between activities might make it difficult to estimate the EEm outcome per specific
activity due to the energy expenditure’s lag effect. In detail,without longdiscriminating
breaks between activities, it is likely that past activities influence the EEm records of
future ones. Additionally, we did not randomise the order of activities which might
have introduced a slight bias in our training. For these reasons, it would have been
interesting to test our findings in other similar labeled datasets with older individuals.
However, to the best of our knowledge, GOTOV is as yet the only publicly available
PAEE dataset with a focus on older individuals. Summarising, if there is no need to
predict PAEE per specific activity, such as in our setting, this data collection can be
used nicely to represent free-living conditions.

The RNNmodeling advantage enabled taking into account preceding activity infor-
mation by incorporating data of longer windows and letting themodel decide onwhich
information to emphasize on. The great advantage of the GOTOV dataset is that there
are a satisfactory number of participants and that this data set is dedicated to people
over 60 years of age. Because PAEEmonitoringwithin the elderlymight help stimulate
vital and healthy ageing, the GOTOV dataset is perfectly suited for the development
of activity recognition and PAEE estimation models.

Applying such a model to free-living data collections was one of the motivations of
our study. In our future work, we intent to apply our modeling technique to physical
activity and lifestyle improvement intervention studies on older individuals. From
such an application, we envision that better insights in energy expenditure of older
people will contribute to better physical behaviour guidelines for them to stay healthy,
and potentially further stimulate vital and healthy ageing. In order to achieve this, we
aim to build characteristic features of PAEE levels and PA types of long time periods
(weeks, months) and relate them with parameters of metabolic health, general health
and well-being. These relations between life style and health can then be turned into
distinct recommendations for effectively maintainingmobility among older adults and
a continuous monitoring system to track the adherence and improvement of metabolic
health.
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A Table of Abbreviations across the paper

Table 14 Abbreviations across the paper in alphabetical order

Abbreviations

a GENEActiv ankle

ANN Artificial neural network

BMI Body mass index

CNN Convolutional neural network

CNN2min CNN trained with 2min window of data

CNN5sec CNN trained with 5 s window of data

DLW Doubly labeled water technique

EE Energy expenditure

EEh Energy expenditure per hour

EEm Energy expenditure per minute

GOTOV Growing old together Validation study

GRU Gated recurrent unit

GRUAC GRU trained with accelerometer and activity classes data

GRUI D GRU trained with accelerometer and participant-level data

GRUI D_AC GRU with accelerometer, participant-level and activity classes data

HR Heart rate

inR2 Indoors R-squared

inRMSE Indoors root mean squared error

IQR Interquartile range

K4 COSMED K4b2

LM Linear model

LMM Linear mixed model

LOSO-CV Leave one subject out cross validation

LSTM Long short-term memory

LUMC Leiden University medical center

MET Metabolic equivalent of task

MSE Mean squared error

outR2 Outdoors R-squared
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Table 14 continued

Abbreviations

outRMSE Outdoors root mean squared error

PA Physical activity

PAEE Physical activity energy expenditure

PD Percentile difference

REE Resting energy expenditure

ReLU Rectified linear unit

RF Random forest

RFr Random forest regressor

RMSE Root mean squared error

RNN Recurrent neural network

SD Standard deviation

SR Sampling rate

SVM Signal vector magnitude

t Average training time

TEE Total energy expenditure

TEF Thermic effect of food

VCO2 Volume of carbon dioxide

VO2 Volume of oxygen

w GENEActiv wrist

B Open-source code

To make our experiments, scripts and results accessible to other researchers (open-
source) we share them on the following git repository, https://github.com/parastelios/
GOTOV_PAEE_publication.
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