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ABSTRACT
Hypoxia has been linked to elevated instances of therapeutic resistance in breast 
cancer. The exposure of proliferating cancer cells to hypoxia has been shown to induce 
an aggressive phenotype conducive to invasion and metastasis. Regions of the primary 
tumors in the breast may be exposed to different types of hypoxia including acute, 
chronic or intermittent. Intermittent hypoxia (IH), also called cyclic hypoxia, is caused 
by exposure to cycles of hypoxia and reoxygenation (H-R cycles). Importantly, there 
is currently no consensus amongst the scientific community on the total duration of 
hypoxia, the oxygen level, and the possible presence of H-R cycles. In this review, we 
discuss current methods of hypoxia research, to explore how exposure regimes used 
in experiments are connected to signaling by different hypoxia inducible factors (HIFs) 
and to distinct cellular responses in the context of the hallmarks of cancer. We highlight 
discrepancies in the existing literature on hypoxia research within the field of breast 
cancer in particular and propose a clear definition of acute, chronic, and intermittent 
hypoxia based on HIF activation and cellular responses: i) acute hypoxia is when the 
cells are exposed for no more than 24 hours to an environment with 1% O2 or less; ii) 
chronic hypoxia is when the cells are exposed for more than 48 hours to an environment 
with 1% O2 or less and iii) intermittent hypoxia is when the cells are exposed to at least 
two rounds of hypoxia (1% O2 or less) separated by at least one period of reoxygenation 
by exposure to normoxia (8.5% O2 or higher). Our review provides for the first time 
a guideline for definition of hypoxia related terms and a clear foundation for hypoxia 
related in vitro (breast) cancer research.

Keywords: Breast Cancer; Acute Hypoxia; Chronic Hypoxia; Intermittent Hypoxia; 
Hallmarks of Cancer

chapter 2 .indd   12chapter 2 .indd   12 2022/12/14   10:44:302022/12/14   10:44:30



Hypoxia in BC: A Review on application in in vitro research

2

13

INTRODUCTION
Given the problem of therapy resistance in cancer treatment, the field of hypoxia 
research has grown in importance as a result of the crucial role hypoxia has in the 
therapeutic response. Tumors exposed to hypoxia have been shown to have a 
more aggressive phenotype characterized by increased metastasis and resistance to 
chemotherapy, radiation, and inducible cancer immunotherapy [1]. More specifically, 
hypoxia and genomic instability are correlated in breast cancer and genomic instability 
is associated with aggressiveness in several tumor types [2]. There is good evidence that 
intratumoral hypoxia is commonly found in breast cancer, and that breast cancer cells 
have elevated expression of hypoxia-inducible factors (HIFs) [3]. There are negative 
implications for patient survival, independent of clinical stage, prognostic parameters, 
histological grade, and lymph node status [10,11]. Therefore, it is crucial to gather a 
stronger understanding of the impact of hypoxia to strategically circumvent its effects 
on breast cancer progression and therapy resistance.

Hypoxia can be caused by uncontrolled proliferation of cancer cells which distances 
them from the nearest source of oxygen [12]. The distancing from the nearest oxygen 
source results in a varying hypoxia profile from acute hypoxia to chronic hypoxia. 
Acute hypoxia is defined by short (from a few minutes to a few hours) exposure to low 
oxygen levels that can be reversed by regained blood flow, whereas chronic hypoxia 
is defined by long exposure to low oxygen levels. Hypoxia can also occur in a cycling, 
or intermittent phase which arises due to the shutdown of immature, dysfunctional 
structure of the new vasculature resulting in transient blood flow [12,13]. Intermittent 
hypoxia and reoxygenation have been shown to have a stronger effect on promoting 
an invasive breast cancer phenotype than chronic hypoxia [14]. Interestingly, cells 
that are exposed to intermittent hypoxia preferentially undergo glycolysis despite the 
fluctuating availability of oxygen, which signifies that these cells acquire adaptability to 
the microenvironmental stresses that they may  experience during metastasis [15]. The 
severity and duration of hypoxia defines the cell response and thus the subsequent 
signaling mechanisms initiated by the cancer cell [12]. Cancer cells that undergo both 
chronic and intermittent hypoxia display a phenotype that is characterized by 
higher reactive oxygen species (ROS) defense [16], and upregulation of genes involved 
in the metastatic spread  [15] .

In this review, we summarize the current standards on how the scientific community 
uses hypoxia in in vitro breast cancer research. We review studies with respect to 
the duration of hypoxia, oxygen levels, and biological effects of acute, chronic or 
intermittent hypoxia. Not surprising but worrisome, we observe a large discrepancy 
amongst the studies with respect to the duration required to induce an acute hypoxic 
or chronic hypoxic phenotype. For instance, Jarman et al. referred to 24 hours as 
acute hypoxia, whereas Han et al. used 24 hours as chronic hypoxia [17,18]. Bayer et 
al. classified acute hypoxia as less than 2 hours of hypoxia exposure, whereas chronic 
hypoxia was anything longer than 2 hours [19]. The inconsistent classification of 
hypoxia is based on experimental observations solely and largely disregards the 
multiple pathophysiological and pathogenetic processes involved [19]. This highlights 
the urgent need of understanding the literature and drawing conclusions on the most 
representative methods for conducting hypoxia research in the breast cancer field. 
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Here, we discuss potential reasons for the major differences in the duration and 
biological effect reported for experimental acute, chronic and intermittent hypoxia. 
We classify our findings based on the hallmarks of cancer (Figure 4), detailed by 
Hanahan and Weinberg, in order to allow researchers to tailor the optimal experimental 
setup for hypoxia based on what they want to study [20]. This review also provides an 
overview of the different strategies being applied to hypoxia research within the field of 
breast cancer (Table 1), and ultimately, we provide new guidelines for future research.

RELEVANCE OF HYPOXIA IN BREAST CANCER
Hypoxia is generally accepted as a bad prognosis factor in breast cancer patients. Cancer 
cells largely inhibit protein synthesis in response to hypoxia, and this phenomenon 
has been termed the oxygen conformance. It details the hierarchy of ATP consuming 
processes, with DNA, RNA, and protein synthesis being of lesser importance and 
therefore down-regulated when energy is limited [21]. Hypoxia can lead to inhibition 
of proliferation and subsequently influence the cell cycle distribution which influences 
the induction of apoptosis and cell death. The severity of inhibition depends on the 
degree and duration of hypoxia [22]. Those key experimental parameters required 
to initiate a response is an essential topic that will be discussed in detail in this review. 
The hypoxia-induced transcriptional reprogramming within cancer cells has also 
been shown to allow them to overcome nutrient constraints and support metastatic 
colonization. 

HIF-proteins and tumor hypoxia are known to be closely linked with inducing growth 
advantage and malignant phenotypes. With respect to metastasis, hypoxia influences 
two main mechanisms of tumor propagation. The first mechanism is alterations in gene 
expression which subsequently affect the proteome. The conditions of the hypoxic 
microenvironment condone hypermutability to DNA damage which is an underlying 
factor for genomic instability of cancer cells [23]. Higher HIF-1α abundance is also a 
common feature of breast cancers, due not only to the lack of oxygen but also to 
mutations in oncogenes or tumor suppressor genes [24]. The second mechanism for 
alteration is clonal expansion. Hypoxia has been shown to provide selective pressure 
for expansion of cells with apoptotic resistance, such as p53 mutants, or loss of DNA 
mismatch repair mechanisms [25,26].

It is well established in the literature that breast cancer progression is not only regulated 
by cancer cell signaling but is also influenced by the tumor surrounding environment. 
The breast microenvironment is comprised mainly of extracellular matrix proteins, 
endothelial cells, fibroblasts, adipocytes, and immune cells [27]. The breast cancer 
microenvironment can be characterized at local (within the tumor), regional (within 
the breast), and distant (metastasis to other organs) levels [28]. Each level is comprised 
of important regulators of cancer progression such as the growth, structural support 
(e.g. extracellular matrix), nutrient sources, and physical properties (e.g. pH and oxygen 
levels) [29]. Induction of a hypoxic environment, and the subsequent activation of HIFs 
exerts an influence on the microenvironment, which is a decisive step in the uncontrolled 
growth of the primary tumor. Non-cancer cells within the microenvironment are strongly 
affected by hypoxia as well. In most cases, non-cancer cell dysregulation supports tumor 
growth and facilitates metastasis: fibroblasts are modified into tumor conducive cancer 
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associated fibroblasts (CAFs), collagen deposition allows for increased metastasis, and 
anti-tumor immune functions becomes strongly repressed [30–32].

HYPOXIA AND BREAST CANCER TREATMENT RESISTANCE
The most detrimental effect of tumor hypoxia is the induction of treatment resistance 
[3]. Radiotherapy acts through the generation of ROS, which cause irreversible cellular 
DNA damage and induce apoptosis [33]. Due to the low levels of available oxygen, 
cancer cells experiencing hypoxia are three-times more resistant to radiation than 
cells under normoxia [33]. As for chemotherapy, drug treatments showed selective 
toxicity towards oxygenated cells in comparison to hypoxic cells [34]. The tumor has 
restricted vasculature, which can manifest as a diffusion barrier between anti-cancer 
drugs and the tumor itself [35]. The most recent development in cancer treatment is 
immunotherapy. However, only a minority of patients respond to immunotherapy, in 
part due to hypoxia [35]. This occurs because the metabolic shift towards upregulated 
glycolysis results in increased levels of adenosine, which is, amongst other effects, a 
strong suppressor of T cells [36,37]. In fact, hypoxia results in an increase in suppressor T 
cells [38]. Additionally, the adaptive immune system has been shown to be repressed 
by the action of HIF-1α [37]. Hypoxia has also been shown to downregulate estrogen 
receptor-α expression and function, which could lead to resistance to hormonal therapy 
as well [39]. Breast cancer is a very heterogeneous disease which consists of different 
subtypes based on the cell of origin within the mammary gland (luminal-like or basal-
like) [40]. The basal-like subtype without estrogen receptor, progesterone receptor and 
HER2 expression is more aggressive and has poor prognosis when compared to the  
luminal-like subtype [41]. The response of breast cancer cells to hypoxic insult depends 
on their subtype and therefore, it is another reason to define clear guidelines about the 
experimental conditions.  

HYPOXIA AS A PARAMETER IN BREAST CANCER RESEARCH
A summary of key research articles investigated in this review can be found in Table 1. 
We highlight key findings in studies that compared intermittent hypoxia to acute 
and chronic hypoxia in various in vitro models of breast cancer. Here we aim to highlight 
the importance of studying intermittent hypoxia.

Oxygen concentration during breast cancer progression
To understand the effects of hypoxia on tumor progression, it is important to conduct 
the experiments in such a way that they are representative of the pathophysiology of the 
patient situation. Within a healthy human, oxygen concentrations can vary from 4.6% 
O2 in the brain to 9.5% O2 in the renal cortex [42,43]. However, in cell culture, oxygen 
concentration is typically maintained at 20% O2, indicating that cells are studied under 
hyperoxic conditions rather than normal physiological conditions [42]. Importantly, the 
required concentration to induce hypoxia varies among cell types, some cell types are 
hypoxic at 5% O2, while others require less than 1% O2 [44]. In human breast tissue, 
physiological oxygen levels are around 8.5% O2 whereas hypoxia in human breast 
cancer has been determined to be around 1.5% O2 [4]. Cells have different responses 
to low oxygen concentrations. At 1% to 5% O2 the canonical HIF pathway is activated, 
and other non-canonical pathways can be stimulated to produce the hypoxic response 
[45]. At around 0.5% O2 , the cell undergoes reduced mRNA translation, which is the
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most energetically costly process [45,46]. At around 0.1% O2 and lower, there is reduced 
respiration and cell cycle arrest [47]. These are important factors to take into consideration 
when performing experiments that look at cell cycle or mRNA levels in particular. It is 
also important to realize that the oxygen concentration varies during tumorigenesis.  A 
representation of the stages of hypoxia during breast cancer progression is provided in 
Figure 1. At the primary tumor site, both healthy and cancerous cells can experience 
great fluctuations of oxygen levels depending on the tumor microenvironment. This 
phase of intra-tumoral intermittent hypoxia is key in driving the molecular features 
of the metastatic cells. While the circulating cancer cells will get reoxygenated with 
around 5% of oxygen, the oxygenation status of the metastatic lesions of breast cancers 
is even poorer than the primary tumors. Additionally local recurrences have also been 
observed to have a higher hypoxic fraction than the primary tumor [4]. Interestingly, the 
occurrence of hypoxia in breast cancer does not correlate with the size of the primary 
tumor and therefore does not correlate with the clinical stage of the disease [4]. Since 
cancer cells experience different oxygen concentration within the primary tumor, when 
they enter circulation, and when they colonize a distant organ [48], it is essential to 
take into consideration what stage is being researched and what the respective oxygen 
levels for that stage are. Another important factor to take into consideration is that 
in patients, oxygen is unevenly distributed throughout tissues due to the nature in 
which oxygen is delivered. Normal oxygen levels in the body flow in a gradient, and 
as a result areas of hypoxia can also occur in a gradient [49]. Given the presence of 
flowing oxygen concentration gradients, it can be argued that intermittent hypoxia is 
most representative of the situation in patients. As seen in Table 1, 1% O2 is most 
frequently used in the literature, which may be a safe choice as this level of oxygen may 
not have undesired effects on cell pathophysiology. Nevertheless, it does limit insight 
into the complex biology of hypoxia in breast cancer.

Methods of Inducing Hypoxia in vitro
As described in Table 1, the two most common methods used to modify oxygen 
concentration for in vitro studies are i) having an air-tight chamber providing control 
over specific gas concentrations, or ii) inducing a state of hypoxia within the cells 
biochemically. In the first method, cells are cultured in incubators with the desired 
concentration of oxygen. There are limitations to this method such as having procedures 
to sustain hypoxia during times of manual handling of the cultures and taking into 
account the time required for equilibration of the actual oxygen concentration in 
the culture [50]. The second method relies on chemicals to initiate signaling events 
associated with hypoxia, wherein the environment of the cells remains oxygenated. 
Various chemicals may be used, including- hydroxylase inhibitors, cobalt chloride, nickel 
chloride, and dimethyloxaloglycine (DMOG), to stabilize HIF-1α giving a phenotype 
that mimics hypoxia [44,51,52]. This method discards the need for complex culture 
chambers allowing cell culture regular incubators. However, a major limitation is 
the fact that the scope of the study is narrowed down to effects downstream of the 
HIF-1α pathway, thus overlooking HIF-1α independent effects of hypoxia [53]. Other 
drawbacks of chemical induction of hypoxia include the difficulty to study reversibility 
and  intermittent hypoxia and potential toxic effects, such as those associated with 
cobalt chloride exposure [54,55]. In patient tumors, the oxygen concentration can 
vary depending on the location, depth, and size of the tumor [4,5]. To model this in an 
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experimental setting is complex, and therefore it must be kept in mind that the methods 
currently used to model hypoxia are not completely representative of the situation in 
patients.  Nevertheless, they can provide important insights into the effects of hypoxia.

Duration of Hypoxia
As mentioned, the most critical and highly disputed factor when it comes to hypoxia 
research is the duration of exposure to low oxygen levels. One discrepancy that is seen 
in Table 1, is the duration of hypoxia required to induce a response. There are three 
major reasons that can explain these discrepancies. Firstly, for short durations of 
hypoxia such as from two to thirty minutes [56,57], it is uncertain at which point the 
cells are actually under hypoxic conditions. Theoretically, a cell enters hypoxic 
conditions the moment the incubator door closes. However, in reality it takes 
several minutes to hours for the oxygen concentration in the medium to asymptotically 
reach hypoxic levels [58]. Therefore, it is difficult to classify the minimum amount of time 
required for hypoxia because that can vary between experimental set ups. Secondly, 
it is not always clear at which point the low oxygen levels stimulate a biological 
response. Michiels states that within minutes hypoxia induces the activation of HIF 
proteins, and within hours gene transcription is regulated [59]. The kinetics of HIF-
1α in response to reoxygenation was shown to be dependent on the severity of 
the preceding hypoxic episode [60]. Thirdly, the kinetics of hypoxia induction vary for 
different methods. For example, it is relatively simple to regulate the hypoxia exposure 
time using a dedicated chamber whereas this is less straightforward when hypoxia 
is chemically induced. Ultimately, based on literature we will classify hypoxia as 
initiating the moment a biological effect occurs.

Intermittent Hypoxia
Intermittent hypoxia is arguably the most important condition to study because it most 
accurately reflects the situation of oxygenation in tumor tissues. Due to heterogeneous 
blood supply and dysfunctional vascularization, the oxygen gradient within the tumor 
is constantly switching between normoxia and hypoxia [61]. Few publications were 
found comparing intermittent hypoxia to chronic hypoxia in in vitro models of breast 
cancer. Many studies explore acute or chronic hypoxia but not the effect of subsequent 
reoxygenation on the cells. Due to its physiological relevance, intermittent hypoxia 
research is of utmost importance to grow a deeper understanding of the role of hypoxia 
in breast cancer. Furthermore, it is well known that following treatment with radiation 
and some forms of chemotherapy, hypoxic tumors will reoxygenate [62]. Therefore, 
studying effects of intermittent hypoxia would be highly relevant to understand the 
impact on radiation and chemotherapy.

As seen in Table 1, Alhawarat et al. aimed to compare intermittent and chronic hypoxia 
on angiogenesis. They found no significant differences between the two groups 
[63]. However, they produced chronic hypoxic conditions by culturing MCF-7 cells in 
1% O2 for 72 hours, once per week. This means that for the rest of the week the cells 
were cultured in normoxic conditions, ultimately, leading to intermittent hypoxic 
conditions. This example highlights the importance of clear definitions of acute, 
chronic, and intermittent hypoxia.
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CONNECTION BETWEEN HYPOXIA EXPOSURE REGIMES AND HIF MEDIATED CELLULAR 
RESPONSES
HIFs are the main mediators of cellular responses to hypoxia in the body. HIF is a 
heterodimer of an α/ β subunit, and each isoform differentially regulates tumor growth 
[64]. The HIF-1α gene is constitutively transcribed and translated into the HIF-1α protein 
within the cytosol. Under normoxic conditions, the protein can be ubiquitinated whereby 
it is marked for degradation by the proteasome. This process is tightly regulated 
by O2 levels through hydroxylation of residues on the oxygen-dependent degradation 
(ODD) domain. This in turn causes the recruitment of VHL which acts as an E3 ligase to 
ubiquitinate the protein, marking it for degradation [65]. Under hypoxia, hydroxylation 
of HIF is inhibited leading to its stabilization and translocation to the nucleus where 
it forms a complex with HIF-1β. This complex can then bind to the hormone response 
element (HRE), and with the aid of cofactor p300, initiate transcription of genes involved 
in the hypoxic response [65]. Besides oxygen levels, HIF-1α can be regulated by growth 
factor signaling and, in cancer, by activation of oncogenes and loss of tumor suppressor 
genes [66]. 

The hypoxic switch is mediated through the binding of HIF-1α and HIF-2α to enhancer 
elements [67,68]. HIF-1α and HIF-2α have similar domain structures, are regulated via 
the same mechanisms, and both bind to HREs and activate HRE- linked reporter genes 
[49,69]. In breast cancer cell lines, it has been shown that during hypoxia, HIF-1α 
expression stabilizes after 4-16 hours, then gradually decreases [70], whereas HIF-2α 
stabilizes after 24 hours [71]. Furthermore, HIF-1α and HIF-2α have non-redundant 
roles, and they produce distinctly different phenotypes [72]. HIF-1α has been shown to 
be mainly involved in angiogenesis, metabolic reprogramming, invasion, and metastasis 
[73]. HIF-2α is a key regulator in the promotion of a cancer stem cell phenotype, and 
stabilizes over a longer time frame [74,75]. The different roles of HIF-1α and HIF-2α 
can be explained by the differences in HIF-1α and HIF-2α function and stability. Acute 
hypoxia is mediated by HIF-1α while HIF-2α may be more dominant in chronic hypoxia 
[65]. Notably, HIF-1α mRNA has a half-life that is significantly shorter than HIF-2α. Taken 
together, these results suggest that HIF-1α has a role in acute hypoxia, whereas HIF-2α is 
active in prolonged, or chronic, responses [76]. Intermittent hypoxia has been shown to 
induce a response similar to acute hypoxia, with elevated levels of HIF-1α [14]. The level 
of HIF-2α in response to intermittent hypoxia has yet to be explored in breast cancer 
cells.

When exposed to hypoxia for a period of 3 days, various luminal breast cancer cell 
lines showed increased HIF levels, decreased estrogen receptor-α levels, and expressed 
hallmarks of poor cellular differentiation [77]. Furthermore, it has been shown that 
this decrease in estrogen receptor- α levels inhibited the growth promoting effects 
of estradiol, leading to the development of an estrogen-independent phenotype 
which may explain the acquired resistance to hormonal therapy [39]. In another 
experiment on ZR-75 cells, this decrease in estrogen receptor-α levels and increase in 
HIF-1α were shown to be time dependent, the increase in HIF-1α was seen after 3 hours 
of hypoxia exposure, and a decrease in HIF-1α was seen between 6 to 12 hours and the 
levels were almost undetectable after 24 hours [78]. When MCF-7 cells were exposed 
to hypoxia for 16 hours a reciprocal relationship was found between HIF-1α and HIF-
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2α, when HIF-2α was lost, there was a significant increase in HIF-1α-dependent VEGF 
production, induced by hypoxia [79]. Clearly, HIF-1α stabilization alone does not serve 
as a surrogate biomarker for the complex hypoxia in breast cancer patients or models. 
Hypoxia regulated genes controlled by HIF-1α and HIF-2α may be used. However, the 
same markers may not be used across tumor types. For example, carbonic anhydrase 
IX (CA9) is used in breast cancer but as it is not expressed in all tumor types would not 
represent a general biomarker [80].

Figure 2. Cellular response in normoxic, acute, intermittent, and chronic hypoxic conditions. HIF 
proteins are constitutively expressed, but under normal oxygen concentration are quickly ubiquitinated 
and degraded under the control of VHL. Under acute hypoxia, HIF-1α levels are stabilized and can 
translocate to the nucleus where they can bind with HIF-1β. With the aid of cofactor p300 gene 
expression can be induced for the genes involved in acute hypoxic response. Under intermittent 
hypoxia, HIF-2α levels stabilize alongside HIF-1α levels. Under chronic hypoxia, HIF-1α levels dissipate 
and HIF-2α levels stabilize. HIF-2α is then the primary cause of gene transcription in chronic hypoxia.

HIF-1α and HIF-2α levels vary depending on the duration and degree of hypoxia as 
summarized in Figure 2. Both transcription factors mediate distinct responses partially 
through independent regulation of target genes, but partially through interactions with 
complexes that contain tumor suppressors and oncoproteins [81]. For example, HIF-1α 
induced an increase in vascularization, whereas HIF-2α triggered a decrease [82,83]. 
Furthermore, acute hypoxia induced secretion of tumor-promoting growth factors 
and cytokines [84,85], whereas chronic hypoxia caused deactivation of CAFs [86]. Also 
studies have shown that HIF-1α but not HIF-2α induces expression of glycolytic genes in 
multiple cell types [87].  HIF-1α has been shown to activate specifically the expression 
of LDHA and PDK1, both of which are enzymes that play a critical role in the switch to 
a primarily glycolytic phenotype [88,89]. On the contrary, genes that are involved in 
invasion, including the matrix metalloproteinases (MMP) 2, and 13, and the stem cell 
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factor OCT-3/4, were induced by HIF-2α [65]. 

Independent of which HIF binds to the HRE, it ultimately initiates a transcriptional 
cascade responsible for coordinating a multitude of cellular responses to oxygen 
availability in many tissues. It controls processes from proliferation, differentiation, 
metabolism, apoptosis, and the pathophysiology of cancer [90–92]. A schematic of 
the HIF cascade in response to acute, chronic, and intermittent hypoxia is presented 
in Figure 2. The apparent duality between HIF-1α and HIF-2α cascades emphasizes the 
need for better understanding of hypoxia standards in research. Our own unpublished 
work points to a shift from HIF-1α to HIF-2α signaling as luminal breast cancer cells 
are subjected to prolonged hypoxia. I.e., while HIF-1α stabilization and induction 
of CA9 were observed in MCF7 cells exposed to 1% O2 for 24 hours or 5 days alike, 
transcriptome analysis indicated prominent HIF-1α signaling at 24 hours and a shift 
to more prominent HIF-2α (EPAS1) signaling after 5 days hypoxia (Figure 3). Notably, in 
addition to the kinetics of hypoxia the impact of varying O2 levels is likely to be critically 
affected by the subtype of breast cancer studied. E.g., basal-like breast cancer cells are 
more glycolytic than luminal breast cancer cells, which is expected to led to distinct 
sensitivities to hypoxia [93].

CONNECTING HYPOXIA EXPOSURE REGIMES TO HALLMARKS OF CANCER 
As discussed in this review, there is a discrepancy between what is classified as acute, 
intermittent, and chronic hypoxia in the current literature. At the same time, we have 
discussed the critical impact of hypoxia kinetics on the balance between HIF-1α and HIF-
2α signaling and, consequently, on affected cellular programs. Hence, studying the impact 
of hypoxia on described hallmarks of cancer [94] will have to take these considerations 
into account. Distinct connections between acute, chronic, and intermittent hypoxia in 
in vitro breast cancer models to sustaining proliferative signaling, activating invasion 
and metastasis, genome instability and mutation, deregulating cellular energetics, and 
inducing angiogenesis are depicted in Figure 4. 

For genome instability, HIF-1α has been shown to induce microRNAs which suppress 
DNA repair mechanisms and can lead to genetic instability [95]. On the other hand, HIF-
2α has been shown not to have these same effects due to Thr-324 phosphorylation in the 
PAS-b domain, which prevents it from suppressing DNA repair genes [96]. Consequently, 
conclusions drawn from experiments using acute/ intermittent hypoxia (associated 
with HIF-1α signaling) may be very different from conclusions drawn from experiments 
using chronic hypoxia (which drives HIF-2α signaling). Likewise, studies investigating the 
impact of hypoxia on aspects of angiogenesis will critically depend on the O2 exposure 
kinetics. HIF-1α promotes cell proliferation and migration in early angiogenesis, whereas 
HIF-2α plays a role in remodeling and maturation of the microvasculature controlling 
vascular morphogenesis and assembly [97]. Based on our own unpublished work, acute 
hypoxia in luminal breast cancer cell impacts on angiogenesis whereas chronic hypoxia 
affects processes associated with invasion and metastasis (Figure 3). 
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CONCLUSION & FUTURE DIRECTION
The aim of this review was to highlight the different strategies being applied to hypoxia 
research within the field of breast cancer. The lack of definition of time frames, 
oxygen concentration, and biological effects in in vitro models of acute, chronic or 
intermittent hypoxia hamper clear conclusions that can be drawn from research in this 
field. As a minimum guideline for a better definition of acute, chronic, and intermittent 
hypoxia we propose: i) acute hypoxia is when the cells are exposed for no more than 24 
hours to an environment with 1% O2 or less. This time frame has been chosen based on 
the literature because it is the period in which HIF-1α is stabilized and most active; ii) 
chronic hypoxia is when the cells are exposed for more than 48 hours to an environment 
with 1% O2 or less. This time frame has been selected based on the literature as the 
timing for HIF-2α activation; iii) intermittent hypoxia is when the cells are exposed to 
at least two rounds of hypoxia (1% O2 or less) separated by at least one period of 
reoxygenation by exposure to normoxia (8.5% O2 or higher). Studies investigating the 
changes in signaling, gene expression, and metabolism using in vitro breast cancer 
models under such defined conditions should serve to build a stronger foundation 
within the field and provide better insight into the role of hypoxia role in breast cancer 
progression and therapy resistance.
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