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ABSTRACT

Using kinematics to decompose the mass profiles of galaxies, including the dark matter contribution, often requires parameterization
of the baryonic mass distribution based on ancillary information. One such model choice is a deprojected Sérsic profile with an
assumed intrinsic geometry. The case of flattened, deprojected Sérsic models has previously been applied to flattened bulges in
local star-forming galaxies (SFGs), but can also be used to describe the thick, turbulent disks in distant SFGs. Here, we extend this
previous work that derived density (ρ) and circular velocity (vcirc) curves by additionally calculating the spherically-enclosed 3D mass
profiles (Msph). Using these profiles, we compared the projected and 3D mass distributions, quantified the differences between the
projected and 3D half-mass radii (Re; r1/2,mass,3D), and compiled virial coefficients relating vcirc(R) and Msph(<r = R) or Mtot. We
quantified the differences between mass fraction estimators for multi-component systems, particularly for dark matter fractions (ratio
of squared circular velocities versus ratio of spherically enclosed masses), and we considered the compound effects of measuring
dark matter fractions at the projected versus 3D half-mass radii. While the fraction estimators produce only minor differences, using
different aperture radius definitions can strongly impact the inferred dark matter fraction. As pressure support is important in analyses
of gas kinematics (particularly, at high redshifts), we also calculated the self-consistent pressure support correction profiles, which
generally predict less pressure support than for the self-gravitating disk case. These results have implications for comparisons between
simulation and observational measurements, as well as for the interpretation of SFG kinematics at high redshifts. We have made a set
of precomputed tables and the code to calculate the profiles publicly available.

Key words. galaxies: luminosity function, mass function – galaxies: kinematics and dynamics

1. Introduction

Galaxy kinematics, such as rotation curves, are a pow-
erful tool to measure the mass of all components in a
galaxy (e.g., van der Kruit & Allen 1978; Courteau et al. 2014).
Notably, this technique has been used to study the dark mat-
ter content of galaxies at a wide range of epochs, includ-
ing constraints on the halo profile shapes (e.g., Sofue & Rubin
2001; de Blok 2010; Genzel et al. 2020, among many oth-
ers). Furthermore, by using kinematics to probe the mass
and angular momentum distribution within galaxies, it is pos-
sible to constrain the processes regulating galaxy growth
and evolution over time (van der Kruit & Freeman 2011;
Förster Schreiber & Wuyts 2020; see also, e.g., Mo et al. 1998;
Sofue & Rubin 2001; Romanowsky & Fall 2012). It is espe-
cially informative to study the kinematics of star-forming
galaxies (SFGs), which tend to lie on a tight “star-forming
main sequence” where much of cosmic star formation occurs
(Speagle et al. 2014; Rodighiero et al. 2011; Whitaker et al.

2014; Tomczak et al. 2016). However, there are challenges to
recovering the intrinsic mass properties of galaxies from their
observed kinematics.

One such challenge is that in order to overcome degen-
eracies in kinematic mass decomposition (particularly when
including an unseen dark component; e.g., van Albada et al.
1985), separate constraints on the baryonic (gas and stel-
lar) component are needed, either through empirical measure-
ments or with a choice of parameterization (e.g., Persic et al.
1996; de Blok & McGaugh 1997; Palunas & Williams 2000;
Dutton et al. 2005; de Blok et al. 2008; Courteau et al. 2014).
Multi-wavelength imaging and spectroscopy (in emission or
absorption) can constrain the distribution of gas and stars in
galaxies. Such observations of individual galaxies provide pro-
jected information and not the 3D quantities needed for kine-
matic modeling. Consequently, it is often necessary to first
parameterize the projected distributions and then make reason-
able assumptions about the galaxies’ intrinsic geometries in
order to deproject the surface distributions into 3D mass profiles.
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Observationally, the light distributions of galaxies are often
described by Sérsic (1968) profiles (e.g., Peng et al. 2002, 2010;
Simard et al. 2002, 2011; Blanton et al. 2003; Wuyts et al. 2011;
van der Wel et al. 2012; Conselice 2014, and numerous others).
In some cases, there are distinct components within galaxies, but
these are also frequently described by Sérsic profiles with dis-
tinct indices, n, and effective radii, Re, (e.g., a disk and bulge for
star-forming galaxies; Courteau et al. 1996; Bruce et al. 2012;
Lang et al. 2014). Thus, Sérsic profiles are a natural choice for
the projected parameterization.

Deprojections of Sérsic profiles have been studied in
numerous previous works, for spherical (e.g., Ciotti 1991;
Ciotti & Lanzoni 1997; Baes & Ciotti 2019a,b), triaxial (e.g.,
Stark 1977; Trujillo et al. 2002), and axisymmetric geometries
(e.g., Noordermeer 2008). Additionally, the dynamics for expo-
nential surface profiles have been derived for both razor-thin
(Freeman 1970) and finitely thick (Casertano 1983) geometries
(although these are generalizable to arbitrary Sérsic index; e.g.,
see Binney & Tremaine 2008). These intrinsic geometries have
applications for various galaxies or galaxy components, depend-
ing on the galaxy properties and epoch.

In particular, the mass distribution geometry of SFGs
changes over time. Nearby SFGs often have thin disks, partic-
ularly in the gas components (van der Kruit & Freeman 2011),
while distant (massive) SFGs tend to have thick, turbulent disks
(Glazebrook 2013; Förster Schreiber & Wuyts 2020, and refer-
ences therein). While more observations are needed to better
constrain the vertical disk structure of distant, massive SFGs,
flattened (oblate) distributions are more appropriate models (as
adopted by, e.g., Wuyts et al. 2016; Genzel et al. 2017, 2020),
using the same geometric deprojection used by Noordermeer
(2008) to describe the flattening of nearby bulges.

A second challenge is that the observed rotation must be
corrected for pressure support. This correction is important for
gas kinematic measurements, especially at high redshifts where
disks have high gas turbulence. A number of works have con-
sidered different analytic prescriptions for correcting for the
pressure support in gas kinematics (e.g., Weijmans et al. 2008;
Burkert et al. 2010; Dalcanton & Stilp 2010; Kretschmer et al.
2021). In general, such corrections require measurements of the
gas turbulence σ from spatially resolved spectroscopy (i.e., slit
along the major axis or kinematic maps) as well as constraints
on or parameterizations of the gas density profile. If deprojected
Sérsic distributions are used to model the mass and vcirc pro-
files for the gas and stellar components of galaxies, then a pres-
sure support prescription derived using the density slope can
be adopted for a self-consistent kinematic analysis (as in, e.g.,
Weijmans et al. 2008; Burkert et al. 2010; Dalcanton & Stilp
2010). If galaxies exhibit non-constant dispersion, support from
dispersion gradients or anisotropy can also be included (e.g.,
Weijmans et al. 2008; Dalcanton & Stilp 2010).

In order to further consider implications for the interpre-
tation of the kinematics of high-redshift SFGs modeled using
deprojected, flattened Sérsic profiles, in this paper we revisit and
extend the framework first presented by Noordermeer (2008,
hereafter N08). We first present various profile derivations for
deprojected, flattened Sérsic profiles, including the density and
circular velocity profiles determined by N08 as well as the
spherically-enclosed 3D mass profiles (Sect. 2). Using the calcu-
lated profiles, we examine the relationship between projected 2D
and 3D mass distributions, including differences between the 2D
Re and 3D r1/2,mass,3D (Sect. 2.4). The circular velocity and 3D
mass distributions are also used to calculate virial coefficients
(Sect. 3). Next, we examine the circular velocity and enclosed

mass profiles for multi-component systems for a range of real-
istic z ∼ 2 galaxy properties (Sect. 4). We find the composite
baryonic 3D half-mass radius r1/2,3D,baryons is often smaller than
the projected disk effective radius Re,disk. While different dark
matter fraction estimators f v

DM (the ratio of the dark matter to
total circular velocities squared) and f m

DM (the ratio of the dark
matter to total mass enclosed within a sphere) are similar when
calculated at the same radius, large differences in fDM can result
from the use of different aperture radii (r1/2,3D,baryons vs. Re,disk).
We then determine the self-consistent turbulent pressure support
correction, assuming a constant σ0, which is typically only half
the amount predicted for a self-gravitating disk, and demonstrate
the correction for a range of realistic z ∼ 2 galaxy properties
(Sect. 5). Finally, we discuss these results and their implications,
in particular, for comparisons between simulations and obser-
vations and for studies of disk galaxy kinematics at z ∼ 1−3
(Sect. 6). We highlight how typical observational and simula-
tion “half-mass” radius estimates can lead to differences of up
to ∼0.15 in measured fDM, and how the lower pressure support
correction derived for these mass distributions (compared to the
self-gravitating disk prescription) would imply a typically lower
inferred fDM from the observations.

A set of tables containing precomputed profiles and val-
ues – including vcirc(R) (Eq. (5)), Msph(<r = R) (Eq. (8)),
Mspheroid(<m = R) (Eq. (6)), ρ(r = R) (Eq. (2)), d ln ρ/d ln R
(derived from Eq. (17)), r1/2,mass,3D, ktot(Re,disk) (Eq. (10)), and
k3D(Re,disk) (Eq. (9)) – for a range of intrinsic axis ratios q0 and
Sérsic indices, and the code used to compute the profiles, are
made available1. For reference, key variables and their defini-
tions are listed in Table 1. We assume a flat ΛCDM cosmology
with Ωm = 0.3, ΩΛ = 0.7, and H0 = 70 km s−1 Mpc−1.

2. Derivation of mass profiles and rotation curves

In this section, we present the formulae for the mass profiles
and rotation curves for models whose projected intensity distri-
butions follow Sérsic profiles, but that have oblate (flattened) or
prolate axisymmetric 3D density distributions (i.e., the isoden-
sity contours follow oblate or prolate spheroids), following the
deprojection derivation of N08.

2.1. Deprojected Sérsic density profile

We assume that the mass density of the 3D spheroid can be writ-
ten as ρ(x, y, z) = ρ(m), where (m/a)2 = (x/b)2 + (y/a)2 + (z/c)2

specifies the isodensity surfaces for a given set of semi-axis
lengths a, b, c. For an axisymmetric system, this is simplified
to m =

√
R2 + (z/q0)2, where R =

√
x2 + y2 is the distance in

the plane of axisymmetry, z is the distance from the midplane,
the semi-axes a = b, and q0 = c/a is the intrinsic axis ratio of
the spheroid. To project the intrinsic galaxy coordinates to the
observer’s frame, we adopt the transformation from (x, y, z) to
(ζ, κ, ξ) from Eq. (1) of N08, where ζ lies along the line of sight,
κ, and ξ lie along the galaxy major and minor axes (as viewed in

1 The python package deprojected_sersic_models used in this
paper and the pre-computed tables are both available for download
from sedonaprice.github.io/deprojected_sersic_models/
downloads.html; the full code repository is publicly available at
github.com/sedonaprice/deprojected_sersic_models. The
code also includes functions for scaling and interpolating the profiles
from the pre-computed tables to arbitrary total masses and Re as a
function of radius.
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Table 1. Definitions of key variables.

Variable Definition Reference

Model
n Sérsic index Sect. 2.1
Re Projected 2D Sérsic effective radius Sect. 2.1
q0 Intrinsic axis ratio c/a Sect. 2.1

Geometry
R Radius in the midplane Sect. 2.1
z Height above the midplane Sect. 2.1
m =

√
R2 + (z/q0)2 Spheroid isodensity surface distance Sect. 2.1

Derived
ρ(m) 3D deprojected density Sect. 2.1
vcirc(R) Circular velocity in the midplane, accounting for non-spherical potentials Sect. 2.2
Msph(<r = R) Mass enclosed within a sphere of radius r = R Sect. 2.3
Mspheroid(<m = R) Mass enclosed within spheroid with isodensity surface distance m = R and intrinsic axis ratio q0 Sect. 2.3
r1/2,mass,3D 3D spherical half-mass radius (assuming constant M/L) Sect. 2.4
k3D(Re) 3D enclosed mass virial coefficient relating vcirc(R) to Msph(<r = R) Sect. 3
ktot(R) Total virial coefficient relating vcirc(R) to Mtot Sect. 3
f m
DM(R) Dark matter fraction defined as ratio of dark matter to total mass enclosed within a sphere of radius r = R Sect. 4.2

f v
DM(R) Dark matter fraction defined as ratio of dark matter to total circular velocities squared at radius R Sect. 4.2
α(R) Pressure support correction (=−d ln ρg/d ln R for constant dispersion) Sect. 5.1

the sky plane, for oblate geometries2; i.e., κ = a), respectively,
and i is the inclination of the system relative to the observer (see
also Fig. 1 of N08). The observed axis ratio of the ellipsoid is

then qobs =

√
q2

0 + (1 − q2
0) cos2 i.

Within the observer’s coordinate frame, the relationship
between the 3D mass density profile and the projected light
intensity along the major axis of the galaxy is (ξ = 0; from
Eq. (8) of N083):

I(κ) = 2
q0

qobs

∫ ∞

κ

1
Υ(m)

ρ(m)
m dm
√

m2 − κ2
, (1)

where Υ(m) is the mass-to-light ratio of the galaxy and qobs/q0 =√
sin2 i + (1/q2

0) cos2 i. For simplicity, we assume a constant
mass-to-light ratio, Υ(m) ≡ Υ.

The deprojected density profile is found by inverting this
Abel integral, with (c.f. Eq. (9), N08):

ρ(m) = −
Υ

π

qobs

q0

∫ ∞

m

dI
dκ

dκ
√
κ2 − m2

. (2)

We express the Sérsic profile as (c.f. Eq. (11), N08):

I(κ) = Ie exp

−bn

( κRe

)1/n

− 1


 , (3)

where Re is the effective radius, n is the Sérsic index, Ie is the
surface brightness at Re, and bn satisfies γ(2n, bn) = 1

2 Γ(2n),
where Γ(a) and γ(a, x) are the regular and lower incomplete

2 For prolate geometries, the projected major axis lies parallel to the
long intrinsic axis, c. Here, however, we use a geometry definition
where κ is parallel to a for all cases, for a consistent convention rela-
tive to the rotation axis (z; parallel to c) – so technically κ is parallel
to the major axis as usual for oblate geometry, but lies along the minor
axis for prolate geometry.
3 In N08, ρ(m) denotes the 3D luminosity density distribution, while
we define ρ(m) as the 3D mass density. Thus, we instead write the 3D
luminosity density as ρ(m)/Υ(m) in the projection integral.

gamma functions, respectively (e.g., Graham & Driver 2005).
The derivative is then:

dI
dκ

= −
Ie bn

n Re
exp

−bn

( κRe

)1/n

− 1



(
κ

Re

)(1/n)−1

. (4)

By inserting Eq. (4) into Eq. (2), we can numerically integrate
these equations to obtain the deprojected density profile ρ(m).
For the adopted convention here, where the projected κ lies along
a in the midplane (so this is the usual projected major axis for
oblate cases but is the projected minor axis for prolate cases), we
have Re = a as the projected effective radius.

2.2. Rotation curves

Next, we determine the circular rotation curve for this class of
density profiles, following the derivation of Binney & Tremaine
(2008, Eq. (2.132); also Eq. (10), N08). The circular rotation
curve at the midplane of the galaxy is thus:

v2
circ(R) = −4G qobsΥ

×

∫ R

m=0

[∫ ∞

κ=m

dI
dκ

dκ
√
κ2 − m2

]
m2 dm√

R2 − (1 − q2
0)m2

. (5)

As noted by N08, this equation is valid for any observed intensity
profile I(κ). Here, we combine Eqs. (2) and (5), which can be
numerically integrated to yield vcirc(R).

2.3. Enclosed 3D mass

We next derive the enclosed mass for models with the density
profiles given above. Given the modified coordinate m, the mass
enclosed within a spheroid with intrinsic axis ratio, q0, can be
expressed as:

Mspheroid(<m = R) ≡ M3D,spheroid(<m = R)

= 4πq0

∫ R

0
m2 dm ρ(m). (6)

A159, page 3 of 17



A&A 665, A159 (2022)

−2 −1 0 1 2
log10(R/Re)

0.0

0.2

0.4

0.6

0.8

1.0

M
sp

h(
<

r
=

R
)/

M
to

t

34.1%
41.5%

50%

q0 = 1

n = 0.5
n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7
n = 8

R = Re
R = 1.3Re

R = Re
R = 1.3Re

−2 −1 0 1 2
log10(R/Re)

0.0

0.2

0.4

0.6

0.8

1.0

M
sp

h(
<

r
=

R
)/

M
to

t

45.9%
47.4%

50%

q0 = 0.4

−2 −1 0 1 2
log10(R/Re)

0.0

0.2

0.4

0.6

0.8

1.0

M
sp

h(
<

r
=

R
)/

M
to

t

49.0%
49.2%

50%

q0 = 0.2

Fig. 1. Fractional mass enclosed within a sphere of radius r = R for deprojected Sérsic models of different intrinsic axis ratios. From left to
right: enclosed Msph is plotted as a function of log radius (relative to the projected 2D effective radius, Re), assuming intrinsic axis ratios of
q0 = 1, 0.4, 0.2, respectively. The colored curves denote the enclosed mass profiles for Sérsic indices from n = 0.5 to n = 8 (yellow to purple).
The vertical lines denote R = Re (grey dashed) and R = 1.3Re (≈r1/2,mass,3D for q0 = 1; grey dash-dotted), and the horizontal colored lines denote
the fraction of the mass enclosed within r = Re for n = 1, 4 (lime, teal dashed, respectively) and 50% of the total mass (grey dashed dotted). For
q0 = 1, the half-mass 3D spherical radius is indeed r1/2,mass,3D ≈ 1.3Re regardless of n, as in Ciotti (1991). For flattened (i.e., oblate) systems, the
half-mass 3D spherical radius is smaller, and approaches Re as q0 decreases. See also Fig. 2.

Integrated to infinity, this is equivalent to the total luminosity of
the Sérsic profile times the constant assumed mass-to-light ratio,
or Mtot = ΥLtot, so the intensity normalization for a flattened
Sérsic profile with observed axis ratio, qobs, is:

Ie =
Mtot

Υ

1
qobs

b2n
n

2πR2
en ebn Γ(2n)

. (7)

However, there may be situations where we wish to compute
the mass enclosed within a sphere of radius r =

√
R2 + z2 instead

of within a flattened (or prolate) spheroid. We thus use a change
of coordinates to calculate the spherical enclosed mass:

Msph(<r = R) ≡ M3D,sphere(<r = R)

= 4π
∫ R

R̃ = 0
R̃ dR̃

∫ q0
√

R2 − R̃ 2

z = 0
ρ

(√
R̃ 2 + (z/q0)2

)
dz, (8)

using ρ(m) from Eq. (2), with m =
√

R̃ 2 + (z/q0)2. This integral
can be numerically evaluated to find the 3D spherical enclosed
mass profile corresponding to the deprojected, axisymmetric
Sérsic profile. We note that when q0 , 1, then Msph(<r = R) ,
v2

c(R)R/G (with v2
c(R) from Eq. (5)); however, the enclosed mass

and circular velocity can be related through the introduction of a
non-unity, radially varying virial coefficient (see Sect. 3).

Finally, we note that the mass enclosed within an ellipsoidal
cylinder of axis ratio qobs (and infinite length) is equivalent to the
enclosed luminosity for the 2D projected Sérsic profile times the
mass-to-light ratio, Mcyl(<κ = R) = 2πnΥIeR2

eebn (bn)−2nγ(2n, x),
with x = bn(R/Re)1/n (e.g., Graham & Driver 2005).

2.4. Properties of enclosed mass and circular velocity curves
for non-spherical deprojected Sérsic profiles

The 3D spherical enclosed mass profiles for models with a range
of Sérsic indices (n = 0.5, 1, . . . , 8) and different intrinsic axis
ratios q0 = 1, 0.4, 0.2) are shown in Fig. 1. The 3D spherical
half-mass radius (where r1/2,mass,3D satisfies Msph(<r1/2,mass,3D) =
Mtot/2) is r1/2,mass,3D ∼ 1.3Re when q0 = 1 (as shown by

Ciotti 1991). However, from the q0 = 0.2, 0.4 enclosed mass
profiles, we see that the ratio r1/2,mass,3D/Re varies with the model
intrinsic axis ratio.

We quantify the dependence of the ratio between the 3D
spherical half-mass radius and the projected effective radius,
r1/2,mass,3D/Re, in Fig. 2, as a function of Sérsic index, n, and
intrinsic axis ratio, q0

4. van de Ven & van der Wel (2021) make
a similar comparison for both axisymmetric and triaxial systems
using an approximation for ρ, but show r1/2,mass,3D relative to
the projected major axis, so for the axisymmetric, prolate sys-
tems our ratio differs from theirs. The 3D spherical half-mass
radius is larger than the 2D projected effective radius enclos-
ing half of the total light (and half of the total mass, assuming
constant M/L and an optically thin medium). There is a larger
dependence of the ratio r1/2,mass,3D/Re on q0 than on n, where
r1/2,mass,3D/Re ∼ 1.3−1.36 when q0 = 1 for all n = 0.5−8, but as
q0 decreases the ratio decreases towards r1/2,mass,3D/Re ∼ 1 for
all n.

Next, we examine how the relation between the mass and
circular velocity profiles deviates from the relation that holds
for spherical symmetry, where Msph(<r = R) = v2

circ(R)R/G.
In Fig. 3 we show computed fractional enclosed mass (top) and
circular velocity profiles (bottom) for n = 1, 4 (top and bottom
rows, respectively), and for q0 = 1, 0.4, 0.2 (left, center, and right
columns, respectively).

For the spherically symmetric (q0 = 1) cases, the numeri-
cal evaluation of Msph(<r = R) (red dashed line; Eq. (8)) and
vcirc(R) (black dotted line; Eq. (5)) follow the expected relation
(Msph(<r = R) = v2

circ(R)R/G), and the isodensity spheroids are
spherical, so there is no difference between the enclosed spheri-
cal and spheroidal profiles. Echoing the previous figures, we also
see that the enclosed 3D mass profile increases more slowly as
a function of R than the 2D projected profile (solid orange line;
Eq. (3)).

4 Again, we define the projected effective radius Re = a as this lies
in the plane of axisymmetry – assumed to be the rotation midplane –
which is the projected major axis for oblate cases, but for prolate cases,
it is the projected minor axis.
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Fig. 2. Comparison between the 3D spherical half-mass radius, r1/2,mass,3D, and the projected 2D effective radius, Re, for a range of Sérsic indices n
and intrinsic axis ratios q0 (left, colored by q0; right, colored by n). For oblate cases, Re is the projected major axis, while for prolate cases Re is the
projected minor axis. For all cases, r1/2,mass,3D > Re. However, as q0 decreases (i.e., flatter Sérsic distributions), the 3D half-mass radius approaches
the value of Re. Overall, the systematic difference between r1/2,mass,3D and Re highlights that while half of the model mass is enclosed within a
projected 2D ellipse of major axis Re (e.g., an infinite ellipsoidal cylinder), less than half the total mass is enclosed within a sphere of radius Re
(ignoring any M/L gradients or optically thick regions, which would change Re,light/Re,mass).

In contrast, for flattened deprojected models with q0 < 1,
the deviation of the Msph(<r = R) and vcirc(R) profiles from the
spherical relation become more pronounced for lower intrinsic
axis ratios. Also,

√
Mspheroid(<m = R)G/R (purple dashed-dotted

line; Eq. (6)) does not match the correct vcirc(R) curve. As q0
decreases, Msph(<r = R) approaches the projected 2D ellipse
curve, because for flatter deprojected models there is less addi-
tional mass outside the sphere along the remaining line-of-sight
collapse.

3. Virial coefficients for enclosed 3D and total
masses

We now quantify the relationship between mass- and velocity-
derived quantities for different Sérsic indices and intrinsic axis
ratios. By including a “virial” coefficient k3D(R) which depends
on the geometry and mass distribution (Binney & Tremaine
2008), the spherical enclosed mass and circular velocity can be
related via:

Msph(<r = R) = k3D(R)
v2

circ(R)R
G

. (9)

This virial coefficient is evaluated by combining Eqs. (5) and (8).
For comparison with integrated galaxy quantities, it is also

useful to define a “total” virial coefficient ktot(R) which relates
the total system mass to the circular velocity at a given radius:

Mtot = ktot(R)
v2

circ(R)R
G

. (10)

Figure 4 shows ktot(R = Re) and k3D(R = Re) versus Sér-
sic index n for a range of q0. For the spherical case (q0 = 1),
k3D(R = Re) = 1, as expected by spherical symmetry. How-
ever, as Re < r1/2,mass,3D for spherical deprojected Sérsic models,
ktot(R = Re, q0 = 1) , 2, instead it exceeds 2 for all n (i.e., 2.933
when n = 1). For oblate flattened Sérsic deprojected models (i.e.,

q0 < 1), the value for ktot(R = Re) is lower than the q0 = 1 case
for all n, while prolate cases (q0 > 1) have larger ktot(R = Re).
For k3D(R = Re), the trends are more complex, but for n & 2, the
oblate (prolate) models all have k3D(R = Re) < 1 (>1). For refer-
ence, we also present values of ktot(R) and k3D(R) for a range of
R, n, and q0 in Table 2. These total virial coefficients, in particu-
lar, allow for a more precise comparison between the dynamical
Mtot and projection-derived quantities, such as M∗ or Mgas, par-
ticularly when full dynamical modeling is not possible (e.g., the
approach used in Erb et al. 2006; Miller et al. 2011; Price et al.
2016, 2020, and numerous other studies).

4. Mass distributions of multi-component galactic
systems

4.1. Mass and velocity distributions of systems including
both flattened and spherical components

While the virial coefficients derived in the previous section allow
for the conversion from circular velocities to enclosed masses for
a single non-spherical mass component, observed galaxies tend
to have multiple mass components of varying intrinsic shapes
and profiles. Here, we explore the enclosed mass and circular
velocity distributions for galaxies with multiple mass compo-
nents, focusing on how the non-spherical components impact the
mass fraction distributions inferred from velocity profile ratios.

We calculated profiles for a “typical” z = 2 main-sequence
star-forming galaxy of stellar mass log10(M∗/M�) = 10.5 con-
sisting of a bulge, disk, and halo, over a range of bulge-to-total
ratios, B/T . We thus adopted a total Mbar = 6.6 × 1010 M�
(using the gas fraction scaling relation of Tacconi et al. 2020).
We assumed a thick, flattened disk modeled as a deprojected
Sérsic distribution with q0,disk = 0.25, and adopt ndisk = 1,
Re,disk = 3.4 kpc (from observed trends and scaling relations;
Wuyts et al. 2011; van der Wel et al. 2014). The bulge is mod-
eled as a deprojected Sérsic component with nbulge = 4, Re,bulge =
1 kpc, and q0,bulge = 1. We also included a NFW halo without
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Fig. 3. Example fractional enclosed mass (top) and circular velocity (bottom) profiles computed or inferred under different assumptions. The top
and bottom rows show the profiles for Sérsic indices n = 1, 4, respectively, while the columns show intrinsic axis ratios q0 = 1, 0.4, 0.2 (from left to
right). For the top panels, we show the edge-on 2D projected mass enclosed within ellipses of axis ratio q0 (orange solid line), the 3D mass profile
enclosed within a sphere (red dashed line), the 3D mass profile enclosed within ellipsoids of intrinsic axis ratio q0 (purple dash-dotted line), and
the mass profile inferred from the flattened deprojected Sérsic model circular velocity under the simplifying assumption of spherical symmetry
(i.e., q0 = 1; black dotted line). In the bottom panels, we then compare the flattened deprojected Sérsic model circular velocity (black dotted line)
to the inferred velocity profiles computed from the 3D spherical (red solid line) and the 3D ellipsoidal (purple dash-dotted) mass profiles under
the simple assumption of spherical symmetry. The same total mass Mtot = 5 × 1010 M� is used for all cases. The vertical lines denote R = Re
(grey dashed) and R = 1.3Re (≈r1/2,mass,3D for q0 = 1; grey dash-dotted). These enclosed mass and velocity profiles demonstrate that when q0 , 1,
Msph(<r = R) , vcirc(R)2R/G. The non-spherical potentials for q0 < 1 even result in (vcirc(R)2R/G)/Mtot > 1 between R ∼ 1−10Re (i.e., potentially
leading to &15% overestimates in the system mass). We also see that as q0 decreases, Msph approaches the 2D projected mass profile, as the mass
enclosed in a sphere versus an infinite ellipsoidal cylinder are equivalent for infinitely thin mass distributions.
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adiabatic contraction, assuming conchalo = 4.2 and Mhalo =
8.9 × 1011 M� (following observed halo concentration and stel-
lar mass to halo mass relations, e.g., Dutton & Macciò 2014;
Moster et al. 2018)5. In Fig. 5, for each of the B/T ratios (left to
right), we show the enclosed mass (top row) and circular velocity
profiles (middle row) as a function of radius. The impact of shift-
ing the baryonic mass from entirely in the disk (the only oblate,
non-spherical mass component; B/T = 0) to entirely in the bulge
(only spherical mass components; B/T = 1) can be seen in both
the Msph and vcirc profiles. The lower Sérsic index and larger Re
of the disk (blue dashed line) relative to the bulge (red dash-
dotted) result in more slowly rising mass and vcirc curves for the
baryonic component (green dash-dot-dot) at low B/T , with the
curves rising more quickly as the bulge contribution increases.
The total galaxy mass and vcirc curves (solid black) are domi-
nated by the baryonic components in the inner regions, but at
large radii (R & 10 kpc) where the halo begins dominating the
mass and vcirc profiles, the curves are similar for all B/T .

We also show the radial variation of the 3D enclosed halo
to total mass ratio MDM,sph/Mtot,sph (long light-grey dashed line)
and the squared halo to total circular velocity ratio v2

circ,DM/v
2
circ,tot

(dark-grey dashed-triple dotted line) in the bottom row (and the
Msph and vcirc panels, respectively). As expected when B/T < 1,
these two ratios are not equivalent, although they get closer as
B/T → 1 and more of the total galaxy mass is found in spherical
components. For B/T = 1, the galaxy is spherically symmetric,
so the two ratios are equal.

4.2. Defining dark matter fractions

As illustrated in Fig. 5, the approximation v2
circ,DM(R)/v2

circ,tot(R)
deviates from the enclosed spherical mass fraction MDM,sph(<r =
R)/Mtot,sph(<r = R) for galaxies with a non-spherical disk com-
ponent, particularly when the B/T ratio is . 0.5. This devia-
tion thus leads to differences in inferred dark matter fractions,
depending on how the fraction is defined.

If the dark matter fraction is defined as the ratio of the dark
matter to total mass enclosed within a sphere of a given radius,
5 However, many massive SFGs at these redshifts exhibit lower fDM
that suggest more cored halo profiles; see e.g., Genzel et al. (2020).

Table 2. Virial coefficients for select profiles and radii.

ktot(R) k3D(R)

Sérsic index Axis ratio R = Re 1.3 Re
(a) R = Re 1.3 Re

(a)

n = 1 q0 = 0.4 2.128 1.512 0.977 0.929 (b)

q0 = 1 2.933 2.026 1 1
q0 = 1.5 3.613 2.459 0.975 0.995

n = 4 q0 = 0.4 1.993 1.707 0.945 0.941 (b)

q0 = 1 2.408 2.033 1 1
q0 = 1.5 2.731 2.286 1.020 1.023

Notes. (a)For a n = 1 Sérsic profile, 1.3 Re ≈ 2.2 Rs. (b)We find
k3D(1.3Re) = 0.746 and 0.840 for n = 1, 4 when using the mass
enclosed within an ellipsoid instead of a sphere, similar to the values
ξ for q0 = 0.4 and n = 1, 4 presented by Miller et al. (2011) in Sect. 5.1
if their Eq. (6) instead read M(r) ≈ ξ vcirc(r)2r/G.

we have f m
DM(R) = MDM,sph(<r = R)/Mtot,sph(<r = R). This

approach is often adopted for simulations, where it is easy to
determine mass within a given radius. However, observations
cannot directly probe the mass distributions, so generally the
fraction is defined based on the circular velocity ratio, f v

DM(R) =

v2
circ,DM(R)/v2

circ,tot(R). If a galaxy has only spherically symmetric
components, these two definitions are equivalent (as seen in the
right column of Fig. 5); however, as noted in Fig. 5, the two defi-
nitions are no longer equivalent with non-spherical components,
where f m

DM is generally larger than f v
DM.

To further quantify how much these definitions can vary, we
compare the value of the ratio between f v

DM and f m
DM at Re,disk

over a range of B/T ratios and intrinsic disk thicknesses q0,disk
in Fig. 6. For this example case (using a massive galaxy with
Mbar = 6.6 × 1010 M� at z = 2, as in Fig. 5), we see that
f v
DM(Re,disk) can be as low as ∼85% of f m

DM(Re,disk) – in the
extreme case with q0,disk = 0.01. For more typical expected
disk thicknesses for galaxies at z ∼ 1−3, q0,disk ∼ 0.2−0.25,
we find a minimum of f v

DM(Re,disk)/ f m
DM(Re,disk) ∼ 0.93−0.95

(for B/T = 0). While this deviation is fairly small in this
example, using consistent definitions of fDM when comparing
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Fig. 5. Enclosed mass (3D spherical, top), circular velocity (middle), and dark matter (bottom) profiles for different components of an example
galaxy as a function of projected major axis radius, for bulge-to-total ratios of B/T = 0, 0.25, 0.5, 0.75, 1 (left to right). For all cases, we compute
the mass components assuming values for a typical z = 2 massive main-sequence galaxy with log10(M∗/M�) = 10.5: Mbar = 6.6 × 1010 M�,
Re,disk = 3.4 kpc, ndisk = 1, q0,disk = 0.25, Re,bulge = 1 kpc, nbulge = 4, q0,bulge = 1, and a NFW halo with Mhalo = 8.9 × 1011 M� and c = 4.2. Shown
are the Msph(<r = R) and vcirc(R) profiles for the disk (dashed blue), bulge (dash-dotted red), total baryons (disk+bulge; dash-dot-dot green), halo
(dotted purple), and composite total system (solid black). Vertical lines mark R = Re,disk (solid grey) and the 3D spherical half-mass radii r1/2,mass,3D
for the disk (dashed blue), bulge (dash-dotted red), and total baryons (dash-dot-dot green). Two dark matter fraction definitions are shown in the
bottom panels, f m

DM = MDM,sph/Mtot,sph and f v
DM = v2

circ,DM/v
2
circ,tot, with long dashed grey and long dash-triple-dotted dark grey lines, respectively.

We note that the f m
DM and f v

DM curves are also shown in the top and middle panels, respectively, with the scale at the right axis of each panel. When
a disk component is present, the system is no longer spherically symmetric, so MDM,sph/Mtot,sph and v2

circ,DM/v
2
circ,tot differ. This deviation is larger

when the disk contribution is large (i.e., lower B/T ), although even at low B/T the difference is relatively modest (see also Fig. 6). Additionally,
while the ratio r1/2,mass,3D/Re for a single component (e.g., the disk or bulge) is generally modest (see Fig. 2), for a composite disk+bulge system,
the total baryon r1/2,3D,baryon becomes much smaller relative to Re,disk with increasing B/T (vertical green dash-dot-dot and solid grey lines). If
such disparate “half” radii definitions are used to define fDM apertures (i.e., f v

DM(Re,disk) versus f m
DM(r1/2,3D,baryon), horizontal solid grey and green

dash-dot-dot lines), this leads to increasingly large offsets between the fDM values towards higher B/T (see also Fig. 7).

simulations and observations would avoid introducing system-
atic shifts between the values.

4.3. Impact of aperture effects on dark matter fractions

While the fractional differences between the 3D half mass radii
r1/2,mass,3D and the projected 2D effective radii Re for a single
component and between the f v

DM and f m
DM definitions are gener-

ally small for expected galaxy thicknesses, measuring fDM (of
either indicator) at different radii – such as the easily measurable
r1/2,mass,3D for simulations versus Re for observations – can lead
to very large discrepancies in the fDM values. We demonstrate
this issue in Fig. 7.

First, while we show the ratio of r1/2,mass,3D/Re for a sin-
gle component in Fig. 2, the ratio for a multi-component sys-
tem is not self-similar, but depends also on the ratio of effective
radii for the components. For a disk + bulge system, a num-
ber of observational studies use the disk effective radius as the
dark matter fraction aperture. We thus determine the 3D half-

mass radius for the composite disk+bulge system, and plot the
ratio r1/2,3D,baryons/Re,disk as a function of B/T in the left panel
of Fig. 7, for a range of ratios Re,bulge/Re,disk (line style) and
disk intrinsic thicknesses (q0,disk, assuming a spherical bulge).
Depending on the Re,bulge/Re,disk and q0,disk values, this ratio can
range from ∼0.3−1.3 (for oblate or spherical disk geometries, or
up to ∼1.7 for prolate disks), with the lowest values arising from
the combination of a low Re,bulge/Re,disk and a high B/T .

We then demonstrate the effects of measuring fDM at these
different aperture radii in the right panel of Fig. 7. Here we plot
the absolute difference f v

DM(Re,disk)− f m
DM(r1/2,3D,baryons) as a func-

tion of B/T , calculated for the same Re,bulge/Re,disk and q0,disk val-
ues. For consistency, the fDM estimators for each are chosen to
reflect the typical definitions from observations and simulations,
respectively, in line with the “half-mass” radii choices (although,
as seen in Fig. 6, using f v

DM versus f m
DM contributes very little

to the differences seen in this figure). For very low B/T , most
cases produce f v

DM(Re,disk) − f m
DM(r1/2,3D,baryons) ∼ −0.025 (e.g.,

larger f m
DM(r1/2,3D,baryons)). For most practical cases with a larger
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Fig. 6. Ratio between the dark matter fraction at Re,disk calculated
from the circular velocity and from the 3D spherical enclosed mass,
f v
DM(Re,disk)/ f m

DM(Re,disk), versus bulge-to-disk ratio B/T , for a range of
different disk intrinsic axis ratios (colored lines, from q0,disk = 0.01 to
1) for an example massive galaxy at z = 2. The ratio between the two
dark matter fraction measurements is lower for lower B/T (i.e., higher
disk contributions) and lower q0,disk (i.e., more flattened disks), with
f v
DM(Re,disk)/ f m

DM(Re,disk) . 0.9 for low values of both q0,disk and B/T .
The limiting case of a Freeman (infinitely thin) exponential disk has
f v
DM(Re,disk)/ f m

DM(Re,disk) ≈ 0.84. As B/T increases for fixed q0,disk, and
likewise for increasing q0,disk at fixed B/T , the ratio of the two fraction
measurements approaches 1 because the composite system becomes
more spherical. Overall, the discrepancy between the fDM estimators
measured at the same radius is relatively minor.

disk than bulge (Re,bulge/Re,disk < 1), the difference increases
towards larger B/T , with f v

DM(Re,disk) > f m
DM(r1/2,3D,baryons) by

B/T ∼ 0.2−0.5 (for Re,bulge/Re,disk = 0.2, 0.5, respectively). This
difference can be very large, up to ∼0.2 for large B/T and low
Re,bulge/Re,disk, as might be expected for massive galaxies that
simultaneously have massive bulges (i.e., high B/T ) but also
large effective radii for the disk (i.e., low Re,bulge/Re,disk).

We extended these test cases to consider how fDM for the dif-
ferent definitions and apertures change with redshift and stellar
mass for a “typical” star-forming galaxy, as shown in Fig. 8. We
used empirical scaling relations or other estimates to determine
Re,disk, q0,disk, fgas, B/T , log10(Mhalo/M�), and chalo for a range
of z and log10(M∗/M�) (assuming the disk and bulge follow
deprojected Sérsic models, with fixed ndisk = 1, nbulge = 4, and
Re,bulge = 1 kpc; top panels). These toy models predict f v

DM(Re)
(Fig. 8, center left) to increase over time at fixed stellar mass
(in part because of the increasing chalo and Re,disk over time)
and that lower M∗ galaxies have higher f v

DM(Re) at fixed red-
shift, with relatively low f v

DM(Re) for the most massive galax-
ies (∼20%) at z ∼ 1−3. This is qualitatively in agreement with
recent observations (e.g., Genzel et al. 2020; Price et al. 2021;
Bouché et al. 2022), although these recent studies also provide
evidence for non-NFW halo profiles (in particular, cored pro-
files), which would produce lower f v

DM(Re) for the same Mhalo
than our toy models. As a further example, we consider how the
predictions would change over time for a Milky Way and M31-
mass progenitor. In both cases, the predicted f v

DM(Re) decrease
from z = 3 to a minimum at z ∼ 1.5, and then increase until the

present day. For these toy values, the difference in dark matter
fraction definitions measured (specifically) at the same radius
(Re,disk; Fig. 8, center right) typically differ by only ∼−0.005
to ∼−0.025 (typically ∼4−6% of the measured values), with a
larger typical offset at lower redshifts and for lower masses.

We find the ratio of the 3D baryonic half mass radius to the
disk effective radius (r1/2,3D,baryons/Re,disk; Fig. 8, bottom left)
for these models decreases towards lower redshifts and with
increasing stellar mass, from ∼1 at z ∼ 2−3 to ∼0.94 at z = 0
for the lowest M∗, and from ∼0.8 at z = 3 down to ∼0.6 at
z = 0 for the highest M∗. For the MW and M31 progenitors,
this ratio decreases from ∼1, 0.96 at z = 3 down to ∼0.72, 0.59 at
z = 0, respectively. The difference between the two dark mat-
ter fraction definitions measured at these different radii aper-
tures ( f v

DM(Re,disk) − f m
DM(r1/2,3D,baryons); Fig. 8, bottom right) for

these toy models is typically much larger than the difference
for the definitions alone, and tends to increase towards lower
redshifts and with stellar mass. The difference changes from
∼−0.015, 0., 0.025 at z = 3 to ∼−0.01, 0.015, 0.14 at z = 0 for
log10(M∗/M�) = 9, 10, 11, respectively. The MW and M31 pro-
genitors have offsets increasing from ∼−0.013,−0.003 at z = 3
to ∼0.065, 0.14 at z = 0, respectively.

Given the very modest offsets for the fDM definition differ-
ences alone, these offsets are nearly entirely driven by the dif-
ferences between the aperture radii. Indeed, although the dif-
ferences for these toy calculations – driven almost entirely by
the aperture mismatches – do not reach the extreme differences
of f v

DM(Re,disk) − f m
DM(r1/2,3D,baryons) seen in Fig. 7 for parts of

the parameter space (in part because the maximum toy model
B/T is ∼0.4), we still predict absolute differences up to almost
∼0.15 at z = 0, and ∼0.03−0.07 at z ∼ 1−2. This offset is on par
with the current observational uncertainties at z & 1 (∼0.1−0.2;
e.g., Genzel et al. 2020). To ensure the most direct comparison
between observations and simulations – particularly as observa-
tional constraints on fDM at higher redshifts continue to improve
– it will be important to account for such aperture differences
(either by measuring in equivalent apertures, or by applying an
appropriate correction factor) in order to better determine if, and
how, observation and simulation predictions differ.

5. Turbulent pressure support effects on rotation
curves

5.1. Derivation of pressure support for a single component

As many dynamical studies of high-redshift, turbulent disk
galaxies use gas motions as the dynamical tracer, here, we con-
sider how turbulent pressure support will modify the rotation
curves if the gas is described by a deprojected Sérsic model. We
followed the derivation of Burkert et al. (2010) and also assumed
the pressure support is due only to the turbulent gas motions (i.e.,
the thermal contribution is negligible).

We thus begin from Eq. (2) of Burkert et al. (2010), where
the pressure-corrected gas rotation velocity is:

v2
rot(R) = v2

circ(R) +
1
ρg

d
d ln R

(
ρgσ

2
)
, (11)

where vcirc is the circular velocity in the midplane of the galaxy
determined from the total system potential (including all mass
components: stars, gas, and halo; i.e., the rotational velocity if
there is no pressure support), ρg is the gas density, and σ is the
(one-dimensional) gas velocity dispersion. While the gas has the
same circular velocity as the total system, the pressure support
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Fig. 7. Ratio between the composite disk+bulge 3D half-mass radius and the 2D projected disk effective radius (r1/2,3D,baryons/Re,disk; left) and the
difference between the dark matter fraction estimators at these radii ( f v

DM(Re,disk) − f m
DM(r1/2,3D,baryons); right), as a function of B/T , for a range

of disk intrinsic axis ratios (colored lines, from q0,disk = 0.05 to 2) and ratio between the bulge and disk Re (solid, dashed, and dotted lines, for
Re,bulge/Re,disk = 0.2, 0.5, 1, respectively). The adopted galaxy values are the same as in Fig. 6, except Re,disk is now determined by Re,bulge/Re,disk.
With a non-zero bulge contribution, r1/2,3D,baryons/Re,disk deviates from the single-component ratio (Fig. 2), decreasing with increasing B/T for
Re,disk = 2, 5 kpc for all q0,disk (increasing, however, with B/T when q0 < 1,Re,disk = Re,bulge = 1 kpc). For large B/T and Re,disk = 5 kpc, the
composite r1/2,3D,baryons is less than 50% of Re,disk. If the dark matter fractions are measured at different radii, the mismatch of the aperture sizes will
lead to much larger fDM differences than those found for the simple estimator mismatch ( f m

DM vs f v
DM at the same radius; Fig. 6). Here, we show

f v
DM(Re,disk), as might be adopted for modeling of observations, and f m

DM(r1/2,3D,baryons), representing a simple option for simulations (where spherical
curves of growth separating gas, star, and DM particles could be used to find both the composite baryon r1/2,3D,baryons within, e.g., Rvir and then
f m
DM). For small B/T , f m

DM(r1/2,3D,baryons) is larger than f v
DM(Re,disk), but for large B/T , the trend reverses (excepting the Re,disk = Re,bulge = 1 kpc case),

and f v
DM(Re,disk) can be up to 50%–400% larger than f m

DM(r1/2,3D,baryons) as B/T → 1 (for Re,disk = 2, 5 kpc, respectively). This example illustrates
how, depending on galaxy structures, quoted “half-mass” fDM values can be very different – but that this is primarily driven by the aperture radii
definitions and not by estimator mismatches.

correction term from the turbulent gas motions only applies to
the gas rotation and only depends on the gas density distribution
and the gas velocity dispersion.

This relation can be generally rewritten as:

v2
rot(R) = v2

circ(R) − σ2α(R), (12)

where α(R) = −
( d ln ρg

d ln R + d ln σ2

d ln R

)
. If we assume the velocity dis-

persion σ = σ0 is constant, then this can be simplified to:

α(R) = −
d ln ρg
d ln R

. (13)

For a self-gravitating exponential disk, as assumed in
Burkert et al. (2010), d ln ρg

d ln R = 2
(
d ln Σ(R)

d ln R

)
, which yields:

αself−grav(R) = 2(R/Rd) = 3.36(R/Re). (14)

Burkert et al. (2016) generalized this result to a self-gravitating
disk with an arbitrary Sérsic index, where αself−grav,n(R) =

2bn(R/Re)1/n.
Alternatively, as derived by Dalcanton & Stilp (2010) (their

Eqs. (16) and (17)), for a disk with turbulent pressure Pturb ∝

Σ0.92, where the authors infer the exponent using results from
hydrodynamical simulations of turbulence in stratified gas by
Joung et al. (2009) combined with a Schmidt law of slope N =
1.4 (Kennicutt 1998), the pressure support is described by:

αDS10(R) = −0.92
d ln Σ(R)

d ln R
= 0.92

(
bn

n

) (
R
Re

)1/n

, (15)

= 1.5456(R/Re) for n = 1, (16)

for arbitrary σR(R) (not only constant σ0 as considered here).
Further forms of the pressure support have also been explored,
as compared and discussed by Bouché et al. (2022), includ-
ing the case for constant disk thickness (Meurer et al. 1996;
Bouché et al. 2022), or when accounting for the full Jeans equa-
tion (Weijmans et al. 2008).

For gas following a deprojected Sérsic model, we find α(R) =
α(R, n) by differentiating ρg = ρ(m = R, n)6. After combining
Eqs. (2) and (4), performing a change of variable, and applying
the Leibniz rule, we have:

dρ(m)
dm

=
Υ

π

qobs

q0

Iebn

n Re

m
R2

e

∫ ∞

0
f (m, x) dx, (17)

f (m, x) = exp
{
−bn

[
v1/n − 1

]}
v(1/n−4)

[
1
n
− 2 −

bn

n
v1/n

]
,

for v =
1
Re

√
x2 + m2.

This expression for dρ(m)/dm can be evaluated numerically,
and together with the numerical evaluation of ρ(m), we have
d ln ρ/d ln m = (m/ρ)(dρ/dm)7. Alternatively, the log density can
be differentiated numerically. (A similar derivation of the pres-
sure support for spherical deprojected Sérsic profiles is presented
in Sect. 2.2.3 of Kretschmer et al. 2021, who also showed α(n)

6 As we are considering only the midplane derivative with z = 0, then
α(R, n) is the same regardless of q0.
7 We note that in the limit m → 0, d ln ρ

d ln m →
1
n − 1 for n ≥ 1, which is

helpful as numerical evaluations can be problematic at very small radii,
particularly as the density profiles diverge at small radii when n ≥ 1.
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Fig. 8. Toy model of how f v
DM(Re,disk) (upper left), f v

DM(Re,disk) − f m
DM(Re,disk) (upper right), r1/2,3D,baryons/Re,disk (lower left), and f v

DM(Re,disk) −
f m
DM(r1/2,3D,baryons) (lower right) vary with redshift for a range of fixed log10(M∗/M�), using “typical” galaxy sizes, intrinsic axis ratios, gas fractions,

B/T ratios, halo masses, and halo concentrations (from empirical scaling relations or other estimates; Dutton & Macciò 2014; Lang et al. 2014;
van der Wel et al. 2014; Moster et al. 2018; Übler et al. 2019; Tacconi et al. 2020; Genzel et al. 2020). The assumed (interpolated, extrapolated)
property profiles as a function of redshift for each of the fixed log10(M∗/M�) are shown in the top panels. Using abundance-matching models
(inferred from Fig. 4 of Papovich et al. 2015, based on the models of Moster et al. 2013), we show the path of a Milky Way (MW, M∗ = 5×1010 M�
at z = 0; black stars) and M31 progenitor (M∗ = 1011 M� at z = 0; grey squares) over time in each of the panels, assuming the progenitors are
“typical” at all times. This inferred “typical” evolution would predict an increase in fDM(Re,disk) with time at fixed M∗, with lower masses having
higher fDM at all z. The evolution of the structure and relative masses of the disk, bulge, and halo predict an increase (M∗ & 1010.25 M�) or “dip”
(M∗ . 1010.25 M�) in the difference f v

DM(Re,disk) − f m
DM(Re,disk) between z ∼ 0 and z ∼ 0.75, and then an increase until z ∼ 2 when the difference

flattens (largely reflecting the flat q0,disk estimate for z & 2). The difference is minor, between ∼−0.025 and −0.005 for the stellar masses shown.
The ratio of the composite r1/2,3D,baryons/Re,disk increases with redshift for all masses, with more massive models predicting smaller ratios at each z.
The MW and M31 progenitors have fDM(Re,disk) evolving from ∼0.33 and ∼0.25 (respectively) at z = 3, decreasing to ∼0.25 and ∼0.2 at z ∼ 1.5,
and then increasing to roughly same value ∼0.45 at z = 0. The f v

DM(Re,disk) and f m
DM(r1/2,3D,baryons) values are relatively similar down to z ∼ 1.5, but at

lower redshifts (where r1/2,3D,baryons/Re,disk . 0.9) the difference increases up to ∼0.065 (MW) and ∼0.14 (M31) at z ∼ 0. While this “typical” case
predicts fDM offsets of only 0.035 at z = 2 and increasing to 0.14 at z ∼ 0 for the most massive case, objects with even larger bulges (B/T > 0.4)
or radii above the mass-size relation will have even more discrepant fDM values when adopting these radii definitions (see Fig. 7).
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Fig. 9. Pressure support correction, α(R), versus R/Re for a self-gravitating exponential disk and deprojected Sérsic models. The left panel directly
compares αself−grav(r) = 3.36(R/Re) for the self-gravitating disk (as in Burkert et al. 2010; black dashed line) to α(R, n) = −d ln ρ(R, n)/d ln R
determined for a range of Sérsic indices n (colored lines). The ratio α/αself−grav(R) is shown in the right panel. For n ≥ 1, α(n) is smaller than
αself−grav when R & 0.2−0.8Re; however, α(n ≥ 1) does exceed αself−grav at the smallest radii. This implies that for most radii, there is less
asymmetric drift correction (and thus higher vrot) for the deprojected Sérsic models (e.g., n = 1) than for the self-gravitating disk. However, for
n = 0.5, α(n) is greater than αself−grav at R & 2.4Re, so at large radii the n = 0.5 deprojected Sérsic model predicts a larger pressure support
correction than for the self-gravitating disk case. The lower pressure support predicted for α(n & 1) than for αself−grav is in agreement with recent
predictions from simulations by Kretschmer et al. (2021) (red circles; with the vertical grey bars denoting the 1σ distribution), as well the relation
by Dalcanton & Stilp (2010) for a power law relationship between the gas surface density and the turbulent pressure (orange dashed line).

versus n at select radii in their Fig. 6, and gave an approximate
equation for α(n) at select radii in Sect. 3.5)8.

Figure 9 (left panel) shows the α(R, n) derived for the depro-
jected Sérsic models as a function of radius for a range of Sérsic
index n (colored lines). For comparison, we also show the self-
gravitating disk case αself−grav(R) as presented in Burkert et al.
(2010) (black dashed line), as well as α determined following
Dalcanton & Stilp (2010), and as measured from simulations
in Kretschmer et al. (2021). In the latter, the density is deter-
mined from the smoothed cumulative mass profile of the cold
gas and Re of the cold gas is the half-mass radius measured
within 0.1Rvir (c.f. Sects. 2.3 and 3.2 of Kretschmer et al. 2021).
The right panel additionally shows the ratio α/αself−grav. We find
that α(n) is lower than αself−grav at R & 0.2−0.8Re for n & 1.
However, at small radii (R . Re) we find α(n) > αself−grav
for n & 1 (with the cross-over radius varying with n). In con-
trast, we find the inverse for n = 0.5: α(n = 0.5) is lower
than αself−grav up to R ∼ 2.4Re, but then α(n) exceeds αself−grav
at larger radii. In comparison to the self-gravitating disk case,
we find the deprojected Sérsic α(n) are in better agreement

8 Note that the pressure correction term α(n) discussed here is the same
as αρ as defined in Kretschmer et al. (2021). However, we emphasize
that it is not directly comparable to the αv derived by Kretschmer et al.
for their simulations. Kretschmer et al. determine circular velocities
from mass enclosed within a sphere, Vc(r) =

√
GM(<r)/r, and instead

fold the effects of non-spherical potentials into the correction term ∆Q.
Here we explicitly consider vcirc determined for non-spherical depro-
jected Sérsic profiles, so α(n) does not need such a correction. Of
course, the total α considered here would be modified by terms incorpo-
rating variable σ(R) or anisotropic velocity dispersion, but these terms
vanish as we assume a constant σ0.

with the pressure support for an exponential distribution from
Dalcanton & Stilp (2010), as well as with the simulation-derived
pressure support by Kretschmer et al. (2021, and similar findings
by Wellons et al. 2020), with roughly half as much pressure sup-
port as the self-gravitating case.

Furthermore, as demonstrated by Bouché et al. (2022) (using
an example vcirc with n = 1.5 and an NFW profile), the
Dalcanton & Stilp (2010) correction produces pressure support
that is very similar to the constant scale height (ρ(R) ∝ Σ(R),
Meurer et al. 1996; Bouché et al. 2022) and Weijmans et al.
2008 cases (assuming constant dispersion), which all predict
lower support corrections than for the self-gravitating disk case.
This difference arises because these three cases assume constant
scale height or a thin disk approximation, resulting in a cor-
rection of approximately d ln Σ(R)/d ln R. In contrast, the self-
gravitating disk case explicitly assumes a constant vertical dis-
persion, so predicts ρ(R) ∝ Σ(R)2, yielding a correction term that
is roughly twice that of the other cases.

These differences between α predict different pressure
support-corrected vrot(R) for the same circular velocity profile and
intrinsic velocity dispersion. We demonstrate these differences
for α for deprojected Sérsic models and a self-gravitating disk
in Fig. 10, over a range of Sérsic indices (n = 0.5, 1, 2, 4; left
to right) and intrinsic axis ratios (q0 = 1, 0.2; top and bottom,
respectively)9. For all cases, we determine the circular velocity
vcirc (solid black line) assuming the mass distribution follows a
single deprojected Sérsic model of Mtot = 1010.5 M� (i.e., a pure

9 Although α(n) does not depend on the intrinsic axis ratio q0, we show
the velocity profiles for both a spherical and a flattened deprojected
model as an example of the composite effects from the variations to vcirc

and the pressure support distribution.
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Fig. 10. Comparison between v2
rot = v2

circ − σ
2
0α(R) determined using the deprojected Sérsic model α(n) and the self-gravitating exponential disk

αself−grav (as shown in Fig. 9), for a range of Sérsic indices n, intrinsic axis ratios q0, and velocity dispersions σ0. For all cases, we consider a
single deprojected Sérsic mass distribution with Mtot = 1010.5 M�. The columns show curves for n = 0.5, 1, 2, 4 (left to right, respectively), while
the rows show the case of spherical (q0 = 1; top) and flattened (q0 = 0.2; bottom) Sérsic distributions. For each panel, the solid black line shows
the circular velocity vcirc (determined following Eq. (5)). The colored lines show vrot determined using α(n) (dashed) and αself−grav (dotted), with
the colors denoting σ0 = [30, 60, 90] km s−1 (purple, turquoise, orange, respectively). As expected by the α(R) trends shown in Fig. 9, for n ≥ 1,
we see that for most radii, the pressure support implied by αself−grav results in lower vrot than for α(n) (although at the smallest radii, the inverse
holds). In some cases, the magnitude of σ0 combined with the form of α(R) additionally predict disk truncation within the range shown, although
truncation generally occurs at smaller radii for αself−grav than for α(n).

gas disk, or gas+stars where both components follow the same
density distribution). We then calculate vrot using both α(n) and
αself−grav (dashed and dotted lines, respectively). As implied by
Fig. 9, for n & 1 the rotation curves vrot computed with α(n)
are higher than with αself−grav at R & Re (i.e., smaller correction
from vcirc). The difference between the two vrot curves becomes
more pronounced towards larger radii, in line with the continued
decrease of α(n)/αself−grav with increasing radius. We also see the
opposite behavior in the n = 0.5 case, where vrot computed in the
self-gravitating case is higher than for α(n) at R & 2.4Re (but the
vrot computed with α(n) is higher than with αself−grav at smaller
radii).

The amplitude of the intrinsic dispersion further impacts the
vrot profiles by causing disk truncation for sufficiently high σ0
relative to vcirc, as previously discussed by Burkert et al. (2016).
For the highest dispersion case (σ0 = 90 km s−1; orange), the
pressure support correction predicts disk truncation (i.e., vrot

2 ≤

0) within R . 5Re for both α(n) and αself−grav. With medium dis-
persion (σ0 = 60 km s−1; turquoise), we still find disk truncation
at R . 5Re for all n when using αself−grav, but only α(n = 0.5, 1)
produce truncation within this radial range. Finally, αself−grav
does not produce truncation within 5Re in any case at the lowest
dispersion (σ0 = 30 km s−1; purple), and only α(n = 0.5) pre-
dicts truncation at R ∼ 5Re (for both the spherical and flattened
cases).

5.2. Pressure support for multi-component systems

Generally, however, the gas in galaxies may be distributed in
more than one component, which would modify the pressure

support correction term10. We can then derive the composite
αtot(R) using the α(R, n) of the individual gas components. For
example, if the composite system includes gas in both a bulge
and a disk, we have the total ρtot = ρdisk+ρbulge. As d ln ρ/d ln R =
(R/ρ)(dρ/dR), we have:

d ln ρtot

d ln R
=

1
ρtot

(
ρdisk

d ln ρdisk

d ln R
+ ρbulge

d ln ρbulge

d ln R

)
, or

αtot(R) =
1
ρtot

(
ρdiskαdisk + ρbulgeαbulge

)
. (18)

As discussed in Sect. 5.1, this composite gas pressure support
term is applicable to the gas velocity curve regardless of the dis-
tribution of the other, non-gas mass components.

We demonstrate an example composite pressure support term
for a galaxy with gas distributed in both a disk and bulge over
a range of B/T and Re,bulge/Re,disk values in Fig. 11. Here, we
assume ndisk = 1 and nbulge = 4, that is, an exponential disk
and de Vaucouleurs spheroid bulge, as adopted for recent bulge
and disk decompositions at z ∼ 1−3, given the current observa-
tion spatial resolution limitations (Bruce et al. 2012; Lang et al.
2014), with a range of B/T (from disk- to bulge-only; black to
light red colors) and Re,bulge/Re,disk (from Re,disk = 5Re,bulge down
to Re,disk = Re,bulge; solid to dotted line styles). As expected, the
composite αtot is lower than αself−grav at large radii, but can be
larger than αself−grav at R/Re,disk . 1 when there is non-zero bulge
contribution (see Fig. 9).

10 Only the gas density distribution that impacts α(R), regardless of
other (e.g., stellar or halo) components (see Sect. 5.1).
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the limiting cases, we recover the profiles shown in Fig. 9: B/T = 0
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α(n = 4) but with different radial scaling, owing to the different adopted
Re,bulge/Re,disk ratios (colored lines). For the cases with 0 < B/T < 1,
the bulge contribution modifies the α(n = 1) profile at both small and
large radii, leading to larger αtot in inner regions and smaller αtot in
the outskirts (R/Re,disk .,& 1−2). At fixed B/T , the deviation from the
disk α(n = 1) in the center (R/Re,disk . 1 − 2) is larger for smaller
Re,bulge/Re,disk, while at large radii the deviation is larger for larger
Re,bulge/Re,disk. For reference, we mark Re,bulge/Re,disk with vertical light
grey lines, and also show αself−grav (grey dash-dotted line).

Compared to the disk-only α(n = 1) (solid black line),
the inclusion of the bulge component leads to larger αtot at
small radii (R/Re,disk . 1 − 2) and lower αtot at large radii
(R/Re,disk & 1 − 2). This is the result of a steeper inner density
slope together with a shallower decline at large radii for n = 4
compared to an exponential deprojected Sérsic model, so the
bulge component becomes more important at very small and
very large radii. When varying Re,bulge/Re,disk, we find the most
pronounced changes to αtot at small radii when the Re,bulge/Re,disk
ratio is smallest (solid lines). This effect is less pronounced
for larger Re,bulge/Re,disk values, as the bulge density profile is
more extended and the disk profile becomes important at smaller
R/Re,disk. For larger radii, the opposite holds: the largest changes
with B/T are found for the largest Re,bulge/Re,disk (dotted lines),
as the bulge component becomes important at smaller R/Re,disk
owing to the larger Re,bulge.

6. Discussion and implications

In this paper, we present properties and implications when using
deprojected, axisymmetric Sérsic models to describe mass den-
sity distributions or kinematics, over a wide range of possible
galaxy parameters. Some of these effects will be more impor-
tant for certain galaxy populations and epochs than others (as
initially hinted in Fig. 8). Here, we discuss the implications for
the models presented in this work, focusing on which aspects

are most important for interpreting observations and for compar-
ing observations to simulations as a function of cosmic time and
galaxy mass.

6.1. Low redshift

Nearby, present-day star-forming galaxies (that are not dwarf
galaxies) typically host fairly thin disk components and some
also host a bulge. The disks of such galaxies would gener-
ally be characterized by geometries with small q0 – relatively
similar to the infinitely thin exponential disk case (Freeman
1970). Thus, when modeling the circular velocity curves of
these disks, the choice of adopting the infinitely thin disk versus
deprojected oblate Sérsic models has a relatively small impact.
The thin gas disks of these local galaxies also have relatively
low intrinsic velocity dispersions, with relatively little pres-
sure support. The exact pressure support correction formula-
tion therefore has less of an impact on the interpretation of the
dynamics.

However, the low q0 and typically large disk effective
radii Re,disk in z ∼ 0 star-forming galaxies, when coupled
with a non-negligible bulge component, do result in ratios of
r1/2,3D,baryons/Re,disk less than 1. This deviation of the 2D and
3D half-mass radii can lead to large aperture effects when
interpreting projected versus 3D quantities, such as when com-
paring observational or simulation quantities (e.g., fDM). This
aperture mismatch would be most severe for higher mass
low-z galaxies, as these will tend to have larger values of
Re,disk and B/T (since a more prominent bulge will decrease
r1/2,3D,baryons relative to Re,disk). For example, aperture differ-
ences can lead to discrepancies of up to ∆ fDM = fDM(Re,disk) −
fDM(r1/2,3D,baryons) ∼ 0.15 at M∗ ∼ 1011 M� for typical values of
Re,disk and B/T (Fig. 8, lower right). In contrast, lower mass low-
z galaxies are generally less impacted by aperture mismatches,
owing to the lower typical B/T and smaller Re,disk of these
galaxies.

Compared to the impact of aperture mismatches, definition
differences in fDM (as might be measured from observations
and simulations) lead to only minor discrepancies. However, for
lower stellar mass low-z galaxies where the aperture mismatch is
relatively minor, the typically low B/T and thus more prominent
thin disk leads to a larger relative impact of fDM estimator dif-
ferences, as these galaxies are overall less spherically symmetric
(see Figs. 6 and 8).

Overall, for star-forming galaxies at low redshift, the most
important effect to consider is to correct for – or avoid – any aper-
ture mismatches when comparing measurements between sim-
ulations and observations of, for instance, fDM, particularly for
high stellar masses. The impact of other aspects (use of infinitely
thin disks vs. finite thickness, pressure support correction formu-
lation, or fDM estimator definition) are all relatively minor and
can be ignored for most purposes.

6.2. High redshift

In contrast to the local universe, at high redshift (e.g., z ∼
1−3), relatively massive star-forming galaxies generally exhibit
thick disks, with increasing bulge contributions towards higher
masses. These thick disks would be reasonably well described
by elevated q0 ∼ 0.2−0.25. As the derived circular velocity curve
for such a geometry is fairly different from that of an infinitely
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thin exponential disk (e.g., N08), the choice of rotation curve
parameterization (i.e., adopting vcirc based o a deprojected pro-
file such as those presented here versus using an infinitely thin
exponential disk) is important at high-z.

The thick geometries of high-z disks are coupled with rel-
atively high intrinsic velocity dispersions, which implies that
the overall amount of pressure support is expected to be much
higher than for the dynamically-cold, thin disks at low-z. Thus,
not only is it more important to account for pressure support,
but the choice of adopted pressure support correction matters
much more for interpreting kinematics at high-z than for nearby
galaxies.

In this paper, we derive the log density slope-driven pres-
sure support correction α(n) as a function of radius R for the
deprojected Sérsic models, and compare this correction term
to other formulations, particularly the correction for a self-
gravitating exponential disk, αself−grav (as in Burkert et al. 2010,
2016). A key implication of the differences between these pres-
sure support corrections is that, for the same vrot(R) and σ0,
α(n) predicts a lower vcirc than would be inferred when apply-
ing αself−grav (i.e., the inverse of the demonstration in Fig. 10).
Furthermore, the shape of the inferred vcirc profile can also dif-
fer (particularly when considering a composite disk+bulge gas
distribution; Fig. 11). Both effects can impact the results of
mass decomposition from modeling of galaxy kinematics, which
have important implications for the measurement of dark matter
fractions.

Although the smaller disk sizes of high-z galaxies help to
alleviate the disk-halo degeneracy that strongly impacts kine-
matic fitting at z ∼ 0, there are nonetheless often degeneracies
between mass components when performing kinematic model-
ing at z ∼ 1−3 (see e.g., Price et al. 2021, Sect. 6.2 and Fig. 5).
The strong pressure correction from αself−grav can further compli-
cate the reduced but still present disk-halo degeneracy at high-z.
When combined with high σ0, modest variations in σ0 (allowed
within the uncertainties) can extend the degeneracy between
galaxy-scale dark matter fractions and total baryonic masses – in
the most extreme cases, allowing the 1σ region to extend from
0% to 50+% dark matter fractions.

However, the strength of this added degeneracy effect
depends not only on σ0, but also on the pressure support pre-
scription. The large correction from αself−grav can result in a
falling vrot even for a flat or rising vcirc (with a large halo contri-
bution; Fig. 5b of Price et al. 2021). Alternatively, if α(n) were
adopted, the comparable correction to vcirc would produce a
less steeply dropping (or potentially flat) vrot profile. Thus, to
match the observed vrot profile, the intrinsic vcirc would be lim-
ited to lower amplitudes (i.e., implying lower dynamical masses)
with less shape modification than when using α(n) instead of
αself−grav. This in turn implies partial breaking of the added pres-
sure support impact to the disk-halo degeneracy, restricting the
higher likelihood regions towards a lower value for fDM. While
adopting α(n) would have the greatest impact on the objects with
high σ0 (where the pressure support has the largest impact), the
change in prescription should impact the inferred mass distribu-
tion for all objects to some extent. The choice of pressure support
formulation is thus an important factor in the interpretation of
dynamics of high-redshift galaxies and has direct implications
for the interpretation of mass fractions. Overall, this will have
the largest impact for galaxies with low vrot/σ0 (and the smallest
impact for high vrot/σ0), as this will lead to the largest fractional
change in vrot relative to vcirc. Since there is currently no observed

trend of σ0 with M∗ at high-z (e.g., Übler et al. 2019; although
the dynamic range of M∗ is currently limited), the correlation of
vrot with M∗ would then cause this effect to generally be most
important for low-mass galaxies.

On the other hand, the higher q0 and lower Re,disk of high-z
disk galaxies implies that aperture effects arising from deviations
of r1/2,3D,baryons versus Re,disk are less important than for low-z
galaxies, as the disk and bulge sizes are more similar. Still, there
can be up to ∼20% radii aperture differences in the 2D and 3D
half-mass radii (although with only ∼2.5% fDM differences), so
depending on the particular measurement quantity and accuracy
required, this effect could still be important. As is the case for
the local limit, the aperture radii difference (and the resulting
impact on inferred fDM) typically has a larger impact for higher
mass objects, since these tend to have higher B/T and Re,disk
than lower mass objects. Finally, as with the low-z case, the fDM
estimator differences are relatively minor compared to the other
effects and can be generally ignored. We note, however, that the
same comments on trends with B/T and necessary comparison
accuracy from the low-z discussion apply in this case.

In conclusion, for high-redshift star-forming galaxies, the
most important effects to consider are:
1. Adopting circular velocity curves that account for the finite,

thick-disk geometry;
2. Including a reasonable pressure support correction when

interpreting rotation curves.
In this limit (higher q0, lower Re,disk, high σ0), the other aspects
(2D vs. 3D half-mass radii apertures, fDM estimator definitions)
have relatively small impacts and can typically be ignored.

7. Summary

We present a number of properties for 3D deprojected Sérsic
models with a range of values for the intrinsic axis ratio q0 = c/a
(i.e., flattened or oblate, spherical, or prolate). We followed the
derivation of N08, who presented the deprojection of the 2D
Sérsic profile to a 3D density distribution ρ(m), as well as the
midplane circular rotation curve vcirc(R) for such a mass distribu-
tion. We then extended this work by numerically deriving spher-
ical enclosed mass profiles Msph(<r = R) and the log density
slope d ln ρ/d ln R.

Using these profiles, we determined a range of properties
of these mass models. Specifically, we examined the differ-
ences between the 2D projected effective radius, Re, and the
3D spherically-enclosed half-mass radius, r1/2,mass,3D, over a
range of intrinsic axis ratios q0 and Sérsic indices n, and find
r1/2,mass,3D > Re, with the ratio approaching unity as q0 → 0, in
agreement with previous results. We also calculated virial coef-
ficients that relate the circular velocity to either the total mass
(ktot) or the enclosed mass within a sphere (k3D).

Furthermore, we calculated derived properties for exam-
ple composite galaxy systems (consisting of both flattened
deprojected Sérsic and spherical components), to consider
how varying galaxy properties (i.e., B/T , Re,disk, z) impacts
these properties, such as r1/2,3D,baryons/Re,disk. We also exam-
ined the impact of different methods of inferring fDM(<R)
and the compounding effects from measuring fDM within dif-
ferent aperture radii. We find that using different apertures,
such as r1/2,3D,baryons versus Re,disk, can lead to very large dif-
ferences in the measured fDM, particularly for high B/T and
low Re,bulge/Re,disk. In contrast, using different fDM definitions,
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such as f v
DM(<R) = v2

circ,DM(R)/v2
circ,tot(R) and f m

DM(<R) =

MDM,sph(<r = R)/Mtot,sph(<r = R), only produces minor differ-
ences when measured at the same radius. Using toy models, we
estimated how r1/2,3D,baryons/Re,disk and the fDM estimators (mea-
sured both at Re,disk and with mismatched r1/2,3D,baryons vs. Re,disk
apertures) change as a function of redshift and stellar mass and
find increasing offsets towards higher M∗ and lower z.

We additionally used the deprojected Sérsic models to derive
self-consistent pressure support correction terms, with α(R, n) =
−d ln ρg(R, n)/d ln R for constant gas velocity dispersion. At R &
Re, we find that α(R, n) typically predict a smaller pressure sup-
port correction than is inferred for a self-gravitating disk (as in
Burkert et al. 2010, 2016) and are more similar to predictions
derived for thin disks with ∼constant scale heights under var-
ious assumptions (e.g., Dalcanton & Stilp 2010; Meurer et al.
1996; Bouché et al. 2022; Weijmans et al. 2008) and from
simulations (e.g., Kretschmer et al. 2021; also Wellons et al.
2020). The effect of a lower pressure support with α(n) implies
larger vrot for the same vcirc andσ0 (or lower vcirc for the same vrot
and σ0)than if assuming αself−grav, and would predict any disk
truncation (where vrot → 0, as in Burkert et al. 2016) at larger
radii than for the self-gravitating case.

Finally, we discuss implications of this work for future studies
of galaxy mass distributions and kinematics. Low-z star-forming
disk galaxies typically have thin disks with small q0 and low intrin-
sic velocity dispersion, so the most important effect to consider
is aperture mismatches when comparing measurements –
such as measuring fDM within 2D and 3D apertures, as typically
adopted for observations and simulations, respectively. In
contrast, the thick disks in high-z star-forming galaxies are
characterized by large q0 and high intrinsic velocity dispersion,
so adopting circular velocity curves accounting for this finite
thickness and accounting for the pressure support correction are
the most important aspects. The high σ0 of these high-z galaxies
can produce large pressure support corrections, in some cases
causing greater-than-Keplerian falloff in outer rotation curves
(e.g., Genzel et al. 2017). In this limit of relatively large cor-
rection amplitudes, the choice of the adopted pressure support
correction is also important and can impact constraints of the
disk-halo mass decomposition, as lower correction amplitudes
(e.g., using α(n) versus the larger correction of αself−grav) will
tend to lead to lower inferred dark matter fractions, particularly
for high σ0. Furthermore, while differences in quantity estima-
tors (e.g., f m

DM vs. f v
DM) have only modest effects at both low and

high-z, as measurements improve it would be worth correcting
for, or avoiding, estimator differences to improve the accuracy
of comparisons between different studies.

The deprojected Sérsic profile models presented here can
be used to aid comparisons between observations and simula-
tions and help convert between simulation quantities that are
typically determined within spherical shells and observational
constraints based on 2D projected quantities. As demonstrated
in this work, commonly adopted apertures for simulations (3D
half-mass) versus observations (2D projected half-light or half-
mass) can probe different physical scales, impacting observation-
simulation comparisons, particularly for dark matter fractions.
The pre-computed profiles and values (or similar calculations)
can help in shifting towards more direct, apples-to-apples com-
parisons between the two, without resorting to the more direct but
complex step of constructing and analyzing mock observations
based on simulated galaxies (as in, e.g., Übler et al. 2021; but
see also Genel et al. 2012; Teklu et al. 2018; Simons et al. 2019).

The code used to compute these profiles, as well as precomputed
profiles and other quantities for a range of Sérsic index, n, and
intrinsic axis ratio, q0, have been made publicly available.
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