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Abstract

We use the panchromatic spectral energy distribution (SED)-fitting code Prospector to measure the galaxy
logM*

–logSFR relationship (the star-forming sequence) across 0.2< z< 3.0 using the COSMOS-2015 and 3D-
HST UV-IR photometric catalogs. We demonstrate that the chosen method of identifying star-forming galaxies
introduces a systematic uncertainty in the inferred normalization and width of the star-forming sequence, peaking
for massive galaxies at ∼0.5 and ∼0.2 dex, respectively. To avoid this systematic, we instead parameterize the
density of the full galaxy population in the logM*

–logSFR–redshift plane using a flexible neural network known as
a normalizing flow. The resulting star-forming sequence has a low-mass slope near unity and a much flatter slope at
higher masses, with a normalization 0.2–0.5 dex lower than typical inferences in the literature. We show this
difference is due to the sophistication of the Prospector stellar populations modeling: the nonparametric star
formation histories naturally produce higher masses while the combination of individualized metallicity, dust, and
star formation history constraints produce lower star formation rates (SFRs) than typical UV+IR formulae. We
introduce a simple formalism to understand the difference between SFRs inferred from SED fitting and standard
template-based approaches such as UV+IR SFRs. Finally, we demonstrate the inferred star-forming sequence is
consistent with predictions from theoretical models of galaxy formation, resolving a long-standing∼ 0.2–0.5 dex
offset with observations at 0.5< z< 3. The fully trained normalizing flow including a nonparametric description of

*M zlog , logSFR,( )r is available online20 to facilitate straightforward comparisons with future work.

Unified Astronomy Thesaurus concepts: Galaxy formation (595); Galaxy photometry (611); Galaxy masses (607);
Star formation (1569)

1. Introduction

The star-forming sequence is the relationship between
galaxy star formation rate (SFR) and stellar mass (M*) observed
in star-forming galaxies.21 The majority of galaxies form the
majority of their mass either on (e.g., Leitner 2012) or passing
through (e.g., Abramson et al. 2015) the star-forming sequence,
making a robust characterization of the star-forming sequence

crucial to understanding the process of galaxy evolution as a
whole. As a result, the star-forming sequence has been well
measured in the literature across a variety of rest-frame
wavelengths and with a range of assumptions and techniques
(Daddi et al. 2007; Noeske et al. 2007; Karim et al. 2011;
Rodighiero et al. 2011; Whitaker et al. 2012, 2014; Speagle
et al. 2014; Renzini & Peng 2015; Schreiber et al. 2015;
Tomczak et al. 2016; Leslie et al. 2020).
Yet despite the importance of the star-forming sequence,

there is a large dispersion across the literature in its inferred
normalization and slope. Speagle et al. (2014) performed an
exhaustive cross calibration of measurements of the star-
forming sequence in the astronomical literature. They showed
that there are two key sets of systematics that drive the
dispersion in measurements of the star-forming sequence.
The first systematic is the method chosen to identify star-

forming galaxies and—usually at the same time—to separate
quiescent galaxies. These different methods include rest-
frame color–color selection (e.g., UVJ, Williams et al. 2009;
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20 https://github.com/jrleja/sfs_leja_trained_flow
21 This is often called the main sequence of star-forming galaxies in the
literature, although we do not use the term here to avoid confusion with the
stellar main sequence.
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sBzK, Daddi et al. 2004), fixed lines in the SFR–M* plane
(e.g., specific star formation rate (sSFR) cuts), lower limits on
observed emission line luminosities or equivalent widths,
sigma-clipping fits to the star-forming sequence, Lyman-
break or luminous infrared galaxy selection, or no preselec-
tion at all. Speagle et al. (2014) demonstrate that the
measured slope of the log(SFR)–log(M*) relationship ranges
between 0 and 1 in the literature, and this variance correlates
strongly with the chosen method of identifying and classify-
ing star-forming galaxies. This result has also been observed
in simulations. For instance, Donnari et al. (2019) contrast
rest-frame color-based selection with selection based on
bimodality in the SFR–mass plane in the IllustrisTNG
hydrodynamical simulation of galaxy formation. They find
that this choice affects the normalization of the star-forming
sequence at the ∼0.5 dex level, and while these selections
generally produce identical fractions of quiescent galaxies at
low stellar masses (to within 5%–10%), this measured
fraction will vary between 20% and 40% at high masses
(M/Me > 1010.5).

The second systematic challenge in observational measure-
ments of the star-forming sequence is the method by which
galaxy SFRs and (to a somewhat lesser extent) stellar masses
are inferred. Speagle et al. (2014) find an interpublication 1σ
scatter of ∼0.2 dex in the measured normalization of the star-
forming main sequence, the great majority of which they
attribute to systematics in the inference techniques for galaxy
SFRs and stellar masses. Again, these challenges are
straightforward to reproduce in simulated data: Katsianis
et al. (2020) calculate UV, IR, and spectral energy distribution
(SED) SFRs from observations of simulated galaxies including
dusty radiative transfer effects and find even more dramatic
offsets of 0.3–0.5 dex, with additional strong systematic trends
with redshift.

By creating calibration offsets associated with each mea-
surement methodology, Speagle et al. (2014) are able to bring
these independent observational measurements of the star-
forming sequence in the literature onto a common scale. This
shows that these offsets are precise and predictable; however,
it does not ensure that one or any of them are accurate.

More insight can be had by examining the star-forming
sequence in simulations of galaxy formation. These simulations
produce star-forming sequences that are systematically 0.2–0.5
dex lower than the observed star-forming sequences at
z= 0.5–3, yet are still able to reproduce the evolution of the
stellar mass function with reasonable accuracy. This offset has
remained for nearly a decade and is present across a diverse
range of galaxy formation models such as Illustris, both the
original (Sparre et al. 2015) and TNG (Donnari et al. 2019);
SIMBA (Davé et al. 2019); EAGLE (Furlong et al. 2015); the
Santa Cruz semi-analytical model (Somerville & Davé 2015);
and other analytical models of galaxy formation (Lilly et al.
2013; Dekel & Burkert 2014). Indeed, matching these
observations seems to require a strong but temporary
decoupling of baryonic growth from halo growth at 1< z< 3
(Mitchell et al. 2014). Indeed, direct calculations suggest the
simulations may be attempting to match two incompatible sets
of observations, as the total mass growth implied by the
observed evolution of the mass function is lower than the total
SFR density inferred from the observed star-forming sequence
by ∼0.3 dex (Leja et al. 2015).

It is therefore crucial to develop better machinery to measure
the star-forming sequence from observations, both to better
characterize the star-forming sequence itself—which plays a
central role in galaxy evolution—and to provide more accurate
constraints on this sequence to simulations. One potential
solution to the challenge of quiescent/star-forming separation
is the adoption of data-driven definitions of the star-forming
sequence which do not rely on any a priori separation between
star-forming and quiescent galaxies. Recent solutions in the
literature include defining the star-forming sequence as the
ridgeline (i.e., the density peak in the SFR–mass plane)
(Renzini & Peng 2015), or using flexible Gaussian mixture
models with the number of Gaussian subcomponents deter-
mined by the data (Hahn et al. 2019). In the limit of wide-area
surveys, these data-driven approaches can accurately measure
higher-order moments of the star-forming sequence such as the
width or the location of the so-called green valley (Sherman
et al. 2021).
There are also methodologies emerging to infer stellar

population parameters from observations more robustly,
producing a promising way forward to mitigating or even
eliminating the systematics in SFR and mass measurements.
Often SFRs are inferred using direct flux-to-SFR conversions
which are derived via fixed assumptions about the properties of
galaxy stellar populations (e.g., Kennicutt & Evans 2012). This
can result in significant measurement systematics when applied
to a galaxy population with a rich diversity of properties
(Wuyts et al. 2011a; Leja et al. 2019c). New generations of
Bayesian galaxy SED models using highly flexible on-the-fly
model generation (e.g., Beagle, Chevallard & Charlot 2016;
Prospector, Leja et al. 2017; Johnson et al. 2021) or large
pre-generated grids of models (e.g., Bagpipes, Carnall et al.
2018; CIGALE, Boquien et al. 2019) can now fit sophisticated
models to all of the available data. These methods constrain
stellar population properties such as star formation histories,
dust attenuation, and metallicities on an object-by-object basis,
as opposed to earlier works using fixed values or highly
simplified models. The net effect is to produce more
sophisticated (and, ideally, more accurate) conversions between
the observed flux and the SFR and stellar masses.
In this work, we measure the star-forming sequence using

stellar population properties inferred by the Prospector-α
model built in the Prospector SED-fitting code. This work
is motivated by the distinct differences in inferred masses and
SFRs from previous analyses (Leja et al. 2019c). We
additionally use a new machine-learning technique to measure
the star-forming sequence: normalizing flows (Jimenez
Rezende & Mohamed 2015). Normalizing flows allow the
direct inference of the density in the SFR–M* plane from
individual observations. Crucially, this density inference can be
modified to marginalize over measurement uncertainty as
described later in this work—indeed, Curtis-Lake et al. (2021)
have shown that proper modeling of the measurement
uncertainties has a significant effect on the inferred slope and
normalization of the star-forming sequence. This density
estimate in turn permits measurement of the ridge of the star-
forming sequence without any preselection of star-forming
galaxies, as well as facilitating direct comparisons with
simulations or other observations using density in SFR–M*-
redshift space. This paper is the second in a series; the first
paper presented a Bayesian population model for the stellar
mass function (Leja et al. 2020).
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This paper is structured as follows. Section 2 describes the
photometric data and the subsequent SED modeling. Section 3
uses these data to demonstrate the sensitivity of the star-
forming sequence to a bimodal classification system. Section 4
introduces the normalizing flow method and describes our
alterations to the standard methodology to include margin-
alization over the parameter uncertainties from SED modeling.
Section 5 analyzes the resulting star-forming sequence and
presents simple equations describing the evolution with stellar
mass and redshift. Section 6 compares results in the literature,
and provides a general framework in which to understand how
SED-based SFRs are different than standard UV+IR formulae.
Section 7 contains a broader discussion of the results and the
conclusion is in Section 8. We use a Chabrier (2003) initial
mass function and adopt a Wilkinson Microwave Anisotropy
Probe 9 cosmology (Hinshaw et al. 2013) with H0=
69.7 km s−1 Mpc−1, Ωb= 0.0464, and Ωc= 0.235. Reported
SFRs are averaged over the most recent 100Myr (rather than
instantaneous values) unless explicitly stated otherwise.

2. Data and SED Modeling

Here, we describe how the inputs to the star-forming
sequence (i.e., stellar masses, SFRs, and redshifts) are derived.
The input photometry and SED-fitting methodology are
identical to those in Paper I (Leja et al. 2020) and are briefly
summarized here for convenience. The first two sections
describe the publicly available surveys from which photometry
and redshifts are taken. The subsequent section describes the
SED modeling used to translate these data into stellar
population properties.

2.1. 3D-HST Catalog

The 3D-HST photometric catalogs (Skelton et al. 2014)
collate all publicly available photometry in five deep, well-
studied extragalactic fields comprising an area of ∼900
arcmin2. In particular, this includes deep near-IR imaging from
the CANDELS HST Treasury Program (Grogin et al. 2011;
Koekemoer et al. 2011). This photometric catalog is supple-
mented with Spitzer/MIPS 24 μm photometry from Whitaker
et al. (2014). In total, each galaxy is covered over 0.3–24 μm in
the observed frame with between 17 and 44 bands of aperture-
matched photometry.

The redshifts come from several sources. The 3D-HST grism
survey (Momcheva et al. 2016) provides reliable space-based
grism redshifts. The rest of the sample consists of photometric
redshifts estimated with the publicly available EAZY (Bram-
mer et al. 2008). Approximately 30% of the sample redshifts
are from ground-based spectroscopy or reliable grism measure-
ments, while the remainder is based on photometric estimates.
The photometric redshifts are taken as the peak of the redshift
probability distribution function. Thanks to the wide wave-
length coverage and mixture of narrow-band and medium-band
filters, they show a relatively low scatter of 0.0197(1+ z)
compared to the grism redshifts (Bezanson et al. 2016).

We select a stellar mass-complete sample of 26,971 galaxies
at 0.5< z< 3.0 from this catalog. The lower redshift limit is set
by the redshift at which the aperture-based photometry
measurements start to become unreliable, and the upper
redshift limit is where space-based (i.e., HST) rest-frame
optical imaging is no longer available for target selection.
Mass-complete limits are taken from Leja et al. (2020), with an

adjustment upwards by 0.1 dex in this work at z= 0.65 and
z= 2.1 to remove an observed upturn in the star-forming
sequence at the lowest masses. This is necessary because the
stellar mass-complete limit is set at 90%, and a 10%
incompleteness rate can have a substantive effect on 〈SFR〉,
as red galaxies with low SFRs are more likely to drop out. The
level of this adjustment is determined by examining the
logM

*

–logSFR distribution in small redshift slices at each
redshift, and requiring that the distribution of galaxies in
logSFR at the stellar mass-complete limit is similar to that at
slightly higher stellar masses. As none of the conclusions are
sensitive to the SFR near the mass-complete limit, this
adjustment has no effect on the conclusions of this work.

2.2. COSMOS-2015 Catalog

We additionally include photometry and redshifts from the
COSMOS-2015 catalog (Laigle et al. 2016) to bolster the low-
redshift volume. This includes 30 bands of photometry
covering the observed frame of 0.2–24 μm, with a small
fraction (<1%) of objects with Herschel far-IR imaging. We
select only objects in that overlap with the UltraVISTA survey
(McCracken et al. 2012) to include crucial near-IR photometric
bands, producing an effective area of 1.38 deg2.
The majority of the redshifts are photometric, estimated

using LePhare (Ilbert et al. 2006). These have a very low scatter
of 0.007–0.009 (1+ z) in the targeted redshift range (Laigle
et al. 2016), though notably this comparison is only performed
for bright galaxies targeted by spectroscopic programs.
We select a stellar-mass-complete sample of 41,148 objects

at 0.2< z< 0.8 from this catalog, where the lower limit avoids
the saturation limit for bright galaxies (Davidzon et al. 2017)
and the upper limit ensures overlap with the 3D-HST sample.
The mass-complete limits are again taken from Leja et al.
(2020). Following the same procedure described in Section 2.1,
we also adjust the z= 0.175 (z= 0.5) mass-complete limit in
COSMOS-2015 upward by 0.25 (0.1) dex.

2.3. SED Modeling

The photometry is fit using the galaxy SED-fitting code
Prospector (Leja et al. 2017; Johnson et al. 2021), powered
by the FSPS stellar population synthesis code (Conroy et al.
2009). Within FSPS, the MIST stellar isochrones are adopted
(Choi et al. 2016; Dotter 2016).
The physical model is the Prospector-α model from

Leja et al. (2019c), which is a modified version of the model
from Leja et al. (2017). In brief, the model has 14 free
parameters, consisting of a seven-component nonparametric
star formation history using the continuity prior, which
disfavors sharp changes in SFR(t) (Leja et al. 2019a), a two-
component dust attenuation model with a flexible dust
attenuation curve (Noll et al. 2009), free gas-phase and stellar
metallicity, and a mid-IR active galactic nuclei (AGN)
component with a free normalization and dust optical depth.
Prospector includes dust emission powered by energy
balance (da Cunha et al. 2008) with an SED and nebular
emission self-consistently powered by the model stellar
ionizing continuum (Byler et al. 2017).
Notably, in contrast to typical UV+IR SFRs, SFRs can be

measured via this methodology for every object in the survey
regardless of whether they are detected in Spitzer/MIPS
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24 μm. Of course, objects without IR detections will naturally
have larger parameter uncertainties.

3. Demonstrating the Sensitivity to Bimodal Classification

Here we use the SED-fitting posteriors from the previous
section to demonstrate the sensitivity of the star-forming
sequence to the method adopted for identifying star-forming
galaxies. We select galaxies between 0.3< z< 0.7 from our
data, separate them into star-forming and quiescent galaxies
using four different methods described below, and fit a
Gaussian with a mass-dependent mean and width to the
distribution of log(SFR) in the identified star-forming galaxies.
The mean and standard deviation of the Gaussian are allowed
to vary quadratically with stellar mass. We take N= 50
posterior samples for each galaxy and marginalize the
likelihood over the parameter uncertainties, following Leja
et al. (2020). This effectively results in an error-deconvolved
model of the star-forming sequence. We explore the posterior
with the nested sampling code dynesty (Speagle 2020).

We examine four common methods to separate between star-
forming and quiescent galaxies:

1. Hα equivalent width: The Hα equivalent width is
estimated using the Prospector posterior predictions
for each galaxy. These predictions are reasonably
accurate, showing a 1σ scatter of ∼0.2 dex (Leja et al.
2017) when compared to spectroscopic observations. We
use an equivalent width (EW) cut of 35Å, which is
approximately 5–10Å below the EW mean of star-
forming galaxies at this epoch (Fumagalli et al. 2012).

2. UVJ colors: Rest-frame UVJ colors are synthesized from
the Prospector posteriors for each galaxy, and the
galaxy is assigned to be star-forming or quiescent based
on the UVJ quiescent region from Whitaker et al. (2012).
When the object straddles the quiescent/star-forming
boundary, the classification is assigned following the
classification of the majority of the posterior weight.

3. Fixed sSFR: A fixed sSFR boundary at log(sSFR/yr −1)=
−10.5 separates star-forming and quiescent galaxies, with
objects near the border again assigned based on the
majority of their posterior weight.

4. Gaussian Mixture: Two Gaussians are fit to the log
(SFR)–log(M*) distribution, where here the second
Gaussian is intended to describe the quiescent sequence.
The means and widths vary quadratically with mass as
before. To ensure robust separation between these two
sequences, the mean of the second Gaussian is defined
relative to the first one via

x x , 1qu sf SF QU QU( ) ( )s s= - + - D

where ΔQU is the fit parameter. This parameter has a
uniform prior taken between 0.0 and 2.0, σSF and σqu are
the standard deviations of the star-forming and quiescent
sequences, and xsf and xqu are their means. This
formulation ensures that the two sequences have a
minimum separation set by the sum of their standard
deviations.

The results of these fits are shown in Figure 1. There is
reasonable agreement between the techniques below
log(M/Me) 10.5, with agreement in the normalization of
the star-forming sequence to within 0.1 dex and to within
0.05 dex for the 1σ width.

The striking differences occur at the massive end, where
there is both a larger percentage of quiescent galaxies and a
much less clear delineation between the two populations in the
logM*

–logSFR plane (both of these effects can be seen directly
in the Gaussian mixture panel of Figure 1). As a result, there is
a 0.5 dex range in the inferred normalization at the massive end
and a 0.2 dex range in the inferred 1σ widths. UVJ colors in
particular produce a wide star-forming sequence at the massive
end, a result that naturally follows from the flattening of the
relationship between UVJ colors and specific star formation
rate at log(sSFR/yr−1)<−10.5 (Leja et al. 2019b).
The inferred quiescent fraction shows substantial variation,

with a difference of ∼20% between techniques that shows no
clear dependence on stellar mass (see Donnari et al. 2019 for
similar conclusions for simulated galaxies). Interestingly, no
one technique produces a consistently higher or lower
quiescent fraction at all masses, demonstrating how the
traditional observational signatures of quiescence are also
affected by natural variation in underlying stellar populations
properties (e.g., the level of time-variability in star formation
histories will have a different effect on Hα versus UVJ
quiescent indicators).
We also include the results from the analysis of the full

population described later in this paper as gray dashed lines.
These results are not quite directly comparable as the analysis
is performed on the full population, but are useful as a point of
comparison.

4. Inferring the Population Density with Normalizing Flows

In light of the challenges posed in cleanly separating star-
forming and quiescent galaxies, we instead proceed by
inferring the density *M zlog , logSFR,( )r in stellar mass,
SFR, and redshift for the full galaxy population using a
normalizing flow. From this, the star-forming sequence can be
inferred directly by tracing the peak in the distribution of
logSFR as a function of stellar mass and redshift, following
Renzini & Peng (2015). We provide a brief description of
normalizing flows below, along with some additional imple-
mentation details. It is not necessary to fully understand the
normalizing flow treatment to follow the results of the paper,
though it is important to note that the implementation below
marginalizes over the physical parameter uncertainties for each
galaxy (see Figure 2).
A normalizing flow is a type of neural network that tries to

learn a nonparametric estimate of the continuous, underlying
probability density function (PDF) Pθ(x) associated with a set
of N observations {x1,...,xN} given some parameters θ, which
describe the transformation into the target distribution. For our
purposes, *x M zlog , logSFR,{ }= . The basic method by
which a normalizing flow works is to determine a series of
transformations f

kq from latent variables z (distinct from
redshift, z) with a known simple distribution P(z) to the
observations x with unknown distribution Pθ(x). Here, θ is
the set of parameters in the neural network used to transform to
the target distribution. In most cases, z is assumed to follow a
set of iid (independent and identically distributed) standard
normal (i.e., unit Gaussian) distributions. In other words, the
normalizing flow is trying to learn a series of transformations
from three unit Gaussians to reproduce the distribution of the
data in *Mlog , logSFR, and z.
Assuming that the data follow a point process and are

independent and identically distributed (iid), a normalizing
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flow works by selecting a given maxq that maximizes the log-
likelihood

⎜ ⎟
⎛
⎝

⎞
⎠

xPargmax log . 2
i

N

imax
1

( ) ( )åq = q q
=

Taking advantage of the change of variables formula, for a
series of k composite transformations

x z zf f f f , 3
k 2 1

( ) ( ( ( ))) ( )= =q q q q

where we have split θ= {θ1,...,θk} into k portions, the PDF at
any particular point depends on the initial PDF multiplied by
the Jacobian:

x z z
z

z
P P f P

f
. 4

1

( ) ( ( )) ( )
( )

( )= = ´
¶
¶q
q

-

Exploiting the chain rule and taking the logarithm, we can
rewrite this expression as

x z z
z

z
P P f P

f
log log log log ,

5
j

k j

j
1

1

1

j( ) ( ( )) ( )
( )

( )

å= = -
¶

¶q
q

=

-

-

where z zf fj
j 1
( ( ))= q q and z0= z. The core challenge for

training normalizing flows is to ensure that the series of
transformations f

jq have easy-to-compute Jacobians (to evalu-

ate the log-PDF) and inverses f 1
jq
- (to go from x→ z as well as

z→ x) while still retaining the flexibility to model complex
distributions.

For the normalizing flow in this work, we build on the same
basic architecture and training procedure as Ting & Weinberg
(2022), using a batch size of 1024 and 500 epochs. This
architecture consists of eight units of a neural spline flow, each
of which consists of three layers of densely connected neural
networks with 16 neurons, coupled with a “Conv1x1”
operation (often referred to as “GLOW” in the machine
learning literature; see, e.g., Kingma & Dhariwal 2018; Durkan
et al. 2019). See Green & Ting (2020) and Ting & Weinberg
(2022) for additional details, particularly Figure 3 in Ting &
Weinberg (2022), which illustrates the efficacy of these
transformations using complex analytical PDFs.
We elaborate on one feature of the above approach. Due to the

coupling between neural network layers, the normalizing flow
does not perform well with a small number of odd parameters
(three in this work). As a result, we introduce a dummy variable ò
drawn from a standard normal distribution and train our
normalizing flow to infer *P M zlog , logSFR, ,( )q . We subse-
quently marginalize over ò when calculating the final
PDF *P M zlog , logSFR,( )q .
We also make a modification to the above approach. This

modification takes into account that the quantities inferred
from the observations— *Mlog , logSFR, and z—are actually
noisy and probabilistic estimates of their true underlying
values *Mlog true, logSFRtrue, and ztrue. Computing the log-
probability for each observation for our normalizing flow
therefore requires marginalizing over the corresponding
uncertainty Pθ(xi|xi,true):

x x x x xP P P d . 6i i i i i,true ,true ,true( ) ( ) ( ∣ ) ( )ò=q q

Figure 1. Four different methods to select star-forming galaxies, and the properties of the resulting star-forming sequences. The top panels show the SFR–M* plane for
galaxies at 0.3 < z < 0.7 identified as star-forming via four different techniques, with the total number of objects included in the fit indicated in the upper left and the
mean and 1σ scatter of the resulting star-forming sequence as solid and dashed lines, respectively. For the Gaussian mixture model, the quiescent sequence is also
shown. The lower panels show the median and 1σ width of the resulting star-forming sequence and the fraction of quiescent galaxies inferred from each method. For
reference, we additionally show the values derived later in this paper with a gray dashed line.

5

The Astrophysical Journal, 936:165 (18pp), 2022 September 10 Leja et al.



Following the strategy in Leja et al. (2020), we approximate
this integral using a weighted average based on M= 100
samples from the posterior distribution for each object:

x x x x
x

P P
w P

w
d , 7i i i i

j
M

ij ij

j
M

ij
,true ,true ,true

1 ,true

1

( ) ( ∣ )
( )

( )ò »
å

å
q

q=

=

where wi,j are importance weights that mitigate the impact of
the prior on *Mlog , logSFR, and z. This effectively results in
an uncertainty-deconvolved measurement of the SFR–M* plane
at a fixed redshift. We note that this only marginalizes over the
uncertainties in free parameters in the Prospector-α
physical model. It does not include more fundamental
uncertainties (e.g., the initial mass function (IMF)).

Figure 2 shows the effect of explicitly accounting for the
uncertainties this way, highlighting both the shape of the
posterior in mass-SFR space for an individual galaxy and the
vertical profile in the SFR–M plane at several slices. The error

deconvolution has the greatest effect where the uncertainties
are highest, namely at low specific SFRs. Broadly speaking, the
width of the star-forming sequence is not very sensitive to the
error resolution except for this high-mass regime.
The subsequent analysis uses a fine sampling of the density

field from the trained normalizing flow and derives the
properties of the star-forming sequence from this sampled
density field. We also smooth with a Gaussian kernel with
δz= 0.1 in redshift to account for the effects of sampling
variance (cosmic variance) caused by the finite areal coverage
of the surveys. This is an imperfect solution; ideally, in future
work it will be possible to train a normalizing flow that
marginalizes over density fluctuations using an explicit model
for cosmic sampling variance (e.g., Leja et al. 2020).
For convenience, in the rest of this work we will drop the θ

subscript and instead refer to the actual 3D density estimated by
the flow

* *M z N P M zlog , logSFR, log , logSFR, , 8( ) ( ) ( )r = ´ q

Figure 2. The effect of incorporating uncertainties in logM* and logSFR on the inferred density, P(logSFR|logM
*
, z). The top panel shows the joint logM*

–logSFR
posterior for a single object, demonstrating that increasing the number of posterior samples for one object produces a better resolution in both the 1D uncertainties for
mass and star formation rate, and of the correlation between them. The lower panels show the density profile across the star-forming sequence at fixed M

*

and redshift.
The colors in each panel denote how many posterior samples were included from each galaxy when inferring the density in (logM*, logSFR, z) with the normalizing
flow method. The ridge of the star-forming sequence is marked with a dashed line. Including uncertainties has a relatively strong effect on the profile of the sequence at
high masses, shifting the median by ∼0.2 dex. This sensitivity arises because the uncertainty on the average star formation rate is relatively high due to the larger
number of low-sSFR systems, and the number of objects is relatively low. In contrast, measurement uncertainty has a relatively negligible effect on lower mass
systems, likely due to the fact that they are far more numerous due to the shape of the galaxy stellar mass function.
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where N is the number of objects (galaxies) in our data set.

5. Results from the Analysis of the logM*
–logSFR-z Density

Field

Here, we explore the density field *M zlog , logSFR,( )r
inferred by our normalizing flow. We calculate and parameter-
ize the ridge and mean of the star-forming sequence in
Section 5.1 and fit the profile of the star-forming sequence to
derive the width and quiescent fraction in Section 5.2.

5.1. Star-forming Sequence

The density *M zlog , logSFR,( )r at several redshifts is
shown in Figure 3. The star-forming sequence is clearly visible
as a peak in the density field. As stellar mass increases, the
peak of the density increases and the distribution in logSFR
grows wider. The overall increase in star formation activity
with increasing redshift can be seen clearly by examining the
galaxy density. Additionally, the growth of the quiescent
sequence can be seen, first appearing at high stellar masses then
at a later time extending to lower stellar masses as well.

We measure the evolution of the ridge (i.e., the number
density peak) and the mean SFR as a function of mass and
redshift. No star-forming galaxy selection is performed, i.e.,
this calculation is applied to the full density field. The ridge is
measured as the peak of the conditional density field

*M zlogSFR log ,( ∣ )r . In practice, the ridge is measured by
starting at the stellar mass-complete limit and stepping upward

in increments of ≈0.01 dex, requiring d logSFR∣ ( )
*Md log 3( )∣ < at each step to ensure local continuity. This

local continuity requirement prevents the ridge measurement
from being affected by noise in the density field and also helps
to avoid erroneously tracing the quiescent sequence where it
dominates the density field. Starting at the low-mass end where
the star-forming sequence is clearly defined, rather than the
massive end where the density peak is lower and the shot noise
is relatively high, helps to ensure the robustness of the
measurement. While in principle there’s no a priori reason that
the density will peak in the star-forming galaxy regime,
particularly if quiescent galaxies dominate at the given mass
and redshift, as we will demonstrate shortly the local continuity
requirement ensures that this measurement is robust
a posteriori.
The goal of the nonparametric analysis is to avoid the bias

created by the assumption of a parametric form; however, it is
also useful to create a compact form of the results to compare
with the literature. Accordingly, the evolution of these
relationships is parameterized using a double power law in
stellar mass (Whitaker et al. 2014; Leja et al. 2015):

⎧
⎨⎩ 

a M M c M M
b M M c M M

log SFR , 9t t

t t
( ) ( )

( ) ( )=
- + >
- +

where *M M Mlog º , a is the slope at high masses, b is the
slope at low masses, c is the y-axis intercept, and Mt is the

Figure 3. The logM*
–logSFR relationship at six redshifts. The color shading indicates the log-density *M zlog log , logSFR,( )r estimated from our normalizing flow.

The thick teal line shows the running median, with the thin teal lines showing the 16th/84th percentiles. The dashed blue line shows the mode (i.e., the ridgeline),
while the dashed–dotted red line shows the mean SFR (as opposed to the mean logSFR). Below z = 0.5, the mass-complete limit is from COSMOS-2015, while above
z = 0.5 it is from the deeper 3D-HST survey.
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logarithm of the stellar mass where the slope transitions from
the low-mass to the high-mass component.

The redshift evolution of each of these parameters is in turn
parameterized by a quadratic in redshift. Linear and third-order
polynomial fits were both explored, but the linear fit was found
to have very poor predictive power and the third-order fit was
found to be overly flexible without significantly improving the
agreement with the density field. The equations describing the
coefficients over 0.2< z< 3.0 follow the form

y X X z X z , 10i i i i,0 ,1 ,2
2 ( )= + +

where yi represents one of the four parameters in Equation (9).
The equations describing the evolution in log SFRmean( ) are
defined in an analogous fashion. The mean and ridge are
smoothed before fitting with Gaussian kernels with width
δz= 0.1, *Mlogd = 0.1 to remove small inhomogeneities in
the density field. The coefficients are shown in Table 1. The
uncertainties are from counting (Poisson) uncertainties, i.e.,
underlying uncertainties in the density from the neural network.
While the neural network produces only the maximum

likelihood model as the output, it is conditioned using the
uncertainties on stellar mass and SFR from SED fitting, so
these are also taken into account in this step. We note that the
largest uncertainties are likely systematic errors endemic to
SED fitting. These have been estimated in a number of cross-
code and simulation-based studies to be approximately 0.1 dex
for stellar mass and 0.3 dex in SFR (Wuyts et al. 2011a, 2011b;
Pforr et al. 2012; Mobasher et al. 2015; Leja et al. 2019a;
Carnall et al. 2019; Lower et al. 2020).
The redshift evolution of the mean and ridge are shown in

Figure 4. Both the parametric fit and the direct measurement
from the density field are shown. The mean and the ridge
increase steadily with increasing redshift up to z∼ 2; above
this, the mean continues to increase—perhaps driven by
continuing decrease in the fraction of passive galaxies—
whereas the evolution of the ridge begins to saturate. This is
consistent with the observed flattening of sSFR evolution
above z 2.5 (e.g., Santini et al. 2017; Leslie et al. 2020).
Despite the fact that passive galaxies decrease the normal-
ization of the mean SFR, the mean is still generally higher than

Figure 4. The left panel shows the evolution of the ridge of the star-forming sequence while the right panel shows the evolution of the mean SFR. The mean SFR
includes contributions from both star-forming and quiescent galaxies. The points are measurements from the density field evaluated using the normalizing flow. The
lines show the broken power-law fits described in Equations (9) and (10).

Table 1
Coefficients to the Broken Power-law Parameterization (Equation (9)) of the Ridge and Mean of the Star-forming Sequence

Parameter X0 X1 X2

Ridge (mode)

a 0.03746 ± 0.01739 0.3448 ± 0.0297 −0.1156 ± 0.0107
b 0.9605 ± 0.0100 0.04990 ± 0.01518 −0.05984 ± 0.00482
c 0.2516 ± 0.0082 1.118 ± 0.013 −0.2006 ± 0.0039

Mlog t 10.22 ± 0.01 0.3826 ± 0.0188 −0.04491 ± 0.00613

Mean

a −0.06707 ± 0.00821 0.3684 ± 0.0128 −0.1047 ± 0.0044
b 0.8552 ± 0.0068 −0.1010 ± 0.0107 −0.001816 ± 0.003290
c 0.2148 ± 0.0045 0.8137 ± 0.0069 −0.08052 ± 0.00219

Mlog t 10.29 ± 0.01 −0.1284 ± 0.0135 0.1203 ± 0.0044

Note. The uncertainties are calculated from Poisson uncertainties in the underlying density field.
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the ridge (i.e., the peak of the density field), which is a standard
feature in log-normal distributions such as the star-forming
sequence.

Figure 5 shows the redshift evolution of the low-mass slope,
high-mass slope, and transition mass. The low-mass slope of
the ridge of the star-forming sequence stays near unity across
most of the observed redshift range. Conversely, the high-mass
slope stays relatively constant between 0 and 0.2, in contrast to
high-mass slopes of 0.5–0.7 found at 1< z< 2.5 in previous
work but in agreement at 0.5< z< 1 (Whitaker et al. 2014).
The transition mass increases with redshift, from logMt∼ 10.2
at z= 0.2 to logMt= 11 at z= 3, at which point the high-mass
slope is poorly constrained and even the existence of a two-
slope star-forming sequence is not clear, due to the small
number of objects at high masses and redshifts. The quadratic
fit may underestimate the extent to which the high-mass slope
is flat or even negative at high masses and low redshifts, as the
density field in Figure 3 illustrates. This cannot be due to
inaccuracies in the separation of star-forming/quiescent
galaxies, since none is performed; instead, it suggests that
there is little or no relationship between SFR and mass for
galaxies with log(M/Me) 10.5 between 0.2< z 1.5.

The low-mass slope of the mean behaves similarly to the
ridge, though the slope is generally shallower at all redshifts.
This is likely because the increase of quiescent galaxies with
increasing stellar mass will naturally flatten out the average
relationship between SFR and mass. The high-mass slope
shows similar behavior. The transition mass for the mean is
lower than for the ridge by ∼0.1–0.5 dex, likely reflecting the
effect of an increasing quiescent fraction flattening out the
slope at intermediate masses.

At the lowest masses there are small upturns in the SFR–M*

relationship at some redshifts. This likely represents imperfec-
tions in the low-mass 90% completeness limit, specifically a
combination of up-scattering of bright galaxies with high
sSFRs below the limit and an incomplete census of low-sSFR
galaxies above the limit. The broken power-law fits are
relatively robust to these effects and so no adjustment is made
for them.

Finally, we note that there are deviations at the 0.1 dex
level between the broken power-law parameterizations and the
true evolution of the mean and ridgeline of the galaxy SFR
distribution. Such deviations are inevitable when fitting smooth

functions to data with complex behaviors. For work with higher
accuracy requirements, it is recommended to work directly on
the trained density field, which is available online.

5.2. Profile of the Star-forming Sequence

A Gaussian distribution is fit to the density, P(logSFR—
logM*, z), to determine the width of the star-forming sequence
and the fraction of galaxies on this sequence. This is intended
to produce a qualitative description of the evolving properties
of the star-forming sequence population; detailed quantitative
comparisons with other results in the literature are best
performed using the ridge as inferred in the previous section,
or using the density field directly.
Specifically, a Gaussian is fit to the distribution of

*M zlogSFR log ,( ∣ )r , with the center of the Gaussian fixed
to the ridgeline derived in Section 5.1. A key challenge is that
the distribution of the star-forming sequence looks increasingly
less like a Gaussian distribution as the fraction of quiescent
galaxies increases. This is addressed by performing an
asymmetric sigma-clipping fit, with the clipping occurring
only below the star-forming sequence.
The point where the sigma-clipping process begins is chosen

carefully to both accurately describe the density profile above
the star-forming sequence while also excluding the long tail of
quiescent galaxies below it. For each small slice in mass and
redshift, an iterative sigma-clipping fit is performed to the
density in logSFR with σclip=−3.0. Here, the negative sign
indicates that clipping is performed to remove galaxies below
the star-forming sequence. To ensure a high quality of fit, the
fraction of galaxies existing above the ridge of the star-forming
sequence is estimated from the fitted Gaussian. This is then
compared to this same quantity estimated directly using the
density from the trained normalizing flow. If these two
estimates differ by more than 10%, σclip is adjusted upwards
by 0.5 in order to exclude more quiescent galaxies and the fit is
performed again. We allow σclip to vary between −3.0�
σclip�−1.0. Examples of the fit to *M zlogSFR log ,( ∣ )r are
shown in Figure 6.
The redshift evolution of all parameters inferred from the

density field is shown in Figure 7. While the evolution of the
ridge, mean, and slopes are parameterized explicitly in
Equation (9), here we show the raw values as measured from
the data. The width of the star-forming sequence comes from

Figure 5. The redshift evolution of the low- and high-mass slope and the stellar mass at which the slope transitions between the two. The high- and low-mass slopes
are distinct at all redshifts. However, the need for multiple slopes in the ridge of the star-forming sequence is most clear at low redshifts. This is because at higher
redshifts the transition mass increases to higher values of stellar mass, at which there are few (N ∼ 5–10, see, Figure 1 in Leja et al. 2020) observable galaxies in these
fields, meaning both the mean and ridgeline SFRs are more weakly constrained.
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the fitted Gaussian, while the quiescent fraction is defined as
(1—fractional area covered by the fitted Gaussian). The
parameter maps are smoothed with Gaussian kernels with
width δz= 0.1, δlogM* = 0.1 for presentation purposes.

The maps of the slope and normalization (both mean and
mode) of the star-forming sequence show evolution consistent
with the parameterized fits in Figure 5. The quiescent fraction
shows nearly monotonic increases with decreasing redshift and
with increasing stellar mass, as expected. The width of the star-
forming sequence from the log-normal fit is between 0.3 and
0.4 dex at most masses and redshifts, increasing to ∼0.5 dex at
higher masses where the distinction between star-forming and
quiescent galaxies becomes blurred. Intriguingly, the width of
the star-forming sequence also increases at high redshift,
approaching σ∼ 0.5 dex at z> 2 for intermediate-mass
galaxies.

Notably, the width of the star-forming sequence and the
quiescent fraction are correlated with one another in the
Gaussian profile and thus partially degenerate. Without strong
preselection of star-forming galaxies and in the presence of a
significant quiescent population, the width of the star-forming
sequence is generally not very well constrained (e.g., Figure 1).
The simple sigma-clipping procedure which produces the
quiescent fractions and the width of the star-forming sequence
in Figure 7 is only precise to within ∼0.1 dex (in width) or
∼20% (in quiescent fraction), and we recommend using the
density from the trained flow directly for operations requiring
higher precision than this. Given these caveats, the primary
trend that we observe in the width of the star-forming sequence
is that it is approximately constant between 0.3 and 0.4 dex at
z< 2 and then becomes 0.4–0.5 dex at 2< z< 3. Indeed,

Figure 1 cleanly illustrates how the width of the star-forming
sequence, σmSFS, follows from the definition of a star-forming
galaxy.
In contrast, the width of the full sequence (i.e., σall= half of

the 84th–16th percentiles of the distribution) is independent of
any distinction between star-forming and quiescent galaxies.
This makes it a relatively robust property of the distribution,
albeit at the cost of now being sensitive to the SFRs of non-
star-forming galaxies. At low masses and/or high redshifts
where quiescent galaxies are rare, it effectively collapses to
σSFS.

6. Comparison to Previous Results and Techniques

This section compares the results from this work with
previous results in the literature. Section 6.1 compares the star-
forming sequence derived in this work to previous observa-
tional results, showing particularly that the normalization is
considerably lower than previous work. Section 6.2 explores
the origin of this difference and introduces a general framework
to interpret the difference between SED SFRs and standard
UV+IR SFRs.

6.1. Comparison with Other Star-forming Sequences from the
Literature

Figure 8 compares the star-forming sequence derived in this
work to results in the literature (Speagle et al. 2014; Whitaker
et al. 2014; Lee et al. 2015; Schreiber et al. 2015; Tomczak
et al. 2016; Santini et al. 2017; Boogaard et al. 2018; Iyer et al.
2018; Pearson et al. 2018; Leslie et al. 2020; Thorne et al.
2021). The literature results are corrected to a Chabrier IMF to
match this work, and all studies are mass complete in this
regime. The Santini et al. (2017) results are clipped at high
masses where their assumption of linearity in the SFR–M
relationship breaks down.
The star-forming sequence in this work is systematically

lower than the measurements in the literature by ∼0.2–0.5 dex,
with the offset decreasing at lower redshifts. This is not due to
differences in definitions of the star-forming sequence, e.g., via
preselection of star-forming galaxies. Such differences mostly
affect the massive end (Figure 1), where the separation between
star-forming and quiescent systems is the most confused
(Figure 6). Instead, this offset is seen across the full range of
stellar masses. This suggests the offset is instead due to
differences in the inferred galaxy masses and SFRs. These
differences are explained in detail in the next section.
There are two notable exceptions to this systematic offset in

the literature, specifically the studies of Boogaard et al. (2018)
and Iyer et al. (2018). What these two share in common is that
they do not attempt to measure SFRs directly from broadband
photometry: Boogaard et al. (2018) use Hα and Hβ emission
lines from the MUSE Hubble Ultra Deep Field, permitting an
internal dust correction, and Iyer et al. (2018) infer the star-
forming sequence slope and normalization indirectly, by
constraining them with star formation histories derived from
galaxies at lower redshifts. It is a positive sign that these
relatively independent methodologies agree with the Pro-
spector-α modeling of the broadband photometry.
Of the studies based on broadband photometry, the Pearson

et al. (2018) and Thorne et al. (2021) results are most similar to
the Prospector-α inferences. This is likely because they are
also measuring both SFRs and stellar masses at the same time

Figure 6. Slices of the log SFR distribution at fixed values of logM* and
redshift from the density estimate are in black, while Gaussian fits to the star-
forming sequence shown in red. The fit is performed iteratively using sigma-
clipping with a variable lower bound as described in the text. The fit limit in
each panel is indicated with a dashed line. The stellar mass and redshift of each
panel are indicated in the upper left, along with the inferred width of the star-
forming sequence. There is a fundamental trade-off between the fidelity of the
Gaussian fit to the high-SFR end of the distribution and the exclusion of the
long tail of quenching or quiescent galaxies below the star-forming sequence.
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using SED fitting. Solving for the stellar populations on a
galaxy-by-galaxy basis naturally lowers the SFR estimates as
compared to standard UV+IR formulae, as explained in the
next section. Additionally, Thorne et al. (2021) also find more
massive galaxies than in previous work; they similarly have
chosen a star formation history model, which also returns older
ages and thus higher stellar masses (Robotham et al. 2020). Yet
the Prospector-α results still typically lie ∼0.1–0.3 dex
below these inferences, with the offset increasing at low
masses.

6.2. Origin of the Differences in the Star-forming Sequence

Here, we explore the shift in inferred stellar masses and,
specifically, SFRs. We adopt the results from previous analysis
of the 3D-HST survey as a reference point: stellar masses
inferred using the FAST SED-fitting code (Kriek et al. 2009)
from Skelton et al. (2014), and UV+IR SFRs from Whitaker
et al. (2014). Figure 9 shows the median shift in inferred values
of logM* and logSFR between the Prospector-α values and
the aforementioned works. The ridge of the star-forming
sequence is included for reference.

Figure 7. The evolution of parameters derived from *M zlogSFR log ,( ∣ )r . In order of left to right, the first row shows the mean SFR, the ridge of the star-forming
sequence, and the slope of the ridge, while the second row shows the quiescent fraction, the 1σ width of the star-forming sequence in logSFR, and the 1σ width in
logSFR of the full population. The slope of the ridge is clipped at 0 to avoid having the color scale dominated by the down-turn at high masses and low redshifts. The
parameter maps are smoothed with Gaussian kernels with width δz = 0.1, δlog M* = 0.1 for presentation purposes.
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The systematic increase in stellar masses is at this point well
understood to come from the use of nonparametric star
formation histories, which find significantly older stellar ages
(and thus higher stellar masses) than parametric methods. In
brief, this is because they assume a larger fraction of old stars
for a given observed SED; see Carnall et al. (2019) and Leja
et al. (2019a) for more details.

There exists some evidence that these larger stellar masses
are more accurate. Simple recovery tests using a wide range of
input star formation histories show that common parametric
star formation histories systematically underestimate stellar
ages (Leja et al. 2019a; Carnall et al. 2019). Leja et al. (2019c)
showed that the more extended star formation histories inferred
from nonparametric techniques are much more consistent with
the observed evolution of the stellar mass function over
0.5< z< 3. Lower et al. (2020) test these techniques on
hydrodynamical simulations; they find that nonparametric
techniques lead to significantly improved stellar masses in
SED fitting, with an average bias of 0.4 dex with a delayed-τ
model compared to a bias of less than 0.1 dex for a
nonparametric model.

The difference in inferred SFRs has a more complex origin.
Leja et al. (2019c) showed that the largest contribution to this
shift is the effect of dust heating from old (>100 Myr) stars,
which is incorrectly interpreted as star formation in standard
UV+IR estimates. This effect is strongest for galaxies with low
sSFR, and can be seen in Figure 9 as a decrease in inferred
SFRs for massive objects, with a magnitude increasing with
decreasing SFR. However, this interpretation alone is incom-
plete: for example, it does not explain the increase in SFR for
low-mass galaxies above the star-forming sequence. To address
this more clearly, we generalize the UV+IR SFR equation to
explain the physical origins of the difference between the
Prospector-α SFRs and UV+IR SFRs.

6.2.1. Difference between UV+IR and SED SFRs

The simple assumption underlying UV+IR SFRs is that the
SFR is directly proportional to the luminosity of young stars,
which follows from energy conservation:

LSFR ,bolometric,young starsa=

where α is a constant parameterizing the total energy output of
young stars. This direct equivalence is why UV+IR SFRs are
generally considered to be a reliable SFR estimator (e.g.,
Kennicutt 1998; Kennicutt & Evans 2012). One challenge in
estimating Lbolometric,young stars is that young stars are often
enshrouded in dust that attenuates much of their light and
reemits it in the infrared. The above equation then becomes

L LSFR .unattenuated attenuated( )a= +

Typically, these two components are estimated from observa-
tions by defining specific bandpasses in the UV and the IR and
inferring the total energy emitted in these bands. This
luminosity is then converted into an SFR by comparing to
simple models of galaxy stellar populations. We use the
templates from Bell et al. (2005) as an example. This work
assumes Lunattenuated∝ LUV (1216–3000Å) and Lattenuated=
LIR(8–1000 μm). They postulate a relation of the form

M L LSFR yr . 11IR UV[ ] ( ) ( ) a d g= +

Bell et al. (2005) compute the coefficients using a theoretical
stellar population with a constant SFR over 100Myr, finding
coefficients (adjusted to a Chabrier 2003 IMF) α0= 1.09×
10−10 [Me yr−1 L 1


- ], δ0= 1, and γ0= 2.2. These values

correspond to the parameters in the above equation, but are
given subscripts in order to differentiate them from Pro-
spector-inferred values for α, δ, and γ introduced later in
this section.
While the general form of Equation (11) follows directly

from energy conservation, the coefficients must be derived
using stellar evolutionary theory and simplified models of the
stellar populations in galaxies and can thus be subject to
significant uncertainty. Standard UV+IR SFRs will assume
simple model stellar population’s properties to derive these
coefficients (e.g., Bell et al. 2005), or infer them via empirical
methods (e.g., Hao et al. 2011). Conversely, SFRs from SED
models such as Prospector-α will (implicitly) infer these
coefficients on an object-by-object basis using models for the
stellar populations in each galaxy. Notably, Equation (11) itself
holds true independent of the standard assumption of energy

Figure 8. Comparing the star-forming sequence derived in this work with other results from the literature. In general, the star-forming sequence inferred here has a
normalization well below previous results. This is due to the methodology by which the stellar masses and SFRs are inferred—see Section 6.2 for further discussion.
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balance (i.e., Lattenuated= Lemitted,IR, da Cunha et al. 2008).
Rather, energy balance is used in order to derive estimates of
the coefficients α, δ, and γ.

We directly calculate the UV+IR coefficients for each
galaxy from the Prospector-α physical models by

perturbing the SFRs from their measured values and measuring
the response in LIR and LUV. Figure 10 shows the median
difference between the Prospector-α coefficients and those
from the Bell et al. (2005) templates in the SFR–M plane.
These differences are discussed in turn below.

Figure 9. The median shift in inferred values of logM* and logSFR between the Prospector-α model and FAST stellar masses/UV+IR SFRs for galaxies at
0.7 < z < 1.3. Only cells with N > 20 galaxies are shown. The masses increase by ∼0.2 dex due to the use of nonparametric star formation histories. The inferred
SFRs decrease by 0.1–1+ dex largely due to dust heating from old stars, though other effects can contribute substantially in certain regimes (see Section 6.2 for an in-
depth discussion). The ridgeline of the star-forming sequence as measured in this work is shown as a black dashed line. The color bar traces the angle of the shift in
logM–logSFR space, where θ = 0 is a horizontal arrow pointing to the right.

Figure 10. The median difference in the coefficients to the UV+IR SFR in Equation (11) between Prospector-α model and the fixed template-based coefficients
from Bell et al. (2005) is shown for galaxies at 0.7 < z < 1.3. α parameterizes the total energy output of young stars, δ parameterizes the fraction of IR luminosity
which is powered by energy from young stars, and γ parameterizes the conversion from the observed UV luminosity to the bolometric luminosity of the young stars
after dust attenuation. Arrows on the color bar indicate where the data is clipped to enhance the information content of the map. The y-axis shows the SFR averaged
over the most recent 100 Myr.
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The first coefficient, α, represents the total luminosity of
young stars (young here defined as age <100 Myr). At these
redshifts, Prospector-α finds median values in the SFR–M
plane of −0.2 log 0.15Prosp 0( )a a , though the scatter can
vary up to±0.4 for individual galaxies.

In the Prospector-α model, variations in α are primarily
determined by the SFR(0–30 Myr)/SFR(30–100 Myr) ratio
(Spearman-r coefficient of 0.81). This is a straightforward
consequence of the fact that younger stars (0–30 Myr) are
relatively more luminous than older stars (30–100 Myr). Thus,
galaxies with rising star formation histories have lower values
of α and galaxies with falling star formation histories have
higher values of α. Since galaxies on and above the star-
forming sequence tend to have rising star formation histories
while galaxies below have falling star formation histories (Leja
et al. 2019c), this naturally produces an increase in α with
decreasing SFR at a fixed stellar mass. This relationship has
considerable scatter though, particularly at the low-mass end,
suggesting that some galaxies are being observed in the process
of moving back toward their equilibrium values (i.e., around
the ridgeline of the star-forming sequence).

The second coefficient, δ, represents the fraction of the
emitted IR luminosity which is powered by young stars. The
primary other source of energy is old stellar populations,
although AGN can be significant in a minority of cases. In the
Bell et al. (2005) UV+IR formulation, δ= 1 because there is
no other source of energy; however, it has long been known
that δ should be <1 (e.g., Fumagalli et al. 2014; Utomo et al.
2014; Hayward & Smith 2015). In empirical calibrations, δ is
inferred to be ∼0.6 for starburst galaxies (e.g., Meurer et al.
1999), or 0.46 for normal star-forming galaxies (Hao et al.
2011).

Prospector-α infers 0.01 δ� 1. Variations in δ in the
Prospector-α model are almost entirely driven by heating
from old stars: Leja et al. (2019c) find a strong relationship
between sSFR and the fraction of dust heating performed by
old stars, with galaxies at log(sSFR yr−1)=−11 having ∼80%
of their dust emission powered by old stars. This relationship is
in excellent qualitative agreement with detailed radiative
transfer simulations of nearby galaxies from Dustpedia
(Nersesian et al. 2020). Notably, this effect gets stronger at
higher redshifts, where the old stars are relatively more
luminous than at later times. This relationship is evident in
Figure 10 as a decrease in δ with decreasing SFR at a fixed
stellar mass, ranging from δ≈ 1 for highly star-forming
galaxies to δ= 1 for quiescent galaxies.

The final coefficient, γ, represents the conversion from the
observed UV luminosity at 1216–3000Å to the bolometric
luminosity of young stars. This measurement is performed after
dust attenuation. Thus it represents the complement to the IR
luminosity, ensuring that the full energy budget of young stars
is included in the estimate.

Variations of γ from Prospector-α span a range of
−0.05 log 1.10( )g g . The γ coefficient correlates with the
shape of the SED of young stars after the effects of dust
attenuation. The largest determinant of γ in Prospector-α is
perhaps unsurprisingly τdiffuse dust (Spearman-r coefficient of
0.88). This is the normalization of the dust attenuation curve
(closely related to AV) and represents the most important
determinant of the total amount of reddening in the observed
SED. Stellar metallicity is an important secondary effect as
decreasing stellar metallicity will make the SED of young stars

bluer (Spearman-r coefficient of 0.4). The γ map in Figure 10
generally increases with both mass and SFR, consistent with
trends in the observed dust attenuation (Whitaker et al. 2017).
The sum of these effects can now explain the full

transformation of the star-forming sequence in Figure 9.
Galaxies on and below the star-forming sequence have lower
inferred SFRs due to the dust-heating effect from old stars.
Galaxies above the star-forming sequence show little effect on
their star formation rates; here, the standard assumption that LIR
is entirely powered by star formation appears to hold.
Conversely, low-mass galaxies above the star-forming
sequence show an increase in their SFRs due to a combination
of the effects of dust on the interpretation of their UV
luminosities and bursty recent star formation histories.
An important point is that the IR energy dominates the UV+IR

equation above log(M/Me) 9.5 (Whitaker et al. 2017), while
UV energy dominates for galaxies with log(M/Me) 9.5; this
means that δ will have a larger influence at high masses, and γ a
larger influence at low masses.
We emphasize that while measuring these coefficients with a

model such as Prospector-α is a more robust approach than
using fixed coefficients, these inferences are still based on
simplified models of galaxy stellar populations and should be
viewed with scrutiny. One method to investigate their accuracy
is via posterior predictive checks, where one set of observations
is fit by a model which is in turn used to predict a second
independent set of observations. The SFRs from Prospec-
tor-α perform well here, finding a scatter of 0.2 dex and
negligible offset when fitting UV-IR broadband photometry
and predicting measurements of Hα (Leja et al. 2017) and Br-γ
(Pasha et al. 2020) emission line luminosities. Br-γ predictions
are particularly informative: Br-γ is a hydrogen emission line at
∼2.16 μm, which is nearly insensitive to dust attenuation, thus
serving as a dust-independent measure of SFRs. However,
these tests are complicated by the systematic ∼0.2 dex
sensitivity of emission line luminosities to the chosen stellar
isochrones and their treatment of rotation or binary effects
(Steidel et al. 2016; Choi et al. 2017; Pasha et al. 2020).
Additional posterior predictive checks using a wide range of
observables across a wide range of galaxy types and redshifts
will be beneficial in further calibrating SED model outputs.

7. Discussion

Here, the broader implications of the results are discussed.
Section 7.1 compares the star-forming sequence in this work
with those from hydrodynamical simulations of galaxy
formation, and Section 7.2 discusses the prospects for robust
measurements of the star-forming sequence in the absence of a
clear star-forming/quiescent galaxy separation.

7.1. A New Agreement with Theoretical Models of Galaxy
Formation

There has been a long-standing systematic offset of ∼0.2–
0.5 dex in the normalization of the 0.5 z 3 star-forming
sequence between observations and predictions from galaxy
formation simulations (Mitchell et al. 2014; Furlong et al.
2015; Leja et al. 2015; Tomczak et al. 2016; Davé et al. 2019;
Donnari et al. 2019; Katsianis et al. 2020). This offset is such
that simulations under-predict the observations. This offset is
persistent across most of the major theoretical models of galaxy
formation. The universality comes from the fact that this
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problem is challenging to solve with baryonic feedback
prescriptions; galaxy star formation rates typically track the
gas accretion rate, which is in turn set by the behavior of dark
matter at large scales (Mitchell et al. 2014).

We show that this tension is resolved by the star-forming
sequence presented in this work (Figure 11), confirming the
preliminary work in Nelson et al. (2021). This figure shows the
redshift evolution of the specific star formation rate for a
log(M/Me)= 10 galaxy from the observations (Speagle et al.
2014; Whitaker et al. 2014) and from this work. Predictions for
the galaxy star-forming sequence are shown from several major
cosmological hydrodynamical simulations of galaxy formation:
IllustrisTNG (Donnari et al. 2019), the EAGLE simulations
Furlong et al. (2015), and SIMBA (Davé et al. 2019). The
specific dark matter accretion rates are taken from the
Millennium N-body simulations (Fakhouri et al. 2010).
Whereas before there was a systematic offset of ∼0.2−0.5
dex with the observations, there is now broad agreement
between the observations, the hydrodynamical simulations, and
the dark matter accretion rates.

This new agreement is important to the field because it is
now possible to use the observed star-forming sequence across
a wide range of redshifts as a constraint on hydrodynamical
simulations of galaxy formation. Hahn et al. (2019) measure
the star-forming sequence across multiple simulations using a
consistent nonparametric definition and show that the simulated
star-forming sequences differ by up to 0.7 dex in normalization
and have significantly different slopes, in spite of the fact that
they all approximately match the z= 0 galaxy stellar mass
function (Somerville & Davé 2015). Having the new capacity
to adjust their physics and feedback models to match the
0.5< z< 3 star-forming sequence will help to bring consensus
in models of galaxy formation.

Constraints on the star-forming sequence will in turn provide
a strong constraint on the feedback models in simulations,
which currently have substantial qualitative and quantitative
differences (see the review in Somerville & Davé 2015 for a

discussion). We note that the release of tools like the trained
normalizing flow used in this work means that these
comparisons can now be done directly in the space of the
SFR–M*-redshift density, *M zlogSFR, log ,( )r . This bypasses
classic challenges in comparing observations and simulations,
such as preselection of star-forming galaxies or definitions of
the star-forming sequence.

7.2. Is It Meaningful to Enforce a Separation between Star-
forming and Quiescent Galaxies?

It has long been known that galaxies have clear bimodal
distributions in rest-frame color diagrams such as the red
sequence (Bell et al. 2004) or the UVJ diagram (Williams et al.
2009). This naturally leads to the idea of two separate classes of
galaxies: star-forming and quiescent. In such a framework, it is
straightforward to use colors or an SFR indicator such as Hα to
distinguish between the two classes. It is also natural to focus
more interest on measuring the star formation rates in star-
forming galaxies (i.e., the star-forming sequence), as growth by
star formation in quiescent galaxies is thought to be negligible.
However, the distribution of galaxies in the SFR–M plane

inferred by this analysis—importantly, with no preselection of
star-forming galaxies—instead resembles a unimodal distribu-
tion with a long skew or tail toward low star formation rates
(e.g., Figure 6). Feldmann (2017) observes a similar distribu-
tion, and argues that the star-forming/quiescent galaxy
distinction as defined by a log-normal star-forming sequence
is inconsistent with the idea of star formation as a discrete and
burst-driven event. Detailed studies of the local universe such
as the Herschel Reference Survey show no separation at all
between star-forming and quiescent galaxies (Eales et al.
2017). In this new schema, using SFR indicators to distinguish
between star-forming and quiescent galaxies is not a robust
methodology due to the strong overlap between the two
classes. This danger is compounded by the fact that SFR
indicators at low sSFRs are (a) much noisier due to a lower
intrinsic brightness, and (b) and more prone to be contaminated

Figure 11. This figure compares the redshift evolution of sSFR for a log(M/Me) = 10 galaxy on the star-forming sequence between observations and galaxy formation
simulations. The specific dark matter accretion rate from the Millennium simulation is also shown for reference (Fakhouri et al. 2010). The left panel shows previous
observational star-forming sequences, which have a ∼0.4 dex offset with the simulations. The right panel shows results from this work, which resolve these systematic
differences.
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with emission from processes unrelated to star formation (e.g.,
LINER emission, AGN, or dust heating by old stars).

It may not yet be possible to quantitatively distinguish
between these two schemata, at least not using these data. This
is because colors can be bimodal even if the sSFR is not, as
photometric colors saturate at low sSFRs (see, e.g., Leja et al.
2020 and references therein). Put another way, the key
challenge is that the observed SFRs become highly uncertain
at low sSFR. Figure 2 provides a clear demonstration of this.
The sensitivity of the star-forming sequence at low SFRs to the
uncertainty resolution suggests that the inferred shape of the
star-forming sequence at low sSFRs is not a robust measure-
ment, but instead, largely traces the shape of the uncertainties
in SFRs.

Regardless of whether there is truly a bimodal sequence that
is unobservable because it is smeared out by currently-
irreducible observational error, or whether there is indeed no
bimodality at all, there are clear practical ramifications to this
question. Figure 1 demonstrates that the normalization and
width of the star-forming sequence and the fraction of
quiescent galaxies both depend strongly on the separation of
star-forming and quiescent galaxies at the ∼0.2–0.3 dex level,
even when using the same star formation rate indicator. Given
this, it is unsurprising that the observed width of the star-
forming sequence varies between ∼0.25 and 0.5 dex in the
literature (Speagle et al. 2014).

In light of these uncertainties, we argue that it is more
meaningful to compare measurements of the density in the
SFR–M plane than it is to parameterize the star-forming
sequence itself using a bimodal galaxy classification system.
The ridgeline of the star-forming sequence is largely invariant
to bimodal classification (Renzini & Peng 2015), and the 1σ
scatter of the full galaxy population in SFR–M is also
meaningful and straightforward to measure. In this work, we
additionally package the inferred density of the star-forming
sequence into a trained normalizing flow and make it publicly
available. In this way, galaxy formation models and future
observational studies can compare to the full set of observa-
tions rather than attempting to emulate fragile observational
selection criteria. This is an important step on the path toward
likelihood-free inference. This approach has the additional
advantage of including the full structure in the SFR–M* plane,
including such features as star-bursting galaxies above the star-
forming sequence and the distribution of green valley and
quiescent galaxies below the star-forming sequence.

8. Conclusion

In this paper, we infer the galaxy star-forming sequence
across 0.2< z< 3 using a combination of machine-learning
techniques and nonparametric methods applied to state-of-the-
art UV-IR galaxy SED modeling from Prospector-α.
Specifically, we train a normalizing flow to reproduce the
distribution *M zlog , logSFR,( )r of galaxies in logM*,
log SFR, and redshift, with alterations included to marginalize
over the full logM* and log SFR uncertainties derived from our
previous Prospector-α fits.

Our conclusions are summarized here:

1. We use the Prospector-α fits to show that preselec-
tion of star-forming galaxies adds substantial systematic
uncertainty to the inferred properties of the star-forming
sequence. Applied to the same data, four standard but

different preselection methods produce differences of
∼0.3 dex in the normalization, a ∼0.2 dex in the width,
and ∼20% differences in the fraction of quiescent
galaxies.

2. We instead present mass- and redshift-dependent fits to
the ridgeline (number density peak) of the star-forming
sequence and the mean SFR for all galaxies, avoiding
fragile observational selection criteria for star-forming
galaxies.

3. We show that the star-forming sequence has a mass-
dependent slope below z∼ 2, with a flatter relationship at
high masses and a steeper relationship at low masses with
a slope near unity. Above z∼ 2 a single slope is able to fit
the data.

4. The profile of the star-forming sequence is relatively
narrow (σ∼ 0.3–0.35 dex) across a wide range of masses
and redshifts. It is, however, significantly wider
(σ∼ 0.4–0.5 dex) at high redshift (z 2) and high masses
(M* > 1011 Me).

5. The star-forming sequence inferred in this work is
0.2–0.5 dex below the great majority of previous results
in the literature. We show that this lower normalization is
specifically caused by the nonparametric SFHs in
Prospector-α which produce older ages and higher
stellar masses and the overall lower inferred SFRs.

6. A general framework is developed to compare SED-
based SFRs with UV+IR SFRs. This framework
demonstrates that inferring star formation histories, dust
attenuation, and metallicities on an object-by-object basis
via SED-fitting produces more sophisticated (and, likely,
more accurate) conversions between the observed flux
and the SFRs. It is shown that the net effect of these
changes in Prospector-α produces lower SFRs than
standard UV+IR formulae, particularly at higher
redshifts.

7. Our new star-forming sequence follows the specific dark
matter accretion rate much more closely than previous
work, removing a long-standing 0.2–0.5 dex offset at
0.5< z< 3 in the star-forming sequence between obser-
vations and predictions from models of galaxy formation.

8. Our trained normalizing flow describing the full density
*M zlog , logSFR,( )r of galaxies in logM*, logSFR, and

redshift is made available online.22 This permits direct
comparison between this work and future theoretical and
observational works, removing the need to define a star-
forming sequence or separate star-forming and quiescent
galaxies.

In this work, we have used state-of-the-art tools in machine
learning, statistics, and computing to solve long-standing
problems in observational galaxy evolution. In the future, we
look forward to employing more sophisticated models and
better tools to further address extant issues in this work. Some
avenues for future improvement include better accounting for
the effects of cosmic variance (sampling variance), more
sophisticated modeling of the selection function near the stellar
mass-complete limit, and a significant reduction of the
computational resources required to fit high-dimensional SED
models.
Finally, the galaxy star-forming sequence is only as accurate

as the models used to produce it. Due to the complex nature of

22 https://github.com/jrleja/sfs_leja_trained_flow
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stellar populations in galaxies, these physical models greatly
benefit from cross-calibration tests to ensure their accuracy.
Such tests for Prospector-α have produced promising
results in spectroscopic observations of nearby galaxies (Leja
et al. 2017; Pasha et al. 2020), in hydrodynamical simulations
(Lower et al. 2020), and in comparisons between low-redshift
star formation histories and high-redshift observations (Leja
et al. 2019c). However, existing posterior predictive tests
typically only cover small, well-studied samples or simulated
objects (models fitting models). Going forward, there is a sore
need for tests covering a variety of stellar population
parameters across a wide range of both stellar masses and
cosmic times, particularly in the early universe, to ensure
robust parameter inference.
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