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Drug-induced liver injury (DILI) is one of the main reasons for drug attrition during pre-clinical 

and clinical phases of drug development as well as for drug withdrawal post-marketing1. The 

development of DILI can result in severe outcomes, giving high risk for liver failure and death with 

a fatality rate of 7.6%2. Therefore, it is of major concern during drug development and in the 

clinic. To improve the prediction and understanding of DILI at an early stage during drug 

development, there is a need for improved mechanism-based in vitro hepatotoxicity testing 

methods. The activation of specific adaptive stress response pathways is a way for cells to cope 

with drug-induced stress to restore homeostasis and is one of the early key events in the 

development of DILI3,4. Determining the activation of these stress responses could very well serve 

as early predictors for DILI. In this thesis, the regulation of the activation of adaptive stress 

responses has been studied using high content imaging, gene silencing and high throughput 

transcriptomics approaches to improve the understanding and prediction of DILI. Furthermore, 

the inter-individual variability in stress response activation was mapped to enable the usage of 

accurately defined uncertainty factors to account for human population variability for DILI 

liabilities during safety testing. In this chapter, a general introduction will be given of DILI, 

adaptive stress responses activation and liver in vitro models for studying hepatotoxicity, 

followed by an overview of this thesis. 

Drug-induced liver injury 

DILI has been classified into three different types; direct, idiosyncratic, and indirect DILI5. Direct 

DILI is recognized as being dose-dependent, predictable, and usually occurs within a short time 

frame. In contrast, idiosyncratic DILI is not dose-dependent, unpredictable, with a variable 

latency period, often not picked up in pre-clinical trials and has an incidence as low as 1 on 

100.000 patients only affecting a small subpopulation of the patients6. Typically, the occurrence 

of idiosyncratic DILI is provoked by the combination of specific drug properties, patient 

characteristics and certain environmental factors. Indirect DILI, the third category proposed 

recently, involves liver injury associated with the indirect action of the drug such as provoking 

aggravation of pre-existing liver disease usually upon a long latency period. 

Different cell types within the liver can be affected during liver injury, as such DILI is further 

categorized as being hepatocellular, cholestatic or mixed. During the acute phase of DILI this is 

defined by the ratio between alanine aminotransferase (ALT) and alkaline phosphatase (ALP) 

activity both expressed in relation to the upper limit of the normal range (ULN) defined as the R 

value. Depending on affected cell types, DILI can lead to various liver disease phenotypes, such 

as hepatic necrosis, hepatitis, cholestasis, hepatic steatosis, fatty liver or neoplasia. In severe 

cases having extensive hepatic necrosis, this may lead to acute liver failure whereafter liver 

transplantation is needed for survival. Of all liver failure cases, dependent on geographical area, 

8 up to 26% was caused by DILI being one of the main causes for liver failure7–9.  
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Monitoring the development of DILI traditionally relies on the assessment of the general function 

of the liver by measuring serum levels of ALT, aspartate aminotransferase (AST), ALP, glutamyl 

transpeptidase (GGT) and total bilirubin (TBL)10. The combination of biomarkers ALT and TBL are 

used as a prognostic marker for severe DILI during drug safety assessment, also referred to as the 

Hy’s Law, with the criteria of ALT at least three times and TBL two times higher than ULN giving 

a risk of at least 10% for the need of a liver transplant or death2,10,11. However, especially TBL is 

only elevated upon significant hepatocellular injury and is not always specific for liver toxicity. 

Therefore, there is a need of novel mechanism-based biomarkers elevated at an early stage 

during development of DILI. Recent efforts enabled the identification of the biomarkers 

microRNA miR-122 and glutamate dehydrogenase (GLDH) as being highly liver-specific and more 

sensitive compared to traditional biomarkers12–14. Combining in silico modelling approaches, 

such as DILIsym developed by the DILI-sim Initiative15, with the monitoring of both traditional 

and novel biomarkers aids in increasing accuracy of predicting DILI. 

Adaptive stress response activation upon drug exposure 

One of the key events leading to DILI is the activation of adaptive stress response pathways, a 

way for cells to cope with drug-induced stress and restore homeostasis16. These include the 

oxidative stress response pathway regulated by transcription factor nuclear factor erythroid 2-

related factor 2 (NRF2/NFE2L2) and sensor Kelch Like ECH Associated Protein 1 (KEAP1)17,18, the 

unfolded protein response (UPR) upon endoplasmic reticulum (ER) stress regulated by sensors 

activating transcription factor 6 (ATF6), eukaryotic translation initiation factor 2-alpha kinase 3 

(PERK/EIF2AK3) and inositol-requiring enzyme 1α (IRE1α/ERN1)19–21, the DNA damage response 

regulated by transcription factor tumor protein p53 (p53/TP53)22–24 and the inflammatory 

response regulated by transcription factor nuclear factor kappa-light-chain-enhancer of activated 

B cells (NF-κB)23–26. Qualifying and quantifying the activation dynamics of these stress response 

pathways upon drug exposure could aid in the prediction of the development of DILI. Indeed, the 

usage of a panel of stress response BAC-GFP reporter HepG2 cell lines together with high-content 

single cell confocal imaging enabled to recognize drugs classified with a DILI-concern27–29. 

Transcriptomic approaches reveal activation of specific gene networks such as stress response 

activation upon drug exposure that can inform on DILI susceptibility. Advances in the field of 

transcriptomics, such as targeted RNA-sequencing TempO-seq technology30, enables to screen 

candidate drugs at a higher-throughput level and establish dose-response relationships at both 

the single gene and network level31,32.  

Liver in vitro models for safety testing 

Liver cancer cells, such as HepG2, have been extensively used in mechanistic studies to predict 

and unravel underlying molecular mechanisms of drug-induced hepatotoxicity and is a highly 

reproducible, cost-effective and easy to handle liver test system. However, these transformed 

cell lines express very low amounts of liver specific enzymes and transporters localized at the 
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membrane33. Due to low amounts of liver specific enzymes, the effect of the formation of 

reactive metabolites on the induction of hepatotoxicity and activation of specific stress responses 

is likely overlooked in this in vitro test system. In addition, other pathways may be activated due 

to their capability of unlimited cell division and self-renewal. Due to these shortcomings, 

transformed immortal liver cell lines may not be the ideal in vitro model to study underlying 

molecular mechanisms of DILI.  

Primary human hepatocytes (PHHs), currently still the gold standard, possess relatively high 

expression of enzymes and transporters most comparable to the human liver34. In addition, PHHs 

allow to study inter-individual variability by evaluating toxicological responses in PHHs derived 

from multiple donors. However, since these are scarcely available, do not divide and 

dedifferentiate over time especially when applied as a monolayer culture, there is a need for 

other liver in vitro systems having an unlimited source, remain stable and highly reflective of the 

human liver. To allow long-term culture of PHHs, recently different techniques have been 

developed, such as dedifferentiation towards hepatic progenitor cells enabling expansion35,36, 

blockage of the dedifferentiation process37 or by culturing them in a 3D structure as spheroids, 

microtissues or organoids38–41. Although advances have been made, expansion is still limited or 

do not entirely reflect fully mature hepatocytes. Alternatively, using the upcyte technology PHHs 

can be transformed allowing unlimited expansion although reduces hepatocyte functionality42. 

Another source is the HepaRG cell line consisting of hepatic progenitor cells, derived from a 

patient with hepatocarcinoma and hepatitis C infection, which can be differentiated towards 

mature hepatocytes expressing similar levels for many cytochrome P450 (CYP) enzymes as 

PHHs43. On transcriptome level, HepaRG cells in 3D setup more closely resemble liver tissue than 

HepG2 although not as similar as PHHs44. Despite, both PHHs and HepG2 cells appeared to be 

more accurate in recognizing drugs classified with a DILI-concern than HepaRG45. Moreover, the 

need of differentiation results in higher costs and is more time-consuming compared to HepG2. 

Since both HepaRG and HepG2 cells derive from only a single donor, they do not allow for the 

evaluation of inter-individual variability. More specifically, HepaRG derived from a donor being a 

poor metabolizer for CYP2D6 affecting its sensitivity for drugs metabolized by CYP2D646.  

Recently, great progress has been made in the generation of hepatocytes from human induced 

pluripotent stem cells (hiPSCs) derived from somatic cells. In 2006, Takahashi and colleagues 

were the first to generate such hiPSCs47. These hiPSCs are capable of being differentiated in all 

three germ lines, namely endoderm, mesoderm and ectoderm. Indeed, hiPSCs can be 

transformed into any cell type of interest. Recent reports showed that hiPSCs can be efficiently 

differentiated into hepatocyte-like cells (HLCs)48–51. HiPSCs are first differentiated into definitive 

endoderm via stimulation with Activin A, a member of the TGF-β superfamily and mimics Nodal 

signaling52. Thereafter, hepatoblast formation is initiated by certain growth factors. Eventually, 

these hepatoblasts are differentiated into immature and subsequent mature hepatocytes. 
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Various differentiation protocols have been described resulting in HLCs, which were capable of 

albumin secretion, urea production, glucose storage, and drug metabolism and transport48–51,53. 

Deriving hiPSCs from multiple donors allows for the evaluation of inter-individual variability in 

drug-induced toxicity in the cell type of interest such as HLCs54. To further mimic the human liver, 

hiPSC-derived HLCs are combined with other liver cell types such as Kupffer and stellate cells 

enabling to study multi-cellular responses55,56. Culturing these cells in a 3D format or within an 

organ-on-a-chip platform could advance maturation and resembles the environment in vivo57,58. 

Although, great progress has been made in mimicking the differentiation process and 3D 

environment, hiPSC-HLCs still do not reach the full maturation status of PHHs in vivo and needs 

further optimization.  

To improve the recognition of DILI liabilities during drug safety testing it is of great importance 

to further improve or establish novel liver in vitro test systems as well as further characterization 

and thorough comparisons of existing test systems. This will allow for optimal selection of test 

systems fit-for-purpose in a tiered approach to improve drug safety testing strategies. Since the 

activation of stress response pathways are one of the early key events in the development of 

DILI, it is essential to accurately map the difference in activation of these responses and 

sensitivity between different liver in vitro test systems such as HepG2, hiPSC-HLCs and PHHs 

which is currently still lacking. Furthermore, mapping of the impact of the culture method, such 

as 2D vs 3D or type of culture medium, on stress response activation and sensitivity for drug-

induced toxicity is vital. Also, currently the tight regulation of these stress responses and the 

switch towards cell death signalling is not yet fully understood. Here, improved insight will aid in 

a better prediction of DILI liabilities. During drug safety testing to account for inter-individual 

variability, currently the standard safety factor of 10 is used59. However, this standard factor is 

not data-driven, endpoint or drug specific and may not be enough to capture the full variability 

within the population. Therefore, there is a high need to accurately map the inter-individual 

variability in drug-induced toxicity and stress response activation to allow for the usage of data-

driven safety factors to improve risk assessment. 

Overview of the thesis 

In this thesis, the regulation and inter-individual variability of the activation of stress response 

pathways upon drug exposure has been studied to improve the mechanistic understanding and 

prediction of DILI. Here, an overview will be given of the individual chapters. 

In chapter 2, an overview is given of the utility of stress response BAC-GFP HepG2 reporters for 

the assessment of DILI liabilities of drugs and increase mechanistic understanding by combining 

with RNAi screening approaches. Here, key stress response pathways and the development and 

technical usage of the reporters are described.  

The mapping of the crosstalk between the oxidative stress and DNA damage response is 

described in chapter 3. By using the HepG2 BAC-GFP reporters for both adaptive stress response 
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pathways in combination with live confocal imaging at single cell level, dose-response 

relationship and activation dynamics upon chemical exposure could be identified. By combining 

with RNAi-mediated silencing of specific genes within the oxidative stress or DNA damage 

response, the interplay between both pathways upon chemical exposure was mapped. 

In chapter 4, the influence of the culture method of HepG2 BAC-GFP DNA damage reporters on 

the sensitivity to identify genotoxicants was studied. HepG2 reporter cells were cultured in 2D or 

3D setup using standard or amino-acid rich (AAGLY) medium, exposed with genotoxic compounds 

and imaged using confocal microscopy. This enables to define a testing strategy of genotoxicants 

possibly in a tiered approach. 

The regulation of CHOP during chemical-induced ER stress and UPR activation is determined in 

chapter 5, by combining computational modelling with confocal imaging of HepG2 BAC-GFP UPR 

reporters upon chemical exposure. The UPR was induced using tunicamycin in a broad 

concentration range and followed by ATF4, XBP1, CHOP and BIP-GFP reporter activation. Based 

on this data, a dynamic model was constructed exemplifying the crucial role of ATF6 in CHOP 

regulation. 

To further dissect the regulation of CHOP and the UPR, we performed a large siRNA screen, 

targeting 3,457 genes, in HepG2 CHOP-GFP cells described in chapter 6. Here, the influence of 

silencing of individual genes on CHOP upregulation during chemical exposure is evaluated. The 

role of key regulators of CHOP, which were validated upon a secondary screen, is evaluated in 

both HepG2 and PHHs using a transcriptomics approach. 

In chapter 7, the difference in regulation of stress response activation upon chemical exposure 

was evaluated using a targeted transcriptomics approach between different liver in vitro models, 

namely HepG2 cells, PHHs and hiPSCs-HLCs. Specific inducers for the oxidative stress response, 

UPR, DNA damage response and inflammation signalling was used in a broad concentration 

range. 

To evaluate the inter-individual variability in stress response activation in chapter 8, the 

transcriptome of a panel of PHHs derived from 50 donors was evaluated upon exposure with 

specific stress inducers in a broad concentration range. Dose-response modelling allowed to 

evaluate the variability in the point-of-departures for gene induction. This was combined with 

computational modelling to evaluate the probability in estimating the correct variability and 

defining safety factors to correct for inter-individual variability during risk assessment. 

In chapter 9 I will discuss the overall outcome of the studies and identify requirements for future 

research 
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Abstract 

The occurrence of drug-induced liver injury (DILI) after drug approval has often led to 

withdrawal from the market. Especially idiosyncratic DILI forms a major problem for 

pharmaceutical companies, due to its independency of dose or duration of exposure, 

idiosyncratic DILI is considered as unpredictable. New in vitro test systems are now evoking to 

improve the prediction of DILI in the pre-clinical phase of drug development. Most 

conventional compound toxicity screening systems rely on single end-point assays most of 

which are based on relatively late-stage toxicity markers. When monitoring key events 

upstream in various adaptive stress signalling pathways combined in a single assay, the 

sensitivity to pick up hepatotoxic drugs will be increased while also mechanistic insight will be 

gained. Integrating with high-content imaging (HCI), time and high resolution single cell 

dynamics can be captured together with features for translocation between specific subcellular 

compartments. Efforts have been made to use specific dyes, antibodies or nanosensors in a 

multiplexed fashion using HCI, to assess multiple toxicity markers. However, these markers are 

still relatively downstream of toxicity signalling pathways which do not pinpoint to the 

molecular initiation event (MIE) of a drug. Here, we describe the application of a HepG2 BAC 

GFP reporter platform for the assessment of DILI liabilities by monitoring key components of 

adaptive stress pathways combining with HCI. Detailed insight in the regulation of these 

adaptive stress pathways during drug adversity can be reached by integrating these reporters 

with RNAi screening. Ultimately, this may lead to the recognition of novel biomarkers which 

can be used in the development of novel toxicity testing strategies. 

Keywords: Systems microscopy, drug-induced liver injury, stress-response dynamics, BAC-GFP 

reporter platform, mechanism-based toxicity screening 

Introduction 

Drug-induced liver injury (DILI) can present in various different pathologies: e.g. cholestasis 

(accumulation of bile), steatosis (accumulation of fatty acids) or phospholipidosis (accumulation 

of phospholipids). Mostly, these are mild perturbations, which will be counteracted by the target 

tissue ultimately establishing a new physiological homeostasis. However, DILI can also lead to 

severe liver failure due to a necrotic liver or extensive inflammatory responses. Of all liver failures 

presented in the clinic, > 50% are caused by drugs7. A large amount of these liver failures is caused 

by an overdose of acetaminophen. However, still 13% of all liver failures are caused by drugs 

taken on other prescribed dose regimens7. In most cases, these adverse reactions are called 

idiosyncratic reactions; idiosyncratic DILI (iDILI) occurs in rare cases and has a variable latency 

time. These features are the main reason these drugs are missed during preclinical safety testing 

and that liver injury is the leading cause for drug market withdrawal60. 
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Cellular and biochemical perturbations underlie DILI, primarily in hepatocytes, that contribute to 

adverse outcome61. The past decade, the field of predictive toxicology has initiated the 

integration of mechanistic insights in chemical adversity in toxicological screening approaches. 

Adaptive stress response pathways are central in toxicological responses3,4. The amplitude of 

adaptive stress response pathway activation is the determining factor in the switch between 

adaptation and cell death, which makes them essential in toxicity. Quantitative assessment of 

adaptive stress responses and key event activation likely will contribute to a more accurate 

prediction of DILI based on mechanistic insight62. 

For quantitatively monitoring the adaptive stress response activation in drug safety assessment, 

systems microscopy will be essential. We define systems microscopy as the systematic high-

throughput and high-content quantitative understanding of cell biology. Systems microscopy can 

be used to grasp detailed single cell protein dynamics, providing its own niche to cover the 

mechanistic insight spectrum in toxicological screening. Various imaging-based approaches have 

been established that enable the quantification of biological changes during chemical 

exposure63–76. These approaches have largely been based on the use of specific cell permeable 

dyes in a multiplexed fashion as indicators for the development of cellular injury in real-time in 

combination with automated high-content screening (HCS). In these assays, cellular structures 

such as nuclei, mitochondria or the cellular membrane as well as specific functional 

characteristics like transporter activity, or mitochondrial function can be assessed and applied in 

the prediction of DILI 63–73. While these approaches allow the quantification of various 

biochemical markers for toxicants, these are conventional late markers of cell injury and in close 

proximity to the tipping point towards cell death. These markers provide limited insight in 

adaptive stress response pathway activation, which typically occurs earlier and at lower 

concentrations and are likely more representative for the mode of action (MoA). More MoA-

related markers that reflect the adaptive stress response pathways may increase the sensitivity 

to identify hepatotoxicity liabilities. Ideally, high resolution time dynamics of multiple key events 

in the early phase of stress signalling pathways would be monitored on single cell level to improve 

the prediction and understanding of DILI liabilities. In this chapter, we will discuss the application 

of fluorescent protein reporter cell lines to monitor these adaptive stress signalling pathways 

using a systems microscopy approach to improve DILI liability assessments.  

Adaptive stress response pathway activation and DILI  

Cellular stress can lead to adaptation via activation of adaptive stress responses; however when 

the cell cannot cope with the severity of the stress, adaptive stress responses will switch to 

adversity and will induce cytotoxicity. The mechanism of how these stress responses exert their 

function in adaptation is reviewed extensively in previous reviews3,4,77–81. Therefore, here, we 

will briefly discuss four prominent main stress response pathways and their involvement in 

adaptation and relationship to cellular adverse outcomes. 



 

Chapter 2 

 

18 
 

Anti-oxidant response: Xenobiotic exposure can induce large amounts of reactive oxygen species 

(ROS). ROS accumulation may affect KEAP1 cysteine residues determining Nrf2 stabilization and 

subsequent nuclear translocation. In the nucleus, Nrf2 transcribes a large battery of anti-oxidant 

proteins which can detoxify the cell77. Yet, when the induced ROS is overwhelming, adaptation 

cannot rescue the overall overt cellular damage, thus leading to onset of cell death due to 

perturbation of both cellular bioenergetics and redox homeostasis82. The Nrf2-dependent 

oxidative stress response exemplifies the relevance of adaptive stress responses in the protection 

against liver injury: Nrf2 knock out mice are highly susceptible to various hepatotoxicants83–85.  

ER stress and unfolded protein response (UPR): When cells suffer from impaired protein folding, 

the load of unfolded proteins will accumulate in the endoplasmic reticulum (ER). To reduce the 

amount of unfolded proteins, three UPR signalling branches, involving PERK, IRE1α and ATF6 

activation, ensure production of chaperones including BiP, enlargement of the ER capacity and 

inhibition of the translational machinery. In addition, the UPR induces the expression of the 

transcription factor C/EBP homologous protein (Chop). Chop subsequently initiates transcription 

of target genes that trigger the onset of apoptotic signaling86,87. Thus, Chop is a critical factor in 

the switch from adaptation to adversity in the unfolded protein response. This is illustrated by 

studies of Chop knock out mice which have reduced liver injury after acetaminophen 

treatment88,89.  

DNA damage response: Upon accumulation of single or double stranded DNA breaks or covalent 

modification of nucleotides, various sensor and kinase signalling events result in the 

accumulation of p53. P53 is known as a tumor suppressor as it reduces the effects of massive 

DNA damage80. In the adaptive phase it activates cell cycle inhibitors, such as p21, and DNA repair 

mechanisms. However, upon severe DNA damage, p53 is able to transcribe apoptosis regulators 

as BAX, FAS, NOXA and PUMA90. This results in a key role for p53 in the switch between 

adaptation and cell death by apoptosis.  

Inflammatory TNFα signalling: Inflammatory signalling is initiated by the production of cytokines 

by immune cells such as resident liver Kupffer cells. Pro-inflammatory cytokine TNFα is able to 

bind the TNFα-receptor which results in NF-κB translocation and subsequent target gene 

expression81. Together these target genes induce an inflammation response to clear potential 

cellular damage and inhibit the onset of death receptor-mediated apoptosis. However, certain 

cytokine/drug combinations can induce synergistic cell death, whereby the anti-apoptosis 

signalling by the TNFα-receptor is switched to a pro-apoptotic signalling route25. This exemplifies 

the subtle switch from adaptation to adversity by otherwise cytoprotective cytokine signalling. 

These four adaptive stress responses demonstrate that cellular states can easily switch from re-

establishment of cellular homeostasis after injury to necrosis and/or apoptosis. The amplitude 

and duration of stress response pathway activation are likely critical determinants for final 

cellular outcome. By quantitatively assessing the activation of these adaptive stress pathways by 
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candidate drugs using a reporter system combined with systems microscopy, insight may be 

given in their DILI liabilities at the early-phase of toxicity signalling. 

A HepG2 BAC-GFP reporter platform as a tool for predicting and unravelling DILI  

To allow the assessment of adaptive stress response activation over time, we tagged different 

key components of the ER stress response, oxidative stress response, TNFα inflammation and 

DNA damage response pathways with enhanced green fluorescent protein (eGFP) in 

hepatocellular carcinoma HepG2 cells. Confocal microscopy enables us to monitor live cell 

dynamics in a high-throughput fashion. GFP is integrated with bacterial artificial chromosome 

(BAC) recombineering technology: BACs are large plasmids (~150-200 kB) able to carry a whole 

eukaryotic locus including introns and promotor regions. In 2008, Poser et al. established a 

method to apply GFP-tagging of BACs in a high-throughput manner91. We used this BAC 

recombineering method to tag different components of adaptive stress responses with GFP27,79. 

Transfection of BAC-GFP constructs allows the incorporation of very large pieces of DNA in the 

host genome, ultimately ensuring control of the engineered genes by the endogenous promotor 

region and other regulatory sequences. In relation to the earlier introduced adaptive stress 

response pathways, we have generated a broad range of BAC-GFP reporter lines aimed to 

capture the complexity of DILI27,79.  

Development of the reporter platform  

Below we describe the detailed approach to establish BAC-GFP reporters. We introduce these 

reporters in HepG2 cells, but any other cell line can be used. 

Identification of a stress pathway specific biomarker. Both literature and transcriptomics mining 

allows the discovery of hepatotoxic drug responses (e.g. TG-GATES and Drug Matrix) and the 

identification of candidate biomarker genes that can be translated into reporter assays92,93. In 

this way, key regulators of specific adaptive stress pathways have been identified. For our HepG2 

BAC-GFP platform, both early sensors, downstream transcription factors and their subsequent 

target genes were selected to resemble the activation of critical stress response pathways at 

different signalling levels.  

Cloning of the BAC-GFP plasmid. Using an online tool (http://www.mitocheck.org/cgi-

bin/BACfinder), BAC constructs can be ordered that contains the selected human gene of 

interest, containing all the regulatory elements; also the necessary GFP overhang primers can be 

found here. Using a multi-step cloning strategy, the BAC-GFP fusion plasmid can be generated91.  

Transfection and cell reporter cloning. HepG2 wildtype cells are seeded in a 6-well plate format 

and simultaneously transfected (lipofectamin-based) to introduce the BAC-GFP construct to the 

cells. Geneticin (G418) selection is used to select BAC-GFP HepG2 positive clones. Monoclonal 

BAC-GFP HepG2 clones are picked (generally 10 to 24 clones) and expanded. PCR is used to 

confirm correct genomic integration of the BAC-GFP. Next, the expression of the target gene 

(quantitative PCR) and protein (Western blot) is determined to quantify the levels of GFP-tagged 
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target gene or protein. The GFP-fusion protein size should correspond to the corresponding gene 

fusion product. Live cell imaging will then validate a correct localization of the GFP-protein fusion, 

the population variability, and the inducibility by xenobiotic treatment. At last, RNA interference 

experiments are performed to verify GFP-target gene specificity. See figure 1 for an overview of 

BAC-GFP reporter line generation. 

Application of BAC-GFP HepG2 reporters  

The BAC-GFP reporter panel covers multiple adaptive stress responses (e.g. oxidative stress 

response, ER stress response, DNA damage response and NF-κB signalling) at different signalling 

levels and is able to reveal subcellular localization of the different components during stress 

induction when combined with confocal microscopy. Furthermore, intracellular translocation 

events and specific cellular accumulation can be captured with this system. The analysis of the 

GFP signal in each subcellular compartment needs a different image analysis strategy which is 

based on the usage of CellProfiler and ImageJ (Fig. 2). Retrieved data sets can contain cell 

population as well as single cell features making it possible to capture valuable single cell 

dynamics. Thus, the use of high-content high-throughput imaging of BAC-GFP reporter cell lines 

enables identification of spatial-temporal single cell dynamics of adaptive stress response cellular 

signalling underlying DILI.  

Fig. 1. Generation of the HepG2 BAC reporter platform. 1. Identifying the target proteins that can serve as 

biomarkers for certain stress responses. 2. Generating the BAC-GFP fusion plasmid. 3.Transfect HepG2 wt cells. 

4. Selection and clonal expansion. 5. Validation of the HepG2 BAC reporters.  
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We see two major application domains for BAC-GFP reporters in the context of DILI: prediction 

and mechanistic understanding. The application of the BAC-GFP reporter system in the DILI 

Fig. 2. Overview of HepG2 BAC-GFP reporter platform. Overview of different reporters for the oxidative stress, 

ER stress, DNA damage or inflammation response sensing at different levels with the signalling pathway. 

Depending on the specific reporter, GFP signal can be quantified either in the cytosol, nucleus, in foci or 

alterations in cellular structure can be examined. Each strategy has its own specific segmentation and analysis 

pipeline. In the end, high-content data can be further processed to obtain time or dose responses, single cell 

tracking, subpopulations identifications or specific translocation in between different subcellular compartments.  
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prediction domain allows to identify the activation levels of multiple adaptive stress responses 

giving a certain MoA toxicity fingerprint for each drug. 

These fingerprints can be linked to DILI liability classification and used for future hazard 

identification of potential new drugs. In this way, DILI liabilities can be predicted and 

simultaneously reveal the underlying MoA. The other domain, namely the application in 

mechanistic studies, focuses on the underlying cause of toxicity in contrast to DILI predictions 

and obtains a better understanding of why some patients are more prone to develop DILI. In 

addition, this may give more insight in the precise regulation of these adaptive stress responses 

and their balance between adaptation and adversity. Here, we will present examples of the 

application domains of these BAC-GFP reporters. 

Drug testing for cellular stress pathway activation supporting the prediction of DILI  

DILI prediction can make use of features specific to drugs attributed as a DILI liability. We 

performed an imaging-based screen with a set of 131 drugs classified as either most-, less- or 

non-DILI concern by Chen et al.94 in a broad concentration range using a panel of 8 different BAC-

GFP reporter cell lines. The BAC reporters used involved Srxn1 and Hmox1 (oxidative stress); 

Chop and BiP (ER stress pathway); Hspa1b (heat shock response); p21 and Btg2 (DNA damage); 

Icam1 (cytokine signalling) (Fig. 3). The responses of the different reporters together show 

clusters of drugs enriched for most-DILI classification which activates one or more adaptive stress 

responses. In this way, utilizing a classifier a prediction of the DILI liability can be made based on 

its adaptive stress responses activation pattern for newly developed drugs.  

A major advantage of the BAC-GFP reporter cell lines is the imaging-based assessment of the 

dynamics of the cellular stress response activation. The definition of transcription factor 

activation and oscillatory behaviour dynamics as well as the rate and induction of key-node 

signalling proteins will be an important future application to better understand DILI related stress 

responses. Recently, we used high-content imaging single cell temporal dynamics of several BAC-

GFP reporters for statistical inference and demonstrated the possibility to capture imaging-based 

single cell temporal responses in so called base functions95. Functional data analysis opens up 

possibilities of detailed temporal dynamic information including transcription factor 

translocation rates, calculations of local maxima and oscillatory periods or dampening 

parameters; the latter finds applications for oscillatory signalling processes such as observed for 

NF-κB. Thus, we have applied the NF-κB reporter to quantify the oscillatory perturbations 

following exposure to DILI drugs linked to inflammatory signaling96. Perturbations of NF-kB 

oscillatory behaviour will affect the downstream target gene activation and hence affect the 

biological outcome of cytokine-mediated signalling. Here, NF-κB oscillatory behaviour in single 

cells was tracked during time-lapse imaging. Our high-content imaging and image analysis 

approach allowed us to define that diclofenac and carbamazepine inhibits the oscillatory 
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Fig. 3. Heatmap of the effect of a set of 131 classified drugs on the activation of multiple adaptive stress BAC-

GFP reporters. The drug set consists of drugs classified as either most-, less- or non-DILI. HepG2 BAC-GFP 

reporters (BiP-, Srxn1-, p21-, Chop-, HSPA1B-, Btg2-, Hmox1- and ICAM1-GFP) were exposed for 72 hours to drugs 

in a broad concentration range (1 to 100x Cmax) and imaged using confocal microscopy. GFP activation levels 

are depicted as fraction of cells three times above the background levels.  
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behaviour of NF-κB. This effect was associated with a sensitization to TNFα-induced pro-

apoptotic signalling. 

Identification of novel key regulators of stress signalling pathways  

There is a need to gain insight in the underlying mechanisms of DILI. One aspect involves the 

unravelling how drugs perturb the cellular physiology and as a consequence switch on cellular 

stress responses that define cellular adaptation or adverse outcomes. Such improved 

mechanistic understanding will identify candidate biomarkers that can be integrated in safety 

testing strategies in either early drug development or as part of the investigative toxicology 

toolbox97. 

Revealing underlying mechanisms of DILI using BAC-GFP stress response reporters  

Toxicogenomics has been an efficient means to hypothesize mechanisms92,93,98. Yet, functional 

relevance of gene expression changes to mode-of-action of toxicity is hard to define. High-

throughput functional siRNA-based screening provides direct functional insight in the role of 

individual genes in adverse outcome. We have successfully applied targeted RNAi approaches to 

discern the role of oxidative stress and ER stress in onset of DILI97. Furthermore, we applied a 

large siRNA survival screen targeting individual kinases, phosphatases and transcription factors, 

to gain deeper understanding of the regulation of the DNA damage response in embryonic stem 

cells99. This success allowed us to apply large scale RNAi screening to identify the signalling 

components that modulate stress response signalling. For this, we integrate our BAC-GFP 

reporters with imaging-based siRNA screening to identify modulators of Nrf2, UPR and NF-κB 

signalling. As an example, to unravel novel components that are crucial in the regulation of this 

oscillatory behaviour of NF-κB, we have performed an siRNA screen, consisting of kinases, 

ubiquitinases and Toll like Receptors/TNF receptors, using the HepG2 RelA-GFP reporter cell line. 

Diclofenac pre-treatment of HepG2 cells inhibits the oscillatory behaviour of NF-kB25; RNAi is an 

excellent means to identify modulators that cause this effect. Therefore, HepG2 RelA-GFP 

reporters were pre-exposed with diclofenac for 8 hours and subsequently with TNFα (Fredriksson 

et al., unpublished data). Multiparametric analysis revealed the identification of novel genes, 

including A20, CDK12 and UFD1L, that could regulate this oscillatory behaviour which may 

ultimately lead to insights why some patients are prone to the development of DILI. Using the 

same approach, key regulators could also be identified for other adaptive stress pathways, such 

as the oxidative stress pathway, using the Srxn1-GFP reporter, and the ER stress response, using 

the Chop-GFP reporter (unpublished data). 

Recognition of novel key events for Adverse Outcome Pathway development 

Based on improved mechanistic insight, better predictions can be made for the development of 

DILI, especially when this knowledge is placed in a structured adverse outcome pathway (AOP) 

framework. This opens up the opportunity to implement this knowledge into a test system for 

the assessment of DILI liabilities and, thereby, improving its accuracy for predictivity. Likewise, 
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systems microscopy approaches can be used for the development of new AOPs. Work by 

Fredriksson et al. identified underlying molecular mechanisms of the synergistic apoptotic 

response of hepatotoxic drugs and TNFα and could be the basis for a novel AOP. First, 

transcriptomic analysis of HepG2 cells treated with synergistic hepatotoxic drugs (such as 

diclofenac and carbamazepine) with or without TNFα at different time points was performed and 

revealed after Ingenuity Pathway Analysis (IPA) the importance of EIF2/ER stress signalling, Nrf2-

mediated oxidative stress response and death receptor signalling in this synergistic apoptotic 

response. Combining siRNA-mediated knockdowns of important genes in these pathways with 

high-content imaging of AnnexinV-Alexa633, a dye for apoptosis, and HepG2 oxidative stress GFP 

reporters, a model was proposed whereby compound-mediated activation of PERK and Chop 

together with oxidative stress sensitizes towards TNFα-induced apoptotic signaling97. This work 

highlights the strength of combining omics techniques and siRNA-based functional microscopy 

approaches to reveal new insight in the molecular mechanisms that define drug adversities. 

3D culture HepG2 BAC-GFP reporter system with improved hepatic phenotype suitable for 

long-term toxicity assessment  

HepG2 cells have reduced metabolic capacity and a lack in the resemblance with the liver 

phenotype100. Also the proliferative nature of HepG2 hinders chronic repeat testing. To 

overcome these issues, a method to culture HepG2 as spheroids in a 3D hydrogel was 

developed101. 3D HepG2 spheroids show enhanced metabolic capacity of phase I and phase II 

metabolizing enzymes, functional expression of liver phenotypical properties and enable 

culturing over several weeks due to lack of proliferation. We have established the application of 

our panel of BAC-GFP HepG2 reporters in 3D spheroids and defined their functionality using 

automated confocal live cell imaging applications. These models can be used for repeated dose 

toxicity evaluation for up to two weeks. This allowed us to quantify the activation of stress 

response pathways by DILI compounds in 3D spheroids29. Our findings indicate that 3D BAC-GFP 

HepG2 spheroids and integration with automated imaging, allows for high-throughput 

assessment of DILI liability. 

Future directions of DILI testing using fluorescent toxicity pathway reporter technology  

We have established the functionality of HepG2 BAC-GFP reporter cells to quantitatively assess 

stress response pathway activation using an automated confocal microscopy approach. 

Moreover, we demonstrated that these reporter cells are a valuable tool for DILI safety 

assessment27,102. In addition, these reporters have further application in investigative toxicology 

as well as mechanistic molecular understanding of DILI. While the HepG2 cell line is a robust and 

cheap cell system which allows easy scaling for high-throughput screening103, several issues may 

require further optimization. 

Firstly, we need to address the limitation of the lack of drug metabolizing capacity in HepG2 cells 

and consequences for predicting DILI104. Various DILI drugs require metabolism for bioactivation 
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and leading to toxicity105–107. By integrating drug metabolism in the reporter platform, thus 

increasing clearance as well as bioactivation capacity, we can address the question what the 

overall consequences will be for sensitivity and specificity of the reporter platform. 

Secondly, the iPSC model in combination with CRISPR/Cas9 genome editing technology will allow 

the generation of iPSC-based fluorescent reporter systems. The CRISPR/cas9 tool makes it 

possible to make very specific genomic changes, including integration of fluorophores108,109. 

These fluorescent hiPSC reporters can then be differentiated in hepatocyte-like cells (HLC), 

proposed as an improved model for toxicity screening110,111, using established differentiation 

protocols112–114. Further optimization of these differentiation protocols is still ongoing. These 

novel hiPSC derived HLC reporter lines can then be used for high-throughput screening. This work 

will require strong investments in generation of reporter systems and re-assessing the sensitivity 

and specificity of these new reporters for DILI liability evaluation. Regardless of the outcome, 

these reporters can also be used for the generation of other cell lineages representing other 

target organs.  

Thirdly, an advancement in generation of BAC-GFP HepG2 3D spheroids that contain additional 

non-parenchymal cell types that are critical for DILI, including Kupffer cells, stellate cells and 

endothelial cells, thus creating a micro-environment similar to the normal liver115. 

Finally, using either BAC-GFP approaches or CRISPR/Cas9-mediated GFP tagging technology will 

lead to expression of GFP-fusion products at the endogenous expression levels. We observed 

differences in the levels of GFP reporter expression, with in particular transcription factor GFP-

fusion products being expressed at low levels. This requires in particular high-end image 

acquisition systems to allow sensitive and fast detection of reporters. Moreover, high resolution 

imaging at both the 2D and 3D level will facilitate the image segmentation and quantification of 

GFP-reporter levels as well as subcellular localization.  

In conclusion, we have established an advanced cell stress reporter platform which finds its 

application in DILI liability evaluation in pre-clinical drug development. The above innovations 

will likely improve the quality and the applicability of these reporters in safety assessment.  
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Abstract 

A quantitative dynamics pathway map of the Nrf2-mediated oxidative stress response and p53-

related DNA damage response pathways as well as the crosstalk between these pathways has 

not systematically been defined. To allow the dynamic single cell evaluation of these pathways, 

we have used BAC-GFP recombineering to tag for each pathway three key components: for the 

oxidative stress response, Keap1-GFP, Nrf2-GFP and Srxn1-GFP; for the DNA damage response, 

53bp1-GFP, p53-GFP and p21-GFP. The dynamic activation of these individual components was 

assessed using quantitative high throughput confocal microscopy after treatment with a broad 

concentration range of diethyl maleate (DEM; to induce oxidative stress) and etoposide (to 

induce DNA damage). DEM caused a rapid activation of Nrf2, which returned to base line levels 

at low concentrations, but remained sustained at high concentrations. Srxn1-GFP induction 

and Keap1-GFP translocation to autophagosomes followed later, with upper boundaries 

reached at high concentrations, close to onset of cell death. Etoposide caused rapid 

accumulation of 53bp1-GFP in DNA damage foci, which was later followed by the concentration 

dependent nuclear accumulation of p53-GFP and subsequent induction of p21-GFP. While 

etoposide caused activation of Srxn1-GFP, a modest activation of DNA damage reporters was 

observed for DEM at high concentrations. Interestingly, Nrf2 knockdown caused an inhibition 

of the DNA damage response at high concentrations of etoposide, while Keap1 knock down 

caused an enhancement of the DNA damage response already at low concentrations of 

etoposide. Knock down of p53 did not affect the oxidative stress response. Altogether, the 

current stress response landscapes provide insight in the time course responses of and 

crosstalk between oxidative stress and DNA-damage and defines the tipping points where cell 

injury may switch from adaptation to injury.  

Key words: High throughput imaging, BAC-GFP reporter platform, point of departure, stress-

response dynamics, drug-induced toxicity 

Introduction  

In the last decades, there is an urging need in the field of toxicology to develop new methods 

which assess toxicity pathways unravelling underlying mechanisms of toxicity116. The pivotal 

aspect in toxicity pathways is the balance between adaptation and cell death. Adaptive stress 

response pathways allow the recovery from cell injury, thus re-establishing cellular homeostasis. 

However, when the stress is too severe, adaptive stress response pathways may reach their 

boundaries of activation prohibiting full recovery and provoking cell death as a consequence. 

Previously, we established a bacterial artificial chromosome (BAC)-GFP reporter platform in 

hepatocellular carcinoma HepG2 cells, highly suited for BAC GFP transgenomics and often used 

for high throughput toxicity assessment, to study the live cell dynamics of adaptive stress 

response pathway after cellular injury27,79. We tagged different signalling components of stress 

response pathways with green fluorescent protein (GFP), including the oxidative stress response 
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and the DNA damage response, two critical pathways in chemical-induced injury. Both upstream 

regulators, critical pathway transcription factors and downstream target genes were tagged. By 

quantitatively assessing different components of the stress response pathways, we are now able 

to determine a detailed compound specific mode of action27. Furthermore, the integration of 

these reporters with high-throughput live cell imaging technologies allows the determination of 

the point-of-departure and/or tipping point in concentration and time course experiments. This 

allows a full reflection of the cell physiological programs and is central in the assessment of the 

balance between adaptation and adversity117. In this study, we systematically mapped in detail 

the landscape of the oxidative stress response and the DNA damage signalling pathways as well 

as their crosstalk. 

Oxidative stress occurs when cells suffer from an increase in intracellular reactive oxygen species 

(ROS). ROS can damage proteins, nucleic acids and lipids77. Upon increase of intracellular 

concentrations of ROS, the anti-oxidant response pathway is activated by nuclear translocation 

of key transcription factor nuclear factor, erythroid 2-like 2 (NFE2L2/Nrf2) (Fig. 1A). Under normal 

conditions, Nrf2 is bound by kelch-like ECH-associated protein 1 (Keap1) and targeted for 

proteasomal degradation through ubiquitination by Cul3118. Upon oxidative stress, ROS can 

modify cysteine residues of Keap1, thereby causing intracellular changes preventing the 

ubiquitination of Nrf2. This ensures that all newly synthesized Nrf2 accumulates in the nucleus, 

where Nrf2 binds the anti-oxidant response element (ARE)119. This results in transcription of 

hundreds of target genes, including detoxifying enzymes like NAD(P)H Quinone Dehydrogenase 

1 (Nqo1), Heme Oxygenase 1 (Hmox1), Thioredoxin (Trx) and Sulfiredoxin 1 (Srxn1)120. All 

together these targets ensure, amongst others, neutralization of ROS and cellular protection 

against oxidative stress. 

The DNA damage response (DDR) is activated after the induction of double stranded breaks 

(DSBs). DSBs can be caused by a wide range of agents including irradiation and chemicals. DSBs 

are sensed by proteins including DNA-dependent protein kinase (DNA-PK), Ataxia Telangiectasia 

Mutated (ATM), Ataxia Telangiectasia And Rad3-Related Protein (ATR) and the MRN complex. In 

order to transduce the signal, mediators p53 binding protein 1 (53bp1), Mediator of DNA Damage 

Checkpoint 1 (Mdc1) and Breast Cancer 1 (Brca1) locate to the DSBs at so-called DNA damage 

foci, and kinases Checkpoint Kinase 1 and 2 (Chk1 and Chk2) are activated. This leads to 

phosphorylation, stabilization and nuclear accumulation of tumor protein 53 (TP53/p53) and 

subsequent transcription of p53 targets. These targets include groups of genes which are 

responsible for cell cycle arrest (e.g. CDKN1A/p21), DNA repair and apoptosis (e.g. Bax and Puma) 

(Fig. 2A)121.  

Previous research showed contradictory links between the Nrf2 and p53 pathway signalling. 

Murine double minute 2 (Mdm2), a transcriptional target of p53, targets p53 for ubiquitination 

and proteasomal degradation serving as a negative feedback to restore homeostasis when DSBs 
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are repaired122. Mdm2 is shown to be a target of Nrf2 in murine embryonic fibroblasts (MEFs) 

ovarian carcinoma A2780 and murine primary tubular epithelial cells123,124. This suggests that 

Nrf2 stimulation would lead to p53 down-regulation via Mdm2 up-regulation. In contrast, 

NAD(P)H:quinone oxidoreductase 1 (Nqo1), a transcriptional target of Nrf2, is proven to stabilize 

p53 during onset of oncogene-induced senescence in human diploid fibroblasts (HDF)125. A 

detailed assessment of crosstalk between these pathways has been limited due to the lack of 

dense concentration and time course experiments. 

Here, using automated live cell high-throughput confocal microscopy, we followed single cell 

time dynamics of the oxidative stress response components (Keap1-GFP, Nrf2-GFP, Srxn1-GFP) 

and the DNA damage signalling components (53bp1-GFP, p53-GFP and p21-GFP). We 

systematically assembled the concentration and time course landscapes for all six HepG2 BAC-

GFP reporter cell lines after exposure to diethyl maleate (DEM) and etoposide. DEM is an 

electrophilic chemical, which alkylates the sulfhydryl group of glutathione and subsequently 

produces oxidative stress126. Etoposide inhibits DNA topoisomerase II activity. Topoisomerase II 

functions in DNA replication, transcription, DNA repair and chromatin remodelling. When 

topoisomerase II function is blocked by etoposide, DSBs will occur127. Mechanistic understanding 

of the crosstalk between these pathways was further investigated using RNA interference 

approaches. 

Materials and Methods  

Chemicals and antibodies  

Etoposide and diethyl maleate (DEM) were purchased at Sigma (Zwijndrecht, the Netherlands). 

Compound stock solutions were made in dimethylsulfoxide (DMSO) from BioSolve 

(Valkenswaard, the Netherlands) and aliquots were stored at -20°C. The end concentration of 

solvent DMSO was equal or less than 0.2% (v/v). The antibody against GFP for Western Blot 

analysis was from Roche (Almere, the Netherlands). The antibody against tubulin was purchased 

at Sigma (Zwijndrecht, the Netherlands).  

Cell culture  

Human hepatocellular carcinoma HepG2 cell lines obtained from American Type Culture 

Collection (ATCC, Wesel, Germany) were cultured in Dulbecco's Modified Eagle Medium (DMEM) 

containing 10% (v/v) fetal bovine serum (FBS), 25 U/mL penicillin and 25 µg/mL streptomycin up 

until passage 20. Cells were cultured in a 5% CO2 humidified incubator at 37°C.  

RNA interference  

Transient knock down of specific genes in HepG2 cells was achieved through reverse transfection 

of 50 nM siGENOME SMARTpool siRNAs from Dharmacon GE Healthcare (Eindhoven, the 

Netherlands) in combination with 0.3% INTERFERin transfection reagents from Polyplus 

(Leusden, the Netherlands). For the following genes transient knock down was performed, 

namely KEAP1, NFE2L2 and TP53. As control, mock was used where no siRNA was added. Medium 
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was refreshed 24 hours after transfection. Thereafter, the effect of knock down was evaluated 

72 hours after transfection. 

Confocal live cell imaging of HepG2 GFP reporters  

To evaluate stress response activation, HepG2 BAC-GFP reporter cell lines for Keap1, Nrf2, Srxn1, 

53bp1, p53 and p21 were established using BAC recombineering as described 

previously27,79,91,97,128. To assess the effect of compound exposure on stress response activation, 

HepG2 GFP reporter cells were plated in µclear 384 wells plates from Greiner Bio-One (Alphen 

aan den Rijn, the Netherlands). After attachment for 1 to 3 days, cells were stained for one hour 

with 100 ng/mL Hoechst33342 and exposed to a broad concentration range of etoposide (0.001 - 

100 µM) or diethyl maleate (0.01 - 1000 µM). As solvent control, cells were exposed to 0.2% 

DMSO. To evaluate the induction of cell death, medium also contained 0.05% AnnexinV-Alexa633 

and 100 nM propidium iodide (PI). The induction of GFP in the different reporters and cell death 

was examined through live cell automated confocal imaging for 24 hours after exposure using 

Nikon TiE2000 including an automated xy-stage, an integrated Perfect Focus System (Nikon, 

Amsterdam, the Netherlands) and 408, 488, 561 and 647 nm lasers. 

Imaging data analysis  

Quantification of the signal intensity was done using CellProfiler version 2.1.1 (Broad Institute, 

Cambridge, USA) with an analysis pipeline build up from different modules, including an in-house 

developed module utilizing the watershed masked algorithm129 for nuclear segmentation, 

followed by the IdentifyPrimaryObjects, IdentifySecondaryObjects, IdentifyTertiaryObjects, 

RelateObjects, MeasureObjectIntensity, and MeasureObjectSizeShape modules as previously 

described27 either to quantify the GFP intensity in the nuclei or in the cytoplasm for each 

individual cell. Keap1 and 53bp1-GFP foci were first quantified using the FociPicker3D plug-in130 

in ImageJ and further analysed in CellProfiler assigning foci to individual cells. Image analysis data 

was stored as HDF5 files. For further analysis, the graphical user interface of the R package 

‘H5CellProfiler’ (Wink et al., manuscript in preparation) and Rstudio (Boston, USA) was used to 

extract data of interest. For each imaging plate, the mean value of DMSO was calculated which 

resembled the background level. Thereafter, to determine the percentage of GFP positive cells, 

the fraction of cells which were three times above the background level was determined. Each 

replicate and each cell line was fitted with the b-spline method with 10 degrees of freedom, 

except for 53bp1 which was fitted with 3 degrees of freedom, and 3rd degree polynomials using 

the base-r lm and bs function from the splines R package to achieve resampling of the data with 

similar time points.  

Western blot analysis  

Samples were collected by washing cells twice with cold 1x PBS and lysis with 

Radioimmunoprecipitation assay (RIPA) buffer containing freshly added 1% (v/v) protease 

inhibitors cocktail from Sigma (Zwijndrecht, the Netherlands). Cell lysate was centrifuged at 
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13.000 rpm for 10 minutes at 4°C and supernatant was collected. To determine protein 

concentrations, BCA protein assay was performed. Thereafter, protein was dissolved with 1× 

sample buffer supplemented with 10% v/v β-mercaptoethanol and heat-denatured at 95 °C for 

5 min. After SDS-page protein separation, proteins were blotted onto polyvinylidene difluoride 

(PVDF) membranes. Antibody incubations were performed in 1% bovine serum albumin (BSA) in 

tris-buffered saline (TBS)-0.05%Tween20. For detection, Enhanced Chemiluminescent (ECL) 

Western Blotting substrate from Thermo Scientific (Bleiswijk, The Netherlands) was used and 

visualized using the ImageQuant LAS4000 from GE Healthcare (Eindhoven, the Netherlands).  

Statistics  

Results are shown as the mean ± the standard deviation from three biological replicates. Data 

analysis was done using GraphPad Prism 6.00 (GraphPad software, La Jolla, California, USA) and 

Rstudio (Boston, USA) using R 3.2.3 and the following R packages, namely ggplot2131, 
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data.table132, pheatmap133, reshape2134, dplyr135, scales136, tidyr137, stats, splines and graphics. 

Significance levels were calculated using Student's t-test, *p < 0.05, **p < 0.01, ***p < 0.001.  

Results 

High content live cell imaging of oxidative stress and DNA damage HepG2 GFP reporters 

To evaluate the Nrf2 anti-oxidant response pathway and the p53 DNA damage repair pathway in 

detail, different components of the pathways tagged with GFP were imaged after administration 

of an inducer of oxidative stress (DEM) and of DNA damage (etoposide) in HepG2 cells. For both 

stress pathways an upstream ‘sensor’, a ‘transcription factor’ and a specific transcriptional 

‘target’ were chosen (supplemental figure 1). For the Nrf2 anti-oxidant pathway, Keap1 was 

chosen as a sensor, Nrf2 as the transcription factor and sulfiredoxin1 (Srxn1) as the specific  

downstream target of Nrf2. For the p53 DNA damage repair pathway, p53 binding protein 1 

(53bp1) was chosen as a sensor, p53 as the transcription factor and p21CIP1/WAF1
 as the specific 

downstream target of p53. These six HepG2 GFP reporters were exposed to a broad dose range 

of DEM (from 10 nM to 1 mM) and etoposide (1 nM to 100 µM). Live cell confocal imaging allowed 

single cell image analysis to identify GFP intensity in the cytoplasm (Srxn1-GFP) and nucleus (Nrf2-

GFP, p53-GFP and p21-GFP) and cytoplasmic and nuclear foci count (Keap1-GFP, 53bp1-GFP) 

(supplemental figure 1).  

Nrf2 pathway activation after administration to DEM showed a time and concentration 

dependent increase for each component of the pathway (figure 1B, 1D and supplemental 

movies). With increasing concentrations of DEM, increased pathway activation was observed. 

However, concentrations above 316 µM led to a reduction in Srxn1-GFP and Keap1-GFP 

activation; this was associated with the onset of cell death (supplemental figure 2). At 1 mM 

← Fig. 1. Imaging based Nrf2 anti-oxidant pathway response to diethyl maleate (DEM). A) Nrf2 pathway 

regulation. In normal conditions the Keap1-Nrf2 complex is degraded. Under ROS conditions, Nrf2 accumulates 

and translocates to the nucleus. Nrf2 binds the anti-oxidant response element (ARE) and transcribes its targets. 

Pathway components indicated with a green circle are tagged with Green Fluorescent Protein (GFP). B) Example 

images of 100 µM DEM for 0, 5, 10 and 15 hours after exposure. One time point consists of four images per 

reporter, an overview image of nuclear staining (upper left image), an overview image of GFP (lower left image), 

a zoom image of nuclear staining (upper right image) and a zoom image of GFP (lower right image). C) Variation 

in Srxn1-GFP of one replicate experiment, plotted as GFP intensity over time including standard deviation and 

boxplots to display the single cell variation (left panel) and plotted as a histogram displaying number of cells over 

GFP intensity including blue bar to indicate three times background levels and red bar indicating the mean GFP 

intensity (right panel). D) DEM responses of Keap1-GFP, Nrf2-GFP and Srxn1-GFP, shown in four graphs per 

reporter. GFP foci count (Keap1) and GFP intensity (Srxn1 and Nrf2) over time for DMSO, 10 µM, 100 µM and 

1000 µM DEM (first column), fraction GFP positive cells over time for DMSO, 10 µM, 100 µM and 1000 µM DEM 

(second column), GFP foci count (Keap1) and GFP intensity (Srxn1 and Nrf2) displayed in dose response (third 

column) and area under the curve (AUC) of GFP foci count (Keap1) and GFP intensity (Srxn1 and Nrf2) time 

responses displayed in dose response (last column). Standard deviations are shown for three independent 

replicates. 
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DEM, a sustained nuclear accumulation of Nrf2-GFP was observed, while simultaneously Srxn1-

GFP accumulation did not reach its maximal activation, indicating that Nrf2 was highly activated, 

but was not able to turn on a strong adaptive program. To assess the single cell time dynamics of 

transcriptional activity of Nrf2, Srxn1-GFP cytoplasmic intensity was evaluated. Exposure to 100 

µM DEM led to a small increase in Srxn1-GFP intensity after 2 hours, which further increased until 

24 hours. A small population of Srxn1-GFP cells were high responders, which had about two to 

three times higher GFP intensity (figure 1C). The broad concentration range allowed us to define 

the point of departure (PoD) concentration defined by the lowest concentration being significant 

different from solvent control. Therefore, we defined this concentration for GFP intensity, 

fraction positive cells and area under the curve (AUC) values for each reporter (table 1). The PoD 

of Srxn1-GFP was ~50- to 100-fold lower than PoD of Keap1-GFP and Nrf2-GFP. This seems 
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counterintuitive as Nrf2 and Keap1 first need to be activated before Srxn1 can be produced. A 

likely explanation is the sensitivity of the reporters, as Srxn1-GFP exhibits higher levels of GFP 

signal. 

Etoposide administration led to a robust concentration and time dependent increase of p53-GFP 

and p21-GFP (figure 2B, 2D and supplemental movies). 53bp1-GFP foci count showed a dose 

dependent effect in percentage GFP positive cells and AUC of the time curves. However, at 1 and 

10 µM etoposide a time dependent activation was not observed. Single cell p21-GFP intensities 

resulted in larger variation compared to Srxn1-GFP (figure 1C and 2C left panels). This was due 

to a larger population of high responding p21-GFP cells (figure 2C, right panel). The PoD for 

← Fig. 2. p53 DNA damage pathway response to etoposide. A) p53 pathway regulation. Double stranded breaks 

(DSBs) in the DNA are sensed by proteins including MRN complex, ATM, ATR and DNA-PKs. Adaptor/mediator 

proteins including BRCA1, MDC1 and 53bp1 transduce the signal to CHK1 and CHK2, which subsequently activate 

p53. p53 accumulates in the nucleus and transcribes targets as p21, Btg2 and Mdm2. Pathway components 

indicated with a green circle are tagged with Green Fluorescent Protein (GFP). B) Example images of 32 µM 

etoposide for 0, 5, 10 and 15 hours after exposure. One time point consists of four images for each reporter, an 

overview image of nuclear staining (upper left image), an overview image of GFP (lower left image), a zoom 

image of nuclear staining (upper right image) and a zoom image of GFP (lower right image). C) Variation in p21-

GFP of one replicate experiment, plotted as GFP intensity over time including standard deviation and boxplots 

to display the single cell variation (left panel) and plotted as a histogram displaying number of cells over GFP 

intensity including blue bar to indicate three times background levels and red bar indicating the mean GFP 

intensity (right panel). D) Etoposide responses of 53bp1-GFP, p53-GFP and p21-GFP, shown in four graphs per 

reporter. GFP foci count (53bp1) and GFP intensity (p21 and p53) over time for DMSO, 1 µM, 10 µM and 100 µM 

etoposide (first column), fraction GFP positive cells over time for DMSO, 1 µM, 10 µM and 100 µM etoposide 

(second column), GFP foci count (53bp1) and GFP intensity (p21 and p53) displayed in dose response (third 

column) and area under the curve (AUC) of GFP foci count (53bp1) and GFP intensity (p21 and p53) time 

responses displayed in dose response (last column). Standard deviations are shown for three independent 

replicates.   

Table 1. Point of departure (PoD) concentrations of p53 and Nrf2 signalling GFP reporters exposed to DEM and 

etoposide* 

*Point of departure concentration for Keap1-GFP, Nrf2-GFP, Srxn1-GFP, 53bp1-GFP, p53-GFP and p21-GFP as 

percentage cells exceeding two times background and area under the curve (AUC) of 24 hour time courses in 

response to diethyl maleate (DEM) and etoposide. All concentrations are in µM, NS is not significant.   
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Fig. 3. Crosstalk between oxidative stress and DNA damage only occurs at high concentrations of etoposide 

and DEM respectively. A) Example images of Srxn1-GFP exposed to 32 µM etoposide for 0, 5, 10 and 15 hours. 

One time point consists of four images for each reporter, an overview image of nuclear staining (upper left 

image), an overview image of GFP (lower left image), a zoom image of nuclear staining (upper right image) and 

a zoom image of GFP (lower right image). B) Etoposide responses of Srxn1-GFP, shown in four graphs: GFP 

intensity over time for DMSO, 1 µM, 10 µM and 100 µM etoposide (upper left), fraction GFP positive cells over 

time for DMSO, 1 µM, 10 µM and 100 µM etoposide (upper right), GFP intensity displayed in dose response 

(lower left) and area under the curve (AUC) of GFP intensity time responses displayed in dose response (lower 

right). Standard deviations are shown for three independent replicates.  C) Example images of p21-GFP exposed 

to 100 µM DEM for 0, 5, 10 and 15 hours. One time point consists of four images for each reporter, an overview 

image of nuclear staining (upper left image), an overview image of GFP (lower left image), a zoom image of 

nuclear staining (upper right image) and a zoom image of GFP (lower right image). D) DEM responses of p21-GFP, 

shown in four graphs: GFP intensity over time for DMSO, 10 µM, 100 µM and 1000 µM DEM (upper left), fraction 

GFP positive cells over time for DMSO, 10 µM, 100 µM and 1000 µM DEM (upper right), GFP intensity displayed 

in dose response (lower left) and area under the curve (AUC) of GFP intensity time responses displayed in dose 

response (lower right). E) Srxn1-GFP intensity over time after etoposide treatment with mock or siNFE2L2 

transfection (left panel). p21-GFP intensity over time after DEM exposure with mock or sip53 transfection (right 

panel). Standard deviations are shown for three independent replicates. 
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53bp1-GFP was lower than for p53-GFP and p21-GFP (table 1). This indicates that 53bp1 foci 

formation already occurred at lower concentrations, without full p53 pathway activation. 

High concentrations of etoposide and DEM activate Srxn1-GFP and p21-GFP respectively  

Next, we examined possible crosstalk between the protective Nrf2 pathway and the p53 

pathway. We focused on the Srxn1-GFP and p21-GFP, respectively, since these represent the 

entire pathway activation and are both sensitive, allowing most accurately determination of the 

amplitude of pathway activity. The PoD concentration of the AUC of Srxn1-GFP exposed with 

etoposide was 17.8 µM; at 100 µM etoposide, more than 75% of the cells were positive for Srxn1-

GFP (three times higher GFP intensity than background levels; figure 3A and B). Thus, etoposide 

could activate the Nrf2 response, but was much less potent than DEM. Similarly, we determined 

the effect of DEM on p21-GFP activation. The PoD of p21-GFP exposed to DEM was 178 µM; in 

addition, 1000 µM DEM was a less potent inducer of p21-GFP than 100 µM etoposide of Srxn1-

GFP, as only 25% of p21-GFP cells were counted as GFP positive, with an overall intensity which 

was four times lower than for p21-GFP cells exposed to etoposide.  

Knock down of KEAP1 caused an increase of p21-GFP  

Since activation of p21-GFP by DEM and Srxn1-GFP by etoposide was observed at higher 

concentrations, secondary responses could play a role. To systematically assess the requirements 

for Nrf2 and p53 in the activation of Srxn1-GFP by etoposide and p21-GFP by DEM, we performed 

RNA interference experiments. Indeed, knock down of NFE2L2 inhibited the Srxn1-GFP activation 

by etoposide, while knock down of TP53 prevented the p21-GFP activation by DEM (fig. 3E). Next, 

we also evaluated the interdependency of Srxn1-GFP and p21-GFP levels for Nrf2 and p53, which 

was determined after knock down of KEAP1, NFE2L2 and TP53. As expected knock down of KEAP1 

resulted in significantly higher levels of Srxn1-GFP even in the absence of any stimulus (figure 4A 

and B). Moreover, knock down of NFE2L2 led to significantly lower Srxn1-GFP levels after 

induction with DEM. Knock down of TP53 caused a significant yet slight decrease in DEM-induced 

Srxn1-GFP expression. Knock down of TP53 caused a drastic inhibition of the etoposide-induced 

p21-GFP induction. Interestingly, siKEAP1 itself caused the induction of p21-GFP level and also 

enhanced the induction of p21-GFP at low concentrations of etoposides. Knock down of NFE2L2 

caused a slight inhibition of the activation of p53 at high concentrations of etoposide. Together 

these data suggest a mild crosstalk between the p53 and the Nrf2 pathway.  

KEAP1 knock down caused upregulation of different components of both the Nrf2 and p53 

pathway 

The above results suggest a direct interaction between the Nrf2 and the p53 pathway, whereby 

knock down of KEAP1 stimulates the p53 pathway. To assess this central role of Keap1 in further 

detail, we first performed knock down in additional GFP reporter cell lines. Previous work suggest 

Nqo1 and Mdm2 as important modulators in bridging the Nrf2 and p53 pathway122,124,125. For that 

reason, Nqo1-GFP and Mdm2-GFP reporters were used for further study. These reporters were 
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Fig. 4. Effect of knock down of KEAP1, NFE2L2 and TP53 on Srxn1-GFP and p21-GFP activation. A) Example 

images of Srxn1-GFP without knock down (mock) and with knock down (siNFE2L2, siKEAP1 and siTP53) with 

exposure to 100 µM DEM for 0 and 21 hours. One time point consists of four images for each reporter, an 

overview image of nuclear staining (upper left image), an overview image of GFP (lower left image), a zoom 

image of nuclear staining (upper right image) and a zoom image of GFP (lower right image). B) DEM responses of 

Srxn1-GFP, shown in four graphs: GFP intensity over time for mock, siKEAP1, siNFE2L2 and siTP53 after exposure 

to 100 µM DEM (upper left), area under the curves of GFP time response after exposure to 10 µM, 100 µM and 

1000 µM DEM (upper right), GFP intensity displayed for 0 hours of DEM exposure after mock and siKEAP1, 

siNFE2L2 and siTP53 (lower left) GFP intensity displayed for 21 hours of DEM exposure after mock and siKEAP1, 

siNFE2L2 and siTP53 (lower right). Standard deviations are shown for three independent replicates. Significance 

(* = p < 0,05, ** = p < 0,01) calculated with a one-tailed Student’s t-test for 0 hours DEM and a two-tailed 

Student’s t-test for AUC and 21 hours DEM. C) Example images of p21-GFP without knock down (mock) and with 

knock down (siNFE2L2, siKEAP1 and siTP53) with exposure to 32 µM etoposide for 0 and 21 hours. One time 

point consists of four images for each reporter, an overview image of nuclear staining (upper left image), an 

overview image of GFP (lower left image), a zoom image of nuclear staining (upper right image) and a zoom 

image of GFP (lower right image). D) Etoposide responses of p21-GFP, shown in four graphs: GFP intensity over 

time for mock, siKEAP1, siNFE2L2 and siTP53 after exposure to 32 µM etoposide (upper left), area under the 

curves of GFP time response after exposure to 10 µM, 32 µM and 100 µM etoposide (upper right), GFP intensity 

displayed for 0 hours of etoposide exposure after mock and siKEAP1, siNFE2L2 and siTP53 (lower left) GFP 

intensity displayed for 21 hours of etoposide exposure after mock and siKEAP1, siNFE2L2 and siTP53 (lower right). 

Standard deviations are shown for three independent replicates. Significance (* = p < 0,05, ** = p < 0,01) 

calculated with a one-tailed Student’s t-test for 0 hours etoposide and a two-tailed Student’s t-test for AUC and 

21 hours etoposide.  
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validated with reference compound activation and siRNA knock downs (supplemental figure 4). 

In addition, we tested p53-GFP reporter as an additional component of the p53 pathway. First, 

we validated knock down of KEAP1 in two targets of Nrf2: Srxn1-GFP and Nqo1-GFP. Both showed 

significant upregulation ensuring these reporters are Keap1 regulated (figure 5B). Next, we 

tested knock down of KEAP1 in DNA damage components p53-GFP, p21-GFP and Mdm2-GFP. 

Again, Keap1 knock down demonstrated significant upregulation of p21-GFP, as well as p53-GFP. 

Mdm2-GFP was not affected by KEAP1 knock down (figure 5B). This suggests a role for Keap1 in 

the p53-p21 axis. To identify whether this role was Nrf2 dependent, a double knock down of 

KEAP1 and NFE2L2 was performed for p21-GFP and p53-GFP. The double knock down did not 

result in a significant increase in p21-GFP, however it did in p53-GFP (figure 5B). In both p21-GFP 

and p53-GFP, double knock down showed less induction compared to knock down of KEAP1 

alone, indicative for a role of Nrf2 in this response either mediated directly by Nrf2 itself or one 

of its target genes. To further elucidate whether the p21 activation by KEAP1 knock down is 

dependent on the Nrf2 target gene Nqo1, we performed a KEAP1 and NQO1 double knock down. 

This showed a decrease in p21 activation compared to KEAP1 knock down alone indicating a 

partial role of Nqo1 on p21 activation. However, there was still a significant increase compared 

to mock suggesting the presence of additional Nrf2-independent mechanisms in regulation of 

p53 signalling by Keap1.  

Discussion  

Chemical exposure can lead to cellular injury and activation of adaptive stress response 

pathways. Little is known on the dynamics of these pathways and on how these pathways are 

integrated and controlled by similar key events and signalling components. Therefore, it is 

essential to map the dynamics of the activation of adaptive stress responses and their 

intracellular relationship, such as the oxidative and DNA damage stress response. Using a HepG2 

GFP reporter panel specific for oxidative and DNA damage stress signalling in combination with 

live cell high-content confocal imaging, concentration and time-dependent activation of Nrf2 and 

p53 pathway components by relevant reference compounds could be observed. Reference 

compounds, DEM and etoposide, activate Nrf2 and p53 signalling, respectively. The application 

of a broad concentration range allowed the accurate determination of the PoD. Etoposide did 

also activate the Nrf2 pathway, while DEM activates p53 pathway, albeit both at a much higher 

PoD. This suggests cross talk between these stress response pathways, in particular when the 

chemical insult is more severe. The interdependencies between the pathways was supported by 

RNA interference studies. Overall, our current data provide comprehensive maps of dynamics of 

two adaptive stress response pathways that are critical in chemical-induced injury. We anticipate 

that high content imaging of pathway activation will be instrumental for a systems biology 

understanding of pathway of toxicity regulation. 
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The diethyl maleate-induced oxidative stress caused increased levels of Keap1 foci, Nrf2 and 

Srxn1 in HepG2 reporter cells over time. Upon oxidative stress, Keap1 is no longer able to target 

Nrf2 for proteasomal degradation118. First, Keap1 is bound by Sequestosome 1 (SQSTM1/p62) 

and targeted for degradation 138; second, Nrf2 accumulates in the nucleus and third, Srxn1 and 

other Nrf2 targets are upregulated. Our observed time-dynamics of the Nrf2 response activation 

by DEM revealed initial rapid Nrf2 induction, within 1 hour with a maximum at ~4 hours, followed 

Fig. 5. Knock down of KEAP1 in Srxn1-GFP, p21-GFP, Nqo1-GFP, Mdm2-GFP and p53-GFP. A) Possible crosstalk 

mechanism between Nrf2 and p53 pathway. Pathway components indicated with a green circle are tagged with 

Green Fluorescent Protein (GFP). B) Example images of Srxn1-GFP, Nqo1-GFP, Mdm2-GFP, p21-GFP and p53-GFP 

without knock down (mock) and with knock down (siKEAP1, siKEAP1/siNFE2L2 and siKEAP1/siNQO1). One 

condition consists of two images for each reporter, an image of nuclear staining (left image) and an image of GFP 

(right image).  C) Knock down of KEAP1 for Srxn1-GFP, Nqo1-GFP, Mdm2-GFP, p21-GFP and p53-GFP compared 

to the mock condition. Double knock down with KEAP1 and NFE2L2 for p21-GFP and p53-GFP. Standard 

deviations are shown for three independent replicates. Significance (* = p < 0,05, ** = p < 0,01) calculated with 

a one-tailed Student’s t-test. D) Schematic overview of the crosstalk mechanism between Nrf2 and p53 pathway. 

Proposed links according to observed data are depicted in light blue.   
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by a late, >4 hours, and sustained onset of Keap1 foci formation. It has been suggested that Keap1 

turnover is mainly governed by autophagy in a p62-dependent manner139. Indeed, Keap1-GFP 

foci co-localize with p62 (data not shown). Importantly, Nrf2 directly activates the expression of 

Keap1 as well as p62120. Thus, upon Nrf2 stimulation, all newly assembled Keap1 cannot bind to 

Nrf2 and will bind to p62 instead. Thus, our late Keap1 foci formation is likely rather a 

consequence than a cause of Nrf2 activation. These findings exemplify the explicit enhanced 

information of a quantitative imaging-based analysis of the dynamic behaviour of individual Nrf2 

signalling components.  

Regarding the time dynamics of the DNA damage response, exposure to model compound 

etoposide led to the almost immediate formation of 53bp1 DNA damage foci, within ~3 hours 

followed by p53 upregulation and almost direct subsequent increased levels of p21. Despite the 

clear increase in 53bp1-GFP foci, a considerable variation in number of 53bp1 foci between the 

replicates was observed during exposure to etoposide. This is possibly due to higher zoom used 

for image acquisition to allow sufficient resolution of foci detection, but consequently each image 

contained less cells. In addition, due to the longer image acquisition time, the time resolution 

was ~2.5 hours, which limited the more detailed analysis of the entire dynamics of foci formation. 

A fast 53bp1 foci formation response with a peak at 1 hour post etoposide exposure was reported 

in HeLa cells140, and for irradiation 20 minutes was the maximal 53bp1 response141. Possibly due 

to our current imaging limitations, we have missed the steep initial dynamics of 53bp1 foci 

formation at the lower concentrations of etoposide. Intriguingly, the highest concentration of 

etoposide showed a gradual and sustained increase of 53bp1 foci for the entire 24 hours period 

exposure; possibly this high concentration affects the effectiveness of the DNA damage 

recognition programs and prohibits the rapid association of 53bp1 at DNA damage sites. Yet, this 

reduced 53bp1 accumulation was not reflected by an inhibition of p53-GFP stabilization and 

reduced p21-GFP induction. This suggests that there does not seem to be a direct quantitatively 

relationship between foci number and p53 activity. Future studies should elucidate the 

mechanism of reduced foci formation at high concentrations of etoposide.  

The broad concentration range of DEM and etoposide allowed precise identification of the PoD 

for each pathway component. PoD identification revealed a specific pathway response: DEM 

showed a much lower PoD for Nrf2 activation (1.8 µM) than for p53 activation (178 µM); yet, 

etoposide demonstrated a PoD for Nrf2 activation (5.6 µM) that was close to the PoD of p53 

activation (1.0 µM). These results suggest crosstalk as DEM and etoposide can activate p53 and 

Nrf2 signalling, respectively. Although we have not measured the actual effect of DEM on cellular 

glutathione homeostasis, we suspect that at the lower levels no major glutathione decrease has 

occurred, and that the Nrf2 activation is directly mediated by modulation of cysteine residues of 

Keap1. At a higher concentration, glutathione might become decreased, allowing the onset of 

oxidative stress and thereby initiation of ROS mediated DNA damage, which is detected by the 
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p53 pathway. The fact that the PoD for etoposide for both p53 and Nrf2 activation are in a 

comparable range, suggests a similar molecular initiation events, i.e. the DNA damage, causes 

activation of both program, albeit that the etoposide-induced Nrf2 activation does not parallel 

the efficiency and amplitude as observed for DEM.  

Depletion of Keap1 due to RNA interference resulted in an increase of basal p53 and p21 

activation levels, suggesting either a direct inhibitory role of Keap1 on the DNA damage response. 

Alternatively, Keap1 has an indirect role through inhibition of Nrf2, and thus, increased Nrf2 

activity would promote the p53-mediated induction of p21 expression. Indeed, double knock 

down of Keap1 and Nrf2 resulted in a partial restoration of p21 and p53 basal levels indicating 

that Nrf2 accumulation partially facilitates crosstalk leading to upregulation of p53 signalling. This 

activating role of Nrf2 on p53 signalling could either be a direct effect or mediated through one 

of its target genes. Recently, Nrf2-induced Nqo1 was shown to promote p53 accumulation during 

oncogene-induced senescence which was Mdm2 independent125. As expected, downregulation 

of Keap1 resulted in significant higher levels of Nqo1, a bona fide Nrf2 target gene. As such, 

upregulation of Nqo1 after Keap1 knock down could then modulate p53 levels, followed by p21 

upregulation. A double knock down of Keap1 and Nqo1 also resulted in a partial restoration of 

p21 levels. Although this is not a significant effect, this implies a role of Nqo1 in the crosstalk 

between oxidative stress and DNA damage. However, since double knock down of Keap1 with 

either Nrf2 or Nqo1 only partially restores basal p21 levels, Keap1 might in addition partly 

regulate p53 signalling through other Nrf2-independent mechanisms. Therefore, we propose a 

mechanism shown in figure 5D where Nqo1 is one of the switches between oxidative stress and 

p53 signalling in HepG2 cells. 

Regarding the crosstalk between p53 signalling and the Nrf2 pathway, it is noteworthy that p21 

can bind the DLG and ETGE motifs of Nrf2 and thereby competing with Keap1 for Nrf2 binding; 

the p21 binding leads to enhanced accumulation of Nrf2142. Possibly the etoposide-induced Nrf2 

activation is partly related to this p21-mediated Nrf2 stabilization effect. 

Here, we utilized our established HepG2 GFP reporters to provide a detailed mapping of the 

dynamics landscape of the oxidative stress response and DNA damage signalling pathways. We 

recognize that the components used are only a reflection of the complexity of the entire 

pathways. Regardless, the current reporters provide an overall high level of detail on the 

dynamics of several key components. We feel that these detailed quantitative landscapes are fit-

for-purpose to define PoD for pathway activation as well as possible crosstalk. In addition, this 

data can be used for mathematical modelling to assess detailed information on pathway 

regulation in response to adaptive stress response activation. Future directions will involve 

integration of multiple adaptive stress response reporters in one cell line to closely follow the 

dynamics of individual stress response pathway components at the single cell level and unravel 

their synchronized timing of activation at their variations at the population level. 
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Fig.  S1.  Workflow  of  GFP  reporter  exposure,  image  acquisition  and  image analysis. I)  Three  GFP  reporters  

of  both  Nrf2  and  p53  pathway  are  II)  seeded  in  a  384-well  format, III) exposed to a broad dose range of 

model compounds diethyl maleate and etoposide followed by IV) image acquisition, V) image analysis and VI) 

GFP read-out. 
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Fig.  S2.  Cell  death  markers  for  DEM  and  etoposide. A)  AnnexinV  in  fraction positive  cells  for  0.2%  DMSO  

and  21  concentrations  of  DEM.  B)  Propidium  iodide  (PI)  in  fraction positive cells for 0.2% DMSO and 21 

concentrations of DEM C) AnnexinV in fraction positive cells for  0.2%  DMSO  and  21  concentrations  of  

etoposide.  D)  Propidium  iodide  (PI)  in  fraction  positive cells  for  0.2%  DMSO  and  21  concentrations  of  

etoposide.  Mean  and  standard  deviation  shown  for three replicates of reporters Nrf2-GFP, Srxn1-GFP, p21-

GFP and p53-GFP. 

Fig.  S3.  Western  blot  analysis  of  Srxn1-GFP  and  p21-GFP  after  DEM  and etoposide  exposure  respectively. 

A)  Western  blotting  with  the  GFP  antibody  in  Srxn1-GFP  cells exposed to DMSO (0.2%), 100 μM and 316 μM 

DEM. B) Western blotting with the GFP antibody in p21-GFP cells exposed to DMSO (0.2%), 10 μM and 32 μM 

etoposide. 

Fig.  S4.  Characteristics  of  Mdm2-GFP  and  Nqo1-GFP. A)  Time  dynamics  of nuclear  Mdm2-GFP  intensity  

for  DMSO  and  25  μM  of  etoposide  (left  graph)  and  of  cytoplasmic intensity of Nqo1-GFP for DMSO and 

100 μM DEM (right graph). B) Nuclear Mdm2-GFP intensity for the untransfected control “mock” and siTP53 after 

7 hours of treatment with 25 μM etoposide (left graph) and cytoplasmic Nqo1-GFP intensity for the 

untransfected control “mock” and siNFE2L2 after 7 hours of treatment with 30 nM CDDO-me. 
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Abstract 

In vitro assessment of mutagenicity is an essential component in the chemical risk assessment. 

Given the diverse modes of action by which chemicals can induce DNA damage, it is essential 

that these in vitro assays are carefully evaluated for their possibilities and limitations. In this 

study, we used a fluorescent protein HepG2 reporter test system in combination with high 

content imaging. To measure induction of the DNA damage response (DDR), we used three 

different green fluorescent protein reporters for p53 pathway activation. These allowed for 

accurate quantification of p53, p21 and BTG2 (BTG anti-proliferation factor 2) protein 

expression and cell viability parameters at a single cell or spheroid resolution. The reporter 

lines were cultured as 2D monolayers and as 3D spheroids. Furthermore, liver maturity and 

cytochrome P450 enzyme expression were increased by culturing in an amino acid-rich (AAGLY) 

medium. We found that culture conditions that support a sustained proliferative state (2D 

culturing with normal DMEM medium) give superior sensitivity when genotoxic compounds 

are tested that do not require metabolisation and of which the mutagenic mode of action is 

dependent on replication. For compounds, which are metabolically converted to mutagenic 

metabolites, more differentiated HepG2 DDR reporters (e.g. 3D cultures) showed a higher 

sensitivity. This study stratifies how different culture methods of HepG2 DDR reporter cells can 

influence the sensitivity towards diverse genotoxicants and how this provides opportunities 

for a tiered genotoxicity testing strategy. 

Key words: DNA damage, mutagenicity, test method, HepG2 BAC GFP, 3D model, drug 

metabolism, high content imaging, next generation risk assessment (NGRA), new approach 

methods (NAMs) 

Introduction 

In the current chemical risk assessment, the evaluation of genotoxicity is quite different from 

other chemical-induced adverse reactions as the typical ‘safe threshold analysis’ is thought to be 

not applicable to genotoxicants. This is because even low doses of genotoxicants can lead to DNA 

damage and thereby increase the chance to develop malignancies. However, besides directly 

damaging DNA, genotoxic compounds may also interfere with specific cellular processes (e.g. 

DNA synthesis or repair), thereby having indirect genotoxic effects. For compounds with such 

indirect genotoxic mode of action, it is relevant to determine the concentration level where no 

DNA damage effects occur22. 

Several well-established test systems are currently being used to identify potential genotoxic 

effects of chemicals. With the prokaryotic Ames test, specific mutagenic events, such as 

frameshifts or point mutations, can be observed using specific Salmonella tester strains. Although 

this test system is fast, inexpensive and easy to use, it suffers from poor sensitivity, likely due to 

differences in the response to drugs and DNA damage in prokaryotes versus higher eukaryotes143. 

Another well- known genotoxicity test system is the Comet assay developed in 1988 by Singh and 
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colleagues144, which can detect DNA strand breaks in individual eukaryotic cells by quantifying 

the DNA track on an agarose gel. Since then many advances have been made to the standard 

Comet assay, so that it can identify different types of DNA damage145,146. However, this highly 

sensitive assay is still difficult to standardise because of a lack of consensus and potentially suffers 

from a relative high rate of false positives due to cytotoxicity effects147,148. Besides, the comet 

assay can only be used to determine if exposure to a compound results in DNA breaks, other 

types of DNA damage (e.g. point mutations) are not revealed143. A third genotoxicity test, which 

is also recommended by the OECD guidelines for chemical testing, is the Micronucleus test. 

Micronuclei are cytoplasmic bodies containing either a portion of an acentric chromosome or 

lagging whole chromosomes, a result of incorrect chromosome segregation during anaphase. The 

micronuclei can be quantified and are a measure for genotoxicity149. Limitations of this assay are 

that a cell division is required in the test cells, the relatively low specificity and the fact that gene 

mutations cannot be detected with this assay143. In the last few decades, several variants of the 

Ames test, Comet assay and Micronucleus test have been developed to improve throughput, 

human relevance and robustness, but concerns on limited predictivity remain. 

A new type of genotoxicity testing does not focus on quantification of chemically induced 

genomic injury itself, but on the quantification of the cellular mechanisms that repair this DNA 

damage. It is expected that this strategy results in test methods with a higher sensitivity, as these 

repair mechanisms are already induced at low levels of DNA damage. Furthermore, for the 

different types of genotoxicity, different repair mechanisms can be identified, so that the 

chemical mode of action by which the damage is induced can be eluded22. The simplest variants 

of these assays comprise of antibody fluorophore staining, targeting focal accumulation of 

biomarker proteins involved in DNA damage repair of which γH2AX, 53BP1 and RAD51 are 

examples150. Lack of robustness and the limitation of a single end point measurement in fixed 

cells are major draw- backs of antibody-based methods. A more sophisticated method would be 

to use fluorescent reporter models151. The GADD45a-based fluorophore and luciferase reporter 

assays, GreenScreen and BlueScreen, are applied for high-throughput genotoxic hazard 

identification152. With a FACS-based measurement the ToxTracker can quantify chemically 

induced DNA damage repair using reporter stem cell lines. By using a combination of different 

reporter lines, this technology is able to detect both direct and indirect genotoxic effects and it 

can discriminate between clastogenic and aneugenic modes of action128,153. 

We have previously developed a large panel of fluorescent reporters for adaptive cellular stress 

responses, including the DNA damage response (DDR) in the human liver cancer cell line, 

HepG2151,152. We have applied these reporters for the prediction of drug- induced liver 

injury27,28,79. In these reporter cell lines, chemical induction activates expression of fluorescent-

tagged stress biomarker proteins. By combining live cell confocal imaging with an automated 

image segmentation pipeline, the biomarker expression level as well as its subcellular localisation 
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can be accurately quantified over time and at a single cell level. Besides 2D culturing, these cell 

lines can also be cultured as spheroids in a 3D Matrigel environment29,101. These spheroids are 

stable for at least 2 weeks, which allows for repeated dosing. Furthermore, the HepG2 spheroids 

are metabolically more active as compared to HepG2 cells grown on a 2D surface, showing 

physiologically relevant levels of cytochrome P450 enzymes101. Most chemicals are metabolised 

in the human liver, which either leads to toxic clearing or the production of toxic metabolites; 

therefore, the presence of drug-metabolising enzymes in a test system is an important feature154. 

Of interest, when HepG2 cells are cultured in an amino acid-rich (AAGLY; Amino Acid-rich normal 

DMEM medium supplemented with 2% GLYcine) medium they change their glucose-dependent 

metabolism to an amino acid-fuelled profile, thus promoting further differentiation and 

expression of P450 enzymes at levels similar to primary human hepatocytes (PHHs), even in a 2D 

environment53. 

Here, we systematically investigated the application of p53 pathway DDR reporters in human 

liver models with different levels of maturation and metabolic competence. We used three 

HepG2 DNA damage green fluorescent protein (GFP) reporter cell lines; p53-GFP, p21-GFP and 

BTG2-GFP. These reporter cell lines were cultured in four different conditions: 2D using 

conventional Dulbecco’s Modified Eagles’s Medium (DMEM) or AAGLY medium, and 3D using 

DMEM/F12 or AAGLY medium. To assess sensitivity of the different culture conditions towards 

DNA damage, we exposed these models to five different chemicals that are known to cause a 

direct or indirect genotoxic effect with a distinct mode of action (Table 1). We envision that this 

study contributes to a better understanding of the different culture conditions that impact on 

metabolic competence and assay sensitivity in the context of the DDR. This will allow refinement 

of chemical safety testing strategies for a better-informed risk evaluation. 

Materials and Methods  

Chemicals or reagents 

Mitomycin C and aflatoxin B1 were obtained from Sigma-Aldrich (Zwijndrecht, The Netherlands). 

Gemcitabine was acquired from Eli Lilly (Indianapolis, IN, USA) and brequinar was obtained from 

Fluorochem (Hadfield, UK). Cisplatin was acquired from Ebewe Pharma (Unterach am Attersee, 

Austria). Compounds were dissolved in dimethylsulfoxide (DMSO), except for mitomycin C 

[phosphate-buffered saline (PBS)], cisplatin (PBS) and gemcitabine (sterile H2O). The maximum 

final DMSO concentration used was 0.2% (v/v). 

Cell culturing 

Human hepatocellular carcinoma HepG2 cells were obtained from the American Type Tissue 

Culture Collection (ATCC, Wessel, Germany). The HepG2 BAC-GFP reporters for human BTG2, p21 

and p53 were generated previously and used to monitor the DDR29,79. Cells were maintained in 

DMEM high glucose (Gibco) supplemented with 10% (v/v) fetal bovine serum (FBS), 25 U/ml 

penicillin and 25 µg/ml streptomycin (referred to as normal DMEM medium) at 37°C and 5% CO2.  
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The reporter cells were tested between passages 19–21 throughout the data presented 

(Supplementary Figure 1). 

2D cell culturing in normal DMEM medium 

Cells were plated in Greiner Bio-One black SCREENSTAR 384-well plates (Alphen aan den Rijn, 

The Netherlands), at 10.000 cells per well in normal DMEM medium. Cells were allowed to 

adhere for 24 h before treatment or RNA isolation. 

2D cell culturing in AAGLY medium 

Cells were plated in Greiner Bio-One black µClear 384-well plates (Alphen aan den Rijn, The 

Netherlands), at 18.000 cells per well in normal DMEM medium. Forty-eight hours after plating, 

cells switched from normal DMEM medium to AAGLY medium consisting of DMEM low glucose 

supplemented with 7.7% (v/v) FBS, 20 U/ml penicillin, 20 µg/ml streptomycin, 160 µl/ml MEM 

non-essential amino acids solution (100×), 80 µl/ml MEM essential amino acids (50×) solution 

and 2% glycine with a pH of 753. To drive hepatic differentiation, cells were cultured for 30 days 

before treatment or RNA isolation. Medium was refreshed twice a week. 

3D cell culturing in DMEM/F12 medium 

3D culturing was performed as described previously29,101. Briefly, cells were cultured in a layer of 

5 mg/ml Matrigel matrix basement membrane, growth factor reduced (Corning, Cat#354230, 

Compound  Abbreviation  Tested concentration range  

Aflatoxin B1  AFB  0.10 – 21.54 µM  

1. Aflatoxin B1 is converted into reactive intermediate AFB1-8,9-epoxide mainly by CYP3A4.  

2. AFB1-8,9-epoxide forms DNA adducts.  

3. DNA damage is induced with direct compound-DNA interaction.155  

Brequinar  BRE  0.22 – 100 µM  

1. Brequinar inhibits dihydroorotate dehydrogenase (DHOD). 

2. Pyrimidine biosynthesis is blocked.  

3. DNA/RNA synthesis and repair is inhibited.  

4. DNA damage is induced indirectly without compound-DNA interaction.156  

Cisplatin  CIS  0.10 – 21.54 µM  

1. Cisplatin is taken up by the cell by copper transporters.  

2. Cisplatin crosslinks (mainly intrastrand) with the purine bases on the DNA.  

3. Interference with DNA repair mechanisms.  

4. DNA damage is induced with direct compound-DNA interaction.157,158  

Gemcitabine  GEM  0.0037 – 0.80 µM  

1. Gemcitabine is phosphorylated by deoxycytidine kinase to its active form.  

2. Gemcitabine diphosphate or triphosphate (dFdCTP) incorporates at the end of the elongating DNA strand. 

3. RAD51-dependent Homologous recombination and DNA synthesis is inhibited.  

4. DNA damage is induced with direct compound-DNA interaction.159 

Mitomycin C  MMC  0.10 – 21.54 µM  

1. Mitomycin C makes DNA cross-links (both inter and intrastrand)  

2. DNA damage is induced with direct compound-DNA interaction  

    

1. Cytochrome P450 reductase induces redox cycling of Mitomycin C.  

2. Reactive oxygen species (ROS) are formed.  

3. ROS leads to an indirect DNA damage effect.158,160 

Table 1. List of compounds with the concentration range used in this study. 

The genotoxic mode of action based on literature.   
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Lot#6130005) in Greiner Bio-One black µclear 384-well plates (Alphen aan den Rijn, The 

Netherlands) at a density of 1000 cells per well to form liver spheroids in 21 days before 

treatment or RNA isolation. Spheroids were maintained in DMEM/F12 high glucose and phenol 

red free supplemented with 10% FBS and 25 U/ml penicillin and 25 µg/ml streptomycin (referred 

to as DMEM/F12 medium). Medium was refreshed twice a week. 

3D cell culturing in AAGLY medium 

3D culturing was performed as described above. However, 7 days post seeding, DMEM/F12 

medium was replaced by AAGLY medium with no phenol red. AAGLY medium was then refreshed 

twice a week until 21 days before treatment or RNA isolation. 

Cell treatment and viability 

Two different compound exposure scenarios were performed: a single exposure in 2D and a 4-

day repeated exposure in 3D. A schematic overview of the tested exposure scenarios for each 

HepG2 model has been depicted in Figure 1. For the single exposure scenario in 2D, medium was 

replaced by freshly diluted compound in medium 24 h post seeding. DDRs were monitored after 

24, 48 and 72 h by live cell confocal imaging (Figure 1A and B). For the 4-day repeated exposure 

scenario in 3D, each day medium was replaced by freshly diluted compound in medium for four 

consecutive days (Figure 1C and D). The imaging was started 24 h after the last exposure. For 

both scenarios, five compounds in eight concentrations were tested. DMSO, PBS or ultrapure 

H2O were used as solvent controls. The ATP-lite luminescence kit (Perkin Elmer) was used 

according to supplier’s protocol to measure cell viability. Measurements were performed 72 h or 

24 h post single or repeated exposure, respectively. Absolute IC50 values have been calculated 

over the ATP-lite data by determining the intersect of the fitted concentration–response curve 

with the 50% viability baseline via GraphPad prism 8.1.1. 

Cell imaging 

Prior to imaging, cells were stained with Hoechst 33342 at a concentration of 0.1 µg/ml to 

visualise the nuclei. To examine compound-induced cell death using confocal microscopy, 

propidium iodide (PI) was added during all compound exposures at a concentration of 100 µM 

to stain for necrotic or late apoptotic cells. The induction of GFP intensities and PI were 

monitored with a Nikon Eclipse Ti confocal laser microscope (Nikon, Amsterdam, The 

Netherlands), equipped with lasers at wavelengths 408, 488 and 561, an automated stage and 

perfect focus system at 37°C and 5% CO2. Images for 2D cultures were acquired with a Nikon 20x 

Dry Plan Apo VC NA 0.75 objective. Images for 3D cultures were acquired with a Nikon 10x Dry 

Plan Fluor NA 0.3 objective. For each condition, a z-stack of 9–11 images was generated with a 

step size of 30 µm. 

Quantitative image analysis 

For 2D cultures, image quantification was performed with Cell Profiler version 2.2.0 (Broad 

Institute, Cambridge, USA) using modules described previously79. Nuclei segmentation based on 
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Hoechst was done in ImageJ using an in-house developed macro based on the watershed masked 

clustering algorithm129. Segmentation of the cytoplasmic area was done using the Distance N 

method expanding the edges of nuclear objects with six pixels followed by subtraction of the 

nuclear area. p21 and p53-GFP intensities were measured in the nuclei and BTG2-GFP in the 

cytoplasm. The PI-positive cells were identified by an overlay of the PI signal and the segmented 

nuclei. A cell was considered positive when there was at least 10% overlap. Results were stored 

in HDF5 format161. To extract summarised data for further analysis and visualisation, in-house 

developed R-scripts were used in RStudio (version 1.0.153) (Boston, MA, USA)131,135,137. The mean 

nuclear and cytoplasmic intensities of all measured single cells and the fraction of PI-positive cells 

for each image were extracted as output from the HDF5 files. 

For 3D cultures, the NIS Elements analysis software (Nikon, Amsterdam, The Netherlands) was 

used to quantify the GFP intensity and PI-positive area within spheroids. First, a 2D projection 

per replicate treatment was created based on the maximum Hoechst intensity across z-stacks. 

Fig. 1. Overview of the four different HepG2 models used in this study. Schematic overview of the experimental 

procedures of the different models with in the upper right corner the legend: HepG2 cultured in 2D and DMEM 

medium (A), HepG2 cultured in 2D and AAGLY medium (B), HepG2 cultured in 3D and DMEM medium (C), HepG2 

cultured in 3D and AAGLY medium (D).    
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Then, spheroids were segmented by setting a threshold for the Hoechst signal. The GFP intensity 

was measured in the spheroids and the PI-positive area within spheroids was determined by the 

overlap of PI signal within spheroids. Further analysis was performed using in-house developed 

R-scripts in RStudio (version 1.0.153) (Boston, MA, USA). 

To compare the GFP induction of the tested models, first GFP in- tensities were min-max 

normalised for each model. Then, a hierarchical clustering analysis was performed using R 

package pheatmap133. First, Euclidean distances were calculated between different models, 

reporters and exposure durations. Thereafter, the mean of the Euclidean distances for the three 

different reporters for each model and exposure duration was used for hierarchical clustering 

using the complete linkage method. For the end points for cell death, a hierarchical clustering 

was performed based on Euclidean distance between each model, exposure duration and end 

point. 

Real-time qPCR 

Total RNA from the 2D and 3D cultures was isolated each from eight wells of a 384-well plates 

using the NucleoSpin® mRNA isolation kit or Trizol reagent (Invitrogen) according to 

manufacturer’s instructions, respectively. Isolated RNA was considered of sufficient quality when 

A260/280 and A260/230 ratios were higher than 1.9 and 1.5, respectively. The RevertAid first-

strand cDNA synthesis kit (Thermo Fisher) with Oligo(dT) 18 primers was used to generate the 

template from 500 ng RNA for the real time quantitative PCR (RT-qPCR) experiments. SYBR green 

master mix (Thermo Fisher) was used as a dye to monitor the accumulation of the PCR product 

using 25 ng cDNA template. In Supplementary Table 1, the primers sequences can be found that 

were used in the PCR reaction; denaturation (95°C for 30 s), annealing (60°C for 1 min), extension 

(72°C for 30 s) with 40 cycles. The 2−ΔΔCT method was used to quantify relative gene expression 

profiles using GAPDH identified as a stable housekeeping gene for HepG2162 and the HepG2 2D 

model as a reference sample163. 

TempO-seq transcriptomics 

Similarity between HepG2 wild-type and DDR reporter cells in p53 signalling was evaluated by 

measuring the mRNA expression of a targeted gene set consisting of the S1500+ gene list164 using 

the TempO-seq technology by BioSpyder Technologies Inc. (Carlsbad, CA, USA)30. In brief, HepG2 

cells were seeded in 96 wells plates (Corning, Amsterdam, The Netherlands) at a density of 

156.000 cells/cm2. Next day, cells were exposed to cisplatin in a wide concentration range for 8 

or 24 h followed by sample collection using 1× BNN lysis buffer (BioSpyder). Samples were lysed 

for 15 min at room temperature, stored at −80°C and shipped for transcriptome analysis by 

BioSpyder. The TempO-seqR package was used for the alignment of raw reads, followed by 

normalisation using DESeq2 R package165 of the read counts and log2 transformed. 
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Data analysis 

Point of departures (PODs) have been determined using an in-house established R package 

‘modelpod’. Concentration–response curves are fitted with Loess regression using the loess 

function from the base stats R package (with a span of 2/4 and 1 polynomial degree). The 

intersect of this fitted curve with the sum of the DMSO control value and two times the standard 

deviation (SD) from the regression of the DMSO gives an X value, the lowest concentration at 

which we observe a significant (positive or negative) effect defined as the PoD. 

Statistics 

For all experiments three independent biological replicates were performed. Additionally, for the 

imaging of the 2D models two positions per well have been imaged which were treated as 

technical replicates. Error bars in the concentration–response plots represent the SD of the three 

biological replicates. Significance for quantitative PCR (qPCR) data was determined using two-

way ANOVA with Tukey’s multiple testing correction represented as *Padj < 0.05, **Padj< 0.01 and 

***Padj < 0.001. 

Results  

Characterisation of hepatic phenotype of HepG2 models 

Previously, we generated the HepG2 BAC-GFP reporter platform as a tool for the assessment of 

chemical-induced toxicity. Using live cell confocal microscopy, we accurately quantified stress 

response activation of a total of eight different stress response pathways using 20 different 

biomarkers27,28,79. In this study, we focussed on BTG2, p21 and p53 reporters of the DDR. Since 

differences in drug metabolism capacity can have profound genotoxic consequences, we tested 

different 2D and 3D culture set-ups to study their suitability for the recognition of chemical- 

induced DNA damage. 

These HepG2 reporter cells were cultured in 2D either using normal medium having limited 

metabolic activity or medium with high levels of amino acids (AAGLY medium) to induce 

hepatocyte maturation for 30 days (Figure 2A), as previously described by Boon and colleagues53. 

Culturing HepG2 cells with AAGLY medium stops the proliferating capacity and allows the 

formation of a monolayer which was highly similar to the morphology of a PHH 2D culture (Figure 

2A). 

Previously, we have shown that 3D culturing of the HepG2 reporter model also resulted in a liver 

model with an increased metabolic potential29. By culturing HepG2 cells in a layer of Matrigel, 

cells clustered, stopped proliferating and formed well-rounded spheroids in 3 weeks resulting in 

an improved hepatic phenotype (Figure 2). We also combined the 3D culturing of the HepG2 

reporter cells with the AAGLY medium. Since the AAGLY medium stopped the cell proliferation, 

which was necessary for spheroid formation, we used normal DMEM medium for the first 7 days. 

We anticipated that 2 weeks of AAGLY medium would further enhance the HepG2 hepatocyte 
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maturation in the 3D set-up. The morphology of both 3D models was similar in the 3D AAGLY 

medium condition (Figure 2).  

To evaluate the relative differentiation level of the different cultures, we determined several key 

hepatocyte differentiation markers. Culturing HepG2 cells in AAGLY medium had the greatest 

effect on hepatocyte maturation, with strong upregulation of hepatocyte markers SERPINA1, 

CYP3A4, CYP3A7, UGT1A1 and SLC10A1 as compared to normal DMEM medium (Figure 2B). 

However, the addition of AAGLY medium did not lead to induction of CYP1B1 in 2D, while it was 

upregulated by ~50-fold in the 3D culturing conditions. In general, culturing in a 3D set-up in 

DMEM led to increased expression of ALB, CYP1B1, UGT1A1 and SLC10A1 compared to 2D in 

DMEM, although this upregulation was not significant due to higher variance. Combining AAGLY 

medium with the 3D set-up led to a clear induction of CYP3A4, SERPINA1 and CYP3A7 compared 

to DMEM, reaching similar levels as 2D in AAGLY medium. While the more mature models 

Fig. 2. Hepatocyte maturation status of four different HepG2 models. A) Bright field pictures showing 

morphological differences between the different models; HepG2 cultured in 2D and DMEM medium, HepG2 

cultured in 2D and AAGLY medium, HepG2 cultured in 3D and DMEM medium, HepG2 cultured in 3D and AAGLY 

medium from left to right. B) Gene expression profiles of some hepatocyte markers (SERPINA1 and ALB), CYP 

enzymes (3A4, 3A7 and 1B1) and transporters (UGT1A1 and SLC10A1) and the housekeeping genes (GAPDH). 

Gene expression values are relative to model 1 (HepG2 cultured in 2D and DMEM medium) and benchmarked to 

a pool of 10 different donors  of cryopreserved PHHs (10x). N=6; error bars represent SD; significance levels 

represented as *padj<0.05, **padj<0.01 and ***padj<0.001.  
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showed hepatocyte gene expression profiles similar to plated cryopreserved PHH, some genes 

like SLC10A1 were still markedly lower as compared to this gold standard. 

DDR activation and quantification 

Next, we tested a set of compounds (see Table 1) on the three different DDR reporters under the 

various culture conditions. To verify the similarity in p53 signalling between these three different 

DDR reporters, the expression of key related genes has been evaluated upon exposure to 

cisplatin for 8 or 24 h. Here, no significant difference in stress response was measured indicative 

of preservation of wild-type p53 signalling during reporter development and passaging 

(Supplementary Figure 1). 

Since proliferation of HepG2 cells cultured in the conventional normal DMEM medium hampered 

long-term culturing without passaging, only a single compound treatment was tested for 24, 48 

or 72 h. Therefore, for comparison, also the AAGLY medium in 2D was evaluated using the same 

treatment regime. In 3D both conventional normal DMEM medium and AAGLY medium 

spheroids are stable and allowed for repeated 4-day exposure. DDR reporter activation was 

observed in all the different culture conditions and upon treatment of three different example 

compounds, aflatoxin B1, cisplatin and mitomycin C (Figure 3A). When exposed to the different 

genotoxic compounds, the BTG2-GFP was strongly induced while in control conditions no 

induction of BTG2-GFP was seen (Figure 3B). Importantly, the various culture conditions had a 

very different effect on the sensitivity towards the genotoxicants. For example, when HepG2 cells 

were cultured in 2D with conventional normal DMEM medium, aflatoxin B1 led to a steady 

concentration-dependent induction of BTG2-GFP with a peak at 10 µM. In contrast, when 

cultured in AAGLY medium, the HepG2 became more sensitive and the maximum BTG2 

upregulation was seen at ~40 times lower concentrations. Unexpectedly, this increased 

sensitivity of HepG2 cells cultured in 2D with AAGLY medium with respect to BTG2-GFP activation 

for aflatoxin B1 did not translate to an increased sensitivity towards cell death, possibly more 

mature HepG2s are better equipped to counteract the aflatoxin B1-induced adversity. For direct 

mutagens like cisplatin, the 2D and 3D model in normal DMEM medium showed the highest 

BTG2-GFP sensitivity. These models were also most sensitive with the cell viability readout with 

this compound. For mitomycin C, we could clearly observe that at low concentrations all models 

showed a strong BTG2-GFP response and at high concentrations cell death was induced, 

visualised by the PI-positive cells/spheroids and a concentration-dependent reduction of ATP 

content. In contrast, the (in)direct anti-metabolites gemcitabine and brequinar only induced 

BTG2-GFP responses in the proliferating HepG2 cultured in 2D in normal DMEM medium 

(Supplementary Figure 2). 

Cell death induction upon chemical-induced DNA damage in HepG2 models 

Severe DNA damage may decrease cellular viability, and although this is a non-specific adverse 

outcome, it may be a sensitive general readout of toxicity. To evaluate cell death induction upon 

http://academic.oup.com/mutage/article-lookup/doi/10.1093/mutage/geab031#supplementary-data
http://academic.oup.com/mutage/article-lookup/doi/10.1093/mutage/geab031#supplementary-data
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exposure to DNA damage inducing agents in the different HepG2 culture conditions, cell viability 

was determined by evaluating the PI-positive fraction and ATP content (Supplementary Figures 

3 and 4) followed by hierarchical clustering of all the data (Figure 4). Clustering of both cell death 

end points showed in general that HepG2 cells exposed for a longer duration (4-day repeated in 

3D or 72 h in 2D), clustered together based on the medium type that was used. Most cell death 

Fig. 3. Example images of fluorophore reporter activation and corresponding concentration response plots. A) 

Representative examples of confocal images of the BTG2-GFP reporter upon activation by aflatoxin B1, cisplatin 

or mitomycin C in the 4 different culture conditions. For the 2D, only images are shown of the 72 hr timepoint. 

The blue pseudo colour represents Hoechst (nuclei) staining, green represents the GFP reporter activation and 

red shows the PI (cell death) staining. B) Concentration response plots of the min-max normalized BTG2-GFP 

reporter activation upon treatment with aflatoxin B1, cisplatin or mitomycin C in the four different culture 

conditions. Fluorophore data is shown as fold changes as compared to basal (solvent) conditions. N=3; the light-

coloured shaded area represents error bars (SD). C)  Concentration response plots of cell viability (ATP-lite) upon 

activation by aflatoxin B1, cisplatin or mitomycin C in the four different culture conditions. Fluorophore data is 

shown as fold changes as compared to basal (solvent) conditions. N=3; the light-coloured shaded area represents 

error bars (SD).   

http://academic.oup.com/mutage/article-lookup/doi/10.1093/mutage/geab031#supplementary-data
http://academic.oup.com/mutage/article-lookup/doi/10.1093/mutage/geab031#supplementary-data
http://academic.oup.com/mutage/article-lookup/doi/10.1093/mutage/geab031#supplementary-data
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was seen with mitomycin C exposure, where HepG2 cells grown in 3D with normal DMEM 

medium were most sensitive with an IC50 of 1.58 µM. When cells were grown in 2D with normal 

DMEM medium, their tolerance of mitomycin C was about 4-fold higher, with an IC50 of 6.31 µM. 

HepG2 cells grown in 2D with AAGLY medium were less sensitive, showing only reduction in ATP 

content at the highest concentration with 72 h exposure (IC50 of 20.43 µM). Cell death was also 

observed upon cisplatin treatment at concentrations higher than 10 µM, but this was only the 

case for HepG2 cells grown in normal DMEM medium either in 2D or 3D. No cell death was seen 

with cisplatin when cells were grown in AAGLY medium. Brequinar only induced cell death at the 

highest concentration of 100 µM in HepG2 cells grown in 3D in both medium types or in 2D in 

combination with AAGLY medium. When cells were cultured in 2D using normal DMEM medium, 

no cell death was seen for brequinar, suggesting that an improved hepatic phenotype is needed 

to identify brequinar-mediated adversity. Aflatoxin B1 showed highest cell death induction in 

HepG2 cells grown in 3D with DMEM/F12 medium at concentration levels of 2.15 µM or higher. 

Cells grown in 2D with normal DMEM medium were less sensitive showing adversity at 10 µM or 

higher. When AAGLY medium was used no cell death could be observed during aflatoxin B1 

exposure, although DDR activation was seen. Gemcitabine did not show cell death induction in 

all the models.  

 

Fig. 4. Hierarchical clustering of cell death data. Hierarchical clustering (Euclidean distance with Ward’s distance) 

of propidium iodide (PI) positive fraction and ATP content (viability) upon exposure to 5 compounds at 8 

concentrations in HepG2 cells cultured using 4 different culture conditions. Data is represented as the mean of 

3 biological replicates of three reporter models.   
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Shift in sensitivity for chemical-induced DDR activation 

To assess genotoxic mechanisms that may underlie the observed compound-induced 

cytotoxicity, we systematically compared the difference in DNA damage signalling activation 

among the HepG2 models upon chemical exposure. We created a hierarchical clustering of the 

activation of the three DNA damage GFP reporters at all test conditions from which the shifts in 

sensitivity between the different conditions can be clearly observed (Figure 5). The dendrogram 

on the left indicated that reporter data of the HepG2 cultured in the normal DMEM medium in 

2D separated from the other, more metabolically active, culture conditions. The reporter data of 

HepG2 cultures in 3D with the two different media types showed the highest resemblance with 

each other. 

When examining individual compounds, aflatoxin B1 induced DNA damage reporters (BTG2, p21 

and p53) in all culture conditions. However, the more metabolically active models, e.g. 2D HepG2 

cells cultured in AAGLY medium, were more sensitive as the induction was already observed at 

the lowest concentration of 0.1 µM aflatoxin B1 (Supplementary Figure 2). Interestingly, for the 

HepG2 reporters cultured in 2D, the reporter induction by aflatoxin B1 was more prominent, up 

to ~4.5-fold, when measured at later time points (48 and 72 h). In general, the BTG2-GFP and 

p53-GFP reporters were most sensitive towards aflatoxin B1-induced DNA damage. 

Brequinar, an inhibitor of pyrimidine synthesis, only led to mild induction of the DNA damage 

reporters, of which p53 was most sensitive (Supplementary Figure 2) in particular with the 2D 

set-up using normal DMEM medium resulting in maximal ~3-fold higher induction compared to 

other reporters. Interestingly, no DDR was observed at 24 h after brequinar exposure. In the 4-

day repeated dosing scenario in 3D in combination with AAGLY medium, brequinar induced a 

DDR (p21 and p53 activation) at the highest concentration, but this was not seen when using 

normal DMEM medium. 

All DNA damage reporters showed a very clear concentration-dependent activation upon 

exposure to the direct mutagen cisplatin in 2D with normal DMEM medium at 0.46 µM or higher. 

However, when AAGLY medium was used or when the cells were cultured in 3D, this effect was 

much less pronounced (see also Supplementary Figure 2) where clear activation was only seen 

at 10 µM or higher. It is likely that cell cycle progression is required for cisplatin-induced DNA 

damage effects. Similar results were obtained for gemcitabine (see also Supplementary Figure 

2). Only in proliferative culture conditions (2D with normal DMEM medium), the genotoxic 

effects of gemcitabine were revealed, which seem to be almost absent in the other culture 

conditions. 

The last compound tested, mitomycin C, had both a direct as well as an indirect DNA-damaging 

effect. HepG2 3D spheroids in combination with repeated dosing were most sensitive to identify 

DDRs by mitomycin C showing the highest reporter induction at lower concentrations compared 

to the other models. 

http://academic.oup.com/mutage/article-lookup/doi/10.1093/mutage/geab031#supplementary-data
http://academic.oup.com/mutage/article-lookup/doi/10.1093/mutage/geab031#supplementary-data
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To get more insight in the sensitivities of our DDR reporters in the different culture conditions, 

we calculated for each compound and condition the PoD values of reporter activation. PoD values 

were defined as the lowest compound concentrations resulting in significant induction of 

reporter activity. Hierarchical clustering of the PoD values for the three DDR stress pathway 

reporters (p21-, p53- or BTG2-GFP) confirmed their similarities in response, and showed that 

drug sensitivity was largely dependent on culture conditions (Figure 6). By culturing the HepG2 

cells in 2D with normal DMEM medium, PoDs could be determined for all compounds. This model 

seemed to be especially sensitive for gemcitabine, for which very low PoD values were calculated 

of 0.028 µM or lower. This compound did not induce a quantifiable genotoxic effect in the other 

models. 3D culturing conditions with repeated dosing increased the sensitivity of the reporters 

for the genotoxic effects of mitomycin C, as in these conditions the lowest PoD was 0.32 µM 

mitomycin C while for 2D conditions the lowest defined PoD was 0.74 µM. Genotoxic effects of 

aflatoxin B1, a compound that required bioconversion to a genotoxic metabolite, could be best 

picked up using the 3D culturing or by using AAGLY medium. The delayed DDR after brequinar 

Fig. 5. Hierarchical clustering of the reporter activation. Hierarchical clustering (Euclidean distance with Ward’s 

distance) based on fold change GFP reporter data, including 7 compounds, at 8 concentrations, in 3 different 

reporter models (P53, P21 and BTG2-GFP) at 4 different culture conditions. N=3.   
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treatment was best measured at the later time points in the 2D cultures, which could not be 

picked up with the 4-day repeated dosing scenario in the 3D set-up. DNA-damaging effects at low 

concentrations of cisplatin were detected in the 2D culture with normal DMEM medium giving 

PoDs of 0.32–1.83 µM. In 3D, this effect was also observed but at higher concentrations ranging 

from 3.35 to 17.2 µM, especially in combination with AAGLY medium. By using the combination 

of 2D culturing and AAGLY medium, cisplatin-induced DDR could not be detected. 

When comparing PoDs of the DNA damage reporter activation (Figure 6; Supplementary Figure 

2) with the compound concentrations at which the cell viability was affected (Figure 4; 

Supplementary Figures 3 and 4), we found that the readout for DDR reporters is much more 

sensitive. Typically, the DNA damage BAC-GFP reporter cell lines were activated at 10–50 times 

lower concentrations as compared to the concentrations at which cell death (PI) and cell viability 

(ATP-lite) were observed. 

Discussion 

In this study, we systematically compared the impact of differentiation-inducing 3D culturing and 

AAGLY medium on the detection of (in)direct genotoxicity in HepG2 liver cancer cells. For this 

purpose we used three fluorescent HepG2 reporters for p53 pathway activation in the DDR: p53-

GFP, BTG2-GFP and p21-GFP. The key findings of our study are: (i) HepG2 DDR reporters are more 

sensitive to DNA-damaging agents than HepG2 cell death or viability assay; (ii) proliferating 

Fig. 6. Hierarchical clustering of the reporter activation point of departures (PoDs). Hierarchical clustering 

(Euclidean distance with Ward’s distance) based on the PODs of GFP reporter intensity concentration response 

curves.   
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HepG2 DDR reporters cultured under standard 2D conditions are generally sensitive to diverse 

DNA-damaging agents with diverse modes of action; (iii) differentiated HepG2 DDR reporters 

cultured in 3D or AAGLY medium are not sensitive to the genotoxic drugs cisplatin, brequinar and 

gemcitabine; (iv) 2D and 3D HepG2 DDR reporters with non-proliferative differentiated 

phenotypes are more sensitive towards genotoxicants that require bioactivation by P450 enzyme 

systems. These findings suggest that a genotoxicity testing strategy with our panel of HepG2 DDR 

reporters should consist of (i) proliferating HepG2 DDR reporters in normal culture medium 

followed by (ii) differentiated HepG2 DDR reporters using AAGLY medium with enhanced 

expression of P450 mimicking primary hepatocyte levels.  

The DDR reporter activities induced by cisplatin, gemcitabine and brequinar were mainly 

observed in normal proliferating 2D cells. Since the genotoxic effects of these drugs depend on 

replication, this is likely explained by the fact that HepG2 cells cease to proliferate in 3D or AAGLY 

medium29,101. Many other known genotoxic compounds have similar replication-dependent 

modes of action, which advocates for the use of 2D HepG2 reporter systems in the early phase 

of genotoxic hazard characterisation. 

HepG2 DDR reporters cultured under conditions with enhanced differentiation characteristic 

were most sensitive towards aflatoxin B1. This suggests that differentiation of HepG2 DDR 

reporters would in general increase the sensitivity to compounds that require metabolism to 

become genotoxic. The genotoxic effect of aflatoxin B1 depends completely on liver-specific 

metabolisation to its reactive forms aflatoxin B1-8,9-exo-epoxide, 8,9-dihydroxy-8-(N7) guanyl- 

9-hydroxy aflatoxin B1 and aflatoxin B1 formaminopyrimidine (38). Interestingly, for the HepG2 

lines cultured in 2D the reporter induction by aflatoxin B1 was more prominent when measured 

at later time points (48 and 72 h), which might suggest that the reactive metabolite of aflatoxin 

B1 (AFB1-8,9-epoxide) is accumulating over time. CYP3A4 and CYP3A7 were highly expressed in 

differentiated HepG2 cell culture conditions in the presence of AAGLY medium. Indeed, our p53 

pathway reporters were most sensitive to aflatoxin B1 in AAGLY medium. The advantage of these 

differentiated HepG2 test systems is that it allows repeated dosing regimens mimicking better 

real-life exposures. This is generally hampered in proliferating 2D-cultured HepG2 cells. Besides 

aflatoxin B1, also mitomycin C was able to induce strong DDR reporter activity in differentiated 

HepG2 test systems. Which makes sense as mitomycin C can directly damage DNA through DNA 

cross-linking and inhibit both DNA replication as well as transcription. It can also indirectly induce 

DNA damage via cytochrome P450-mediated redox cycling and reactive oxygen species (ROS) 

formation160. What is the overall added value of physiologically more relevant liver model 

systems for the assessment of genotoxicity? To answer this question, there are a couple issues 

to consider. To begin with, our p53 pathway reporters do not directly measure DNA damage 

itself, but rather the cellular response to it. This allows sensitive and early detection of low levels 

of DNA damage, which justifies benchmarking this reporter system against other genotoxicity 
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test systems using PoD analyses. A recent evaluation of cisplatin genotoxicity using the high-

throughput CometChip assay shows a PoD of 6.3 µM in PHH166, which is considerably higher than 

the PoD values of 0.32–1.83 µM obtained with our DDR reporters. Thus, HepG2 BAC-GFP DDR 

reporter cell lines may be more sensitive than established genotoxicity assays, which should be 

further evaluated using a broader spectrum of genotoxicants. Moreover, the GFP-protein fusions 

also make it possible to follow dynamics of p53 pathway activation, which is an important 

determinant of cell fate24. For the HepG2 DDR reporters grown in 2D we have evaluated reporter 

activation at three time points, within a 3-day period, but could be extended using increased time 

resolution to more accurately map the DDR activation dynamics upon exposure. Together, our 

reporters give a robust representation of p53 pathway activation, because protein expression 

levels of p53 and its target genes BTG2 and CDKN1A are similarly induced by DNA damage and 

highly co-regulated23. However, the p53 pathway may also be upregulated by non-genotoxic 

compounds167. Dihydroorotate dehydrogenase inhibitors such as brequinar, for which we only 

detected reporter activity in standard 2D culture, have recently been shown to increase p53 

protein expression without preceding or concomitant induction of more direct markers of DNA 

damage such as ataxia-telangiectasia mutated (ATM) or ATM and Rad3-related (ATR) 

phosphorylation168. Mechanistically, the increased p53 protein expression was suggested to be a 

consequence of accumulation of cancer cells in S-phase. Thus, it is possible that some of the 

activity of the standard-2D culture does not reflect actual DNA damage. Since HepG2 reporter 

lines cultured in a more differentiated state will undergo G0/G1 arrest, short-term effects on 

their cell cycle distribution seem less likely. Whether there may be other non-genotoxic triggers 

for p53 reporter activity in differentiated HepG2 cells remains to be determined. 

Some compounds cause the cellular formation of ROS, which can have an effect on the stability 

of the DNA and therefore have a delayed genotoxic effect169. Furthermore, there seems to be 

cross talk from the inflammation to the DNA damage pathway and vice versa170. By extending 

the reporter panel with the previously generated Nrf2 (oxidative stress) and NF-κB 

(inflammation) pathway reporter cell lines79 it may be possible to discriminate between direct 

and indirect genotoxic modes of action153. 

In addition, we tested only a few compounds, and we do anticipate that various compounds at 

risk for genotoxicity may require bioactivation through cytochrome P450 enzyme system, which 

are insufficiently expressed in HepG2 cells in standard 2D culture. For an accurate estimation of 

the performance (sensitivity, predictivity and accuracy scoring) of the 2D and 3D systems a larger 

screen, including different classes of genotoxic and non-genotoxic compounds should be 

performed171. More importantly, the added value of cell culture-based assays for genotoxicity 

over classical assays such as the Ames test in bacteria lies not only in the detection of indirect 

genotoxicity alone. The ultimate goal is to use cell culture-based toxicity assays as quantitative, 
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predictive tools for adverse outcome22. For that purpose, it is essential to use model systems that 

accurately reflect the human bioactivation in vivo response to toxic chemicals. 

Taken together, our data indicate that standard 2D HepG2 models are capable of identifying 

diverse mechanisms of DNA responses but are not optimally equipped to effectively detect 

indirect genotoxicants that require bioactivation through drug-metabolising enzymes. The 

reverse is the case for differentiated HepG2 cell culture systems that are highly insensitive for 

genotoxicants that impact on DNA replication, but seem particularly more sensitive for 

genotoxicants that require bioactivation. Therefore, we propose a tiered testing strategy with 

the combination of both standard 2D HepG2 cells and differentiated HepG2 cells cultured in 2D 

or 3D in AAGLY medium. A broader follow-up screen based on a larger and unbiased set of 

compounds is necessary to assess the true potential of such a combined screening strategy. 
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Fig. S1. Upregulation of mRNA expression of DNA damage response genes in HepG2 wild-type or reporter cells 

upon cisplatin treatment for 8 or 24 h. 

Fig. S2. Concentration-dependent induction of BTG2-GFP upon chemical exposure in various HepG2 culture 

models. 
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Fig. S3. Cell death induction upon chemical exposure in various HepG2 culture models measured by fraction 

propidium iodide (PI) positive cells. 

Fig. S4. Cell death induction upon chemical exposure in various HepG2 culture models based on ATP content. 
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# Oligo Name Gene Marker Sequence 5' to 3' (include modification codes if applicable) 

1 H_AAT1_fw 

AAT1 Hepatocytes 

ACTGGGGTGACCTTGGTTAAT 

2 H_AAT1_rv GACGGCATTGTCGATTCACTG 

3 H_AFP_fw 

AFP Fetal hepatocytes 

TGAGCACTGTTGCAGAGGAG 

4 H_AFP_rv GTGGTCAGTTTGCAGCATTC 

5 H_ALB_fw 

Albumin Hepatocytes 

ATGCTGAGGCAAAGGATGTC 

6 H_ALB_rv AGCAGCAGCACGACAGAGTA 

11 H_CYP1A2_fw 

CYP1A2 Hepatocytes 

CTTTGACAAGAACAGTGTCCG 

12 H_CYP1A2_rv AGTGTCCAGCTCCTTCTGGAT 

13 H_CYP1B1_fw 

CYP1B1 Hepatocytes 

ACCAGGTATCCTGATGTGCAGAC 

14 H_CYP1B1_rv AGGTGTTGGCAGTGGTGGCATGAG 

17 H_CYP3A4_fw 

CYP3A4 Hepatocytes 

tTCCTCCCTGAAAGATTCAGC 

18 H_CYP3A4_rv GTTGAAGAAGTCCTCCTAAGCT 

21 H_CYP3A7_fw 

CYP3A7 Hepatocytes 

AGATTTAATCCATTAGATCCATTCG 

22 H_CYP3A7_rv AGGCGACCTTCTTTTATCTG 

27 H_GAPDH_fw 

GAPDH Housekeeping 

TCAAGAAGGTGGTGAAGCAGG 

28 H_GAPDH_rv ACCAGGAAATGAGCTTGACAAA 

31 H_HNF4a_fw 

HNF4α Hepatocytes 

ACTACGGTGCCTCGAGCTGT  

32 H_HNF4a_rv GGCACTGGTTCCTCTTGTCT   

35 H_NTCP_fw 

NTCP Hepatocytes 

ATCGTCCTCAAATCCAAACG 

36 H_NTCP_rv CCACATTGATGGCAGAGAGA 

41 H_RLP19_fw 

RLP19 Housekeeping 

ATTGGTCTCATTGGGGTCTAAC 

42 H_RLP19_rv AGTATGCTCAGGCTTCAGAAGA 

49 H_CYP2A6_Fw 

CYP2A6 Hepatocytes 

TTTTGGTGGCCTTGCTGGT 

50 H_CYP2A6_Rv GGAGTTGTACATCTGCTCTGTGTTCA 

51 H_CYP2D6_Fw 

CYP2D6 Hepatocytes 

CCTACGCTTCCAAAAGGCTTT 

52 H_CYP2D6_Rv AGAGAACAGGTCAGCCACCACT 

55 H_CYP2E1_Fw 

CYP2E1 Hepatocytes 

AATGGACCTACCTGGAAGGAC 

56 H_CYP2E1_Rv CCTCTGGATCCGGCTCTCATT 

47 H_UGT1A1_fw 

UGT1A1 Hepatocytes 

CAGCAGAGGGGACATGAAAT 

48 H_UGT1A1_rv ACGCTGCAGGAAAGAATCAT 

59 H_CYP2C19_Fw 

CYP2C19 Hepatocytes 

CAACAACCCTCGGGACTTTA 

60 H_CYP2C19_Rv GTCTCTGTCCCAGCTCCAAG 

Table S1. 
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Abstract 

The unfolded protein response (UPR) pathway senses unfolded proteins and regulates 

proteostasis and cell fate through activity of the transcription factors ATF4, ATF6 and XBP1 

within a complex network of three main branches. Here, we investigated contributions of the 

three branches to UPR activity in single cells using microscopy-based quantification and 

dynamic modelling. BAC-GFP HepG2 reporter cell lines were exposed to tunicamycin and 

activation of various UPR components was monitored for 24 hours. We constructed a dynamic 

model to describe the adaptive UPR signalling network, for which incorporation of all three 

branches was required to match the data. Our calibrated model suggested that ATF6 shapes 

the early dynamics of pro-apoptotic CHOP. We confirmed this hypothesis by measurements 

beyond 24 hours, by perturbing single siRNA knockdowns and by ATF6 measurements. Overall, 

our work indicates that ATF6 is an important regulator of CHOP, which in turn regulates cell 

fate decisions. 

Keywords: Biocomputational Method; Bioinformatics; Optical Imaging; Systems Biology. 

 

Introduction 

Cells activate adaptive stress responses to be able to cope with different types of stress. For 

instance, various chemicals cause the accumulation of unfolded proteins within the endoplasmic 

reticulum (ER). Drugs, such as nefazodone and diclofenac, lead to such ER stress and as a 

consequence ER stress-related genes are upregulated, giving rise to the unfolded protein 

response (UPR) which counters chemical-induced protein stress97,172. Besides chemicals, also 

modifications in the rate of protein synthesis or in the cellular environment, such as nutrient level 

fluctuations or inflammation can trigger the UPR173. Moreover, the UPR can be exploited by 

malignant cells, assisting their development of drug resistance174. 

Under homeostatic conditions, the ER is responsible for protein synthesis and tightly controls the 

correct folding and maturation of proteins by various chaperones (such as heat shock protein 

(Hsp) 70 and 90 family members, ER-localized DnaJ like proteins and calnexin) and foldases (such 

as protein disulfide isomerases (PDIs) and prolyl peptidylcis–transisomerases (PPIases)). 

Afterwards, proteins are transported to the Golgi through a secretory pathway175. Upon 

disruption of ER homeostasis, cells react by activating the adaptive UPR. This will lead to an 

increase of the ER folding capacity, to temporary interruption of the translational machinery, and 

to degradation of unfolded proteins, altogether with the aim to recover from ER stress173,176. 

The UPR is under control of three sensors, each activating distinct signalling cascades and 

transcription factors (TFs), namely PKR-like ER kinase (PERK), inositol requiring 1α (IRE1α) and 

activating transcription factor 6 (ATF6) (Fig. 1). These sensors are bound to the chaperone binding 

immunoglobulin protein (BiP/HSPA5 ) and are kept in an inactive state in unstressed 

conditions177,178. Upon ER stress, the sensors are released by BiP179 or bound by misfolded 
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protei180 enabling their activation. After activation of IRE1α in the first UPR branch, its 

endoribonuclease domain splices the b-ZIP TF XBP1 mRNA resulting in the transcriptionally active 

protein pXBP1(S)181 which induces the expression of ER stress related genes involved in protein 

folding182, ER-associated degradation (ERAD)183,184 and ER expansion185. In the second branch, 

active PERK phosphorylates eukaryotic translation-initiation factor 2 (eIF2α) leading to 

attenuation of the translation of mRNAs which reduces the protein load in the ER186. Moreover, 

the expression of some genes, such as a b-ZIP TF ATF4, depends on the phosphorylation status 

of eIF2α187. ATF4 induces the expression of ER stress related genes to restore homeostasis188,189, 

but also induces the b-ZIP TF C/EBP homologous protein (CHOP) which promotes cell death190–

192. In the third branch, ATF6 translocates to the Golgi where it is cleaved193,194. The ensuing ATF6 

fragment (pATF6(N)) translocates to the nucleus and initiates the expression of its target genes 

such as chaperones, genes involved in ERAD, pXBP1(S), but also of the pro-apoptotic gene 

CHOP195–197. 

 

As many molecules have some role 

in the UPR network and ample 

feedbacks have been identified, 

these interactions are expected to 

lead to complex dynamics. In order 

to mechanistically understand 

these dynamics and its role in 

cellular adversity, mathematical 

modelling is an indispensable tool 

to quantitatively understand this 

complexity198,199. Ordinary differential equation (ODE) models are well fit for this purpose 

because they take into account laws of biochemical reactions. Several dynamical models of the 

UPR have already been built by various groups. Cho et al. utilized discrete dynamical modelling 

to study a complex UPR network model, considering different biological processes to occur at 

similar time scales200. With respect to ODE models applied to the UPR, several studies focused 

on details of UPR sub-modules, e.g. on the IRE1α branch201. Taking into account all three 

branches, Erguler et al. (2013) proposed a comprehensive UPR model and highlighted potential 

emerging dynamics due to feedback loops202. A simpler three-branch model was derived using 

steady-state assumptions by Trusina et al.203, which was subsequently used to study repeated 

Fig. 1. Cartoon illustrating the UPR 

pathway involving multiple 

organelles and three branches, 

several TFs and downstream 

molecules involved in feedback loops. 
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exposure and the effect of different types of stress during in silico simulations204. Interestingly, 

this work emphasized the potential importance of BiP accumulation during primary exposure 

leading to protection against renewed ER stress. Recently, Diedrichs et al. integrated gene 

expression data from mouse embryonic fibroblasts into a UPR model and validated their model 

predictions with knockout experiments, which focused on the feedback loop via CHOP-induced 

DNA damage-inducible protein 34 (GADD34) that leads to dephosphorylation of eIF2α and a 

consequent increase in protein load205. 

To further increase our mechanistic understanding of regulation of UPR TF activity during 

adaptation, we here present a new ODE model that we calibrate with a rich set of dynamic high-

content imaging data. These data are generated utilizing our established liver carcinoma HepG2 

BAC-GFP reporter platform27,28,91. The usefulness of combining high-content imaging of HepG2 

reporter cell lines with mathematical modelling has recently been demonstrated for the NFκB-

mediated inflammatory stress pathway206. Here, by applying high-content confocal imaging to 

HepG2 BAC-GFP UPR reporters for CHOP, ATF4, pXBP1(S) and BiP, we were able to precisely 

follow the activation dynamics of these UPR genes in response to a broad concentration range of 

tunicamycin, a highly specific ER stress inducer. By fitting our dynamic model to the data we 

dissected the contribution from single branches to UPR regulation. Furthermore, model selection 

suggested that ATF6 has an important role in shaping the CHOP dynamics during ER stress. 

Consistent with this, siRNA-mediated silencing of ATF6 led to diminished CHOP induction during 

the acute phase, yet still resulted in a prolonged induction of CHOP. This suggests that ATF6 is an 

important regulator for cell fate decisions under chronic ER stress. 

Materials and Methods 

Cell culture 

HepG2 human hepatocellular carcinoma cells were purchased at American Type Culture 

Collection (ATCC, Wesel, Germany). To capture the induction of key proteins of the UPR, CHOP, 

ATF4, BiP and pXBP1(S) were GFP-tagged using a bacterial artificial chromosome (BAC) 

recombineering approach27,79,91,128,207. Hereby, stable HepG2 GFP-BAC reporter cell lines were 

established expressing protein-GFP fusions under control of the endogenous promoter for each 

gene. HepG2 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% 

(v/v) fetal bovine serum (FBS), 25 U/mL penicillin and 25 µg/mL streptomycin at 37°C and 5% 

CO2, and were used until passage 20. Cells were plated using a density of 70.000 to 140.000 

cells/cm2 when grown for 3 to 5 days. 

Chemicals and antibodies 

Tunicamycin was purchased at Sigma (Zwijndrecht, The Netherlands) which was dissolved in 

dimethylsulfoxide (DMSO) from BioSolve (Valkenswaard, The Netherlands) and stored at -20°C 

until usage. The maximum solvent end concentration of DMSO was at most 0.2% (v/v) to 

minimize the effect of the solvent itself. For western blotting, antibodies were used against 
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CHOP, ATF4, pXBP1(S) and ATF6 from Cell Signaling (Bioké, Leiden, The Netherlands), BiP from 

BD Biosciences (Vianen, The Netherlands) at a dilution of 1:1000, and Tubulin from Sigma 

(Zwijndrecht, The Netherlands) at a dilution of 1:5000. 

RNA interference 

siRNA-mediated transient silencing of genes of interest in HepG2 cells was done using a reverse 

transfection approach. Prior to transfection, siGENOME SMARTpool siRNAs from Dharmacon 

(Eindhoven, the Netherlands) were mixed with INTERFERin from PolyPlus (Leusden, the 

Netherlands) for 10 minutes to allow for complex formation. Hereafter, siRNA mix, resulting in a 

50 nM siRNA and 0.3% INTERFERin end concentration, together with cells at a density of 78.000 

cells/cm2 were added to each well. As control, mock (only INTERFERin) and siRNA scrambled non-

targeting control was employed. At 24 hours post-transfection, medium was refreshed. siRNA-

silenced cells were evaluated at 72 hours post transfection or exposed to compounds to assess 

the effect of the knockdown on drug-induced ER stress response activation. 

Confocal Microscopy 

Cells were plated in SCREENSTAR 96 wells or µClear 384 wells plates from Greiner Bio-One 

(Alphen aan den Rijn, The Netherlands) at the earlier mentioned cell densities. Prior to confocal 

microscopy imaging, cells were stained with 100 ng/mL Hoechst33342 for a minimum of 30 

minutes to allow for nuclei visualization and cell tracking. To measure the induction of BAC-GFP 

intensity, cells were imaged live using an automated Nikon TiE2000 confocal microscope (Nikon, 

Amsterdam, The Netherlands) including an automated xy-stage, Perfect Focus System and lasers 

at wavelength 408, 488, 561 and 647nm. Cells were kept at 37°C and 5% CO2 humidified 

atmosphere during imaging. 

Image Analysis 

Segmentation and quantification of the GFP intensity was done using CellProfiler version 2.1.1 

(Broad Institute Cambridge, USA) using analysis modules described previously79,208. In brief, 

nuclear segmentation based on Hoechst signal was done using an in-house constructed 

watershed masking algorithm129. The propagation segmentation method based on GFP signal 

was used for cytoplasm segmentation. GFP intensity was measured in the nucleus as well as in 

the cytoplasm. For subsequent analysis, Rstudio version 1.0.153 (Boston, USA) was used. For 

alignment of the data acquired around discrete time points (1,2,..., 24 hours), we employed cubic 

interpolation of the GFP intensity such that standard deviations can be estimated from the 

individual replicates, which are integrated into the cost function for parameter estimation (see 

Supplementary text about single-cell data analysis for details). 

TempO-seq transcriptomics 

To assess mRNA levels, cells were seeded in 96 wells plates from Corning (Amsterdam, The 

Netherlands) using a density of 156.000 cells/cm2. After compound exposure the following day, 

cells were washed with 1x PBS and lysed using 50 µL per well in 1x BNN lysis buffer from 
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BioSpyder (Carlsbad, USA). After a 15 minute incubation period at room temperature, lysates 

were frozen at -80°C. As internal control, 0.05 µg/µL Universal Human RNA Reference (MAQC) in 

1x BNN lysis buffer was used. Lysates were sent to and analyzed by BioSpyder Technologies Inc. 

(Carlsbad, USA) using the TempO-seq technology30. In brief, a pair of detector oligos hybridized 

to its specific target mRNA leading to oligo pair ligation. This was followed by PCR amplification 

of ligated pairs of oligos incorporating also a sample-barcode and adaptors, which was 

subsequently sequenced. Alignment of raw reads was done using the TempO-seqR package 

(BioSpyder Technologies Inc., Carlsbad, USA). Read counts were normalized using the DESeq2 R 

package165 and log2 transformed. UPR-related genes were defined by selecting target genes of 

transcription factors ATF4, ATF6, pXBP1(S) and DDIT3 that were based on DoRothEA 

(Discriminant Regulon Expression Analysis) v2209 using confidence level A to D and that were 

present in the S1500+ geneset164. 

Western blot analysis 

For western blot analysis, samples were collected after two wash steps with ice-cold 1x PBS by 

adding 1x sample buffer supplemented with 10% v/v β-mercaptoethanol and stored at -20°C. 

Prior to loading, samples were heat-denatured at 95°C for 10 minutes. Proteins were separated 

on SDS-page gels using 120 volt and transferred to polyvinylidene difluoride (PVDF) membranes 

at 100 volt for 2 hours. After blocking using 5% ELK, membranes were stained with primary and 

secondary HRP- or Cy5-conjugated antibodies diluted in 1% bovine serum albumin (BSA) in tris- 

buffered saline (TBS)-0.05%Tween20. Thereafter, Enhanced Chemiluminescent (ECL) western 

blotting substrate from Thermo Scientific (Bleiswijk, The Netherlands) enabled to visualize the 

HRP-conjugated antibody staining using the Amersham Imager 600 from GE Healthcare (Eind- 

hoven, The Netherlands). Protein expression was quantified using ImageJ version 1.51h (National 

Institutes of Health, USA) and normalized to tubulin protein expression. 

Statistics 

Confocal microscopy data from three biological replicates is represented as the mean SE. TempO- 

seq gene expression data was represented either as log2 normalized counts SE or as log2 fold 

changes with standard error calculated using the DESeq2 R package165. Significance was 

determined with the Wald test and Benjamini Hochberg correction using the DESeq2 R package. 

Significance for TempO-seq gene expression data was determined at three threshold levels (*padj 

< 0.05, **padj < 0.01, ***padj < 0.001). Western blot data for ATF6 quantification originated from 

three biological replicates and were represented as the mean ± SE. Here, significance levels were 

calculated using unpaired Student’s t test with Benjamini Hochberg multiple testing correction, 

represented as *padj < 0.1, **padj < 0.05, ***padj < 0.01. Processing and visualization of all data 

was done using Rstudio version 1.0.153 (Boston, USA) in combination with R 3.4.1 and the 

following R packages: ggplot2, RColorBrewer, data.table, dplyr, tidyr, reshape2, scales, stats and 

splines131,135,137,210–212. 
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UPR model construction and simulation 

We built a dynamic model of the UPR signalling network with six state variables: unfolded protein 

(U), pXBP1(S) (X), ATF4 (A4), ATF6 fragment(A6), BiP (B), and CHOP (C). These states represent 

concentrations of molecules per cell and their dynamics are mathematically described by a set of 

ordinary differential equations. The equations obey kinetics of biochemical reactions including 

mass-action, Michaelis-Menten or Hill kinetics. We simplified the model in a similar way as203,205 

with quasi-steady state assumptions for association or dissociation of complexes and modulation 

effects. Furthermore, we took multiple conservation terms into account in order to reduce the 

number of state variables. We extended the available model of203 by incorporating ATF4 and 

CHOP. Furthermore, because ATF6 is proteolytically processed but this is not the case in the XBP1 

branch194, we considered the possibility that ATF6 and XBP1 need to be assigned different 

parameters (e.g., their degradation rates) to allow these branches to respond differently. To take 

the pharmacokinetics of the exposure into account, we modelled the intra-cellular concentration 

of tunicamycin as a function with two exponents, which represents the analytical solution to a 

linear system for two compartments (i.e., the medium in which cells reside and intra-cellular 

spaces). 

The set of ODEs is mathematically represented as:  

ẋ(𝑡)  =  f(x(t), u(t), 𝜃),      ( 1 ) 

where 𝑥(𝑡) stands for the six state variables of the dynamic system, 𝑢(𝑡) is the input function, 

and 𝜃 contains the system parameters. The dynamics of the UPR state variables are described 

by: 

{
  
 

  
 
�̇� = 𝑓1(𝑥),

�̇� =  𝑓2(𝑥),

�̇�4 = 𝑓3(𝑥),

�̇�6 = 𝑓4(𝑥),

�̇� = 𝑓5(𝑥),

�̇� = 𝑓6(𝑥),

      ( 2 ) 

with initial condition 

x0  =  (𝑈0, 𝑋0, 𝐴4,0, 𝐴6,0, 𝐵0, 𝐶0)    ( 3 ) 

In the following the right hand sides of equations (2) are provided for each state. Our modeling 

work follows203 assuming a quasi steady-state for sensors which can bind to BiP or to unfolded 

proteins. In addition, we incorporated the ATF6 branch and the downstream molecules ATF4 and 

CHOP203. This allows to integrate all experimental data obtained from our GFP reporter cell lines, 

i.e., pXBP1(S), ATF4, BiP and CHOP. We subsequently describe all equations for the system states, 

starting with the unfolded protein 𝑈: 

𝑓1(x) =  
𝐸𝑡

1+𝑃𝑎𝑐𝑡
+ 𝑠𝑠 + 𝑆𝑖 − 𝛿𝐵𝑓 − 𝑟𝑈𝑈,    ( 4 ) 
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where 𝐸𝑡 denotes the base rate of translation, i.e., the formation of peptides or unfolded proteins 

from mRNA which can be modulated by translation attenuation. 𝑆𝑖 represents the rate of 

production of unfolded proteins due to the exposure-related stressor, which is described 

explicitly as a function of time (see below). The parameter 𝑠𝑠 represents a net folding/unfolding 

rate that is independent of BiP and of translation. Instead, it includes both the folding activity of 

chaperones other than BiP and unfolding activity of existing proteins. Because it represents a net 

effect, 𝑠𝑠 can have a positive or negative value, depending on which process prevails. Unfolded 

proteins are removed by degradation, which occurs at rate 𝑟𝑈, or by their folding following 

binding to the chaperone BiP, which occurs at rate 𝛿. The latter process depends on the amount 

of free form of BiP, which is given by 

𝐵𝑓 =
𝑈

𝑈+𝐾𝐵𝑈
𝐵,      ( 5 ) 

where 𝐾𝐵𝑈 is the amount of unfolded proteins for which half of the BiP molecules is present in 

free form. Inhibition of translation is modelled by modification of the 𝐸𝑡 term, where 𝑃𝑎𝑐𝑡  

denotes the active form of PERK and is given by 

𝑃𝑎𝑐𝑡 = 𝑃𝑡(
𝑈

𝐾𝑃𝑈
)/(1 +

𝐵𝑓

𝐾𝐵𝑃
+

𝑈

𝐾𝑃𝑈
),    ( 6 ) 

Where 𝑃𝑡 is the effective/net amount of PERK, and 𝐾𝑃𝑈 and 𝐾𝐵𝑃 are Michaelis-Menten 

parameters describing the affinity of the complexes PERK:UP and BiP:UP, respectively. 

The amount of spliced XBP1 is described by: 

𝑓2(x) = 𝛽1𝐼𝑎𝑐𝑡 − 𝑟𝑋𝑋.        ( 7 ) 

Here, 𝛽1 represents the XBP1 splicing rate, which depends on the amount of active IRE1α. The 

latter is represented by 𝐼𝑎𝑐𝑡 and is given by: 

𝐼𝑎𝑐𝑡 = (
𝑈

𝐾𝐼𝑈
)/(1 +

𝐵𝑓

𝐾𝐵𝐼
+

𝑈

𝐾𝐼𝑈
),     ( 8 ) 

where 𝐾𝐼𝑈 and 𝐾𝐵𝐼 are Michaelis-Menten parameters describing the affinity of the complexes 

IRE1α:UP and BiP:IRE1α, respectively. Spliced XBP1 is degraded at rate 𝑟𝑋. 

The amount of ATF4 is described by: 

𝑓3(x) = 𝑏0 + 𝛽2𝑒𝐼𝐹2𝛼𝑝 − 𝑟𝐴4𝐴4,     ( 9 ) 

Where 𝑟𝐴4 denotes the degradation rate of ATF4, 𝑏0 indicates its basal production rate, and 𝛽2 is 

the additional production rate of ATF4 due to 𝑒𝐼𝐹2𝛼𝑝, where 𝑒𝐼𝐹2𝛼𝑝 is the fraction of 

phosphorylated eIF2α that obeys: 

𝑒𝐼𝐹2𝛼𝑝 = 1 − 𝑒𝐼𝐹2𝛼𝑢𝑝 = 1 − (1 +
𝑃𝑡𝑈

𝐾𝑃𝑈+
𝐵𝑓𝐾𝑃𝑈

𝐾𝐵𝑃
+𝑈
)−1,  ( 10 ) 

Where 𝑒𝐼𝐹2𝛼𝑢𝑝 denotes the fraction of unphosphorylated eIF2α. Note that the total amount of 

𝑒𝐼𝐹2α (phosphorylated and unphosphorylated) is considered to be conserved. 
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The amount of pATF6(N) is described by: 

𝑓4(x) = 𝛽3𝐴6,𝑎𝑐𝑡 − 𝑟𝐴6𝐴6,     ( 11 ) 

where 𝐴6,𝑎𝑐𝑡 is the activated sensor (i.e., the free form of ATF6, which is not the same as 

pATF6(N)), which obeys 

𝐴6,𝑎𝑐𝑡 = (
𝑈

𝐾𝐴𝑈
)/(1 +

𝐵𝑓

𝐾𝐵𝐴
+

𝑈

𝐾𝐴𝑈
).    ( 12 ) 

As before, 𝐾𝐴𝑈 and 𝐾𝐵𝐴 are Michaelis–Menten parameters representing the affinity of the 

complexes ATF6:UP and BiP:ATF6, respectively. 

The amount of BiP is described by: 

𝑓5(x) = 𝛾1 + 𝛼1𝑋 + 𝛼2𝐴4 + 𝛼5𝐴6 − 𝑟𝐵𝐵,    ( 13 ) 

where 𝛾1 is the basal production rate of BiP, 𝑟𝐵 is the degradation rate of BiP, and 𝛼1, 𝛼2, 𝛼5 

represent the additional BiP production rate due to activity of pXBP1(S), ATF4 and pATF6(N), 

respectively. 

The amount of CHOP is described by: 

𝑓6(x) = 𝛾2 + 𝛼3𝑋 + 𝛼4𝐴4 + 𝛼6𝐴6,ℎ𝑖𝑙𝑙 − 𝑟𝐶𝐶,   ( 14 ) 

where 𝛾2 is the basal production rate of CHOP, 𝑟𝐶  is the degradation rate of CHOP, and 𝛼3, 𝛼4, 

𝛼6 represent the additional CHOP production rate due to activity of pXBP1(S), ATF4 andpATF6(N), 

respectively. 𝐴6,ℎ𝑖𝑙𝑙 describes the contribution of pATF6(N) to the CHOP transcription rate with a 

Hill function: 

𝐴6,ℎ𝑖𝑙𝑙 =
𝐴6
𝑛

𝐴6
𝑛+𝐾𝐴2𝐶

𝑛 ,     ( 15 ) 

where 𝑛 and 𝐾𝐴2𝐶  are the exponent and threshold in the Hill-function. Note that because there 

is not a clear peak in the dynamics of pXBP1(S) or ATF4 shown in Fig. 2D in the main text, a Hill 

function with an exponent larger than one is not needed to describe the effect of pXBP1(S) and 

ATF4 on CHOP (i.e., the fitting performance is not improved). Hence, for the sake of simplicity, 

we only used a Hill function for pATF6(N).  

In addition to the six state variables, the exposure-related stressor 𝑆𝑖 is a dynamic variable whose 

kinetics do not depend on the other system states. The intra-cellular concentration of the applied 

compound (𝑆𝑐) is described explicitly with the following pharmacokinetics (see Supplementary 

material for details about its derivation): 

𝑆𝑐 = 𝐸𝑖(𝑒
(−𝜏2𝑡) − 𝑒(−𝜏1𝑡))𝐻(𝑡).    ( 16 ) 

Here 𝐸𝑖 represents the effective intra-cellular concentration of the applied compound, with the 

subscript 𝑖 denoting the applied concentration in μM. For 1 μM, we set 𝐸1 = 1; for the other four 

concentrations we assign four free parameters that are estimated (see Supplementary Table 1). 

𝐻() stands for the Heaviside function. We consider the stressor to affect the signalling network 
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only when a threshold 𝜃𝑡ℎ  is crossed. We describe this by the above discussed 𝑆𝑖, i.e., the 

effective rate at which unfolded proteins are formed due to the stressor: 

𝑆𝑖 = 𝑒𝑠(𝑆𝑐 − 𝜃𝑡ℎ)𝐻(𝑆𝑐 − 𝜃𝑡ℎ),    ( 17 ) 

where 𝑒𝑠 scales the effective intra-cellular concentration of tunicamycin to unfolded proteins. At 

equilibrium, the total production rate of unfolded proteins is 
𝐸𝑡

1+𝑃𝑎𝑐𝑡
+ 𝑠𝑠.  

For each GFP-reporter cell line, we introduce scaling and offset parameters denoted as 𝑒𝐺𝐹𝑃 and 

𝑠𝐺𝐹𝑃, respectively. Those two parameters transform the state in the ODE to the observable. For 

example, for ATF4 we formulated the observable 𝐴4
𝑜 as 

𝐴4
𝑜 = 𝑒𝑎𝑡𝑓4𝐴4 + 𝑠𝑎𝑡𝑓4.     ( 18 ) 

Hence, to map the concentrations of the proteins to the GFP intensities, we introduce eight 

parameters for the four UPR cell lines: 𝑒𝑥𝑏𝑝1, 𝑒𝑎𝑡𝑓4, 𝑒𝑏𝑖𝑝, 𝑒𝑐ℎ𝑜𝑝, 𝑠𝑥𝑏𝑝1, 𝑠𝑎𝑡𝑓4, 𝑠𝑏𝑖𝑝, and 𝑠𝑐ℎ𝑜𝑝.  

All model simulations were conducted in python 2.7.14. 

Model calibration and model selection 

We fitted our models to the quantified dynamics of reporter cell lines, using the maximum 

likelihood approach to estimate parameters. Given the nonlinear nature of the model, multiple 

local optima of parameters could exist in the likelihood landscape. To find the global optimum, 

we employed a Monte Carlo method with multiple starting values. We generated a set of 𝑁𝑠 =

1000 starting values {𝜃𝑠} in Θ using Latin hypercube sampling213. We listed the employed 

boundaries of the parameters in Supplementary Table 1. For each starting value, we use the 

Trust-Region-Reflective-Newton method to obtain the local minimum 𝜃𝑓 214. For a robust and 

efficient estimation, we incorporate the sensitivity equation215 and a steady state constraint216 

into our local optimization. After applying this local optimization for all starting values, we take 

the estimate 𝜃 = 𝜃𝑓 with the minimal negative log-likelihood. Numerical optimization relied on 

the python package scipy. To quantify the uncertainty of parameter estimates, we applied a 

Hessian-based approach to explore the likelihood around the estimates. We quantified this as a 

95% confidence interval of the estimates217 (see details in the Supplement and confidence 

intervals of the estimates in Supplementary Table 1). Moreover, we performed a sensitivity 

analysis of the impact of single parameters on the CHOP level based on the maximum likelihood 

estimate, i.e., the most plausible set of parameters based on the measurements (see details in 

the Supplement). 

Plausible models are expected to give a good fit to observations with a relatively small value of 

the negative-log likelihood at 𝜃. We performed a likelihood-ratio-based test to evaluate the 

goodness of fit to the measurements, as for example applied in García-Pérez & Alcalá-Quintana 

et al.218,219 aiming to get insight into processes underlying temporal-order and simultaneity 

judgments by observers. Specifically, García-Pérez & Alcalá-Quintana et al.218 focused on a 
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likelihood- ratio based approach to check goodness of fit and García-Pérez & Alcalá-Quintana et 

al.219 further incorporated the likelihood ratio into a Bayesian test when computing the ratio of 

two posterior distributions in order to derive a closed-form psychometric function about 

simultaneity judgments. In general, the test can be used to compare two models by the ratio of 

their likelihoods, denoted by ∆𝐺, and a 𝑝 value is computed from a 𝜒2 distribution. In our case, 

we used this approach to evaluate whether the data are more compatible with separate 

incorporation of the ATF6 branch (with estimates 𝜃2) rather than with lumping ATF6 and XBP1 

into a single branch (with estimates 𝜃1). 

Modelling of knockdown conditions 

We simulated the calibrated model by incorporating single knockdown perturbations with siRNA 

treatments. We focused on the knockdowns with siDDIT3 and siATF4, and siATF6, setting the 

knockdown efficiencies at the values estimated by the analysis of the TempO-seq data. To 

account for variability of knockdown efficiencies over experiments and over time from different 

assays, we varied the knockdown efficiency by 20% more or less than the reference value and 

simulated the model accordingly. 

Here we describe how we model knockdown experiments by siRNA treatments. The dynamics of 

the mRNA can be described by the following differential equation: 

τ𝑚
𝑑

𝑑𝑡
[𝑚𝑅𝑁𝐴] = 𝜆𝑚 + 𝑡𝑓(𝑡) − 𝑑𝑚[𝑚𝑅𝑁𝐴],   ( 19 ) 

where [𝑚𝑅𝑁𝐴], represents the amount of mRNA of interest, τ𝑚 is the time constant of the 

mRNA, 𝑡𝑓(𝑡) is mRNA production rate due to TF activity, 𝜆𝑚 denotes the basal production rate, 

and 𝑑𝑚 is the degradation rate of the mRNA. We consider knockdown of a gene of interest to 

increase the mRNA degradation rate compared to the control case. To study how this affects the 

protein dynamics over time, we first write the equation for the protein: 

𝜏𝑝
𝑑

𝑑𝑡
[𝑝𝑟𝑜𝑡𝑒𝑖𝑛] = 𝜆𝑝[𝑚𝑅𝑁𝐴] − 𝑑𝑝[𝑝𝑟𝑜𝑡𝑒𝑖𝑛],   ( 20 ) 

where [𝑝𝑟𝑜𝑡𝑒𝑖𝑛] represents the amount of protein of interest, 𝜏𝑝 is the time constant of the 

protein and 𝑑𝑝 is the degradation rate of the protein.  

Considering transcription to be much faster than (post-)translational processes, i.e. τ𝑚 ≪ 𝜏𝑝, the 

mRNA will be at equilibrium, i.e., [𝑚𝑅𝑁𝐴](𝑡)  =
𝜆𝑚+𝑡𝑓(𝑡)

𝑑𝑚
.  

Substitution of this relation into the translation step in (20) gives 

𝜏𝑝
𝑑

𝑑𝑡
[𝑝𝑟𝑜𝑡𝑒𝑖𝑛] = 𝜆𝑝

𝜆𝑚

𝑑𝑚
+ 𝜆𝑝

𝑡𝑓(𝑡)

𝑑𝑚
− 𝑑𝑝[𝑝𝑟𝑜𝑡𝑒𝑖𝑛].   ( 21 ) 

Lumping 
𝜆𝑚

𝑑𝑚
 into 𝜆𝑝

∗  and 𝜆𝑝
𝜆𝑚

𝑑𝑚
 into 𝜇𝑝

∗  results in: 

𝜏𝑝
𝑑

𝑑𝑡
[𝑝𝑟𝑜𝑡𝑒𝑖𝑛] = 𝜇𝑝

∗ + 𝜆𝑝
∗ 𝑡𝑓 − 𝑑𝑝[𝑝𝑟𝑜𝑡𝑒𝑖𝑛].   ( 22 ) 
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In this equation, 𝜇𝑝
∗  and 𝜆𝑝

∗  incorporate the effects of the increased mRNA degradation upon 

knockdown. Thus, these parameters are expected to decrease when cells are pre-treated with 

siRNA knockdowns. We define the knockdown efficiency 𝑒𝐾𝐷 as 1 −
[𝑚𝑅𝑁𝐴]𝐾𝐷

[𝑚𝑅𝑁𝐴]
, which equals 1 −

𝑑𝑚

𝑑𝑚,𝐾𝐷
, where 𝑑𝑚,𝐾𝐷 is the mRNA degradation rate upon knockdown. Then we obtain 𝑑𝑚,𝐾𝐷 =

𝑑𝑚

1−𝑒𝐾𝐷
, which propagates into the parameters for protein formation as 𝜇𝑝,𝐾𝐷

∗ = (1 − 𝑒𝐾𝐷)𝜇𝑝
∗  and 

𝜆𝑝,𝐾𝐷
∗ = (1 − 𝑒𝐾𝐷)𝜆𝑝

∗ . In conclusion, the knockdowns can be simulated by decreasing the protein 

production rates with a multiplier based on the measured knockdown efficiency. For ATF4, ATF6 

and CHOP, for which we obtained knockdown efficiencies, we thus perturbed the production 

rates as follows: For siATF4, we set 𝛽2 = (1 − 𝑒𝐾𝐷)�̂�2 and 𝑏0 = (1 − 𝑒𝐾𝐷)�̂�0, where �̂�2 and �̂�0 

are the estimated values in the absence of knockdown. For siATF6, we set 𝛽3 = (1 − 𝑒𝐾𝐷)�̂�3, 

where �̂�3 is the estimated value in the absence of knockdown. For siDDIT3, we set 𝛾2 = (1 −

𝑒𝐾𝐷)�̂�2, 𝛼3 = (1 − 𝑒𝐾𝐷)�̂�3, 𝛼4 = (1 − 𝑒𝐾𝐷)�̂�4, and 𝛼6 = (1 − 𝑒𝐾𝐷)�̂�6, where 𝛾2, �̂�3, �̂�4, and �̂�6 

are the estimated values in the absence of knockdown. 

Results 

Image-based monitoring of UPR and cellular dynamics 

To establish an ODE model that captures UPR network regulation and activation, experimental 

data are required that quantify the dynamics of induction of crucial UPR genes with a dense time 

resolution. We achieved such a resolution by combining our previously established liver 

carcinoma HepG2 BAC-GFP UPR reporters27,28 with high-content confocal microscopy. We used 

the compound tunicamycin as an ER stress inducer, which inhibits N-glycosylation and therefore 

leads to the accumulation of unfolded glycoproteins220. Tunicamycin specifically induces ER 

stress, and is therefore an excellent compound to create a UPR specific ODE model. 

We first examined whether our HepG2 UPR reporters for CHOP, ATF4, pXBP1(S) and BiP are 

representative for the behaviour of wild-type (WT) HepG2 cells. To this purpose, we established 

the protein expression of endogenous CHOP, ATF4, pXBP1(S) and BiP using western blotting in 

HepG2 WT cells after tunicamycin exposure for 4, 8, 16 and 24 hours. Both treatment with 1 and 

6 µM tunicamycin resulted in a clear induction of UPR proteins (Fig. 2A). However, BiP was 

already highly expressed at basal levels and therefore it was unclear whether further induction 

occurred. A high tunicamycin concentration of 6 µM led to an earlier induction of UPR proteins 

than a low concentration of 1 µM (Fig. 2A). 

Next, we assessed if all four HepG2 UPR reporters behaved similarly upon tunicamycin exposure 

as WT cells. Applying a TempO-seq targeted transcriptomics approach to all five HepG2 (WT and 

reporter) cell lines exposed to a broad concentration range of tunicamycin for 8 or 24 hours 

revealed that DDIT3 (i.e., the gene coding for the CHOP protein) expression across HepG2 wild 
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type and BAC-GFP cell lines followed a similar dose response at both timepoints (Fig. 2B). For 

other UPR-related genes, the different cell lines also have a similar dose response behaviour and 

are highly correlated in gene expression (Supplementary Fig. 1). As expected based on having at 

least one additional copy of the gene, HepG2 CHOP-GFP exhibited a slightly higher DDIT3 

Fig. 2. Dynamic measurements of various UPR components to integrate with modelling. A) Western blot of 

CHOP, ATF4, pXBP1(S) and BiP protein at 4, 8, 16 and 24 hours upon exposure to DMSO or tunicamycin (1 and 6 

μM) in WT HepG2 cells. Tubulin was used as protein loading control. B) Log2 normalized counts of DDIT3 mRNA 

expression analysed using TempO-seq transcriptomics at 8 or 24 hour after exposure with various concentrations 

of tunicamycin in HepG2 WT and UPR BAC-GFP reporter cell lines. C) Representative images of HepG2 UPR BAC-

GFP reporter cell lines (CHOP, ATF4, pXBP1(S) and BiP) stained with Hoechst for nuclei visualization. Images were 

obtained using confocal microscopy with a 20x objective at the indicated time points after exposure to 

tunicamycin at 6 μM. Hoechst is represented in blue (upper rows) and GFP in green (lower rows). D-E) 

Quantification of single-cell-based GFP intensity of the HepG2 UPR BAC-GFP reporter cell lines after min-max 

normalization (D) and cell counts (E) after exposure to DMEM/DMSO or to a broad concentration range of 

tunicamycin and imaged live every hour for 24 hours after exposure using confocal microscopy. BiP-GFP intensity 

was quantified in the cytoplasm, all other reporters were quantified in the nuclei. Data in (B), (D) and (E) 

represents mean and standard error of the mean (SE) of three biological replicates. 
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expression at baseline compared to the other lines, but this did not influence the dose response 

of DDIT3 itself (Fig. 2B) or the expression of other UPR-related genes (Supplementary Fig. 1). 

Thus, all HepG2 UPR reporter behave similarly with respect to UPR gene expression. 

To generate dynamic protein expression data to which results from an ODE model can be 

compared, we exposed HepG2 BAC-GFP UPR reporters for CHOP, ATF4, pXBP1(S) and BiP to a 

concentration range from 1 to 100 µM of tunicamycin and subsequently applied live imaging with 

confocal microscopy to capture the GFP induction in single cells and total cell count every hour 

until 24 hours of exposure (Fig. 2C-D). The dynamic pattern of CHOP-GFP expression exhibited a 

peak around 10-20 hours (Fig. 2C-D), which was consistent with the CHOP expression in WT 

HepG2 cells observed with western blotting (Fig. 2A). Increasing concentrations of tunicamycin 

led to earlier maxima of CHOP expression levels (Fig. 2C). For all four reporters, a concentration-

dependent increase in maximal GFP intensity occurred. However, at the highest concentration 

(100 µM) of tunicamycin, the maximal GFP intensity was equal or lower compared to 50 µM, 

which is indicative of cellular toxicity. Consistent with this interpretation, the total number of 

cells dramatically decreased at 100 µM of tunicamycin (Fig. 2E). At 50 µM of tunicamycin, there 

was also a slower increase in cell count over time compared to lower concentrations. Therefore, 

only concentrations below 50 µM of tunicamycin were taken along for the ODE-model 

development since we here focus on the adaptive UPR signalling network. In summary, the gene 

expression as well as protein expression levels of BAC-GFP HepG2 UPR reporter cell lines and WT 

HepG2 cells exhibited similar baseline levels and dynamic patterns upon exposure to 

tunicamycin. Therefore, we concluded that the BAC-GFP UPR cell lines were sufficiently 

representative for WT HepG2 cells to be used for subsequent dynamical modelling. 

UPR model with ATF6 provides excellent fit to the data 

Because we had dynamic information on four BAC-GFP reporter cell lines, we initially constructed 

an ODE model with four variables representing the protein expression level for these reporters 

as well as a variable for the amount of unfolded proteins in the cell (Fig. 3A). This model was a 

modification of an earlier published model by Trusina et al.203. We did not incorporate ATF6 

explicitly but it was considered to behave similarly to IRE1α, i.e. these sensors were considered 

to be in quasi steady state203. In addition, we modelled the downstream molecules ATF4 and 

CHOP. Finally, because the experimentally observed dynamics of intensity of all UPR reporters 

exhibited a concentration-dependent delay of activation for tunicamycin concentrations below 

12 µM (Fig. 2D), we incorporated this phenomenon in a pharmacokinetic module preceding the 

signalling module. Specifically, we added a threshold in the effective intra-cellular concentration 

of tunicamycin, i.e., we consider the UPR signalling to be triggered only when a particular intra-

cellular stress level is crossed, which leads to some delay of pathway activation (see simulated 

pharmacokinetic profiles in Supplementary Fig. 2). 
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This initial model could roughly describe the reporter dynamics, yet this could not capture the 

consistently observed dynamic peak in CHOP expression (Fig. 3B, dashed line). Therefore, we also 

created a model variant including the ATF6 branch explicitly (for which no BAC-GFP reporter cell 

line was available). The model with all three UPR branches contains 47 parameters, while the 

model without ATF6 has 39 parameters (for equations see Materials and Methods). After fitting 

of both models to the experimental data (for parameter estimates see Supplementary Table 1, 

for their estimated standard errors see Supplementary Fig. 3 and for their sensitivity see 

Fig. 3. Model structure and fit. A) Schematic diagram of the modelled UPR pathway with both pharmacokinetics 

and signalling network. B) Model fits to the experimentally observed levels of pXBP1(S), ATF4, BiP and CHOP 

upon tunicamycin exposure at five concentrations. Dots present values for three replicates. Optimized fits from 

models with ATF6 branch (solid curves) or without (dashed curves) are plotted. 
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Supplementary Fig. 4), visual comparison of the two model variants showed that only the model 

with ATF6 was able to describe the CHOP peak (Fig. 3B, solid line). This visual impression was 

confirmed by application of a likelihood-ratio based approach to compare the models to the data 

(∆G = 119 and 271 for the full and ATF6-free models, respectively; 𝜌 < 0.001), and by calculation 

of the information criteria AIC and BIC (Pawitan, 2001) for the two competitive models (AIC full 

model: 2 x 119 + 2 x 47 = 332; AIC ATF6-free model: 2 x 271 + 2 x 39 = 620 ; BIC full model: 2 x 

119 + ln (440) 47 = 524.08; BIC ATF6-free model: 2 x 271 + ln (440) 39 = 779.38. The above results 

thus suggest that the ATF6 branch plays an important role in shaping the early CHOP dynamics, 

and we continued with the calibrated model including ATF6 for further exploration and 

validation. 

Model correctly predicts CHOP dynamics beyond 24 hours 

The transcription of CHOP can be induced by binding of UPR TFs, i.e., ATF4, pXBP1(S) and 

pATF6(N), at the AARE and ERSE promoter motifs (Fig. 4A 221,222). However, previous work has 

suggested that induction of CHOP is predominantly regulated by ATF4 and pATF6(N), and to a 

minimal extent by pXBP1(S)205,223,224. Having the parameterized full UPR model in place allowed 

us to explore both the speed of activation of the three sensors and the contribution of each of 

the three downstream TFs to CHOP induction at different time points. With respect to the speed 

of activation of the sensors, ATF6 is the sensor responding most quickly, followed by IRE1α and 

finally PERK (Supplementary Fig. 5). With respect to the contribution of the downstream TFs to 

CHOP transcription, we investigated this by separating the mathematical term representing the 

CHOP production rate into the individual TF contributions forming this term. This analysis showed 

that the ATF6 branch shapes the early dynamics of CHOP production, whereas ATF4 dominates 

the CHOP production at late time points (Fig. 4B-D). This explains why ATF4 is typically considered 

Fig. 4. Model-based prediction of CHOP transcription. A) Illustration of the TFs contributing to CHOP 

transcription. B-D) Simulations of the contributions of pXBP1(S), ATF4 and pATF6(N) to the CHOP production rate 

at the indicated tunicamycin concentrations. E) Model prediction of CHOP levels within the first 24 hours (solid 

line) and between 24 and 34 hours (dashed line). Simulations were conducted with various strengths of exposure 

(between 30% and 130% of the reference value) shown as shaded areas. F) Image-based experimental 

observation of CHOP for 34 hours represented as the mean ± SE of three biological replicates. 
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the primary TF responsible for CHOP production190,225, yet our analysis suggests that pATF6(N) 

also has an important contribution to CHOP production at early time points. This happens 

because pATF6(N)-mediated CHOP transcription starts and ends relatively abruptly due to the 

high cooperativity (𝑛 = 46.32 in the best fit) in the Hill function describing pATF6(N) activity. Once 

pATF6(N) drops below the Hill threshold 𝐾𝐴2𝐶  (which equals 0.717 in the best fit), the effect of 

the still relatively high pATF6(N) levels on CHOP transcription quickly becomes negligible. Note 

that such a high cooperativity is required to explain the exact height of the CHOP peak 

(Supplementary Figs. 6, 7 and 8). Furthermore, our analysis confirmed the minimal role of 

pXBP1(S) in CHOP transcription, which is due to low pXBP1(s) levels rather than to low TF activity 

of the present pXBP1(s) (Supplementary Fig. 9). 

Given the model prediction that the ATF4-driven CHOP production rate remains relatively high 

around 24 hours, we simulated the model for a duration longer than the 24 hours on which the 

parameterization was based. Beyond 24 hours the CHOP level was predicted to stay around the 

same level for tunicamycin concentrations of 1 and 6 µM (Fig. 4E) rather than quickly returning 

to baseline level. Our simulations predicted that this was due to a gradual increase of the intra- 

cellular stress levels, which saturated after 20 hours and did not yet decrease (Supplementary 

Fig. 2). The sustained high ATF4 level is attributed to its upstream molecules PERK and eIF2α that 

tightly follow the dynamics of the intra-cellular stressor and of unfolded protein (Supplementary 

Fig. 9). To validate this model prediction, we performed imaging experiments of a duration 

beyond 24 hours, which showed that indeed CHOP-GFP levels in HepG2 cells remained at a 

relatively high level up to 34 hours (Fig. 4F). Thus, although the model was based on 24-hour 

measurements, it correctly predicted sustained CHOP levels beyond 24 hours. 

Knockdown experiments confirm role of ATF6 in CHOP dynamics 

We next challenged our model further by evaluating the effect of perturbing single UPR-related 

genes, including ATF6, on activation of other UPR components using siRNA-mediated silencing. 

To confirm success of knockdown by siRNA and to quantify its efficiency, we first measured the 

expression of DDIT3, ATF4 and ATF6 after knockdown of these separate genes for 3 days and 

subsequent exposure to 6 µM tunicamycin for 16 hours. TempO-seq transcriptomics experiments 

showed that expression of these genes was indeed significantly decreased by siRNA-mediated 

silencing upon exposure to tunicamycin (Fig. 5A). To study the effect of perturbation of UPR-

related genes on CHOP and ATF4 induction dynamics during ER stress, we then measured CHOP-

GFP and ATF4-GFP in HepG2 BAC reporters using confocal imaging for 24 hours after 6 µM 

tunicamycin exposure when either no gene (Mock), DDIT3, ATF4 or ATF6 was silenced using 

siRNA (Fig. 5B and blue lines in Fig. 5C). Knockdown of DDIT3 and ATF4 led to reduced levels of 

respectively CHOP-GFP and ATF4-GFP, confirming the success of the knockdowns also at protein 

level. We then compared the experimental measurements upon knockdown to model 
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predictions incorporating the knockdown efficiencies that we measured for the different genes 

(Fig. 5C). 

ATF4 and ATF6 knockdown both affected the CHOP-GFP dynamics, yet its effect was qualitatively 

different. ATF4 knockdown led to a decrease in CHOP induction, yet a clear peak remained 

present in the CHOP dynamics around 16 hours post tunicamycin exposure, indicating that ATF4 

is not responsible for that peak (Fig. 5C). Similarly, ATF6 knockdown led to a reduced CHOP 

induction specifically in the initial phase. However, after 16 hours of exposure, CHOP levels did 

not decline again and CHOP levels at 24 hours were slightly higher when ATF6 was silenced than 

for the Mock control. Our model offers an explanation for these observations: First, the lowered 

activity of pATF6(N) due to ATF6 knockdown implies that the CHOP transcription rate contributed 

by pATF6(N) does not exceed the required threshold and that CHOP transcription fully depends 

on XBP1(S) and ATF4 activity. Second, the reduced pATF6(N) upon knockdown also lowers BiP 

expression, thus leading to an increased amount of unfolded proteins, XBP1(S) and ATF4, which 

Fig. 5. Perturbation of UPR with siRNA knockdowns are consistent with model predictions. A) Log2 fold changes 

of mRNA expression of different siRNA-mediated gene knock-downs relative to siRNA mock negative control in 

HepG2 WT cells exposed to 6 μM of tunicamycin for 16 hours, determined using TempO-seq transcriptomics. 

Knockdown efficiencies of siRNAs are depicted in grey numbers. Data represents the mean ± SE of three 

biological replicates. B) Representative confocal microscopy images obtained with 20x objective of HepG2 CHOP-

GFP reporter cells exposed to 6 μM of tunicamycin for 16 hours after CHOP, ATF6 or Mock siRNA. To visualize 

the nuclei, cells were stained with Hoechst (upper rows), and CHOP-GFP is represented in green (lower rows). C) 

Model simulation of ATF4 and CHOP (black curves) compared to quantified GFP data after exposure to 6 μM of 

tunicamycin for different siRNA-mediated knockdown conditions (blue line and error bars representing mean ± 

SE). Simulations with varied knockdown efficiency (black dashed: 20% less, red dashed: 20% more) are also 

plotted. 
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in turn slightly increases CHOP expression around 24 hours compared to a setting without 

knockdown (Supplementary Fig. 10). Thus, ATF6 affects the CHOP dynamics especially in the 

initial phase but also slightly in the later phase as was predicted by our model. Altogether, the 

experimentally observed alterations in ATF4 and CHOP induction could be accurately predicted 

with our model and this analysis confirmed the model prediction that ATF6 shapes CHOP 

dynamics. As ATF6 shapes the dynamic pattern of pro-apoptotic CHOP, i.e., initially increases 

CHOP but later decreases it due to initial BiP-mediated folding of unfolded proteins, we speculate 

that early ATF6 activity may in fact protect cells under chronic ER stress. This is consistent with 

experimental findings in ATF6 KO mice in which cell death increased upon exposure to 

tunicamycin after 18 h223. 

ATF6 activation peaks early as predicted by modelling 

Since our model predicts that the peak in CHOP dynamics that follows tunicamycin exposure is 

due to early ATF6 activity, we evaluated the mRNA expression and activation dynamics of 

endogenous ATF6 in HepG2 WT cells by TempO-seq transcriptomics and Western blot. ATF6 

mRNA expression increased by 2-fold at 10 µM of tunicamycin at 8 and 24 hours, but not at 1 µM 

(Fig. 6A), suggesting minor upregulation of ATF6 only at high concentrations. At protein level, 

exposure to 6 µM of tunicamycin clearly led to the expected inhibition of N-glycosylation, which 

became visible by the appearance of a low Western blot band representing unglycosylated, 

uncleaved ATF6 (ATF6UG) and a decrease of the high band representing glycosylated ATF6 (ATF6G) 

starting from 4 hours of exposure (Fig. 6B; quantification in Fig. 6C, first two panels). Exposure to 

a lower concentration of 1 µM tunicamycin also increased the formation of ATF6UG, yet was only 

apparent at late time points (Supplementary Fig. 11). 

The relation between ATF6G and ATF6UG, which changes during tunicamycin exposure, is 

illustrated in Fig. 6D, i.e., both forms can degrade, but only ATF6G can lead to pATF6(N). The 

amount of total uncleaved ATF6 (i.e., ATF6UG + ATF6G) decreased at early time points (6 hours, 𝜌 

= 0.016; 8 hours, 𝜌 = 0.070) compared to DMSO control, but restored later on (Fig. 6C third panel). 

Since levels of endogenous cleaved ATF6 in HepG2 cells were difficult to capture using Western 

blot, we assessed ATF6 cleavage from the difference in total uncleaved ATF6 levels. Considering 

the ATF6 production and degradation rates to remain roughly unchanged at early time points in 

tunicamycin and DMSO conditions, the decreased amount of total uncleaved ATF6 at those time 

points can be attributed to ATF6 cleavage. Therefore, we used the difference in total uncleaved 

ATF6 between the first measured timepoint and subsequent timepoints as a measure for ATF6 

cleavage (Fig. 6C, panel 4). The level of pATF6(N), as estimated through this approach, peaked at 

6 hours post tunicamycin exposure (𝜌 = 0.044), which is consistent with the dynamics of 

predicted free ATF6 and pATF6(N) in our computational model (Fig. 6E). 

In conclusion, the activation dynamics of ATF6 were early and concentration-dependent as 

predicted by our model. Together, our combination of experimental and computational 
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modelling work shows that ATF6 is activated early after tunicamycin exposure and that this 

causes an early rise in CHOP expression. The CHOP expression subsequently drops to a lower 

level, yet remains relatively high due to ongoing presence of stress, keeping ATF4 expression at 

elevated levels. 

Discussion 

The basis of our work consisted of dynamic measurements detailing the induction of UPR 

regulators in HepG2 reporter cell lines during tunicamycin-induced ER stress. We exploited these 

data to establish a computational model representing the essential mechanisms shaping the UPR 

and fitted the model using 24-hour reporter dynamics. The strength of our approach was that we 

Fig. 6. Matching ATF6 dynamics in experiment and model. A) ATF6 mRNA expression after 8 or 24 hours of 

exposure to a broad concentration range of tunicamycin in HepG2 WT cells using TempO-seq, represented as 

the mean of log2FC ± SE of three biological replicates. B) Western blot of uncleaved ATF6 (G = glycosylated, UG 

= unglycosylated) measured in HepG2 WT cells at 2, 4, 6, 8, 16 or 24 hours after exposure to tunicamycin (6 μM) 

or DMSO. As protein loading control, tubulin protein expression was assessed. C) Quantified protein expression 

of the indicated ATF6 forms from three biological replicates after protein loading correction using tubulin 

(symbols and shaded area represents mean ± SE with the significance levels represented as *𝒑adj < 0.1, **𝒑adj < 

0.05, ***𝒑adj < 0.01). Cleaved ATF6 was estimated based on the difference between total uncleaved ATF6 at 4, 6 

and 8 h versus the 2 h timepoint. D) Diagram of relation between different ATF6 forms during tunicamycin 

treatment, where ATF6G and ATF6UG represent glycosylated and unglycosylated forms, respectively. E) Model-

predicted dynamics of free ATF6 and the downstream pATF6(N) upon exposure of tunicamycin at 1 and 6 μM. 
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exploited a large amount of high-content imaging data in order to obtain a quantitative 

understanding of UPR regulation. This combination of modelling and experiments helped to 

unravel the role of different molecules in the UPR dynamics. Specifically, the model predicted 

that the ATF6 branch was required to explain the observed UPR dynamics and this prediction was 

verified by knockdown experiments, prolonged experimental time courses and additional 

western blot measurements. 

Some of the previously published UPR modelling work focused on theoretical understanding of 

network dynamics in different scenarios202,203. Specifically, in the extensive model of Erguler et 

al.202 it was shown that the network could exhibit different kinds of structural behaviour 

depending on the parameter settings. For example, for some parameter conditions oscillations 

occur, showing that the network is in principle capable of generating such behaviour. However, 

our combined modelling and experimental analysis demonstrates that at least for HepG2 cells 

exposed to tunicamycin such oscillations do not occur. Due to the complexity of the model by 

Erguler et al.202 precluding calibration to a data set that was limited in terms of number of 

monitored variables, we instead chose to extend the model by Trusina et al.203 with CHOP and 

ATF6, rendering a new model with similar UPR TF activity that could be calibrated to our imaging 

data. A combination of experimental and computational work similar to ours has been recently 

reported by Diedrichs et al.205, where model predictions were based on qPCR and Western blot 

experiments. Key differences with our approach include the choice of test compound and the 

balance of model complexity and measurements. With respect to the employed compounds, 

Diedrichs et al.205 exposed MEFs to thapsigargin, a SERCA inhibitor disturbing calcium 

homeostasis, whereas we used tunicamycin, which inhibits N-glycosylation within the ER. The 

downside of using exposure to thapsigargin is that it not only leads to a strong UPR induction but 

also induces oxidative stress, at least in HepG2 cells27. With respect to model complexity and the 

amount of experimental data, time-lapse imaging data has as a major advantage that it easily 

delivers many data points at single cell level within specific sub-cellular compartments, i.e., we 

have more than 400 datapoints measured from four BAC-GFP reporters at five concentrations 

and at more than 20 time points. 

Besides capturing the dynamics of UPR-related molecules, our quantitative modelling approach 

suggests that ATF6 is responsible for the early peak of CHOP. Both our knockdown experiments 

and ATF6 measurements using Western blotting at different time points are consistent with this 

hypothesis. Specifically, the decrease in total uncleaved ATF6 strongly suggested that cleavage 

of ATF6 peaked at early time points (around 6 hours). These findings are also consistent with 

those of Yoshida et al.195, who reported a similar pattern with an overshoot in the nuclear active 

ATF6 fragment after tunicamycin treatment in HeLa cells. To verify the observed activation 

dynamics of ATF6 and to capture high-resolution activation dynamics at sub-cellular localization, 

future imaging-based dynamic readout of ATF6 and its fragments would be highly valuable. Based 
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on such data, the part of our model describing ATF6 could also be extended and better 

parameterized.  

The parameters in our mechanistic model have a biological interpretation and their estimates 

thus provide quantitative insight into UPR regulation. First, the degradation rate of the protein 

CHOP (𝑟𝐶) was estimated to be 5-fold larger than that of BiP (𝑟𝐵), i.e., a similar difference as found 

by Rutkowski et al.226. Given the protective role of BiP through protein folding and the pro-

apoptotic role of CHOP, this suggests that the distinct degradation rates represents one 

mechanism that explains initial adaptation to ER stress, followed by a switch towards adversity 

during prolonged ER stress. Second, the parameters 𝐾𝐵𝑃, 𝐾𝐵𝐼, and 𝐾𝐵𝐴 shape the response 

sensitivity amongst the three UPR branches PERK, IRE1α and ATF6, with the latter being the 

quickest (Supplementary Fig. 5). Interestingly, we showed that ATF6(N) transcriptional activity 

with respect to CHOP is also switched off early and abruptly due to the high predicted 

cooperativity of this response (Fig. 4). 

In response to ER stress, cells have several coping strategies to eliminate the accumulation of 

misfolded proteins by activating the three UPR branches. However, in case ER stress becomes 

too severe or chronic, apoptotic signalling pathways will be activated and cells will switch from 

adaptive to pro-apoptotic signalling. In this switch, CHOP plays an important role through various 

mechanisms89,191,227 and therefore regulators of CHOP can affect the sensitivity of cells to ER 

stress. Here, we found that ATF6 has such a crucial role in the dynamics of CHOP induction, where 

perturbation of ATF6 led to absence of the initial CHOP peak yet led to slightly increased CHOP 

levels at a later stage. Our findings are consistent with earlier work in which ATF6-knockout MEFs 

had lower CHOP levels until 12 hours of exposure to thapsigargin, while at later time points CHOP 

levels were higher compared to WT205. Given the importance of ATF6 in the regulation of CHOP 

activation dynamics as well as cytoprotective proteins such as BiP228, ATF6 is also expected to 

play a role in the switch between adaptive to cellular adversity, especially in realistic scenarios 

with repeated exposure to chemicals. Indeed, it has been reported that ATF6 plays a role in the 

protection against chronic ER stress using ATF6 knockout mice and repeated exposures223. 

In conclusion, by combining high-throughput confocal imaging and ODE modelling, we captured 

the dynamics and role of individual components within the UPR, particularly pinpointing the 

importance of ATF6 in CHOP activation dynamics. Since the UPR plays an important role in both 

drug-induced toxicity as well as the development of drug resistance in cancer, improved insight 

in UPR signalling dynamics in relation to cell fate is important. 

Limitations of the Study 

Using a combined experimental and computational modelling study of UPR signalling, we showed 

that ATF6 has an important role in shaping the dynamic pattern of CHOP activity, thus likely 

affecting cell fate decisions under ER stress. However, we neither mathematically described the 

relation between UPR activity and cell fate, nor did we investigate experimentally whether cell 
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fate decisions are indeed affected by ATF6. Moreover, our findings are based on a single cell line 

and only on in vitro observations, hence the response may be different in in vivo scenarios. 

Finally, we do not know whether our observations hold for other UPR-invoking compounds and 

whether our model is able to describe UPR dynamics for such compounds, including their 

potential adversity. 
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← Fig. S1. Transcriptomic profiling of HepG2 UPR BAC-GFP reporters. A) Distribution of log2 fold changes 

(compared to DMSO solvent control) of UPR-related genes across the indicated concentration range of 

tunicamycin for each HepG2 cell line (WT, CHOP-GFP, ATF4-GFP, pXBP1(S)-GFP and BiP-GFP) at 8 and 24 h 

exposure time. B) Pearson correlation matrix of different HepG2 cell lines based on either all genes (top panel) 

or UPR-related genes (lower panel). Correlations are the mean of correlations between cell lines at each 

concentration of tunicamycin. C) Heatmap of log2 normalized counts of UPR-related genes (selection based on 

upper quantile of log2 fold changes of all UPR-related genes at 10 μM) for each HepG2 cell line exposed to the 

indicated concentration range of tunicamycin either for 8 or 24 h. Hierarchical clustering of genes based on 

Euclidean distance. 

Fig. S2. Modelled pharmacokinetics of tunicamycin exposure. A) Effective intra-cellular concentration of 

tunicamycin 𝑺𝒄 over time, B) exposure-related stressor 𝑺𝒊 (unfolded proteins due to tunicamycin) which acts as 

input to the UPR signalling network. 

Fig. S3: Standard errors of model parameter estimates. The standard errors were approximated via a Hessian-

based approach and are presented in log10 scale. 



 

ATF6 is a critical determinant of CHOP dynamics 
 

97 
 

5 

 

 

 

Fig. S4. Parameter sensitivity analysis of CHOP expression. In the sensitivity analysis, we considered the 

sensitivity of CHOP expression at 16 hours after exposure to 6μM of tunicamycin. Parameters positively affecting 

CHOP are shown in black, while parameters negatively affecting CHOP are shown in red. 

Fig. S5. Predicted dynamics of the three UPR sensors upon tunicamycin exposure. Plot of the dynamics of the 

sensors IRE1α (blue), PERK (green), and ATF6 (red), after normalization to their maximally obtained value during 

the studies time period. Black squares indicate the moment at which sensor activity is half-maximal. 

Fig. S6. Effect of non CHOP upon exposure to 6 μM of tunicamycin. Heatmap showing the temporal response 

of CHOP for a range of 𝒏 values. The black solid line indicates the time point of maximal CHOP activity within the 

simulated time period. The black dashed line indicates the best fit value (𝒏 = 46.32). 
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Fig. S7. Sensitivity of the CHOP response to the Hill coefficient describing the relation with pATF6(N). For three 

values of 𝒏 (including the estimated value of 𝒏 = 46.32), we plot the pATF6(N) response over time (upper left 

panel), the relation between CHOP transcription and pATF6(N) level (upper right panel), the CHOP transcription 

rate due to pATF6(N) over time (lower left panel) and CHOP dynamics (lower right panel). 

Fig. S8. Details of inner model states with respect to the CHOP response at different tunicamycin 

concentrations. For two tunicamycin concentrations, we plot the pATF6(N) response over time (upper left 

panel), the relation between CHOP transcription and pATF6(N) level (upper right panel), the CHOP transcription 

rate due to pATF6(N) over time (lower left panel) and CHOP dynamics (lower right panel). 
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Fig. S9. Simulation of inner model states. Dynamics of modelled UPR network components are shown upon 

exposure to tunicamycin at 1 μM (black) and 6 μM (red). Note that free ATF6 stands for activated ATF6 sensor, 

i.e., free uncleaved ATF6.  Among the three branches, ATF4 tightly follows the dynamics of eIF2α𝒑 and unfolded 

proteins. 

Fig. S10. Simulation of inner model states upon ATF6 knockdown. Dynamics of modelled UPR network 

components upon exposure to 6 μM tunicamycin, either with (red) or without (black) siATF6 treatment. Note 

that siATF6 results in lower BiP levels, which reduces the folding capacity. Hence, there are more unfolded 

proteins, which induces more ATF4 and pXBP1(S), in the long run leading to slightly higher CHOP levels compared 

to a setting without siATF6. 
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Supplemental materials 

Analysis of single-cell data 

For the analysis of single-cell imaging data, we applied the following steps: First, for each of three 

biological replicates (each consisting of two pooled technical replicates), we calculated the 

geometric mean (denoted by 𝐼) based on GFP measurements for thousands of cells per image 

well at all time points and for all treatment conditions. Second, from this analysis we obtained 

the minimum (denoted by 𝐼𝑚𝑖𝑛) and maximum (denoted by 𝐼𝑚𝑎𝑥) of these geometric means with 

respect to all conditions and time points (separately for every cell line in every plate). We then 

applied min-max normalization to obtain the normalized intensity (denoted by 𝐼𝑁) each time 

point according to: 

𝐼𝑁 =
𝐼−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
.     ( 23 ) 

Third, we interpolated the normalized means to the time points from 1h to 22h as described in 

the main text (note that some treatment conditions only had data before 23h). Finally, we took 

the arithmetic mean and standard deviation of the interpolated data for the biological replicates, 

which we used for further model fitting purposes. 

Describing cellular exposure with a two-compartment model 

To describe the exposure of cells to the chemical tunicamycin, we introduce a two-compartment  

 

 

Fig. S11. Quantification of ATF6 forms after treatment of 1 μM tunicamycin. A) Western blot of uncleaved ATF6 

(G = glycosylated, UG = unglycosylated) measured in HepG2 WT cells at 2, 4, 6, 8, 16 or 24 hours after exposure 

to tunicamycin (1 μM).Tubulin protein expression was used as protein loading control. B) Quantified protein 

expression of ATF6 forms from three biological replicates after protein loading correction using tubulin (symbols 

and shaded area represent mean ± SD). Cleaved ATF6 was estimated based on the difference between total 

uncleaved ATF6 at 4, 6, or 8 h and the total ATF6 at 2 h. 
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model describing the concentrations of the chemical in the medium ([𝐶1]) and in the cells ([𝐶2]): 

{ 

𝑑[𝐶1]

𝑑𝑡
= [𝐷]𝛿(𝑡) − 𝜏[𝐶1],

𝑑[𝐶2]

𝑑𝑡
= 𝜏1[𝐶1] − 𝜏2[𝐶2].

     ( 24 ) 

Here, 𝜏1 is the cellular absorption rate from the medium, 𝜏2 is the degradation rate of the 

chemical within cells and [𝐷] and 𝛿(𝑡) are the applied exposure and unit pulse input functions, 

respectively. To obtain the solution of the above set of ODEs, one can take a convolution: In 

general, for 𝑔(𝑡) = ∫ 𝑓(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏, 𝑔(𝑡) is the output function, 𝑓(𝑡) is the input function and 

ℎ(𝑡) is the transfer function of the linear system, which can be derived by Laplace transformation. 

In our case, the transfer functions for [𝐶1] and [𝐶2] are 𝑒𝑥𝑝(−𝜏1𝑡)𝐻(𝑡) and 𝑒𝑥𝑝(−𝜏2𝑡)𝐻(𝑡), 

respectively. For [𝐶1](𝑡) we then obtain the solution [𝐶1](𝑡)  =  [𝐷] 𝑒𝑥𝑝(−𝜏1𝑡)𝐻(𝑡). 

Furthermore, for [𝐶2](𝑡) we obtain: 

[𝐶2](𝑡) = [𝐷]exp (−𝜏2𝑡)(exp(−(𝜏2 − 𝜏1)𝑡) (𝜏2 − 𝜏1)
−1 − (𝜏2 − 𝜏1)

−1).  ( 25 ) 

This simplifies to: 

[𝐶2](𝑡) = (𝜏2 − 𝜏1)
−1𝜏1[𝐷](exp(−𝜏1𝑡) − exp(−𝜏2𝑡)).      ( 26 ) 

To avoid structural non-identifiability issues, we absorb the term 𝜏1(𝜏2 − 𝜏1)
−1 into the 

parameter 𝑒𝑠 that scales the stressor (see Eq. (17) in main text), leaving us with: 

[𝐶2](𝑡) = [𝐷](exp(−𝜏1𝑡) − exp(−𝜏2𝑡))𝐻(𝑡).   ( 27 ) 

Activation of the three UPR sensors 

Our calibrated model can be used to provide insight into the activation speed of the three UPR 

branches. We therefore quantified the moment at which the active forms of the sensors (active 

IRE1α, active PERK, and free ATF6) reach their half-maximal value, taking 1 µM of tunicamycin as 

a representative case (Supplementary Fig. 5). 

Effect of Hill coefficient on CHOP transcription 

Because the estimated value of the Hill coefficient in the relation between 𝐴6,ℎ𝑖𝑙𝑙 and 𝐴6 (Eq. (15) 

in main text) is very high (𝑛 = 46.32), this implies a switch-like response of CHOP transcription 

with increasing pATF6(N), questioning the suitability of a lower 𝑛 value. In the model, the sigmoid 

dependency of CHOP expression on pATF6(N) levels is complemented by linear dependencies on 

XBP1 (with parameter 𝛼3) and on ATF4 (with parameter 𝛼4) (Eq. (14) in main text). In order to 

understand the effect of the Hill exponent 𝑛 on CHOP regulation, we varied 𝑛 over a wide range 

(from 0 to 200) while keeping the other model parameters the same and plotted the predicted 

CHOP response in a two-dimensional heat-map with time on the horizontal axis and 𝑛 on the 

vertical axis (Supplementary Fig. 6). This analysis shows that an increase of the exponent beyond 

the calibrated value (𝑛 = 46.32) still has a clearly noticeable effect on the dynamics of CHOP. 

Consistent with sensitivity of the CHOP response to 𝑛, high values of 𝑛 lead to a more pronounced 

peak in CHOP levels and an even more step-like response of CHOP transcription with pATF6(N) 
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concentration and with time compared to low values of 𝑛 (Supplementary Figs. 7 and 8). As a 

side note, because CHOP in our model does not provide feedback to any of the other state 

variables, the Hill coefficient 𝑛 will not affect the pATF6(N) concentration itself. Thus, this analysis 

shows that the value of the Hill exponent is important in determining the CHOP dynamics, 

especially around the time of its peak. 

Contribution of pXBP1(S) and ATF4 to CHOP production 

According to the model calibration, the coefficients describing pXBP1(S)-mediated and ATF4- 

mediated CHOP transcription respectively are 𝛼3) = 31.77 (pXBP1(S)), and 𝛼4 = 27.64 (ATF4), 

suggesting approximately equal contribution of these two TFs. However, besides these 

coefficients, the concentrations of ATF4 and pXBP1(S) themselves also have an important role in 

the contribution of the TFs to CHOP transcription. Because the amount of pXBP1(S) is much lower 

than ATF4 (Supplementary Fig. 9), this concentration effect dominates when one considers the 

product terms 𝛼3𝑋, 𝛼4𝐴 and 𝛼6𝐴6,ℎ and the pXBP1(s) contribution to CHOP transcription is small 

(Fig. 4B-D). 

Choice of parameter ranges 

During model calibration, we did not restrict the allowed parameter ranges taking full biophysical 

details into consideration because the units of the normalized intensities in our imaging data 

were arbitrary, precluding determination of the unit of concentrations. Rather, we required all 

parameters (besides 𝑠𝑠) to be positive and based our choices of parameter ranges on trial 

simulations with Trusina et al.’s previously published model parameterization203. The parameter 

ranges considered and the units of parameters are provided in Table 1. Note that the high values 

for some of the Michaelis-Menten constants are due to the high levels of unfolded proteins in 

our simulations (for which we have no measurements) and should be interpreted in a relative 

rather than absolute manner. 

Covariance matrix of estimates 

In order to study the uncertainty of the estimated parameter values, we utilize the Jacobian 

matrix (J) to approximate the Hessian matrix H: 

H = J𝑇J𝑆(𝜃).      ( 28 ) 

Here, the mean squared error 𝑆(𝜃) (i.e., the residual sum of squares divided by the number of 

degrees of freedom) is given by 

𝑆(𝜃) =
R𝑇R

𝑛𝐷−𝑛𝜃
,      ( 29 ) 

where 𝑅 is the vector containing the residuals between model prediction and data, 𝑛𝐷 = 440 

denotes the number of data points and 𝑛𝜃 = 47 denotes the number of free parameters in our 

model with ATF6 branch. The squares of the standard errors of the estimates are the diagonal 

items in the co-variance matrix, expressed as the inverse matrix H−1. The standard errors of all 
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parameters are presented in Supplementary Fig. 3. We multiplied these values by 1.98 to obtain 

confidence intervals (CIs)217 (shown together with the estimates in Table 1). Note that although 

the amount of experimental measurements is large compared to the number of parameters in 

our case, the CI for some parameters may be underestimated by the Hessian-based estimate. 

Sensitivity analysis 

We performed a sensitivity analysis to quantify the importance of the model parameters around 

our maximum likelihood estimate. Because CHOP is an important determinant in downstream 

cell fate and most of the signalling parameters are expected to indirectly affect the activity of 

CHOP especially around the peak, we focus on CHOP activity at 16 hours after treatment with 6 

µM of tunicamycin. Thus, we performed a local sensitivity analysis around the maximal likelihood 

estimate 𝜃 for the model with ATF6. 

In the sensitivity analysis, we omitted parameters that should have no impact on CHOP in 

conditions of 6 µM tunicamycin treatment. Specifically, these are the effective tunicamycin 

concentrations of 2, 4, 12 µM, i.e. 𝐸2, 𝐸4 and 𝐸12. Moreover, we omitted the three pairs of the 

scaling coefficients (𝑒𝑋𝐵𝑃1, 𝑒𝐴𝑇𝐹4, and 𝑒𝐵𝐼𝑃) and offsets (𝑠𝑋𝐵𝑃1, 𝑠𝐴𝑇𝐹4, and 𝑠𝐵𝐼𝑃) for the non-CHOP 

reporter cell lines. We varied each of the remaining parameters by both increasing and 

decreasing them by a small value (𝛿𝜃) from its optimum. Subsequently, we quantified the 

sensitivity using the following equation: 

∆𝐶

∆𝜃𝑖
=

𝐶(𝜃+𝛿𝜃)−𝐶(𝜃−𝛿𝜃)

2𝛿𝜃
,     ( 30 ) 

where for different parameters, we used different 𝛿𝜃. For 𝜏2 and 𝑟𝑈, we chose a value just above 

the machine precision (3e-16); for other parameters, we set 𝛿𝜃 to 1e-6×𝜃, i.e., based on the 

maximum likelihood estimate. As the sensitivity can be negative or positive and the absolute 

value of sensitivities has a broad range, we plotted the log10 of the absolute values of the 

calculated sensitivities, with the colour indicating positive or negative sensitivity (Supplementary 

Fig. 4). The most straight forward parameters having a positive impact on CHOP are the scaling 

parameters 𝑒𝐶  and 𝑠𝐶, and parameters representing direct inputs like 𝐸6 and 𝑒𝑠. As expected, 

parameters with a negative impact typically arise from those promoting degradation of CHOP, 

like 𝑟𝐶. 
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Table S1. Model parameters, their units, their estimated values (±95% confidence interval) and the boundary 

values used during the estimation procedure. For the rationale behind the choice of boundary values see the 

section on parameter ranges in the Supplementary text. 
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     Abstract  

The unfolded protein response (UPR) aims to restore homeostasis after endoplasmic reticulum 

(ER) stress. Chronic ER stress may lead to apoptosis mediated by enhanced CHOP induction. To 

improve mechanistic understanding of the signalling programs that control UPR, we identified 

novel key regulators of CHOP by applying an imaging-based arrayed RNAi screen of the 

druggable genome targeting 3,457 genes in HepG2 CHOP-GFP reporter cells. A network of 74 

genes impacted on UPR-mediated CHOP-GFP induction. Depletion of the transcription factor 

EMX1 consistently reduced UPR response by various ER stress inducers. Transcriptome analysis 

in HepG2 and primary human hepatocytes revealed EMX1 as an essential regulator of multiple 

ER stress signalling pathways. During treatment of hepatocellular carcinoma (HCC) with clinical 

relevant targeted therapeutics, regorafenib and sorafenib, silencing of EMX1 significantly 

decreased CHOP levels and increased survival. Our RNAi screen uncovered the signalling 

landscape that controls the ER stress response aiding to the understanding of development of 

hepatotoxicity and HCC treatments. 

Keywords: Endoplasmic reticulum stress, drug-induced liver injury, RNAi screening  

Introduction 

Under homeostatic conditions, the endoplasmic reticulum (ER) is responsible for protein 

synthesis, correct protein folding, modifications and maturation by various chaperones and 

foldases. Upon correct folding, proteins are able to exit the ER via a secretory pathway, while 

incorrect folded proteins are kept inside the ER and flagged for proteasomal degradation175. This 

tightly balanced regulatory system can however be disrupted by for instance exposure to certain 

drugs or certain pathologies provoking the accumulation of misfolded proteins in the ER, which 

leads to ER stress. In response to ER stress, the unfolded protein response (UPR) is induced, 

aiming to restore balance by increasing folding capacity through upregulation of chaperones and 

ER biogenesis, temporary blockage of the translational machinery and increased removal of 

misfolded proteins173,176. 

The UPR consists is controlled by three sensors, namely Eukaryotic Translation Initiation Factor 2 

Alpha Kinase 3 (PERK/EIF2AK3), Endoplasmic Reticulum To Nucleus Signaling 1 (IRE1α/ERN1) and 

Activating Transcription Factor 6 (ATF6)229. In unstressed conditions, these sensors are kept in an 

inactive state through binding with the chaperone protein Heat Shock Protein Family A (Hsp70) 

Member 5 (BiP/HSPA5)230,231. Upon ER stress, BiP releases its targets, leading to UPR sensor 

activation followed by temporary blockage of the translational machinery, removal of misfolded 

proteins, improving folding capacity and induction of genes important for restoration of 

homeostasis within the ER231. 

During chronic severe ER stress conditions, activation of the UPR signalling network might not be 

able to sufficiently restore homeostasis within the ER. Consequently, apoptotic pathways may be 
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activated leading to cellular injury, and subsequently at multicellular level to tissue injury231. One 

of these pathways is mediated by the transcription factor DNA Damage Inducible Transcript 3 

(CHOP/DDIT3) which is induced by ATF4 and ATF6 during ER stress232. CHOP downregulates anti-

apoptotic genes, upregulates pro-apoptotic genes, increases translation and increases ROS levels 

through upregulation of Endoplasmic Reticulum Oxidoreductase 1 Alpha (ERO1α)191. CHOP 

deficiency resulted in less hepatocellular apoptosis after ethanol feeding in mice227. Given these 

pro-apoptotic features, CHOP potentially plays a key role in the switch towards adverse signalling 

during severe or prolonged ER stress leading to injury.   

Prolonged ER stress signalling in the liver can be provoked by both chemical or pathological 

insults, such as by drug exposure21, by the development of certain pathologies (e.g. non-alcoholic 

fatty liver disease, alpha1-antitrypsin deficiency)233,234 or during carcinogenesis235. Drugs known 

to induce liver injury in patients, such as nefazodone and diclofenac, have been shown to induce 

ER stress which contributes to onset of cell death20. However, it is not exactly clear how this ER 

stress induction may lead to liver injury. The UPR is also involved in the development of 

hepatocarcinogenesis236,237. Cancer cells may misuse the adaptive UPR to cope with increased 

protein load due to rapid cell growth or oxygen and nutrient deprivation235,238. By activating the 

UPR excessively, the initiation of pro-apoptotic signalling can be escaped and proliferation 

enhanced promoting a more aggressive phenotype237,239,240.  

Our objective was to obtain increased insight in signalling components that control the UPR in 

liver pathogenesis. We performed an imaging-based high throughput arrayed RNAi screen of the 

druggable genome, targeting 3,457 genes, in HCC HepG2 CHOP-GFP reporter cells. We identified 

the transcription factor EMX1 as a novel key regulator of the CHOP response under various ER 

stress conditions. Transcriptome analysis revealed its influence on multiple related ER signalling 

pathways in both HepG2 cells as well as in primary human hepatocytes. EMX1 was required for 

the activation of CHOP-mediated apoptosis caused by kinase inhibitors that target HCC in the 

clinic.  

Materials and Methods  

Cell culture 

Human hepatocellular carcinoma HepG2 cells were purchased at American Type Culture 

Collection (ATCC, Germany) and cultured in a 5% CO2 humidified incubator at 37°C using 

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum 

(FBS), 25 U/mL penicillin and 25 µg/mL streptomycin. Cells were used until passage 20. 

LIVERPOOL cryopreserved plateable primary human hepatocytes (PHHs, lot YFA) from 10 

individuals with mixed gender were purchased at BioIVT (NY, USA). After thawing PHHs at 37°C 

in warm water bath, cells were resuspended in OptiThaw Hepatocyte Media (SEKISUI XenoTech, 

KS, USA) and spinned down for 10 min at 100xg at RT. Cells were seeded at a density of 260.000 

cells per well in 24 well Collagen I Cellware BioCoat plates (Corning, Wiesbaden, Germany) in 
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RPMI 1640 plating medium supplemented with 2 % (v/v) FBS, 1 µM insulin, 2 mM L-glutamine, 

0.1 mM hydrocortisone-21-hemisuccinaat, 50 U/mL penicillin and 50 µg/mL streptomycin. For 

sandwich culture after 18 hours, medium was replaced by 0.25 mg/mL Matrigel (growth factor 

reduced, Corning) in RPMI 1640 maintenance medium without FBS. Medium was refreshed daily 

using maintenance medium.  

siRNA transfections 

To transiently silence specific genes, HepG2 cells were transfected with siGENOME siRNAs from 

Dharmacon GE Healthcare (Eindhoven, The Netherlands) in combination with INTERFERin from 

PolyPlus (Leusden, The Netherlands). For the primary siRNA screen, the following siGENOME 

siRNA libraries from Dharmacon were used: transcription factors, protein kinases, ubiquitinases, 

deubiquitinases and phosphatases (see list of genes Suppl. Excel Table S4). Selection of siRNAs 

targeting the spliceosome were literature-based manually defined. After complex formation of 

siRNA with INTEFERin for 20 min in serum-free DMEM, HepG2 cells were added to each well 

containing siRNA mix leading to a final concentration of 50 nM siRNA and 0.3% INTERFERin. For 

siRNA transfections in PHHs, Lipofectamine2000 (Invitrogen) was mixed with siGENOME siRNAs 

in serum-free RPMI supplemented medium for 10 min to allow complex formation. Hereafter, 

PHHs resuspended in plating medium were plated in a 24 well BioCoat plate containing siRNA-

Lipofectamine2000 mix leading to a final concentration of 40 µM siRNA and 2.4% (v/v) 

Lipofectamine2000. The effect of siRNA-mediated knockdown was evaluated after 72 hours.   

Compound exposures & viability 

To evaluate ER stress induction, cells were exposed to various ER stress inducers, namely 

tunicamycin, thapsigargin, nefazodone, omeprazole, diclofenac, troglitazone, regorafenib and 

sorafenib (Sigma, Zwijndrecht, The Netherlands). Compounds were dissolved in 

dimethylsulfoxide (DMSO) from BioSolve (Valkenswaard, The Netherlands) and stored at -20°C. 

The end concentration of DMSO was not higher than 0.2 % (v/v). To assess viability upon 

compound exposure, ATP-lite luminescence kit from PerkinElmer was used according to 

supplier’s instructions to measure ATP content.  

Confocal microscopy 

The induction dynamics of ER stress specific genes was monitored by combining HepG2 BAC-GFP 

ER stress reporters (CHOP, BIP, ATF4 and XBP1-GFP) with confocal imaging. These BAC-GFP 

reporters were established as described previously using a BAC recombineering approach27,28. 

HepG2 GFP reporter cells were plated in 96 well µclear plates from Greiner Bio-One (Alphen aan 

den Rijn, The Netherlands). Prior to imaging, cells were stained with 100 ng/mL Hoechst33342 to 

visualize nuclei, and with 0.05% AnnexinV-Alexa633 / 100 nM propidium iodide (PI) for cell death 

evaluation. GFP induction was evaluated using live cell automated confocal imaging with a Nikon 

TiE2000 equipped with an automated xy-stage, Perfect Focus System and 408, 488, 561 and 647 



 

Discovery of EMX1 as master regulator of the unfolded protein response 
 

111 
 

6 

nm lasers (Nikon, Amsterdam, The Netherlands). During imaging, cells were kept at 37°C and 5% 

CO2 humidified conditions.  

Imaging data analysis 

GFP signal intensity, either in the nuclei or cytoplasm, was quantified using CellProfiler 2.1.1 

(Broad Institute, Cambridge, USA) using an in-house developed module using a watershed 

masked algorithm for nuclear segmentation. To extract data from the derived HDF5 files, an in-

house developed Rscript ‘H5CellProfiler’ was used. Further confocal imaging data analysis was 

done using Rstudio (Boston, USA) and R 3.2.3 and the following R packages, ggplot2 131, data.table 

132, pheatmap 133, reshape 137, dplyr 135, tidyr. For the primary and validation siRNA screen, data 

was represented as the mean Z-score based on two biological replicates. Hits were selected if 

both replicates showed same direction of Z-score, if mean Z-score was lower than -2 or higher 

than 1.5, if the mean fold change was lower than 0.67 or higher than 1.25 and more than 90 cells 

per image to exclude knockdowns of essential genes. For the validation siRNA screen, more than 

2 of 4 single siRNAs should meet the same criteria. For gene set enrichment analysis based on 

the Z-scores of all screened siRNAs in the primary screen in which validated hits from the 

validation screen were flagged, the R package HTSanalyzeR 241 was used. All other confocal 

microscopy data was shown as the mean ± the standard deviation based on three biological 

replicates. A Student’s t-test with Benjamini-Hochberg correction was used to determine 

significant differences in GFP levels at certain timepoints after exposure. For 24 hour live cell 

imaging data, each replicate was resampled to obtain identical time points and were fitted using 

the b-spline method with 10 degrees of freedom and 3rd degree polynomials from splines R 

package. Significant differences between CHOP-GFP induction time dynamics from 0 to 24 hours 

after exposure was determined using a one-way ANOVA model and bootstrapping n = 200242. The 

following p-value annotation was used, *p < 0.05, **p < 0.01, ***p < 0.001.  

Quantitative PCR analysis 

Total RNA was isolated using the NucleoSpin RNA kit from Macherey-Nagel (Düren, Germany), 

followed by cDNA synthesis using RevertAid H Minus First Strand cDNA Synthesis Kit from 

ThermoFisher Scientific and oligoDT primers. For quantitative PCR analysis, 1 µL cDNA was mixed 

with 5 µL PowerUp SYBR Green master mix (Thermo Fisher) and 4 µL 1 µM forward and reverse 

primers (Sigma) in a MicroAmp Optical 384-well reaction plate from Applied BioSystems (MA, 

USA) and sealed with a MicroAmp Optocal Adhesive film. qPCR was done using a QuantStudio 6 

Flex Real-Time PCR System from Applied Biosystems. Details of used primers can be found in 

Suppl. Table S5. mRNA expression levels were normalized to housekeeping gene TATA-box 

binding protein (TBP). 

TempO-seq transcriptomics 

Analysis of the transcriptome was done using targeted TempO-seq technology (BioSpyder 

Technologies, Inc., Carlsbad, CA, USA) in combination with the S1500+ gene set164 covering all 
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known canonical pathways while also sufficiently reflecting stress response pathways. Prior to 

analysis, cells were washed with 1x PBS, lysed for 15 min at RT with 1x BNN lysis buffer from 

BioSpyder (Carlsbad, USA) and stored at -80°C until shipment to BioSpyder for TempO-seq 

analysis30. Reads were aligned by BioSpyder using the TempO-seqR package and normalized using 

the DESeq2 R package165. A threshold of lower than 0.05 was used for the adjusted p-value to 

define differentially expressed genes (DEGs). Pathway analysis was done using these DEGs with 

g:Profiler243 in combination with GO biological processes244 and Reactome biological pathways245 

as data source. Pathways were significantly enriched when adjusted p-value using Benjamini-

Hochberg correction was lower than 0.05. Cytoscape246 was used for pathway enrichment 

visualization in combination with EnrichmentMap247, AutoAnnotate and WordCloud248. 

Western Blot 

To study protein expression levels using western blot, cells were washed with 1x PBS and lysed 

by adding 1x sample buffer supplemented with 10% (v/v) β-mercaptoethanol. Samples were 

heat-denatured by boiling at 95°C for 10 min. Protein separation was done by running on SDS-

page gels at 120 volt and transfer to polyvinylidene difluoride (PVDF) membranes at 100 volt for 

2 h. Membranes were blocked using 5% (w/v) ELK and stained with primary and secondary HRP 

or Cy5 conjugated antibodies diluted in 1% (w/v) bovine serum albumin (BSA) in Tween200.05%-

tris-buffered saline (TBS). Used primary antibodies were EMX1 from Santa Cruz and tubulin from 

Sigma. For visualization of HRP conjugated antibodies, ECL western blotting substrate from 

Thermo Fisher (Bleiswijk, The Netherlands) was used and captured with the Amersham Imager 

600 from GE Healthcare (Eindhoven, The Netherlands). Quantification was done using ImageJ 

version 1.51h (National Institutes of Health, USA). Tubulin protein expression was used for 

normalization.  

Analysis of genetic alterations 

To evaluate genetic alterations of EMX1 in cancer tissues, the software cBioPortal for Cancer 

Genomics249,250 was used in combination with TCGA PanCancer datasets251. The OncoPrint, 

Mutations and Survival tabs were used for visualization of genetic alterations and its influence 

on overall survival. 

Results 

Arrayed siRNA screen identifies novel regulators of CHOP induction during ER stress 

To screen for modifiers of ER stress signalling, we made use of previously established HepG2 BAC-

GFP reporter cell lines for CHOP, ATF4, XBP1 and BiP252,253. Previous transcriptomics analysis 

demonstrated the suitability of these different UPR HepG2 BAC-GFP reporters to faithfully reflect 

the UPR response232,252,253. By combining these reporters with high throughput live cell confocal 

microscopy the temporal dynamics of the UPR response at individual cell level can be 

determined. We first evaluated if the HepG2 CHOP-GFP reporter system allows for the 

identification of regulators of CHOP and ER stress signalling by an siRNA knockdown screen. 
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CHOP/DDIT3 expression was silenced and CHOP-GFP reporter activity was evaluated by confocal 

microscopy after exposure to various ER stress inducers (Fig. 1A). Thapsigargin, tunicamycin and 

Fig. 1. High-throughput primary RNAi screening for the identification of CHOP regulators during ER stress. A) 

CHOP-GFP expression in HepG2 cells upon siRNA-mediated knockdown of UPR components and 24 h exposure 

to ER stress inducers using confocal microscopy. B) Experimental setup of primary RNAi screen for the 

identification of CHOP regulators during ER stress. C) Z-score based on the CHOP-GFP intensity upon exposure to 

tunicamycin for 16 h  and siRNA-mediated knockdown of individual genes (3457 genes in total) compared to no 

siRNA control (Mock). Genes are separated based on protein class. Data based on two biological replicates. D) 

Distribution of total screened genes (left), identified negative (middle) or positive (right) CHOP regulators among 

different protein classes. E) Confocal images using 20x objective of HepG2 CHOP-GFP cells stained with Hoechst 

for nuclei visualization upon exposure to tunicamycin for 16 h and siRNA-mediated knockdown. 
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brefeldinA showed a strong induction of CHOP-GFP expression, which was reduced 2-fold by 

CHOP/DDIT3 knockdown exemplifying reporter activity can be successfully manipulated by siRNA 

transfection.   

Next, we performed an imaging-based siRNA screen of the druggable genome in HepG2 CHOP-

GFP cells, targeting in total 3,457 genes: transcription factors, kinases, phosphatases, 

ubiquitinases, deubiquitinases and spliceosome components. Tunicamycin is the most specific 

ER stress inducer, inhibiting N-glycosylation leading to accumulation of misfolded glycoproteins 

inside the ER254. We silenced individual genes using SMARTpool siRNAs and evaluated the effect 

of silencing on CHOP-GFP induction using confocal microscopy after 16 hours of 6 µM 

tunicamycin exposure (Fig. 1B). We identified 201 genes that significantly altered CHOP induction 

during tunicamycin-induced ER stress, where 128 genes had an inhibitory effect and 73 genes 

showed upregulation of CHOP upon knockdown (Fig. 1C-D). Almost half of the identified genes 

were transcription factors. Interestingly, many spliceosome genes (18% of spliceosome sub-

library) were identified as potential CHOP regulators.  

To exclude off-target effects of the siRNAs, a secondary screen of the 201 identified hits was 

performed using 4 individual single siRNAs targeting the same gene. Hits were considered 

validated if a minimum of 2 single siRNAs showed a significant effect on CHOP induction during 

tunicamycin-induced ER stress (Fig. 2A and B). Using these criteria, 74 hits were validated 

consisting: 18 negative regulators including UFD1L, POLR2I, UBA3, NARG1 and PFKM; and 56 

positive regulators including EMX1, POU5F2, USP54, NFE2L3 and DMRTA1. Most of these 74 

genes were transcription factors such as EMX1, POU5F2, NFE2L3 and DMRTA1, followed by 

kinases including PFKM, GALK1, BRD4 and CDC2L5/CDK13 and ubiquitinases UFD1L, UBA3 and 

USP54 (Fig. 2C-F and Suppl. Excel Table S1). Gene set enrichment analysis (GSEA) on GO biological 

processes based on Z-scores for all screened siRNAs flagging the validated 74 genes as hits 

identified general processes such as mRNA processing as well as ER associated processes were 

identified (Suppl. Table S2). 

Impact of candidate CHOP regulators on ER stress signalling by various ER stress inducers  

We further explored the consequences of silencing the 74 candidate regulators on the temporal 

dynamics of CHOP induction. Live confocal imaging was performed during 24 h tunicamycin 

treatment of the HepG2 CHOP-GFP reporter cells (Fig. 3A-B, Suppl. Excel Table S1 and Suppl. 

Movies 1). All candidate positive regulators showed a significant downregulation of CHOP upon 

knockdown over time. Some genes, such as EMX1 and LBX1, showed almost complete inhibition 

of the temporal induction of CHOP-GFP expression. Silencing of other genes, such as MAPKAPK2, 

NFATC4 and TAF8, showed a delayed response with a small peak at late time points. Most of the 

genes that upregulate CHOP upon knockdown significantly enhanced and/or sustained CHOP-

GFP activation dynamics such as BRD4, PFKM and UFD1L. 
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To determine which of the 74 candidate genes also impact on the CHOP activation by other ER 

stressors, we treated HepG2 CHOP-GFP cells also with thapsigargin or omeprazole (Fig. 3C and E; 

Fig. 2. Secondary RNAi screening for the validation of identified CHOP regulators. A) Confocal images using 20x 

objective of HepG2 CHOP-GFP cells stained with Hoechst treated with tunicamycin for 16 h after siRNA-mediated 

knockdown using pool or single siRNAs targeting CHOP/DDIT3, EMX1, or BRD4. B) Z-score based on the CHOP-

GFP intensity in HepG2 cells upon exposure to tunicamycin for 16 h and knockdown using pool or single siRNAs 

for each identified regulator in primary screen. Data based on two biological replicates. C) Number of single 

siRNAs validated (having similar effect as the pool of 4 single siRNAs) for each regulator identified in primary 

screen (201 genes). D) Scheme of hit selection during primary and validation secondary siRNA screen and used 

selection criteria. E) Number of validated negative and positive regulators of CHOP during ER stress within each 

protein class. 
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Suppl. Excel Table S1). 21 genes showed a significant effect on CHOP induction with thapsigargin, 

with several of the most effective suppressors (EMX1, LBX, STK38) but the majority of the 

enhancers showed the highest overlap (UFD1L, UBA3, BRD4). The proton-pump inhibitor drug 

omeprazole that induces a mild UPR in liver cells27,255, showed less extensive CHOP induction and 

only several candidate genes significantly impacted on CHOP-GFP expression. 

Next we determined whether these 74 candidate CHOP regulators also impacted on other ER 

stress signalling components. We screened our full panel of ER stress HepG2 reporters, involving 

ATF4, XBP1 and BIP-GFP HepG2 cells (Fig. 3D-E, Suppl. Excel Table S1). Interestingly, the majority 

of the 56 positive regulators, but only few of the 18 negative regulators of the CHOP-GFP 

induction also affected the XBP1-GFP induction by tunicamycin. In contrast, approximately 50% 

of the negative regulators impacted on the ATF4-GFP induction, with none of the positive 

regulators suppressing the ATF4-GFP induction upon their individual depletion. None of the 

candidate genes did impact on the induction of the BiP-GFP expression. 

Finally, we determined the effect of candidate genes on the CHOP-GFP induction by drugs that 

have the probability to induce liver injury. As a further selection, we evaluated the knockdown 

efficiency for the candidate genes in HepG2 with a focus on 21 genes that showed overlap 

between tunicamycin, thapsigargin as well as different UPR reporters (Suppl. Fig S1). Ten genes 

were selected that showed more than 75% knockdown efficiency and had a similar effect on 

 

Selected 
hits Entrez 

Fold change 
CHOP induction pvalue 

Affects ER 
stress 
components Protein class Family 

EMX1 2016 0.195 (± 0.042) 1.81933E-58 CHOP, XBP1 Transcription Factor EMX homeobox family 
POU5F2 134187 0.31 (± 0.114) 1.60827E-45 CHOP Transcription Factor POU transcription factor family 
USP54 159195 0.311 (± 0.126) 1.64279E-45 CHOP Ubiquitinases Peptidase C19 family 
NFE2L3 9603 0.351 (± 0.089) 4.7918E-41 CHOP, XBP1 Transcription Factor bZIP family 
DMRTA1 63951 0.367 (± 0.077) 2.1758E-39 CHOP, XBP1 Transcription Factor DMRT family 
NCBP1 4686 0.386 (± 0.065) 1.34373E-37 CHOP Spliceosome NCBP1 family 
ZNF41 7592 0.435 (± 0.097) 7.93636E-32 CHOP, XBP1 Transcription Factor Krueppel C2H2-type zinc-finger protein family 
NFIL3 4783 0.446 (± 0.026) 2.62321E-31 CHOP, XBP1 Transcription Factor bZIP family 
CDK13 8621 0.448 (± 0.055) 4.51695E-31 CHOP Kinases MGC Ser/Thr protein kinase family 
MED12 9968 0.503 (± 0.058) 1.11462E-25 CHOP Transcription Factor Mediator complex subunit 12 family 

← Fig. 3. Chemical-independent regulation of the UPR during ER stress by key hits. A-B) Live cell confocal 

imaging of CHOP-GFP in HepG2 cells upon 24 h exposure with tunicamycin after siRNA-mediated knockdown of 

74 validated hits. C) CHOP-GFP intensity in HepG2 cells upon exposure to tunicamycin for 16 h, thapsigargin or 

omeprazole for 24 h after siRNA-mediated knockdown of 74 validated hits. D) GFP intensity in HepG2 XBP1, ATF4 

or BIP-GFP cells upon exposure to tunicamycin for 24 h after siRNA-mediated knockdown of 74 validated hits. E) 

Left panel: Number of validated hits showing significant up- or downregulation of CHOP after knockdown upon 

exposure to a specific ER stress inducer or for multiple inducers. Right panel: Number of validated hits showing 

significant up- or downregulation of CHOP specifically or multiple UPR components after knockdown and 

tunicamycin treatment. F) Scheme of hit selection based on compound specificity and knockdown efficiency. G) 

Live cell imaging of CHOP-GFP upon exposure towards DILI-inducing compounds (blue) or solvent DMSO (grey) 

after knockdown of selected hits. All data represented as the mean ± standard deviation of three biological 

replicates with significance levels depicted as *p<0.05, **p<0.01 and ***p<0.001. 

Table 1. Overview of ten most critical modulators of ER stress signalling  
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CHOP mRNA levels as on protein CHOP-GFP levels (Table 1). We depleted these 10 genes again 

in HepG2 CHOP-GFP cells and evaluated the effect on the dynamics of CHOP induction by 

hepatoxic drugs nefazodone, troglitazone and diclofenac (Fig. 3G). EMX1, NCBP1, NFIL3, POU5F2 

and TNRC11 significantly reduced the CHOP-GFP expression caused by these three liver toxicants. 

Overall EMX1 depletion caused the most prominent effect CHOP demonstrating its central role 

in ER stress signalling during chemical exposure.  

EMX1 is an UPR master regulator that defines the UPR in human liver cells.  

To translate the importance of the ten genuine ER stress signalling modulators to human liver 

hepatocyte physiology, we systematically investigated the effect of silencing the ten candidate 

genes on the transcriptome in both primary human hepatocytes (PHH) and HepG2 cells during 

tunicamycin-induced ER stress. For transcriptome mapping, the targeted RNA sequencing 

technology TempO-seq was used in combination with a sentinel gene set enriched with UPR 

response genes164,256. As a first step, the change in mRNA expression of key components of the 

ER stress signalling was evaluated (Fig. 4). All ten candidate regulators showed significant 

reduction in DDIT3 expression upon knockdown during tunicamycin treatment in HepG2 cells 

(Fig. 4B). In PHH, only knockdown of EMX1 showed a significant reduction of DDIT3 expression 

levels. EMX1 silencing also downregulated ATF4, ATF6 and XBP1 expression in PHH suggesting a 

general role in ER stress signalling regulation in human liver cells. Other candidate genes did 

suppress tunicamycin-induced ATF4 induction. 

We further evaluated the overall impact of EMX1 depletion on the UPR transcriptional program 

with a focus on tunicamycin-induced genes that were significantly affected by DDIT3 depletion. 

In both HepG2 and PHH, EMX1 silencing led to a similar expression profile as DDIT3 depletion 

(Fig. 5A). When comparing the median log2 fold change of all DDIT3 regulated genes after 

tunicamycin-induced ER stress, of all candidate genes, EMX1 showed the lowest median log2 fold 

change almost similar to DDIT3 knockdown in HepG2 and PHH and comparable to depletion of 

other UPR drivers including ATF4, ATF6 and ERN1 (Fig. 5B-C). Furthermore, EMX1 knockdown led 

to a significant reduction in expression of most of the individual top CHOP-regulated genes in 

PHH and to a minor degree also in HepG2 (Fig. 5D). 

We further identified critical pathways that are regulated by EMX1 during tunicamycin-induced 

ER stress. The most enriched GO biological processes or Reactome pathways showed many 

pathways related to protein processing exemplifying its key role in ER stress signalling (Fig. 5E, 

Suppl. Excel Table S3). When enriched pathways either by DDIT3 or EMX1 knockdown were 

clustered and annotated246,248, key processes could be identified such as regulation of the 

unfolded protein response (genes ATF4, ATF6, HSPA5, XBP1), translation (EIF2A, EIF2S2), ER-Golgi 

trafficking (KDELR1, SEC24C) and proteosomal degradation (UFD1, EDEM2), all being part of 

protein processing (Fig. 5E). In all of these pathway clusters, both DDIT3 and EMX1 knockdown 

showed enrichment of individual pathways having a high overlap in pathway enrichment. 
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Fig. 4. Regulation of critical UPR components in HepG2 and primary human hepatocytes. Gene expression 

profile of critical UPR components upon tunicamycin treatment after siRNA-mediated knockdown in HepG2 and 

primary human hepatocytes (PHH) using TempO-seq analysis. A) Graphs of log2 fold change of gene expression 

upon tunicamycin treatment compared to solvent DMSO control after transfection without siRNA (Mock) or non-

targeting siRNA (siCntrl). B) Graphs of log2 fold change of gene expression upon siRNA-mediated knockdown 

compared to no siRNA control (Mock) exposed to tunicamycin. Data represented as the mean ± standard 

deviation of three biological replicates with significance levels depicted as *p<0.1, **p<0.01 and ***p<0.001. 
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However, pathways related to ER-Golgi protein trafficking were mostly enriched by EMX1 

knockdown indicating a divergent role of EMX1 compared to CHOP in this process. Together this 

showed the crucial role of EMX1 in hepatocytes in regulating key protein processes during ER 

stress conditions.  

Role of EMX1 in ER stress signalling during exposure to HCC chemotherapeutics 

Given the importance of the regulation of the UPR during ER stress in HCC cells for survival, we 

evaluated the role of EMX1 in CHOP regulation and sensitivity for novel kinase inhibitors targeting 

HCC chemotherapeutic treatments in HepG2 cells (Fig. 6). A previous kinase inhibitor screen for 

modulators of CHOP induction identified the clinical approved HCC multi-kinase inhibitor 

sorafenib as modulators of CHOP expression (Fig. 6A). Both sorafenib as well as another HCC 
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6 kinase inhibitor regorafenib led to a sustained induction of CHOP-GFP expression in HepG2 cells 

at least up to 48 h of exposure (Fig. 6B-C). To evaluate the influence of EMX1 on the sensitivity, 

HepG2 cells were stained with propidium iodide (PI) and annexinV (AnV) as markers for necrosis 

and apoptosis, respectively in combination with live cell confocal imaging (Fig. 6D-E). Induction 

of cell death upon treatment with regorafenib and sorafenib was reduced by EMX1 knockdown 

leading to approximately 2-fold lower PI or AnV positive cells. This protective role of EMX1 

silencing was confirmed by measuring cellular ATP content with the strongest effect for sorafenib 

(Fig. 6F), indicating that the cytotoxicity induced by sorafenib in this HCC cell line is fully 

dependent on EMX1 expression. To further assess the involvement of EMX1 in HCC patients, 

mutation status and mRNA expression in relation to survival was evaluated using the TCGA 

PanCancer Atlas database (Fig. 6G-H)251. 65% of the 372 HCC patients showed alterations for 

EMX1 where mRNA upregulation or downregulation was seen for 196 and 46 patients, 

respectively. Approximately a third of these patients showed also upregulation of DDIT3 (Fig. 6G). 

Overall, patients having altered EMX1 showed lower probability for survival compared to patients 

with unaffected EMX1 (Fig. 6H). Together this highlights the importance of EMX1 in CHOP 

regulation in relation to HCC progression and treatment. 

Discussion 

To obtain better understanding of the regulation of ER stress signalling, we identified novel key 

regulators of ER stress signalling by combining the HepG2 CHOP-GFP reporter system with live 

cell imaging-based high-throughput arrayed RNAi screening targeting the druggable genome. 74 

genes were identified that regulate tunicamycin-induced CHOP expression of which EMX1, 

NCBP1, NFIL3, POU5F2 and TNRC11 are genuine modulators of CHOP expression across different 

stress conditions. Transcriptomic profiling demonstrated that EMX1 is critically impacting on the 

full UPR program in both HepG2 and primary human hepatocytes, largely mimicking the effect of 

DDIT3 silencing. Additionally, EMX1 affected ER-Golgi protein trafficking in liver cells during ER 

← Fig. 5. EMX1 strongly regulates CHOP and its downstream target genes in HepG2 and primary human 

hepatocytes. TempO-seq transcriptome analysis of HepG2 and primary human hepatocytes (PHH) upon siRNA-

mediated knockdown and tunicamycin treatment. A) Hierarchical clustering of log2 fold change of mRNA 

expression of CHOP/DDIT3 downstream target genes upon siRNA-mediated knockdown and tunicamycin 

treatment compared to solvent DMSO control. B) Graph of median log2 fold change of mRNA expression of CHOP 

downstream target genes upon tunicamycin treatment compared to solvent DMSO control after transfection 

without siRNA (Mock) or non-targeting siRNA (siCntrl). C) Graph of median log2 fold change of mRNA expression 

of CHOP downstream target genes upon tunicamycin treatment after siRNA-mediated knockdown compared to 

Mock control. D) Graph of log2 fold change of mRNA expression of CHOP target genes upon tunicamycin 

treatment and knockdown of DDIT3 or EMX1 compared to Mock control. E) Visualization of significantly enriched 

pathways with padj < 0.05 for siRNA-mediated knockdown of EMX1 (green) or DDIT3 (blue) vs transfection without 

siRNA (Mock) in PHHs upon tunicamycin treatment and clustered using WordCloud248 in Cytoscape246. Data 

represented as the mean ± standard deviation of three biological replicates with significance levels depicted as 

*p<0.1, **p<0.01 and ***p<0.001. 
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stress. EMX1 is essential for the killing of HCC cells by clinically approved HCC multi-kinase 

inhibitors regorafenib and sorafenib. Our findings have identified a clinically relevant novel 

master regulator of the UPR that controls the UPR transcriptional program. 

The UPR is critical in drug-induced liver injury. Large transcriptional profiling efforts 

demonstrated that many drugs with the liability to cause hepatotoxicity in the clinical setting 

Fig. 6. EMX1 acts as positive regulator of CHOP and stimulates cell death upon exposure to HCC 

chemotherapeutics in HepG2. A) Point of departure of CHOP induction upon 24 h treatment with kinase 

inhibitors inducing CHOP in HepG2 cells. B-C) Live cell confocal imaging using 20x objective of HepG2 CHOP-GFP 

stained with Hoechst for nuclei visualization upon exposure for 48 h to hepatocellular carcinoma (HCC) 

chemotherapeutics regorafenib or sorafenib after siRNA-mediated knockdown of DDIT3 or EMX1 represented as 

images at 48 h (B) or in graphs (C). D-E) Graphs of fraction of propidium iodide (PI) (D) or annexinV (AnV) (E) 

positive HepG2 cells upon treatment with HCC chemotherapeutics after siRNA-mediated knockdown. F) ATP 

content of HepG2 cells treated with HCC chemotherapeutics or positive control brefeldinA (BFA) after siRNA-

mediated knockdown. Data represented as the mean ± standard deviation of three biological replicates with 

significance levels depicted as *p<0.05, **p<0.01 and ***p<0.001. G) Overview of mutations known for EMX1 in 

cancer where R209C was found in HCC tissue (upper panel). Among liver HCC tissue from 372 patients, genetic 

alterations in EMX1 or DDIT3 is shown (lower panel). H) Probability for overall survival among HCC patients 

having genetically unaltered or altered EMX1. G-H) Data derived from the TCGA PanCancer Atlas database using 

cBioPortal249–251.  
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activate the UPR pathway in various different human liver test systems involving induction of 

ATF4 and CHOP20. CHOP induction is causally associated with the onset of liver cell death255. In 

this study, we uncovered a landscape of the signalling components that modulate CHOP 

expression. Interestingly, several genes that upon depletion enhanced CHOP expression by both 

tunicamycin and thapsigargin are involved in direct gene transcription including POLR2L and 

BRD4. Depletion of CDC2L5/CDK13, a transcriptional cyclin-dependent kinase family member257, 

suppressed CHOP induction. Together, this indicates a tight control of the transcriptional 

machinery in determining CHOP expression. Also depletion of several kinases including 

SNARK/NUAK2, GALK1, PFKM, DMPK, enhanced CHOP induction. While mutations in some of 

these kinases have been linked to genetic disorders258–260, none of these kinases have been linked 

with UPR regulation. The majority of modulators of CHOP expression were transcription factors 

of which the majority co-operate with CHOP expression under normal conditions. Further 

selection criteria for modulation of CHOP induction by other stimuli and/or also affect activation 

of other UPR target genes revealed a set of seven robust transcription factors for which 

modulation of CHOP-GFP also correlated with DDIT3/CHOP expression, including EMX1, POU5F2, 

NFEL2F3, DMRTA1, ZNF41, NFIL3, MED12. These transcription factors also affected the CHOP-

dependent transcriptional program in primary human hepatocytes, indicating a role in control of 

UPR untransformed cells. Moreover, they inhibited the CHOP activation by DILI-inducing 

compounds nefazodone, diclofenac and troglitazone, suggesting a role for these transcription 

factors in mediating the UPR adaptive responses upon exposure to drugs with DILI liabilities.  

EMX1 was the most potent and consistent modulator of the CHOP-GFP induction by various 

stimuli. Moreover, from all candidate genes, EMX1 showed the highest similarity with CHOP in 

the control of ER stress downstream target genes. This was most significant for the primary 

human hepatocytes. In vivo, EMX1 is strongly expressed in the developing brain261. Loss of EMX1 

is not lethal in mice but leads to neural developmental defects262,263. So far, EMX1 has not been 

linked to ER stress signalling or protein processes. EMX1 depletion did not fully phenocopy the 

transcriptional response of DDIT3 depletion, indicating that EMX1 has other effects that go 

beyond the suppression of DDIT3 transcription regulation. Therefore, future studies should focus 

on unravelling the mechanism how EMX1 influence ER stress signalling. Of relevance, recent work 

identified EMX1 among five other genes as methylated DNA markers for HCC detection via 

plasma testing264. Also others have shown the association of DNA methylation of EMX1 with HCC 

and gastric cancer265,266. Together, this suggests a role of EMX1 in the development of liver cancer 

or anti-cancer drug resistance through altered regulation of ER stress signalling by silencing EMX1 

through hypermethylation or altered gene expression. In a panel of 50 different primary human 

hepatocyte donors, we have identified a major difference in the tunicamycin-induced UPR 

response267. Given that EMX1 is a UPR master regulator in hepatocytes, this high inter-individual 

variability is related to differential activity of EMX1 or other factors that we here identified. Given 

the importance ER stress in drug-induced liver injury, differential activity of EMX1 would also 
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impact on the inter-individual susceptibility for liver injury. Thus, patients having altered 

expression of EMX1, through for instance having certain SNPs, may react differently towards 

drug-induced ER stress. Indeed, SNPs, for instance in HLA region, have been associated with risk 

for the development of DILI for certain drugs268. Therefore it is of great interest to study the effect 

of specific mutations in EMX1, as observed in HCC, on the sensitivity towards the development 

of DILI mediated by ER stress.  

In conclusion, using an arrayed high-throughput confocal imaging-based RNAi screen, we 

uncovered the signalling landscape of the ER stress response. Given the critical role of the 

unfolded protein response in diverse pathophysiological conditions, we anticipate that some of 

our candidate genes could be interesting targets for drug discovery to inhibit CHOP-mediated 

adverse outcomes.  
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Fig. S1. Knockdown efficiency upon siRNA-mediated silencing of selected gene candidates. 
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GO 
accession GO name 

Observed 
Zscore p-value padj FDR 

Nr of 
genes 

Nr of 
hits Hits in GO term 

GO:0000381 
regulation of alternative mRNA 
splicing, via spliceosome 

0.605125909 0.00000 0.00000 0.04758 41 5 
DDX5, THRAP3, SAP18, DDX17, 
RBM25 

GO:0016567 protein ubiquitination -0.363372581 0.00000 0.00000 1.00000 436 3 MED1, RNF144A, MED12 

GO:0000398 mRNA splicing, via spliceosome 0.270534932 0.00010 0.05963 1.00000 236 33 
DDX5, DHX15, HNRNPD, 
HNRNPH2, NCBP1, PNN, … 

GO:0032735 
positive regulation of interleukin-12 
production 

0.906572916 0.00010 0.05963 0.33954 25 1 ISL1 

GO:0045540 
regulation of cholesterol 
biosynthetic process 

0.855909536 0.00010 0.05963 0.05419 34 1 NFYB 

GO:0010875 
positive regulation of cholesterol 
efflux 

0.945876234 0.00020 0.09540 0.51800 14 1 PON1 

GO:0050684 regulation of mRNA processing -0.831514265 0.00030 0.13416 0.74066 11 0 NA 

GO:0071712 
ER-associated misfolded protein 
catabolic process 

0.961225571 0.00070 0.22766 0.68978 13 1 UFD1 

GO:0097190 apoptotic signaling pathway -0.685176858 0.00070 0.22766 0.81830 69 2 DAPK3, FASTK 
GO:0007099 centriole replication 0.944967541 0.00100 0.24672 0.68160 15 0 NA 
GO:0046835 carbohydrate phosphorylation 0.590897246 0.00100 0.24672 0.37811 23 2 GALK1, PFKM 
GO:0050776 regulation of immune response 0.955836942 0.00080 0.24672 0.69900 186 1 IRF7 
GO:0070987 error-free translesion synthesis 0.87139437 0.00100 0.24672 0.54521 19 1 UFD1 

GO:0006614 
SRP-dependent cotranslational 
protein targeting to membrane 

0.943017881 0.00140 0.27825 0.69800 89 1 SRP72 

GO:0043044 
ATP-dependent chromatin 
remodeling 

-0.652257677 0.00170 0.31188 0.68213 23 3 SMARCA1, MBD2, MTA2 

 

  

Supplemental Table S2. Top enriched GO terms using gene set enrichment analysis based on the Z-scores for 

all genes screened in the primary siRNA screen 
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   Abstract  

Various adaptive cellular stress response pathways are critical in the pathophysiology of liver 

disease and drug-induced liver injury. Human-induced pluripotent stem cell (hiPSC)-derived 

hepatocyte-like cells (HLCs) provide a promising tool to study cellular stress response 

pathways, but in this context there is limited insight on how HLCs compare to other in vitro 

liver models. Here, we systematically compared the transcriptomic profiles upon chemical 

activation in HLCs, hiPSC, primary human hepatocytes (PHH) and HepG2 liver cancer cells. We 

used targeted RNA-sequencing to map concentration transcriptional response using 

benchmark concentration modelling for the various stress responses in the different test 

systems. We found that HLC are very sensitive towards oxidative stress and inflammation 

conditions as corresponding genes were activated at over 3 fold lower concentrations of the 

corresponding pathway inducing compounds as compared to PHH. PHH were the most 

sensitive model when studying UPR related effects. Due to the non-proliferative nature of PHH 

and HLC, these do not pose a good/sensitive model to pick up DNA damage responses, while 

hiPSC and HepG2s were more sensitive in these conditions. We envision that this study 

contributes to a better understanding on how HLCs can contribute to the assessment of cell 

physiological stress response activation to predict hepatotoxic events. 

Key words: Induced Pluripotent Stem Cell derived hepatocytes, Oxidative Stress, DNA Damage, 

Unfolded Protein Response, Inflammation, Transcriptomics 

Introduction   

Drug-induced liver injury (DILI) is one of the most frequent causes for drug withdrawal and the 

leading cause for compound attrition in drug development269. Current models that are used in 

drug safety screening include hepatoma cell lines and PHH, but these models have their 

limitations. The gold standard for toxicity testing, PHH, have a lack in bioavailability, high cost, 

high inter-donor variability and tendency to quickly dedifferentiate upon plating. Moreover, they 

can only provide limited mechanistic information270. HepG2, a liver carcinoma cell line, displays 

many phenotypic features of normal liver cells, but has a low metabolic capacity compared to 

PHH. On the other hand, current models that possess relatively high metabolic capacity such as 

HepaRG and Upcyte, show lower hepatotoxicity predictivity than HepG2 cells in comparison to 

PHH45. 

A new and very promising source for unlimited, stabile cells with potentially improved 

predictivity for hepatotoxicity are stem cell-derived hepatocyte models271,272. Ethical issues with 

embryonic stem cell-derived hepatocytes were resolved when reprogramming techniques made 

it possible to generate hiPSC from fibroblasts or any other nucleated somatic cell47. This 

procedure also makes it possible to study hepatotoxicity in patient-derived hiPSC-derived HLCs 

having specific genetic mutations and drug sensitivity backgrounds273. To understand the 

application value of hiPSC-HLCs as compared to PHH, most studies have measured the expression 
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and activity of biotransformation enzymes, including both phase I, phase II and phase III 

metabolism, as these are critical components for onset of DILI16. However, also other cell 

physiological responses that determine the ultimate fatal outcome for onset of hepatotoxicity 

are critical to evaluate, including cellular stress response pathways related to either internal or 

external cues and specific cell injury or inflammatory cytokines. The main cellular stress 

responses include oxidative stress-mediated NRF2 activation, unfolded protein response (UPR) 

through ATF4, ATF6 and XBP1 transcriptional responses, DNA damage responses through P53 

signalling and inflammatory cytokine-mediated NF-κB activation28. Most likely, the dynamics and 

amplitude of these responses differ between cell types and will determine the ultimate cellular 

outcome. Since various drugs with DILI liability activate these stress pathways28, it is of major 

interest to compare the cellular stress response pathways between hiPSC-HLCs and PHH. 

However, so far a systematic analysis of the response of hepatic hiPSC-progeny towards 

chemically-induced stress is lacking.   

Omics approaches, such as transcriptomic profiling, enable a thorough comparison of different 

liver in vitro models and assess the resemblance to primary hepatocytes or liver tissue. Some 

studies describe a transcriptomic comparison between HLCs and other models like PHH and 

hepatoma lines111,274, but a comparison of cellular stress responses has not been performed. 

Recent advances in higher throughput targeted RNA-sequencing technology, such as TempO-seq, 

enables a snapshot of the transcriptomic profiles of thousands of genes for various 

conditions30,275. This allows for detailed concentration response evaluation of chemical-induced 

cell injury responses in various cell types. Using the TempO-seq technology, a cost-effective 

technique allowing for the evaluation of the expression of a targeted set of genes only needing a 

small amount of sample, here we compared the chemically-induced cellular stress response 

activation in hiPSC-HLCs with cryopreserved PHH and HepG2 cells. We used diethyl maleate to 

induce an oxidative stress response, tunicamycin to induce unfolded protein stress response, 

cisplatin to induce the DNA damage response and tumor necrosis factor alpha (TNFα) to initiate 

inflammatory cytokine signalling for 8 hours to capture the primary stress response activation. 

The goal of this study is to compare specific stress pathway activation sensitivities to evaluate 

the suitability of each model in a hepatotoxicity assay. To our knowledge, this is the first 

systematic study that focusses on the transcriptomic effect of chemically-induced cellular stress 

responses in hiPSC-derived hepatocytes.    

Materials and Methods  

Cell Culturing   

The hiPSC BJ-1 line (generated at KU Leuven) was cultured on Matrigel (Corning) coated plates. 

Medium (mTeSR1) was refreshed daily. Full description of the characteristics of the hiPSC BJ-1 

line can be found in Helsen et al.272. The human liver carcinoma cell line, HepG2, obtained from 

American Type Culture Collection (ATCC) were cultured as described in Wink et al.79. Cryo-
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preserved PHH derived from three different individuals (S1295T: 86-year-old male Caucasian 

patient with hepatocellular carcinoma; S1307T: male Caucasian 75-year-old patient with 

colorectal carcinoma; and S1423T: male Caucasian 68-year-old patient with colorectal 

adenocarcinoma) were provided by KaLy-Cell (Plobsheim, France) and selected based on their 

plateability. PHH were thawed, transferred to pre-warmed thawing UCRM medium (IVAL, 

Columbia, USA), transferred to pre-warmed seeding UPCM medium (IVAL). Viability was assessed 

using the Trypan Blue, cells were seeded at a density of 70.000 viable cells per well in 96 wells 

Biocoat Corning Collagen I Cellware plates from Corning (Wiesbaden, Germany). Medium was 

refreshed using seeding UPCM medium 6 hours after plating. Compound exposures were done 

24 hours after plating in William’s E medium supplemented with 100 U/mL penicillin and 100 

μg/mL streptomycin.   

Differentiation of hiPSCs towards hepatocytes  

HiPSCs were differentiated to HLCs as described by Tricot et al276. In short, BJ1 hiPSC cells were 

seeded in mTeSR, supplemented with 1:100 Revitacell (Thermofisher), with 100.000 cells per 48-

well. During differentiation, the cells were cultured on liver differentiation medium (LDM). In 

addition to the growth factors Activin-A (100 ng/ml), Wnt3a (50 ng/ml), BMP4 (50 ng/ml), FGF1 

(50 ng/ml), and HGF (20 ng/ml) (Fig 1a), 0.6% DMSO (Sigma-Aldrich) was added from day 0 until 

day 11, from day 12 until day 25 2% DMSO was added to the LDM (Tricot et al., 2018). It was 

shown that DMSO improves the hepatic differentiation by downregulation of pluripotency 

genes277. Medium was refreshed daily. All growth factors were purchased from PeproTech. For 

the biological replicates three different stem cell culture flasks were used, which were 

differentiated separate from each other.  

Cell treatment  

Model compounds for oxidative stress (diethyl maleate; DEM) and unfolded protein response 

(tunicamycin; TUN) were purchased from Sigma-Aldrich, the cytokine to induce an inflammation 

response (tumor necrosis factor α; TNF) was purchased from R&D systems and the DNA damage 

response compound (cisplatin; CPT) from Ebewe. For each compound a dose range was chosen 

that is known to induce the corresponding stress pathway without inducing cytotoxicity20,28,278. 

Prior to exposure, 1000 times concentrated stock solutions were made in DMSO (DEM, TUN) or 

PBS (TNF, CPT). Exposures were performed by adding 100 μL two times concentrated exposure 

medium (with 0.2% DMSO independent of compound exposure) to each well already containing 

100 μL maintenance medium. Cells were exposed for 8 hours in a 5% CO2 humidified incubator 

at 37 °C. Thereafter, cells were washed with PBS, lysed with 1x TempO-Seq lysis buffer, stored at 

-80°C and shipped for targeted sequencing. All exposure experiments have been performed with 

three independent biological replicates using different compound stock solutions.  
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Immunofluorescence  

Maturity status of the HLC differentiation was assessed with immunofluorescence using 

hepatocyte markers HNF4α (1:200, Abcam, ref#ab41898) and AAT (1:200, Dako, ref#A0012) 

following the protocol described in Boon et al 53. 

Targeted sequencing   

Gene expression profiles were analysed using a targeted RNA sequencing technology, TempO-

Seq (Biospyder Technologies, Inc., Carlsbad, CA, USA). A set of genes was selected based on the 

S1500+ gene list of NIEHS164. This list contains 2736 genes that provide maximal toxicogenomic 

information on chemical perturbations that reflect general cellular responses. We supplemented 

this list with another 245 genes that are involved in hiPSC to hepatocyte differentiation, cellular 

stress pathways activated in PHH97 and were missing in the S1500 list (for complete gene list see 

ESM_1.xlsx). A detailed description of the sample processing was described by Yeakley et al.30. In 

short, mRNA in the lysates was hybridized with detector oligo mix, and amplified using barcoded 

primer pairs to add a unique tag for each of the samples. Sample amplicons were pooled and 

purified. The libraries were sequenced using a HiSeq 2500 Ultra-High-Throughput Sequencing 

System (Illumina, San Diego, CA). De-multiplexing of the sequencing readouts resulted in FASTQ 

files.  

Data processing    

TempO-seq transcriptomics derived reads were aligned using the TempO-seqR package (done in-

house by BioSpyder Technologies). Raw counts were normalized using the DESeq2 R package and 

log2 transformed. A library size (sum of reads within one sample) cut-off was used of 100.000 

reads. Samples that did not meet this criterion were excluded for further analysis. Replicate 

Pearson correlation was calculated for each condition and model (supplemental figure ESM5). 

Data has been uploaded to the Gene Expression Omnibus (GEO) with series accession number 

GSE155771. Benchmark concentration (BMC) modelling was done using the BMDExpress 2 

software (developed by Sciome LCC and NIEHS/NTP/EPA) to assess difference in sensitivity32. 

Here, the dose responses were fitted with various continuous models (exponential, linear, 

polynomial, hill and power model) for each gene and sample. Best model was selected which had 

the lowest Akaike's information criterion (AIC)279 and a p-value of >0.05. The BMC was defined 

as the concentration at 1 standard deviation increase of gene expression. Genes were considered 

significant differentially expressed across dose-response when the adjusted p-value was <0.05 

using a Williams trend test and Benjamini & Hochberg post-hoc test. Principal Component 

Analysis (PCA) of the log2 normalized counts or fold changes was done using the prcomp function 

from the Stats R package. Besides BMDExpress 2, Rstudio version 1.0.153 (Boston, USA) in 

combination with R 3.4.1 was used for data analysis including the following R packages: DESeq2, 

AnnotationDbi, pheatmap, ggplot2, data.table, dplyr, tidyr, reshape2, scales and stats131–
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133,135,137,165,210,280. Using R package pheatmap, hierarchical clustering of pathway-related genes 

was done based on Euclidean distance of log2 fold changes using Wards method.    

Retrieving pathway specific gene list  

To examine stress response perturbations by each compound using PCA, genes were selected 

when the mean maximal fold change across the dose response for the three PHH donors was 

higher than 4 for DEM, TUN and CPT, and 3.5 for TNF treated cells (for gene lists see ESM_2.xlsx).  

For hierarchical clustering and BMC distribution plots, stress response pathway-related genes 

were based on target genes of stress response specific transcription factors (UPR: ATF4, ATF6, 

XBP1 and DDIT3; OX: NFE2L2; DDR: TP53; Inflammation: RELA, REL and NFKB1) defined by 

DoRothEA v2209 with confidence level of A to D which were present in the S1500+ gene set. Of 

these genes, the top 30 were selected based on the rank of both maximal fold change 

Fig. 1. HiPSC-hepatocyte differentiation process and differentiation quality. A) The 25-day hiPSC-HLC 

differentiation mTeSR based protocol. Compound exposures were performed at the indicated days during 

differentiation (0, 4, 8, 12, 20 and 25 days). B) Brightfield image overview of the differentiation process, in which 

several intermediate cell types can be identified. C) Immunofluorescence (HNF4α and AAT) and brightfield 

imaging of hepatocyte-like cells (day 25). Scale bars represent a size of 100 µm.  
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across dose and BMC having at least a fold change of 2.5 for one of the cell types (for gene lists 

see ESM_3.xlsx). These genes were used for hierarchical clustering and BMC distribution 

comparison to assess sensitivity for pathway activation. To evaluate the specificity of the 

compounds activating the stress responses of interest, we have performed transcription factor 

activity analysis using gene set enrichment analysis using the viper R package of the transcription 

factor regulons defined by DoRothEA v2 with a confidence level A to D present in the S1500+ 

gene set. Transcription factors were filtered based on FDR < 0.05 and the top 20 were selected 

based on ranking of the minimum FDR across concentration range having a positive NES.  

Results  

HiPSC differentiation to hepatocyte-like cells   

A twenty day hiPSC-hepatocyte differentiation protocol276 was followed (Fig 1a), in which growth 

factors ActivinA and Wnt3A started the hiPSC differentiation process towards a definitive 

endoderm cell stage (Fig 1b). At this point the cells showed a typical epithelial morphology and 

stopped proliferating. Addition of bone morphogenetic protein 4 (BMP4) differentiated these 

cells further towards hepatoblasts followed by a 4-day long stimulation with acidic fibroblast 

growth factor (aFGF) which resulted in immature hepatocytes. In the last phase of the 

differentiation protocol, hepatocyte growth factor (HGF) was added to the LDM which resulted 

in cells with a typical cuboidal morphology281, that stained positive for anti-alpha trypsin (AAT) 

and hepatocyte nuclear factor 4 alpha (HNF4α) (Fig 1c).  

Transcriptomic overview of the differentiation process and comparison to PHH and HepG2  

To assess the shift in the gene expression profile during the differentiation process, gene 

expression levels of undifferentiated hiPSC were compared with the different hepatocyte-

differentiation stages and compared to HepG2 and the gold standard PHH, all in basal/unexposed 

conditions. General transcriptomic profiles between different cell types were compared using a 

principle component analysis (PCA). A relatively small difference was seen when hiPSCs were 

differentiated towards HLCs compared to PHH in the first principal component (PC) explaining 

54.3% of the variance (Fig 2a), and they remained co-localized with HepG2 cells but not PHH. The 

liver associated genes, such as Haptoglobin (HP), Albumin (ALB) and Orosomucoid 1 (ORM1), 

were chiefly responsible for the relatively small shift towards PHH. In PC2, a significant difference 

could be seen between hiPSC and HLCs, which was mostly accounted for by the enormous 

upregulation of both immature liver specific genes during differentiation, including alpha-

fetoprotein (AFP), and mature liver specific pre-albumin Transthyretin (TTR), Fibrinogen Beta 

Chain (FGB) and Fibrinogen Gamma Chain (FGG). The biological variation between the different 

hiPSC progeny steps was relatively small as a clear separation of the different cell differentiation 

stages and cell types could be observed. hiPSC-hepatic progeny moved along the axis of PC4 and 

addition of BMP4 in the first 8 days of differentiation induced a strong BMP6 expression, which 

was lost from day 9 onward. In addition, expression of Hemoglobin Subunit Gamma 2 (HBG2), a 
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gene highly expressed in immature hepatocytes, was significantly upregulated. The variation 

between the different PHH donor populations was relatively small in all PCs. Interestingly, in PC3, 

a clear separation of HepG2 from all other cells became evident, primarily driven by high 

expression of AFP and Lysozyme (LYZ) in this cell line.    

Next, we evaluated the expression of well-known markers for each hiPSC differentiation stage. 

The stem cell markers POU5F1 and SOX2 were highly expressed in undifferentiated hiPSC stage, 

but as expected were downregulated by >1000-fold upon differentiation towards HLCs (Fig 2b). 

At step 1 of differentiation, the definitive endoderm marker CXCR4 was more than 50-fold 

increased. Early hepatocyte markers FOXA1 and HNF4α were highly induced in the HLC stage and 

reached expression levels similar to those in PHH274,282. AFP, a gene that is associated with fetal 

hepatocytes, was highly expressed in HLCs suggesting an immature hepatocyte phenotype. Late 

Fig. 2. Transcriptomic analysis of the hiPSC-hepatocyte differentiation process benchmarked to PHH and 

HepG2. A) Principle component analysis (PCA) of all genes at basal conditions of the different cell types using 

log2 transformed counts. The top 5 genes most determining the corresponding principle components are 

depicted on the right, where red arrows represent genes most affecting the principle component on the x-axis 

and blue on the y-axis. B)  Heat map of the log10 FC expression levels of differentiation markers during hiPSC-

hepatocyte differentiation process, the fold changes are compared to the median expression of each gene. C) 

Pearson correlation matrix on normalized gene expression counts of the different cell types. N=3  
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hepatocyte markers, such as ALB, NR1I3 and SERPINA1 were strongly induced during the 

differentiation process, where transcript levels for NR1I3 and SERPINA1 levels were comparable 

to PHH. However, ALB gene expression levels remained still >10-fold lower compared to PHH. A 

key feature of hepatocytes is their ability to metabolize drugs. Phase 1 metabolism is mainly 

regulated by CYP enzymes. During differentiation some of these enzymes (e.g. CYP1A1, CYP1B1, 

and CYP3A5) were strongly induced and reached similar or higher expression levels as compared 

to PHH. Several other enzymes including CYP2D6, CYP2E1 and CYP3A4 remained significantly less 

expressed in HLCs as compared to PHH, indicating the immaturity of the HLCs. For metabolically 

functional hepatocytes, expression of transporters is necessary, especially SLC47A1 plays an 

important role in xenobiotic clearance283. In contrast to HepG2, the SLCs were expressed at a 

similar level in HLCs as compared to PHH. Thus, as summarized in Figure 2C, the gene expression 

profiles of the differentiated hiPSCs correlated increasingly stronger with PHH, with hiPSC:PHH 

correlation of 0.65 and HLC:PHH correlation of 0.78. The correlation of HepG2:PHH was 0.76. The 

variation along the different donors of PHH was relatively small as all had a correlation of 0.99 

with the mean of the PHH.  

Transcriptomic space of HLCs and other models in oxidative stress conditions  

Diethyl maleate (DEM) is an electrophilic compound which conjugates with cysteine residues in 

KEAP1 thus activating the activation of the NRF2 pathway, and at higher concentration also 

affecting the levels of reduced glutathione, thereby disturbing the cellular redox balance and 

allowing oxidative stress126. DEM was used as a model compound to induce an overall cellular 

oxidative stress response. A selection of DEM upregulated genes was based on having a minimum 

fold change of 4 across dose response of DEM in PHH (see ESM_2.xlsx for complete list). We 

performed a PCA analysis on the fold changes DEM vs DMSO to examine the effect on gene 

expression of the DEM responsive genes (Fig 3a). Interestingly, at the lowest DEM concentrations 

all cell types co-localized in the PCA plot, indicating similar behaviour between cell types under 

mild oxidative stress conditions. A very clear DEM concentration-dependent shift in PC1 could be 

detected for PHH and HLCs, and to a lesser extent hiPSC and HepG2. This effect was 

predominantly caused by increasing expression of heat shock proteins (secondary response after 

oxidative stress) or one of the downstream targets of the NRF2 pathway (MAFF). Interestingly, 

at the highest DEM concentration the samples shifted up again on the PC2 axis indicating a 

downregulation of the NRF2 pathway. The DEM concentration-dependent shift of PHH moved 

along the PC1 axis which was mainly related to the high expression of the NRF2 target gene 

oxidative stress induced growth inhibitor 1 (OSGIN1) gene.   

Next, we investigated the top 30 most responding oxidative stress genes after DEM exposure. 

Genes were selected on the basis of direct targets of NRF2 as defined by DoRothEA v2209. 

Activation of transcription factors was evaluated by gene set enrichment analysis of the 

transcription factor downstream targets (supplemental table ESM4), where among NFE2L2 also 



 

Chapter 7 
 

136 
 

 

Fig. 3. Effect of oxidative stress on the transcriptomic space of hiPSC, HLC, PHH and HepG2.  A) Left panel: PCA 

of log2 normalized counts of DEM responsive genes with all treatments. Right panel: PCA of log2 fold changes of 

the DEM responsive genes after DEM exposure. The vector plots on the right represent the top 5 most 

determining genes of PC1 (red) or PC2 (blue). The size and orientation of the vector represent the contribution 

and PC-orientation of the 10 genes. B) Hierarchical clustering of the log2 fold changes of the top 30 responding 

oxidative stress genes after DEM exposure. C) Concentration response curves of log2 normalized counts for three 

oxidative stress genes after DEM exposure. Dots and error bars (SE) represent gene expression data, lines 

represent best BMC model. D) BMC accumulation plots of the top 30 responding oxidative stress genes after 

DEM exposure. Median BMC were extracted from these plots. N=3  
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ATF4, important in the UPR, was activated among the models. Hierarchical clustering of NRF2 

genes based on Euclidean distance identified genes involved in secondary cell stress responses 

(e.g. FOXO3, DNAJB1, TRIB3) in cluster III and genes involved in the NRF2 mediated oxidative 

stress response (e.g. HMOX1, SRXN1, KEAP1, MAFG, GCLM, GCLC, NQO1) in cluster II (Fig 3b). 

Especially in cluster II, HLCs appeared to be more responsive towards DEM as compared to the 

hiPSC, PHH and HepG2. Clustering of the models indicated that the oxidative stress gene 

expression profiles of HLCs are similar to hiPSC having higher induction at lower concentrations 

as compared to PHH.   

To further investigate the pathway specific sensitivity of each model, a BMC analysis was 

performed (Fig 3c) where the BMC was defined as the concentration at which the target gene 

expression increases by 1 standard deviation above baseline levels. For this analysis, the same 

pathway specific top 30 oxidative stress genes were selected. The cumulative BMC plots 

indicated that hiPSC-derived HLCs were most sensitive towards DEM exposure, having a median 

BMC of 185 μM (Fig 3d). PHH were in general less sensitive than HLCs having a median BMC of 

353, 385 or 995 μM, and there were significant differences between donors. HepG2 and 

undifferentiated hiPSCs appeared to be the least sensitive (1476 and 1247 μM, respectively).    

Transcriptomic space of different liver test systems for the unfolded protein stress response.  

Tunicamycin (TUN) was used to induce the UPR as it inhibits N-linked glycosylation thereby 

disturbing protein folding of glycoproteins leading to ER stress284. A PCA analysis was performed 

to visualize the transcriptomic changes at the different concentrations of TUN of the different 

models. We focused the analysis on TUN responsive genes that changed in expression by > 4-fold 

in PHH across the dose response (Fig 4a; ESM_2.xlsx for list of genes). The PCA analysis, based on 

log2 fold changes TUN vs DMSO control, showed that with lower TUN concentrations all models 

did behave similar (Fig 4a). Upon increasing concentrations of TUN, all cell types moved up in 

PC2, which was mainly caused by high levels of expression of DDIT3, HERPUD1 and MANF at 

increasing concentrations of TUN. These genes are all well known to have a role in the adaptive 

response against ER stress. Interestingly, four samples moved to the right on the PC1 axis at the 

highest TUN concentration (100 μM) (HLCs and all three donors of the PHH). This shift was caused 

by, among others, a downregulation of UPR responding genes and upregulation of early stress 

response genes (e.g. FOS and EGR1), indicating that HLCs and PHH were more sensitive towards 

ER stress than HepG2 and hiPSC. This illustrated a similar TUN dose-response behaviour of HLCs 

and PHH. We also performed hierarchical clustering (Fig 4b) analysis, including the 30 UPR related 

genes most affected by TUN exposure. In general, UPR genes were stronger upregulated in HLCs. 

In HLCs and hiPSCs there was a threshold concentration of TUN when the UPR was started to be 

induced. Below 1 μM the pathway was inactive but at 1, 10 and 100 μM there was a very 

pronounced induction. However, for PHH, this effect seemed to be more gradual, starting already 

at 0.001 μM TUN where there is some upregulation of UPR related genes. Dose response curves 
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Fig. 4. Effect of the unfolded protein response on the transcriptomic space of hiPSC, HLC, PHH and HepG2.  A) 

Left panel: PCA of the unfolded protein genes (log2 normalized counts) with all treatments.  Right panel: PCA of 

log 2-fold changes of the TUN responsive genes after TUN exposure. The vector plots on the right represent the 

top 5 most determining genes of PC1 (red) or PC2 (blue). The size and orientation of the vector represent the 

contribution and PC-orientation of the 10 genes. B) Hierarchical clustering of the log2 fold changes of the top 30 

UPR related genes after TUN exposure. C) Concentration response curves of log2 normalized counts for three 

UPR genes after TUN exposure. Dots and error bars (SE) represent gene expression data, lines represent best 

BMC model. D) BMC accumulation plots of the top 30 responding UPR related genes after TUN exposure. Median 

BMC were extracted from these plots. N=3  
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of three example and well-known targets of the UPR response (DDIT3, HERPUD1 and HSPA5) 

demonstrated that basal expression of UPR downstream targets was lower in the HepG2 and 

hiPSC (Fig 4c). Transcription factor activity analyses revealed the activation of both UPR related 

transcription factors, but also NF-κB related transcription factors such as RELA and NFKB1 

(supplemental table ESM4). The BMC accumulation plot of the 30 most affected TUN modulated 

genes showed that PHH are the most sensitive for UPR with considerable variation between 

different donors (median BMC of 0.02 – 0.23 μM) (Fig 4d). Undifferentiated hiPSCs and their 

differentiated HLC progeny were less sensitive than PHH (median BMC 0.3 and 0.68 μM, 

respectively). Of note, UPR target genes were only upregulated at much higher concentrations 

of TUN in HepG2 cells (median BMC of 1.84 μM).  

Transcriptomic space of hiPSC-HLCs and other models in DNA damage conditions  

CPT, a clinically relevant anticancer agent, was used to induce a DNA damage response (DDR). 

CPT induces intra and inter-strand DNA adducts, eventually resulting in single and double 

stranded DNA breaks and subsequent induction of a DDR285. Selection of CPT upregulated genes 

was based on PHH-gene expression after CPT exposure having a minimal fold change of 4 across 

dose response (see gene list ESM_2.xlsx). PCA analysis of the log2 fold change of CPT vs DMSO 

showed that the response of HLCs was most similar to PHH (Fig 5a). A clear dose response shift 

could be observed towards high PC2 and low PC1 values. High expression of typical TP53 

downstream targets (MDM2 and BTG2) contributed to this shift. The concentration response 

shift of HLCs and PHH moved more along the PC1 axis compared to hiPSC and HepG2, 

predominantly caused by increased expression of ATM dependent genes (e.g. CDK5R1 and 

H2AFX). Interestingly, at the highest concentration of CPT, all 3 PHH donor samples showed a 

major shift in the PC2 transcriptomic space. A reduction of the typical DNA damage response 

genes was observed. This indicates a clear tipping point where PHH switch from adaptation to 

DNA damage towards adverse regulated cell death programs. Apparently, this tipping point is 

only reached at higher concentrations of CPT in the other models. The hierarchical clustering on 

the 30 most responsive downstream targets of TP53 after CPT exposure revealed that the gene 

induction pattern of HLCs, HepG2 and PHH were similar (Fig 5b), while hiPSC were most distinct. 

The log2 normalized counts of three DDR genes, BTG2, GADD45A and MDM2, demonstrated that 

although the expression profiles were similar for HLCs and PHH, basal expression levels of TP53 

downstream targets were much lower in HLCs (Fig 5c). Furthermore, the tipping point at which 

PHH switch from adaptive to adverse signalling is clearly visible at the highest concentrations. As 

expected, transcription factor activity analysis revealed TP53 activity for primarily the hiPSCs and 

to a lesser extend in the other non-dividing models (supplemental table ESM4). The BMC 

accumulation plot of the 30 TP53 downstream target genes demonstrated that cells with high 

proliferative potential (hiPSC and HepG2) respond already at lower CPT (Fig 5d), likely related to 

replicative stress in the proliferating cells caused by CPT-induced DNA damage.   
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Fig. 5. Effect of the DNA damage response on the transcriptomic space of hiPSC, HLC, PHH and HepG2.  A) Left 

panel: PCA of the CPT responsive genes (log2 normalized counts) with all treatments. Right panel: PCA of log2 

fold changes of the CPT responsive genes after CPT exposure. The vector plots on the right represent the top 5 

most determining genes of PC1 (red) or PC2 (blue). The size and orientation of the vector represent the 

contribution and PC-orientation of the 10 genes. B) Hierarchical clustering of the log2 fold changes of the top 30 

DNA damage response (DDR) related genes after CPT exposure. C) Concentration response curves of log2 

normalized counts for three DDR genes after CPT exposure. Dots and error bars (SE) represent gene expression 

data, lines represent best BMC model. D) BMC accumulation plots of the top 30 responding DDR related genes 

after CPT exposure. Median BMC were extracted from these plots. N=3  
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Transcriptomic space of HLCs and other liver test systems in TNFα-mediated inflammatory 

signalling.  

TNF is a natural ligand of p55, TNF receptor I, and involved in the acute phase reaction of the 

systemic inflammation response. Here, we used TNF to induce an inflammation NF-kB signalling 

response in our test systems. A PCA analysis on a set of the TNF responsive genes (see 

ESM_2.xlsx) across all test system showed a very distinct TNF response of the HLCs as compared 

to PHH, HepG2 and hiPSC (Fig 6a). For HLCs (and to a lesser extent, HepG2), there was a 

concentration-dependent shift along the PC2 axis, mainly caused by increased expression of 

typical inflammation markers like TNFAIP2, ICAM1 and CCL2. TNF exposure only led to a mild 

transcriptomic shift in the HepG2 and hiPSC. For PHH, a concentration-dependent shift along the 

PC1 axis was found which was mostly determined by JUNB, DDIT4 and CSK. These genes are 

known to play a role in stress response signalling but not necessarily inflammation or NF-κB 

signalling pathway. The unique TNF response of every model was also evident from the 

hierarchical clustering of the log2 fold changes of the 30 most responsive NF-ĸB targets after TNF 

exposure (Fig 6b). It was evident that HLCs were by far the most sensitive to TNF exposure, as 

already at low concentrations a strong upregulation of typical inflammatory genes including 

ICAM1, CCL2/20, CXCL1/2, TNFAIP3, CXCL5, VCAM1 and SOCS3 was seen. Surprisingly, this change 

was not caused by an increased expression of the TNF-receptor family members. Only expression 

of TNFRSF21 (associated with the fetal liver) was significantly increased in the HLCs model as 

compared to PHH. TNF concentration responses of three proto-typical NFκB downstream target 

genes (ICAM, RELB and TNFAIP3) demonstrated that while the basal expression levels of these 

genes in HLCs was low, there was a very strong induction after TNF exposure (Fig 6c). This effect 

was virtually absent in the undifferentiated hiPSCs. In HepG2 and PHH, there was higher basal 

gene expression of inflammatory targets, but only a mild induction after exposure to TNF. 

Besides, variation was seen in upregulation of inflammatory genes between the different PHHs, 

where for instance CCL2 was dose-dependent upregulated in two of the PHHs but not in the third 

PHHs potentially due to the difference in initial inflammation state. Transcription factor activity 

analysis showed the activation of various NF-κB subunits among all models except for hiPSCs 

(supplemental table ESM4). The BMC accumulation plot for the 30 most responsive NF-ĸB targets 

indicated that both HepG2 and HLCs were very sensitive towards TNF exposure but hiPSC not at 

all (Fig 6d).  

Discussion  

PHH are regarded as the gold standard for hepatotoxic liability testing, but suffer from lack of 

availability, poor in vitro metabolic stability, and variability. Therefore, hiPSC-hepatic progeny is 

being evaluated as an alternative for chemical safety testing. Given that chemicals cause cell 

injury that triggers cellular stress response pathways, a question that has yet to be answered is 

how hiPSC-hepatic progeny compares to PHH in the context of cellular stress response activation. 

Using transcriptomic approaches, here we systematically assessed four critical stress pathways 
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Fig. 6. Effect of the inflammation response on the transcriptomic space of hiPSC, HLC, PHH and HepG2.  A) Left 

panel: PCA of the TNF responsive genes (log2 normalized counts) with all treatments. Right panel: PCA of log2 

fold changes of the TNF responsive genes after TNF exposure. The vector plots on the right represent the top 5 

most determining genes of PC1 (red) or PC2 (blue). The size and orientation of the vector represent the 

contribution and PC-orientation of the 10 genes. B) Hierarchical clustering of the log2 fold changes of the top 30 

NFκB related genes after TNF exposure. C) Concentration response curves of log2 normalized counts for three 

NFκB target genes after TNF exposure. Dots and error bars (SE) represent gene expression data, lines represent 

best BMC model. D) BMC accumulation plots of the top 30 responding NFκB related genes after TNF exposure. 

Median BMC were extracted from these plots. N=3  
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involved in cell injury repair in hiPSC, hiPSC-HLCs, PHH and HepG2 cells. Our data indicate that 

the cellular stress response of HLCs is clearly different from undifferentiated hiPSC and more 

resembles that of liver (PHH and HepG2) cell type responses. The sensitivity score, which was 

calculated as an EC50 over the stress pathway BMC accumulation plot, was within a 3-fold 

difference compared to PHH donors, HLCs being more sensitive to oxidative stress and cytokine 

signalling, and PHH being more sensitive for ER stress.   

We found that untreated HLCs were transcriptionally quite distinct from PHH. The overall 

transcriptomic similarity between HLC and PHH was as close to that of HLC and undifferentiated 

hiPSC, an observation that was previously also reported by another group286. However, HLCs are 

remarkably similar to PHH when comparing cellular stress response pathway activation. This 

suggests that HLCs have gained a differentiation status that reflects the responses observed in 

PHH. This is consistent with a previous proteomic study that compared the proteomic profiles of 

HLCs and PHH287 and also sensitivity to hepatotoxic drugs53,288. This indicates that despite their 

relative immaturity, HLCs respond similarly to liver toxicants as gold standard in vitro models like 

PHH. Therefore, at least for compounds that do not require bioactivation, HLCs might be a 

predictive model for hepatotoxicity.   

For this study we included one model compound per stress pathway to activate either an 

oxidative stress, DNA damage ER stress or inflammation conditions. Our study demonstrates 

clear dose response differences at the individual gene level between the different cell models. 

PHH were in particular sensitive for the onset of the UPR genes as a consequence of ER stress 

when compared to the other models. While the three individual donors showed average BMCs 

for UPR genes of around 0.1 µM, this was seven times higher for HLCs. Overall, individual UPR 

genes were activated throughout all model systems, although at different concentration levels. 

HERPUD1, DDIT3, HSPA5, three bona fide UPR genes, were already activated at around 0.1 µM 

in PHH being most sensitive, while HLCs showed activation starting at 1 µM. Despite difference 

in sensitivity, HLCs showed in general higher upregulation of UPR specific genes compared to 

PHH. The UPR is of prominent importance in both DILI responses in PHH as well as in the rat liver 

in vivo97 and in liver disease settings234.   

In contrast to the UPR pathway, HLCs were more sensitive to TNF-mediated NF-kB target gene 

expression than the three PHH donors and more comparable to HepG2 cells. Clearly, 

differentiated HLCs were distinct from hiPSCs, as only very minimal TNF-mediated NF-kB target 

gene activation was observed in hiPSCs. As various liver diseases involve inflammatory signalling 

through NF-kB, including non-alcoholic fatty liver disease (NAFLD), liver fibrosis and cancer289 as 

well as DILI25, HLCs can be a good model to study TNF-mediated signalling responses, although 

this does not reflect the multicellular system including Kupffer and stellate cells mediating 

inflammatory signalling. If HLCs are combined with multiple liver-specific cell types in a 3D 

structure this may further improve its relevance for the study of inflammatory signaling56. The 
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limited sensitivity of the PHH to TNF could be related to the prior disease status, and that for 

instance the colon metastases had already affected the level of local or systemic cytokine levels 

that influence the PHH prior to isolation. On top of that, it is likely that the hepatocyte harvesting 

method also contributes to a pre-inflammatory state of the PHH.  

Similarly, HLCs were also more sensitive for DEM-induced oxidative stress compared to PHH, and 

even more so than hiPSCs and HepG2, which showed an 8-fold lower sensitivity for NRF2 target 

gene induction. A study by Kang et al. showed similar differences where HLCs were more 

comparable to PHH in oxidative stress induction by acetaminophen than the less sensitive HepG2 

model288. In the liver, high metabolic activity of hepatocytes results in elevated levels of ROS due 

to biotransformation and xenobiotic metabolism and therefore the necessity of a cellular 

defence mechanism through strong activation of the NRF2-mediated anti-oxidant response290. In 

that respect, the differentiation of hiPSCs towards HLCs lead to a sensitivity towards oxidative 

stress comparable to PHH making them suitable for the evaluation of chemical-induced oxidative 

stress response signalling.  

On the other hand, HLCs were the least sensitive cell type for CPT-induced DDR-mediated P53 

activation. While for all three PHH donors, the activation of P53 target genes, such as MDM2, 

CDKN1A and BTG2 was initiated at around 10 µM, in HLCs this was about 2 times higher. These 

HLC responses are in sharp contrast to the high sensitivity of undifferentiated hiPSCs, responding 

already at 3 µM, and therefore illustrates the strong difference of the DDR in hiPSCs and 

differentiated liver progeny. Indeed, a study by Shimada et al. showed strong sensitivity towards 

DNA damage in hiPSCs compared to a differentiated state indicating a shift in the regulatory 

network of DNA damage signalling during differentiation291. 

Sensitivity towards the analysed stress pathways is an important feature for a hepatotoxicity 

model. We believe that in this respect a model cannot be too sensitive. Especially for DNA 

damage as a mutagenic effect will always increase the chance for a malignancy and sensitive 

models have in this respect less false negatives. For the in vitro to in vivo translation, the retrieved 

BMCs should be benchmarked to the BMCs of compounds of which the pathological outcome is 

known. Besides stress pathway sensitivity, metabolism is another important feature for a 

hepatotoxicity model. HepG2 cells as cultured in a 2D monolayer have a very low phase I and 

phase II drug metabolism. Bioconversion characteristics can therefore not be studied in this 

simple model29, and PHHs and HLCs are in this case the preferred model.  

In conclusion, despite limitation in full hepatocyte maturation, which caused a quite distinct 

overall basal transcriptomic space of HLC in comparison to PHH, HLCs did gain specific adaptive 

cellular stress response networks that mimic those of PHHs. We envision that the use of HLCs in 

hepatotoxicity screening will steadily increase and when differentiation protocols are further 

optimized, HLCs might be more reliable to uncover stress response activation to assess chemical 
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safety as well as to understand the modulation of cellular stress responses in hiPSC-derived liver 

disease models.   
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   Abstract  

Understanding the variance across the human population with respect to toxicodynamic 

responses after exposure to chemicals is essential to define safety factors for risk assessment 

to protect the entire population. Activation of cellular stress response pathways are early AOP 

key events of chemical-induced toxicity and would elucidate the estimation of population 

variability of toxicodynamic responses. We aimed to map the inter-individual variability in 

cellular stress response activation in a large panel of primary human hepatocyte (PHH) donors 

to quantify toxicodynamic variability to derive safety uncertainty factors. High-throughput 

transcriptomics of over 8,000 samples was performed in panel of 50 individual PHH donors 

upon 8 to 24 h exposure to broad concentration ranges of four different toxicological relevant 

stimuli: tunicamycin for the unfolded protein response (UPR), diethyl maleate for the oxidative 

stress response (OSR), cisplatin for the DNA damage response (DDR) and TNFα for NF-κB 

signalling. Using a population mixed-effect framework, the distribution of benchmark 

concentrations (BMCs) and maximum fold change were modelled to evaluate the influence of 

PHH donor panel size on the correct estimation of inter-individual variability for the various 

stimuli. Transcriptome mapping allowed the investigation of the inter-individual variability in 

concentration-dependent stress response activation, where the average of BMCs had a 

maximum difference of 864, 13, 13 and 259-fold between different PHHs for UPR, OSR, DDR 

and NF-κB signalling-related genes, respectively. Population modelling revealed that small PHH 

panel sizes systematically under-estimated the variance and gave low probabilities in 

estimating the correct human population variance. Estimated toxicodynamic variability factors 

were up to 2-fold higher than the standard uncertainty factor of 101/2 to account for population 

variability during risk assessment, exemplifying the need of data-driven variability factors. 

Overall, by combining high throughput transcriptomics and population modelling, improved 

understanding of interindividual variability in stress response activation across the human 

population was established, thereby contributing towards increasing the confidence of in vitro-

based prediction of adverse responses, in particular hepatotoxicity.  

Key words: inter-individual variability, uncertainty factors, stress response pathways, primary 

human hepatocytes, high throughput transcriptomics, population modelling 

Introduction  

For safety assessment a default uncertainty factor (UF) of 10 is used, with the goal to equally 

cover toxicokinetic and toxicodynamic variance59. Whether this UF of 10 is enough to capture the 

full human population variance is unclear and this hampers a reliable risk assessment. Therefore, 

there is a need for data-driven UFs which are both chemical and endpoint specific and accurately 

account for inter-individual variability. While the variability of toxicokinetic properties has 

received much investigation, the inter-individual variability of toxicodynamics is poorly 

understood.  
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The development of chemical-induced liver injury is one of the main reasons for drug withdrawal 

from the market269 and also one the most frequent adverse outcome in in vivo chemical safety 

testing1,292. Therefore, it is key to improve prediction of hepatotoxicity at an early stage in 

research and development. For the evaluation of liver injury by chemicals or drugs, primary 

human hepatocytes (PHHs) are currently considered to be the gold standard of tissue culture 

models for human liver toxicity. Despite their disadvantages, such as dedifferentiation and source 

limitations, they closely resemble human hepatocytes in vivo, allowing for the study of chemical-

induced liver injury293. Therefore, PHHs from different donors form an excellent basis to get 

deeper understanding of inter-individual variability in toxicodynamics responses.   

During chemical-induced stress, cellular defensive mechanisms are activated to restore 

homeostasis. Well known stress responses are the oxidative stress response in reaction to 

accumulation of reactive oxygen species (ROS) regulated by nuclear factor, erythroid 2 like 2 

(NFE2L2/NRF2), the unfolded protein response (UPR) activated upon accumulation of misfolded 

proteins in the endoplasmic reticulum (ER) regulated by three sensors endoplasmic reticulum to 

nucleus signalling 1 (ERN1/IRE1α), activating transcription factor 6 (ATF6) and eukaryotic 

translation initiation factor 2 alpha kinase 3 (EIF2AK3/PERK), DNA damage response mediated by 

tumor protein P53 (TP53/P53) signalling upon DNA damage and NF-κB signalling upon 

inflammatory conditions. Monitoring the activation of these adaptive stress responses upon 

chemical exposure can give insight into liver injury liabilities of chemicals as well as the underlying 

modes-of-action27,28. Because of the protective functions of adaptive stress responses, inter-

individual variations in their activities affect adverse outcomes such as liver injury. Quantitative 

insight in these variations among the human population would allow the derivation of data-

driven toxicodynamic UFs specifically for each type of stress response, thereby enabling better 

predictions of liver injury liabilities.   

Omics approaches such as transcriptomics, are powerful tools to fully map differences in adaptive 

stress response signalling networks across different patients. Several studies have already used 

transcriptomics approaches to compare differences between chemical-induced stress responses 

in different liver cell culture models274,294. Due to advances in this area, novel approaches such 

as targeted TempO-Seq technology can now be used, which allow for transcriptome mapping of 

gene sets of interest in a high-throughput fashion29,30. This allows large-scale population studies 

and accurate analyses of inter-individual variance in transcriptomic perturbations for the 

improvement of DILI liability assessment. When combining experimental transcriptomic data 

with population modelling, an estimate of the variance across the entire population can be 

derived, an approach taken by Blanchette et al. for the evaluation of the variance in chemical-

induced cardiotoxicity54,295. 

Here, to map the inter-individual variability in stress response activation upon chemical 

exposure, we profiled the transcriptome for over 8,000 samples of a large panel of 50 
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cryopreserved PHHs derived from different individuals and exposed to a broad concentration 

range of specific stress response inducing compounds, namely diethyl maleate, tunicamycin, 

cisplatin and TNFα to induce the oxidative stress, UPR, DNA damage and NF-κB signalling, 

respectively. Chemical-induced perturbation of the transcriptome was evaluated upon 8 and 24h 

of exposure using TempO-Seq technology30. In combination with population modelling, these 

data allows to evaluate the influence of PHH panel sizes on the correct estimation of inter-

individual variance in chemical stress responses and exemplify the need of data-driven 

toxicodynamic UFs, which will contribute to improved prediction of chemical-induced liver injury 

liabilities.    

Methods  

Cell culture   

Plateable cryopreserved PHHs296 were derived from 54 different individuals (KaLy-Cell, 

Plobsheim, France) with permission of the national ethics committees and regulatory authorities 

(Excel Table S1). For plating, PHHs were thawed in warm water bath at 37°C and diluted in pre-

warmed thawing UCRM medium (IVAL, Columbia, USA) followed by centrifugation at 170g for 20 

min at RT. Thereafter, cell pellet was diluted in seeding UPCM medium (IVAL) and viability was 

assessed using the Trypan blue exclusion method. Cells were plated at a density of 70.000 cells 

in 100 µL per well in 96 wells BioCoat Collagen I Cellware plates from Corning (Wiesbaden, 

Germany). After 6 hours, medium was refreshed with seeding UPCM medium. PHHs showing less 

than 70% confluency 24 h after plating were discarded for further analysis leading to a panel of 

PHHs derived from in total 50 individuals. Characteristics of these PHHs are depicted in 

Supporting Fig. S1. To evaluate variability in dedifferentiation upon culturing of PHHs, samples 

were also generated from PHHs directly upon thawing or from snap-frozen liver tissue derived 

from 8 individuals (Excel Table S1).   

Cell treatment  

Prior to compound exposure, PHHs were first washed after 24 h of attachment using 1x PBS to 

remove unattached cells. Exposures were done using William’s E medium supplemented with 

100 U/mL penicillin and 100 µg/mL streptomycin. PHHs were exposed to four reference 

compounds in a broad concentration range known to induce specific stress response pathways 

(Supporting Table S1), namely tunicamycin and diethyl maleate from Sigma, TNFα from R&D 

systems and cisplatin from Ebewe. To evaluate variability in stress response activation by DILI 

compounds, PHHs were exposed to a broad concentration range of acetaminophen, 

propylthiouracyl, nitrofurantoin, ticlopidine, nefazodone and diclofenac (Supporting Table S1) 

from Sigma. All compound stocks, except for TNFα and cisplatin, were prepared using 

dimethylsulfoxide (DMSO) from BioSolve and stored at -20°C. End concentration of DMSO in all 

conditions were kept identical at 0.2%.   
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Cell viability  

To evaluate cytotoxicity, LDH release was evaluated after 24 h of exposure in supernatants using 

cytotoxicity detection kit from Roche according to instructions by provider. As positive control, 

supernatant of PHHs incubated for 5 minutes with 1% triton was taken along. Collected 

supernatants were stored at 4°C for a maximum of 3 days before analysis. Upon analysis, 

supernatants were diluted 10x and measured in triplicate. Absorbance was measured at 490 nm 

with a VICTOR plate reader (PerkinElmer). Cell viability was determined for three biological 

replicates for each condition for each PHH.  

Targeted sequencing   

After exposure for 8 or 24 h, the transcriptome was analysed using the targeted TempO-Seq 

technology (BioSpyder Technologies, Inc., Carlsbad, CA, USA). First, cells were washed with 1x 

PBS and lysed with 50 µL 1x BNN TempO-Seq lysis buffer per well (BioSpyder). Lysates were 

incubated for 15 min at RT and stored at -80°C. Samples were shipped for TempO-Seq 

analysis(Yeakley et al. 2017) using the S1500+ gene set of NIEHS164 supplemented with additional 

stress response relevant genes (Excel Table S2) at BioSpyder (Carlsbad, CA, USA) and sequenced 

using a HiSeq 2500 Ultra-High-Throughput Sequencing System (Illumina, San Diego, CA, USA). For 

each PHH, three biological replicates were analysed. To evaluate variance in dedifferentiation, 

samples from PHHs in suspension directly upon thawing, snap-frozen liver tissue or PHHs grown 

in 2D for 24 h derived from 8 individuals were analysed using the targeted whole transcriptome 

panel in combination with TempO-Seq technology (BioSpyder) (Excel Table S2).   

Transcriptomics dose-response analysis and statistics   

For the analysis of TempO-Seq transcriptome data, as a first step reads were aligned by BioSpyder 

technologies using the TempO-Seq R package. Derived raw counts were normalized using the 

DESeq2 R package165 and log2 transformed. For each PHH and condition, three biological 

replicates were analysed and represented as the mean. A library size cut-off was used of 100,000 

counts to eliminate samples having low amount of total counts (Supporting Fig. S2). To evaluate 

variability in sensitivity for stress response activation, benchmark concentration (BMC) modelling 

was done using the BMDExpress 2 software developed by Sciome LCC and NIEHS/NTP/EPA31,32. 

Dose response modelling was done for each gene and sample using various models (exponential, 

linear, polynomial, hill and power model). The BMC was defined as the concentration at which 1 

standard deviation of increase in gene expression was seen. For each reference compound, the 

top 50 activated genes across the PHH panel were defined based on both the BMC and the 

maximal fold change across concentration range (maxFC) (Excel Table S2). The median BMC and 

maxFC were calculated based on these top 50 genes for each PHH. To classify PHHs for their 

sensitivity, a sensitivity score was calculated based on the sum of the ranking of the median BMCs 

and maxFC at both time points for the top 50 genes for each reference compound. Principal 

component analysis (PCA) was done using prcomp from the Stats Rpackage. Hierarchical 
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clustering based on Euclidean distance and Wards method was done using Rpackage pheatmap. 

Significant differences between PHHs with certain disease background were calculated using 

unpaired Student's t test represented as *p < 0.1, **p < 0.05, ***p < 0.01. Data analysis and 

visualization was done using R 3.4.1 and Rstudio (Boston, USA) with the following Rpackages: 

DESeq2, pheatmap, ggplot2, data.table, dplyr, reshape2, stats. To evaluate difference in pathway 

activation between different PHHs, gene set enrichment analysis (GSEA) in combination with 

Gene Ontology (GO) gene sets v7.1244 retrieved from the MSigDB was performed using the maxFC 

as input in the GSEA software (derived from joint project of UC San Diego and Broad 

Institute)297,298. Visualization of GSEA results was done using Cytoscape 3.8.1 software246 in 

combination with EnrichmentMap247 and WordCloud248. 

Population statistical modelling 

The BMC-maxFC values distributions were modelled in a Bayesian hierarchical framework. We 

were interested a priori by inter-subject variability; therefore, our primary observational unit was 

the individual donor. Genes were considered as exchangeable; independent and identically 

distributed.  

At the level of the ith subject, we assumed that the counts nik of genes falling in the kth of the K 

(equal to either two or four) pre-defined clusters followed a multinomial distribution: 

 𝒏i = (𝑛𝑖1, … , 𝑛𝑖𝐾) ~ Multinomial (𝑝𝑖1, … , 𝑝𝑖𝐾) (1) 

At the population level, the subjects' multinomial probabilities were softmax-transformed and 

the corresponding parameters β were assumed to be multivariate-normal-distributed around a 

population mean μ with covariance matrix Ω.  

 𝑝𝑖𝑘 = 
exp(𝛽𝑖𝑘)

∑ exp(𝛽𝑖𝑗)
𝐾
𝑗=1

 (2) 

  𝛽𝑖1 = 0 (3) 

 (𝛽𝑖2, … , 𝛽𝑖𝐾) ~ N𝐾−1(𝝁,𝛀) (4) 

The prior on each element of μ was a vague normal distribution:  

 𝜇𝑘 ~ N (0, 5) (5) 

The prior on Ω was a Cauchy-LKJ (Lewandowski-Kurowicka-Joe) distribution with a Cauchy-

distributed diagonal vector of standard deviations θ:  

 𝜃𝑘  ~ Cauchy (0, 2.5) (6) 

and a LJK-distributed prior on the correlation matrix L: 

 𝐋 ~ LKJ (3) (7) 

The Stan statistical software was used to obtain a posterior sample of μ, θ, and L values by 

Hamiltonian Monte Carlo simulations. 
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Still at the ith subject level, we modelled independently for each cluster the joint distribution of 

genes’ BMCs (noted x in the following) and maxFCs (noted y) values as a bivariate lognormal 

distribution. We took the absolute value of negative maxFC values before log-transformation: 

 (log (𝒙𝑖), log (𝑎𝑏𝑠(𝒚𝑖))) ~ N2 ((𝜐𝑥𝑖, 𝜐𝑦𝑖), 𝝙𝑖) (8) 

with Δ defined as  

 𝝙𝑖 = (
𝜎𝑥𝑖 𝜌𝑖
𝜌𝑖 𝜎𝑦𝑖

) (9) 

At the population level, we modelled the distributions of subjects' means υxi and υyi, of the 

standard deviations σxi and σyi, and of the correlation coefficient ρi as normal around their 

population counterparts: 

 𝜐𝑥𝑖 ~ N (𝜐𝑥, 𝜎𝑎) (10) 

 𝜐𝑦𝑖 ~ N (𝜐𝑦, 𝜎𝑏) (11) 

 𝜎𝑥𝑖  ~ N (𝜎𝑥, 𝜎𝑐) (12) 

 𝜎𝑦𝑖  ~ N (𝜎𝑦, 𝜎𝑑) (13) 

 𝜌𝑖  ~ N (𝜌, 𝜎𝑒) (14) 

The standard deviations σa, σb, σc, σd, σe, were all assigned a half normal prior with SD 0.2. The 

other priors were: 

 𝜐𝑥 ~ Uniform (−5,7) (15) 

 𝜐𝑦 ~ Uniform (−11.5, 5) (16) 

 𝜎𝑥  ~ Halfnormal (1) (17) 

 𝜎𝑦 ~ Halfnormal (1) (18) 

 𝜌 ~ Uniform (−1,1) (19) 

All model parameters (265 parameters in total for each chemical exposure) were jointly 

estimated from the data with Metropolis-Hastings Markov chain Monte Carlo simulation, using 

the GNU MCSim software V6.1.0. 

Predictive simulations 

For predictions of inter-subject variability, the transformed BMC and maxFC values were restored 

to natural space using the suitable inverse transformations. First, large sample reference median 

coefficients of variation (CVs) were obtained for BMC and maxFC values by simulating of 1,000 

assays with hepatocytes from 2,000 individuals each. For each simulated individual, BMC and 

maxFC values were simulated by Monte Carlo sampling using the average posterior estimates of 

the population parameters obtained by calibration of the model with the experimental data on 

50 individuals. Those can therefore be considered as "true CV values", conditionally on the BMC-
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maxFC values being correctly modelled. Similar assay simulations were performed for smaller, 

realistic, donor panel sizes (N = 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 40, 50). CVs for 

BMC and maxFC values were obtained for each case. 

Results 

Variability in basal gene expression across PHH panel 

Since PHH show dedifferentiation in cell culture, as an initial step, the variance in 

dedifferentiation of PHHs derived from different individuals during culture was evaluated (Fig. 

1A-B). For this purpose, we used whole transcriptome targeted TempO-Seq analysis of liver tissue 

and derived cryopreserved PHHs upon thawing or cultured in 2D for 24 h for eight different 

individuals. Principal component analysis (PCA) showed greatest variability between individuals 

for freshly thawed PHHs (Fig. 1A-B). Noticeably, the transcriptome of PHHs cultured in 2D was 

more alike liver tissue compared to freshly thawed PHHs for principal component 1, representing 

60.9% of the total variance (Fig. 1A). However, when only considering liver-related genes, both 

PHHs cultured in 2D or freshly thawed were similarly distinct from liver tissue for both principal 

components, although the latter being more variable (Fig. 1B). Genes involved in metabolism, 

such as CYP3A4, CYP2C8 and UGT2B7 were mostly differently expressed between liver tissue and 

PHHs, either cultured in 2D or freshly thawed.  

Next, we evaluated differences in gene expression for a panel of PHHs derived from 50 individuals 

cultured for 24 h in 2D for all genes (Fig. 1C), liver-related genes (Fig. 1D) or stress response-

related genes (Supporting Fig. S3). PHHs from some individuals showed altered expression for 

genes dominating the variance across the first principal component based on all genes, such as 

DDIT4, a regulator of mTOR activity induced upon various stress conditions (Fig. 1C). In addition, 

variability in various phase-I enzymes such as CYP3A4 was seen across the panel of PHHs mostly 

affecting the second principal component for liver-related genes (Fig. 1D and Supporting Fig. S4). 

Also, large variation was seen in the expression of CCL2, a chemokine involved in the recruitment 

of monocytes and basophils, affecting the principal components for all genes (Fig. 1C) but also 

more specifically UPR and NF-κB signalling related genes (Supporting Fig. S3). 

Difference in sensitivity towards chemical-induced cell death 

To evaluate the inter-individual variability in chemical-induced cellular stress responses across 

the panel of 50 PHH cultures, PHHs were exposed for 8 or 24 h to broad concentration ranges of 

specific stress inducers: diethyl maleate (DEM) to induce the oxidative stress response, 

tunicamycin (TUN) for the unfolded protein response, cisplatin (CPT) for the DNA damage 

response and TNFα for inflammatory NF-κB signalling (Fig. 1E). Great difference in viability, 

measured by LDH release, was only seen between PHHs from different individuals following 24 h 

exposure at the highest concentration of DEM, where significant induction of cell death was seen 

for a subset of PHHs while other PHHs did not show viability loss at all (Fig. 1F). The other 

compounds did not lead to significant loss of viability upon 24 h of exposure, although some PHHs 



 

Inter-individual variability of toxicodynamics using high throughput transcriptomics 
 

155 
 

8 

were more sensitive, such as R1232T and S1295T, resulting in a minor LDH release at the highest 

concentrations.  

Inter-individual variability in chemical-induced stress response activation  

Next, the effects of 8 or 24 h of chemical exposure on the PHH transcriptomes were analysed. 

Exposure to the oxidative stress-inducing compound DEM resulted in clear upregulation of NRF2 

target genes HMOX1 and SRXN1 at concentrations ranging from 330 µM to 3300 µM for both 

time points (Fig. 2A). Cisplatin-induced DNA damage signalling in the panel of PHHs was most 

Fig. 1. Characterization of the inter-individual variability utilizing a large panel of primary human hepatocytes 

derived from 50 individuals. A-D) Left panel: Principle component analysis (PCA) based on gene expression as 

log2 normalized counts. Right panel: Top 5 genes mostly determining PC1 or 2 depicted as vectors representing 

contribution and PC orientation. A-B) PCA of liver, PHHs in suspension or grown as 2D based on all genes (A) or 

liver-related genes (B) in whole transcriptome panel. C-D) PCA of panel of 50 PHHs depicted in different colours 

based on all genes (C) or liver-related genes (D) of S1500+ gene set. E) Schematic representation of experimental 

setup. F) LDH leakage upon exposure to DEM, TUN, CPT and TNFα in wide concentration range for 24  h across 

panel of PHHs. N = 3.  
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Fig. 2. Inter-individual variability in concentration-dependent stress response activation. A) Hierarchical 

clustering of log2 fold change gene expression of key genes for each evaluated stress response pathway of panel 

of PHHs exposed to reference compounds. B) Principle component analysis (PCA) based on log2 fold changes of 

stress responsive genes of panel of PHHs exposed to DEM, TUN, CPT and TNFα. Top 5 genes mostly determining 

PC1 or 2 depicted as vectors representing contribution and PC orientation. N=3.  
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profound at a concentration of 10 µM upon 24 h of exposure, where in general the highest 

upregulation of P53 target genes BTG2 and MDM2 was seen. PHHs showed variable responses, 

where some showed BTG2 or MDM2 upregulation already at a cisplatin concentration of 1 µM, 

while others required higher amounts of this compound. Regarding the UPR induced by TUN, 

activation of both the adaptive gene HSPA5 and pro-apoptotic related gene DDIT3 was seen at a 

concentration of 0.01 µM or higher at the 24 h time point. Some PHHs showed already strong 

upregulation of both genes at 0.01 µM of TUN, while other PHHs only showed upregulation at 1 

µM or higher, suggesting particularly large differences in the UPR response of different 

individuals. Upon TNFα exposure to study variance in inflammation signalling, NF-κB target genes 

ICAM1 and TNFAIP3 were activated in a concentration-dependent manner. For most of the PHHs, 

activation was seen at 1 ng/mL and higher when exposed for 24 h. Some PHHs showed activation 

at the lowest concentration of 0.1 ng/mL, while other PHHs were completely unresponsive to 

TNFα exposure. 

Subsequently, we selected the top 50 most strongly activated genes at the lowest effective 

concentration (Excel Table S2) of each stress response reference compound. The inter-individual 

variability in the concentration-dependent activation of these top 50 genes for each stress 

response was evaluated by PCA (Fig. 2B). In general, for all compounds a clear concentration-

dependent shift was seen for all PHHs. Most variability was observed between different PHHs for 

TUN-induced UPR genes and TNFα-induced NF-κB related genes, mainly driven by variable 

expression of cyto- or chemokines such as IL1B. 

Inter-individual differences in points-of-departure of stress response activation 

To evaluate the inter-individual variability in sensitivity to chemical-induced stress response 

activation, we defined benchmark concentrations (BMCs) at which the top 50 most strongly 

activated genes for each specific compound showed an increase of 1 standard deviation in gene 

expression (Excel Table S3). Upon dose response modelling, we observed large differences in the 

gene-specific BMCs between different PHHs (Fig. 3A). In general, most variability was seen at 8 h 

of exposure, while at 24 h the response was more stable across the PHH panel. Large shifts in the 

BMC distribution could be seen especially at the 8 h time point, with medians varying 864, 259, 

13 and 13-fold for TUN, TNFα, DEM and CPT, respectively (Table 1). This means that BMC 

estimations can shift significantly depending on which PHHs are taken along in chemical toxicity 

testing at early time points. Variability could also be observed in the distribution of the maxFC of 

the top 50 most strongly activated genes among the different PHHs, where compound sensitivity 

correlated positively with levels of upregulation (Supporting Fig. S6).  

To further assess differences in PHH sensitivity, sensitivity scores were determined based on both 

the median BMC and maxFC for the top 50 activated genes for each compound for both time 

points (Supporting Fig. S5B and Data S4). A subset of PHHs (cluster I-II) showed high sensitivity 

scores for all stress responses induced by the reference compounds and also showed higher cell  
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death induction at the highest concentration of DEM (Fig. 3B). In addition, a subpanel of PHHs 

(cluster III) was highly sensitive towards TNFα, while being insensitive towards all other chemical 

induced stress responses. Thus, PHHs can be sensitive to chemical compounds in general, but 

also selectively sensitive for specific types of stress-inducing chemicals. In addition, positive 

correlations could be seen between cell death induction as measured by LDH release and the 

sensitivity scores, where in general PHHs with high LDH release were more sensitive for stress 

response activation (Fig. 3B, Supporting Fig. S7). This indicates that for the most sensitive PHHs 

the switch towards adverse signalling was already reached at lower concentrations of stress-

inducing chemicals. 

Next, we calculated a data-driven toxicodynamic variability factor (TDVF0.01), which is the ratio 

between the median population point-of-departure (PoD) and the 1% quantile individual PoD. 

This TDVF0.01 accounts for underestimation of the variance within the human population when 

estimating the PoDs for cellular stress response activation upon chemical exposures (Table 1). 

For DEM-mediated oxidative stress and cisplatin-induced DNA damage, the commonly used 

uncertainty factor59 of 3.16 would be enough since data-based TDVF0.01s were all lower at both 

8 and 24 h timepoint. However, for 8 h TUN-induced UPR activation and TNFα-mediated NF-κB 

signalling, the defined TDVF0.01 was higher than the uncertainty factor of 3.16, namely 6.5 and 

26.5, respectively. At the 24 h timepoint, which showed in general less variability across the panel 

of PHHs than the 8 h timepoint, TUN-induced UPR had a TDVF0.01 of 5, which is also higher than 

the standard factor. These examples show that the standard uncertainty factor is not enough to 

capture the variation in all chemical-induced stress responses within the human population. 

 CMP 
Median BMC ± SD 
(min-max) 

FC min-max 
Median BMC 

TDVF0.01 

Exp data 
TDVF0.01  
Model* 

SD TDVF0.01 

Model* 

8
 h

 TUN 
0.534 ± 1.320 
(0.009 - 7.768) 

864.1 6.545 6.317 0.582 

DEM 
352.486 ± 243.643 
(111.726 - 1405.220) 

12.6 2.517 1.828 0.066 

CPT 
9.488 ± 5.867 
(2.640-35.447) 

13.4 2.786 3.241 0.202 

TNF 
12.447 ± 13.310 
(0.157 - 40.633) 

258.8 26.524 5.315 0.423 

2
4

 h
 

TUN 
0.023 ± 0.061 
(0.002 - 0.447) 

223.5 4.950 4.811 0.386 

DEM 
315.597 ± 108.883 
(176.656 - 623.096) 

3.5 1.701 1.624 0.047 

CPT 
3.083 ± 1.022 
(1.471 - 6.401) 

4.4 1.847 2.184 0.090 

TNF 
0.926 ± 2.252 
(0.137 - 15.263) 

111.4 2.516 2.556 0.128 

Table 1. Median benchmark concentrations for each PHH based on top 50 stress responsive genes for each 

compound and time point. 

*Based on population modelling of 2000 virtual donors for 1000 assays 
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Fig. 3. Benchmark concentration distributions across panel of primary human hepatocytes (PHHs) and 

influence of liver disease status. A) Distribution of bench mark concentrations (BMC) of top 50 stress responsive 

genes for each compound. Lines represent the different PHHs within panel. B) Hierarchical clustering of 

sensitivity score for panel of PHHs for each treatment. The LDH leakage is shown of 3300 µM DEM at 24 h and 

the disease status. C) Boxplots of median BMC or maxFC of top 50 stress responsive genes of exposure for each 

treatment for PHHs with or without liver disease status. Significance levels represented as * p < 0.1, ** p < 0.05, 

*** p < 0.01. N = 3. 
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Influence of pathology on stress response activation 

Inter-individual variability could be based on liver pathology background of donors. Therefore, 

next, the influence of the disease status, such as cancer or different types of liver pathology, on 

stress response activation upon chemical exposure in PHHs was evaluated. In general, the 

presence of any type of cancer did not have an obvious influence on the sensitivity of the PHHs 

towards chemical-induced stress, since clear clustering of sensitivity scores of PHHs derived from 

patients with cancer was not seen (Fig. 3B). In addition, presence of cancer only mildly influenced 

the distribution of median maxFC and BMC for the top 50 stress responsive genes (Supporting 

Fig. S8B). In contrast, PHHs from patients having any type of liver pathology were in general less 

sensitive towards chemical-induced stress, especially for TUN-induced UPR and TNFα-induced 

NF-κB signalling (Fig. 3B). When we evaluated the distribution of the median maxFC, a significant 

difference could be seen between PHHs derived from patients with or without liver pathology 

when exposed to TUN or TNFα for 24 h (Fig. 3C). The same trend was seen for DEM and CPT, 

although this was not significant. Possibly, PHHs from patients with a certain liver pathology were 

already at a higher level of stress leading to lower fold changes upon chemical-induced stress. 

Indeed, these PHHs showed in general significant slightly higher basal expression of the top 50 

stress responsive genes compared to PHHs without liver pathology (Supporting Fig. S8C, Excel 

Table S3). Variability in differentiation status did not have an effect on BMC and maxFC 

distribution (Supporting Fig. S9). 

Variance in pathway enrichment upon chemical exposure 

To get more insight in chemical-induced stress pathway activation, gene set enrichment analysis 

of gene ontology terms was performed using the maxFC as input for ranking of the genes. In 

general, upon exposure to each reference compound, expected terms were enriched related to 

anticipated chemical-induced stress response pathways (Fig. 4A, Supporting Fig. S10). For 

instance, TUN treatment led to the strong enrichment of ER stress and UPR-related terms, TNFα 

resulted in chemotaxis and chemokine-related terms, DEM gave enrichment of heat shock or ion 

response-related terms and CPT treatment led to enrichment of ion or metabolic-related terms. 

All chemicals led to enrichment for both sensitive and insensitive PHHs, although some terms 

were more specific for either sensitive or insensitive PHHs, e.g. terms related to response to ions 

were more enriched for insensitive PHHs upon DEM exposure (Fig. 4A). Clustering of enriched 

terms for at least three PHHs showed specific enrichment of terms related to ribosomal 

localization or subunits for insensitive PHHs upon TUN or CPT exposure, while terms related to 

response to virus or interferon were enriched for specifically sensitive PHHs upon TNFα 

treatment (Fig. 4B).  

Inter-individual variability in stress response activation by hepatotoxicants 

The inter-individual difference in sensitivity towards chemical-induced oxidative stress response 

and UPR activation was further analysed by screening the three most sensitive and insensitive 
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Fig. 4. Variance in gene set enrichment upon chemical-induced stress. Gene set enrichment analysis 

(Subramanian et al. 2005) was done using gene ontology terms v7.1 and the maximal fold change across 

concentration range (maxFC) of measured S1500+ genes as input for each PHH and treatment for 24h with each 

reference compound. A) Bar plots of normalized enrichment scores (NES) of significantly enriched GO terms with 

a cut-off of adjusted FDR of < 0.05 for at least 10 different PHHs. NES were stacked for all PHHs showing 

significantly enrichment for each term. B) Significantly enriched terms in which one or more terms within cluster 

showed specific enrichment in either most sensitive (red circle) or insensitive (blue circle) PHHs, or both defined 

as core (yellow circle) using Cytoscape246 and EnrichmentMap247. Within each term, NES for each PHH is depicted 

in grey to red scale from low to high. Enriched terms were clustered and summarized with 3 to 4 keywords using 

WordCloud248.  
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PHHs with various hepatotoxicants known to induce oxidative stress (acetaminophen, 

propylthiouracyl and nitrofurantoin) or ER stress (ticlopidine, nefazodone and diclofenac) (Fig. 

5). Upon evaluation of differences in cell death induction, a concentration-dependent increase 

in LDH release was seen for all tested hepatotoxicants, except for acetaminophen and 

propylthiouracil (Fig. 5A). Both nitrofurantoin and nefazodone already showed cell death 

induction at 25x Cmax or higher. The most sensitive PHHs showed higher cytotoxicity when 

exposed to nitrofurantoin and diclofenac than the most insensitive PHHs. For the other 

hepatotoxicants, no difference was seen. Next, the expression of the top 50 activated genes was 

evaluated for both the oxidative stress response and UPR, where in particular nitrofurantoin 

showed higher induction in sensitive PHHs compared to insensitive (Fig. 5B). Other 

hepatotoxicants did not show clear distinction when only evaluating these genes. Thereafter, the 

difference in the distribution of BMCs and maxFC of all responsive genes was evaluated between 

the most sensitive and insensitive PHHs for each tested DILI compound. The hepatotoxicants 

propylthiouracyl, acetaminophen and ticlopedine showed clear separation for most of the 

sensitive and insensitive PHHs, but not all, in BMC and maxFC distribution (Fig. 5C, Table 2). For 

all other hepatotoxicants, differences in BMCs and maxFCs were more variable. 

 

 

 Median maxFC Median BMC (µM) 

CMP Insensitive PHHs Sensitive PHHs Insensitive PHHs Sensitive PHHs 

OX M1469T S1455T S1518T M1394T S1437T S1488T M1469T S1455T S1518T M1394T S1437T S1488T 

DEM 2.94 2.51 2.25 2.33 3.48 2.53 1024.47 580.07 629.48 672.95 1051.43 375.30 

ACE 3.14 2.95 3.59 2.93 3.61 3.68 1528.25 1331.12 1069.92 1761.77 1993.41 1379.58 

NIT 1.92 3.10 3.17 6.31 2.86 3.80 20.65 11.60 24.03 29.02 17.37 22.12 

PRO 1.96 1.54 2.16 1.78 2.03 2.22 293.33 345.93 193.57 312.23 311.24 235.90 

UPR M1469T S1309T S1518T M1394T S1386T S1437T M1469T S1309T S1518T M1394T S1386T S1437T 

TUN 1.84 1.98 1.78 1.73 1.89 1.78 0.07 0.21 0.19 0.004 0.19 0.04 

DIC 3.08 2.68 2.88 5.02 2.90 3.70 122.25 72.45 68.45 137.28 99.12 137.80 

NEF 3.33 2.13 2.09 2.92 2.61 2.42 37.31 18.24 19.01 37.25 25.66 40.28 

TIC 1.97 2.20 2.21 3.63 2.67 2.48 103.17 141.57 96.00 229.69 210.65 151.71 

← Fig. 5. Difference in sensitivity towards hepatotoxicants within a subpanel of primary human hepatocytes 

(PHHs). A) LDH release upon treatment with hepatotoxicants for 24 h in 6 defined most sensitive or insensitive 

PHHs. B) Hierarchical clustering of log2 fold changes of top 50 stress responsive genes for the oxidative stress 

and unfolded protein of PHHs exposed to various hepatotoxicants (acetaminophen; ACE, propylthiouracyl; PRO, 

nitrofurantoin; NIT, ticlopidine; TIC, nefazodone; NEF, diclofenac; DIC) for 24 h. C) Distribution of benchmark 

concentration (BMC) and maximal fold change across concentration range (maxFC) for all responsive genes of 

PHHs exposed to various hepatotoxicants for 24 h. N = 3.  

Table 2. Median maximal fold change across concentration range (maxFC) and benchmark concentration 

(BMC) for most sensitive and insensitive PHHs based on all responsive genes for each treatment. 

*Diethyl maleate; DEM, acetaminophen; ACE, propylthiouracyl; PRO, nitrofurantoin; NIT, tunicamycin; TUN, 

ticlopidine; TIC, nefazodone; NEF, diclofenac; DIC. 
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Influence of PHH panel size on estimating variance 

To check the inter-individual variability model for the entire human population in chemical-

induced stress response activation, both the BMC and maxFC for the top 50 stress responsive 

genes for each compound was simulated for 500 virtual PHHs. The distribution of the simulated 

BMCs and maxFCs were in concordance with the experimental data based on the panel of 50 

PHHs showing similar distributions (Supporting Fig. S11-12).  

To evaluate the effect of the number of PHHs from different individuals used to obtain the correct 

population CVs in stress response activation, reference (large sample size) population variances 

of BMC and maxFC values for the top 50 stress responsive genes were first estimated by 

simulating 1,000 assays with a panel of PHHs from 2,000 virtual individuals (Fig. 6A-B). Next, inter-

individual CV estimates were simulated when using different panel sizes of PHHs derived from 3 

to 50 individuals for each reference compound (Fig. 6A-B). When the PHH panel size was 

increased, the CV estimates became increasingly precise and converge to the true human 

population variability. For small PHH panel sizes which are commonly used during hepatotoxicity 

testing, the imprecision is very large, leading to consistent underestimation of the inter-individual 

variance in stress response activation upon chemical exposure.  

Next, the probability of obtaining a CV which is close to the true human population CV was 

evaluated when using different PHH panel sizes (Fig. 6C-D). Overall, when using a PHH panel size 

of 10 or less the probability to estimate the correct CV of the BMC is very low, namely smaller 

than ~ 0.3, 0.05, 0.15 and 0.2 for DEM, CPT, TUN and TNFα, respectively (Fig. 6C). When using a 

PHH panel size of 50, the maximal probability that could be reached to estimate the correct CV 

of the BMC is ~ 0.45, 0.3, 0.4 and 0.4 for DEM, CPT, TUN and TNFα, respectively, still resulting in 

quite some uncertainty. For estimating the correct CV of the maxFC, a maximal probability of 0.3 

was reached for all compounds when using a PHH panel size of 50, which is also still quite low 

(Fig. 6D). Therefore, we propose to use an additional uncertainty factor to account for the 

uncertainty in estimating the true median population PoD and variance of stress response 

activation upon chemical exposure during hepatotoxicity testing in PHHs. Indeed, simulation of 

2,000 virtual donors for 1,000 assays resulted in TDVF0.01s that were up to 2-fold higher than the 

standard used UF of 3.16 for TUN, CPT and TNFα for 8 h and TUN for 24 h (Table 1). 

Discussion 

Human tissue-culture based methods hold great promise for the prediction of chemical-induced 

adversities299–301. Here, we evaluated the effects of inter-individual differences in sensitivity to 

chemical-induced stress in PHHs, to determine data-driven toxicodynamic uncertainty factors for 

specific types of relevant stress responses that are critical in chemical-induced toxicity. In our 

analysis, we focused on compounds inducing the UPR, the oxidative stress response, the DNA 

damage response and cytokine-mediated NF-κB signalling. The activation of each of these stress 

responses is considered a key event leading to the development of chemical-induced liver 
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injury16. Moreover, the consequent upregulation of a specific set of gene transcripts that 

represents these stress response pathways can be used to qualify and quantify the mode-of-

action for the evaluation of hepatoxicity16,28. Our results indicate that large differences in the 

distribution of BMCs are observed between different PHHs. Moreover, standard uncertainty 

Fig. 6. Influence of primary human hepatocyte (PHH) panel size on probability to capture correct variance in 

stress response activation. A-B) Forest plots of simulated distributions (medians ± 5th / 95th percentiles) of the 

estimated coefficients of variation (CVs) of benchmark concentrations (BMC) (A) and maximal fold changes 

across concentration range (maxFC) (B) based on top 50 stress responsive genes for each reference compound 

as a function of PHH panel size. As reference, 1,000 assays with a panel of PHHs from 2,000 individuals was 

simulated depicted as red lines (median: solid ± 5th / 95th percentiles: dashed). C-D) Probability of reporting a 

correct CV falling between the 5th and 95th percentile of the reference CVs as a function of PHH panel size for 

BMC (C) and maxFC (D). Red dots resemble Monte Carlo simulation estimates and grey lines resemble visually 

fitted smoothing curves.  
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factors for toxicodynamic responses for risk assessment are insufficient for toxicity responses 

that would involve UPR and NF-κB signalling. 

Our data exemplify the need of accurately determined data-driven uncertainty factors during risk 

assessment to improve the prediction of liabilities for chemical-induced liver injury. Our results 

indicate that these uncertainty factors can be at least 2-fold higher than the standard 

toxicodynamic uncertainty factor of 101/2. In concordance, Blanchette et al. characterized the 

human population variance of chemical-induced cardiotoxicity using hiPSC-derived 

cardiomyocyte panel together with population modelling and also showed higher TDVFs than the 

standard 101/254,295. Likewise, Abdo et al. found that some of the 179 screened chemicals led to 

TDVFs higher than 10 when evaluating cytotoxicity in 1,086 lymphoblastoid cell lines302. 

Potentially, several factors may influence PHH sensitivity to chemical-induced stress, including 

differences in health characteristics of PHH donors. We found that PHHs from patients with any 

type of liver disease showed less induction of stress responses upon exposure, especially for 

TNFα-induced NF-κB signalling and TUN-induced UPR. These PHHs showed already higher 

expression of stress response-related genes in control conditions, thereby leading to less capacity 

to further induce protective stress responses upon chemical exposure. Indeed, there are strong 

correlations between liver diseases, such as non-alcohol fatty liver disease, non-alcohol 

steatohepatitis and liver cancer, increased activation of e.g. the UPR and the inflammatory 

response234,303–305, and increased DILI susceptibility306,307. Thus, the liver disease background of 

PHHs can have a significant impact on their sensitivity to DILI compounds. In this respect, special 

attention should be given to the inflammatory state of the liver prior to the isolation of PHHs. 

Large differences were seen in basal expression of chemokines, such as CCL2, possibly affecting 

their sensitivity towards chemical exposure. Indeed, the presence of inflammation is one of the 

susceptibility factors for development of DILI308,309. In addition, large variability was also seen in 

the expression of inflammatory genes upon chemical exposure across panel of PHHs. 

Inflammatory genes such as IL1B and CCL3 were most differently expressed across panel of PHHs 

upon TUN treatment. Several studies have shown the relation between UPR activation and 

inflammatory signalling through activation of NF-κB and the NLRP3 inflammasome, leading to 

induction of IL1B expression310. 

In conclusion, we demonstrated that chemical-induced liver injury associated stress response 

activation is highly variable between different individuals. This highlights the need to use 

toxicodynamic uncertainty factors for safety evaluation. We show that the currently used 

standard uncertainty factor of 101/2 is not sufficient to capture all variance for every chemical or 

endpoint measured in PHHs. For activation of the UPR and NF-κB signalling the defined TDVF was 

up to 2-fold higher than this standard. This exemplifies a general need for the use of data-driven 

mechanism-specific uncertainty factors to accurately correct for toxicodynamic variance across 
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the human population to improve assessment of liabilities for development of chemical or drug-

induced liver injury.   
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Fig. S1. Characteristics of large panel of primary human hepatocytes derived from 50 individuals. Distribution 

of gender (A), age (B) and BMI (C) within panel of primary human hepatocytes derived from 50 individuals. 
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Fig. S2. Quality controls of TempO-seq data for each PHH donor. A) Distribution of total library size for each 

sample across PHH panel. B) Pearson’s R correlation of each biological replicate compared to mean for each 

sample across PHH panel. N=3. 

Fig. S3. Principal component analysis (PCA) of stress responsive genes at basal conditions across panel of PHHs. 

A) PCA based on log2 normalized counts of stress responsive genes of panel of PHHs at basal medium conditions 

at identical timepoints of compound exposure for 8 and 24 h. B) Top 5 genes mostly determining PC1 or 2 

depicted as vectors representing contribution and PC orientation. N=3.  
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Fig. S4. Variability in expression of liver-related genes across PHH panel. A) Hierarchical clustering of log2 

normalized counts of liver-related genes within the S1500+ gene set across PHH panel derived from 50 individuals 

cultured as 2D for 24 h upon thawing. B) Hierarchical clustering of log2 normalized counts of liver-related genes 

within the targeted whole transcriptome gene set for liver tissue (N=1), freshly thawed PHHs in suspension (N=3) 

or PHHs cultured as 2D for 24 h (N=3) derived from 8 individuals.  
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Fig. S5. Inter-individual variability of median maximal fold change and benchmark concentration of most 

responsive genes upon chemical exposure. A) Hierarchical clustering of relative median maximal fold change 

(maxFC) across concentration range for top 50 stress responsive genes for each compound across PHH panel at 

8 and 24 h exposure. B) Hierarchical clustering of relative median BMC of top 50 stress responsive genes for each 

compound and timepoint across PHH panel. N=3.  

Fig. S6. Variability in the distribution of maximal fold change of most responsive genes upon exposure. 

Distribution of maximal fold change across concentration range (maxFC) of top 50 stress responsive genes for 

each compound (diethyl maleate; DEM, cisplatin; CPT, tunicamycin; TUN, TNFα; TNF) and time point 8 and 24 h. 

Lines represent each PHH where colour reflects the sensitivity score based on rank of median maxFC and 

benchmark concentration (BMC) of top 50 genes.  
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Fig. S7. Correlation cell viability and sensitivity scores for PHH panel. Correlation between the sensitivity scores 

for each compound and LDH leakage as a measure of cell viability at 3300 µM diethyl maleate (DEM). The 

sensitivity scores were based on rank of median maxFC and benchmark concentration (BMC) of top 50 stress 

responsive genes for each compound (diethyl maleate; DEM, cisplatin; CPT, tunicamycin; TUN, TNFα; TNF) 

ranging from 0 (most sensitive) to 200 (most insensitive). Left bottom represents the scatter plots, in the middle 

histograms and upper right the Pearson correlation. Significant correlations depicted as * p < 0.05, ** p < 0.01, 

*** p < 0.001. N = 3.  

Fig. S8. Effect of pathology background on sensitivity of chemical-induced stress response activation. 

Distribution of median benchmark concentration (BMC) (A) or median maximal fold change across concentration 

range (maxFC) (B) of top 50 stress responsive genes for each compound (diethyl maleate; DEM, cisplatin; CPT, 

tunicamycin; TUN, TNFα; TNF) and time point 8 and 24 h across PHH panel from 50 individuals with or without 

cancer. C) Distribution of normalized counts in baseline medium condition of top 50 stress responsive genes for 

each compound and time point across PHH panel from 50 individuals with or without liver pathology (left panel) 

or cancer (right panel). Significance levels represented as * p < 0.1, ** p < 0.05, *** p < 0.01. N = 3.  
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Fig. S9. Correlation hepatic phenotype with sensitivity of chemical-induced stress response activation. Scatter 

plots of the median expression of liver-related genes vs median maximal fold change across concentration range 

(maxFC) (left panel) or median benchmark concentration (BMC) (right panel) of top 50 stress responsive genes 

for each compound (diethyl maleate; DEM, cisplatin; CPT, tunicamycin; TUN, TNFα; TNF) and time point 8 and 

24 h for each PHH across panel of 50. Sensitivity scores for each PHH is depicted in colour scale from red to blue, 

sensitive to insensitive. The correlation is given as r2.  
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Fig. S10. Evaluation of variance in pathway activation by gene set enrichment analysis (GSEA) of gene ontology 

(GO) terms. Gene set enrichment analysis (GSEA)298 was done using gene ontology (GO) terms v7.1 and the 

maximal fold change across concentration range (maxFC) of measured S1500+ genes as input for each PHH and 

treatment for 24h with cisplatin (CPT), diethyl maleate (DEM), TNFα (TNF) or tunicamycin (TUN). Detailed 

representation of significantly enriched GO terms in which one or more terms within cluster showed specific 

enrichment in either most sensitive (red circle) or insensitive (blue circle) PHHs, or both defined as core (yellow 

circle) using Cytoscape246 and EnrichmentMap247. Within each term, the NES for each PHH is depicted in grey to 

red scale from low to high. Enriched GO terms were clustered and summarized with 3 to 4 keywords using 

WordCloud248. 
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Fig. S11. Simulation of the distribution of benchmark concentration (BMC) and maximal fold change across 

concentration range (maxFC) of top 50 stress responsive genes across extended panel of PHHs. A) Experimental 

observation of distribution of BMC and maxFC of top 50 stress responsive genes for diethyl maleate (DEM), 

cisplatin (CPT), tunicamycin (TUN) and TNFα (TNF) across panel of PHHs depicted in different colours at 8 and 24 

h timepoint. N = 3. B) Computer simulated sample for a panel of 500 PHHs depicted in different colours. The 

vertical and horizontal lines delimit the observed cluster of BMC and maxFC values.  
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ID Reference compounds  xCmax DILI compounds  
DEM CPT TUN TNF  

 
NIT ACE PRO TIC DIC NEF 

1 1 0.1 0.0001 0.1  1 6 139 9.1 8.1 10.1 4.0 

2 10 1 0.001 0.3  2.5 15 347.5 22.75 20.2 25.25 9.9 

3 100 3.3 0.01 1  5 30 695 45.5 40.4 50.5 19.8 

4 330 10 0.1 3.3  10 60 1390 91 80.7 101 39.5 

5 1000 33 1 10  25 150 3475 227.5 201.9 252.5 98.8 

6 3300 100 10 33  50 300 6950 455 403.7 505 197.5      
 100 600 13900 910 807.5 1010 395.0  

µM µM µM ng/mL    µM µM µM µM µM µM 

Fig. S12. Simulation of the confidence intervals of the lognormal bivariate distributions of benchmark 

concentration (BMC) and maximal fold change across concentration range (maxFC) of top 50 stress responsive 

genes across panel of PHHs. Experimental observation of the distribution of BMC and maxFC of top 50 stress 

responsive genes for diethyl maleate (DEM), cisplatin (CPT), tunicamycin (TUN) and TNFα (TNF) across panel of 

PHHs depicted as dots in different colours at 8 (upper panel) and 24 h (lower panel) timepoint for each observed 

section or quadrant. N = 3. Computer simulated confidence intervals indicated as eclipses for a panel of 500 PHHs 

depicted in different colours. 

Table S1. Overview of concentration ranges used for each compound tested in panel of PHHs. 

Diethyl maleate; DEM, Cisplatin; CPT, tunicamycin; TUN, TNFα; TNF, acetaminophen; ACE, propylthiouracyl; PRO, 

nitrofurantoin; NIT, ticlopidine; TIC, nefazodone; NEF, diclofenac; DIC 
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Improved insight in the regulation of stress response activation upon chemical exposure for 

improved predictivity of hepatotoxicity is the common thread within this thesis. The activation 

of stress response pathways is one of the early key events, close to the molecular initiation event 

(MIE), leading to the development of DILI311. The activation of stress response pathways allows 

cells to cope with chemical-induced stress trying to restore homeostasis. However, upon 

prolonged stressed conditions, activation of these stress responses may not be enough leading 

to irreversible cellular injury and eventually injury at organ level. Adaptive stress response 

pathways are typically activated at lower concentrations in response to chemical toxicity 

compared to more general cytotoxicity endpoints and are preserved across all cell types making 

it highly suitable for drug toxicity screening311.  

BAC-GFP reporter panel 

To monitor the activation of these stress response pathways, a panel of HepG2 BAC-GFP 

reporters has been build which can be combined with high-throughput confocal microscopy 

allowing to capture temporal dynamics at single cell level in both 2D and 3D setup27–29. The 

reporter panel consists of reporters for the sensor, transcription factor and downstream target 

genes to capture different levels within each stress response pathway. These stress response 

reporters are suitable to identify hepatotoxic drugs and allow to combine with genomic screening 

methods such as RNAi screening to increase understanding of stress response regulation. 

Therefore, in chapter 2 an overview has been given in the development and application of these 

BAC-GFP reporters followed by chapter 3, 4, 5 and 6 where we used these reporters to improve 

understanding of the regulation of these stress response pathways and their context of use.  

Since these reporters rely on the BAC recombineering technique, additional copies of the 

reporter gene are added to the genome of the cell. We do not have an exact insight in the number 

of copies of the BAC-GFP reporter constructs in the various reporters, but likely several copies 

are integrated. This can be advantageous with respect to sensitivity of the GFP signal, but could 

also provide an overestimation of the response. Moreover, we cannot exclude that the reporter 

activity might be influenced in the context of the location of the genomic integration, which is 

likely in active regions of the genome in the HepG2 cells. This different integration sites may 

affect downstream signalling and overall adaptation responses upon chemical exposure. 

Therefore, stress response reporter lines that take advantage of the CRISPR/Cas9 technology may 

overcome these limitations. This technology allows endogenous gene tagging with the 

fluorophore of interest in a scarless manner in cell lines but also in hiPSCs312. The latter approach 

will then allow differentiation of the reporter hiPSC into different lineages and create a broader 

application of the same reporter for different target organs. Yet, if the fluorophore fusion product 

affects functionality of the endogenous protein, downstream signalling can also be affected. 

Likely, heterozygous tagging only one allele has a preference when using CRISPR/Cas9 mediated 

fluorophore tagging, although this would also impact on overall reporter sensitivity. Besides, 
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building reporters in hiPSCs instead of HepG2 cells allows to evaluate stress response pathway 

activation in multiple cell types upon differentiation. In this way, difference in sensitivity between 

different cell types from different organs can be compared, but also stress response activation 

within co-cultures with multiple cell types can be evaluated. This opens up numerous possibilities 

in the application of these reporters, both in chemical screening as well as in disease modelling 

and improved mechanistic understanding. We have already assessed the functionality of an 

HMOX1-GFP hiPSC reporter that was differentiated into different lineages, including 

hepatocytes, cardiomyocytes, renal proximal tubular cells and neuronal cells and established the 

success of such reporters312. In our laboratories in Leiden we have established a series of 

reporters in hiPSC for different cellular stress response pathways and are currently assessing the 

functionality of these reporters. We anticipate that such hiPSC-based reporters will find broader 

application for different target organ toxicities, with the disadvantage of the typically costly and 

more lengthy differentiation programs involved. 

Influence of oxidative stress response on DNA damage signalling 

One of the critical cellular stress response pathways is the oxidative stress response pathway 

which is regulated by the transcription factor NRF2 and sensor KEAP1. It is activated upon 

oxidative stress due to ROS formation leading to a conformational change of KEAP1 and 

stabilization of NRF2 translocating to the nucleus313. Here it can activate its downstream target 

genes such as anti-oxidant genes trying to restore homeostasis17. During chemical-induced 

oxidative stress, other stress response pathways may influence the NRF2 response, such as the 

DNA damage response since ROS can lead to DNA damage affecting cellular outcome314. 

Therefore, in chapter 3 we evaluated the crosstalk between the oxidative stress response and 

DNA damage signalling upon chemical exposure.  

As a first step, the concentration-dependent activation dynamics of both the oxidative stress and 

the DNA damage response was evaluated using oxidative stress inducer diethyl maleate and DNA 

damage inducer etoposide in a wide concentration range in HepG2 BAC-GFP reporters in 

combination with confocal imaging. Both compounds could activate both pathways, suggesting 

the presence of crosstalk. Silencing of NRF2 led to the inhibition of the DNA damage response, 

while silencing of KEAP1 led to enhancement of the DNA damage response during etoposide 

treatment. Silencing of both led to restoration, suggesting the activating role of NRF2 in p53 

signalling possibly mediated by NQO1. Our data demonstrate the overall application of the 

reporter platform to map the concentration temporal responses using high throughput confocal 

microscopy in combination with RNA interferences approaches to qualify and quantify 

systematically the interactions between different stress pathways. Obviously, our results are 

based on HepG2 cells, and if similar interactions occur in normal human hepatocytes should be 

further explored and validated in multiple test systems. Optimally, the activation of both stress 

response pathways could be followed in the same cell to accurately follow activation dynamics 
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of both at the same time, yet, current comparison in the temporal responses can now only be 

made with different reporters. Exploration of dual-fluorescent reporter systems could be applied 

where e.g. one channel would involve the GFP reporter for the NRF2 pathway and another 

channel would involve a mScarlet reporter for the p53 pathway. This would allow the temporal 

dynamics of both pathways with the same cell. 

Identification of DNA damaging agents using BAC-GFP reporters 

To evaluate DNA damage upon chemical exposure, test systems such as the Ames test, Comet 

assay or the micronucleus test are being used143,144,147. However, still improvements in the 

predictivity is needed. Therefore, in chapter 4 we evaluated the suitability of the DNA damage 

HepG2 BAC-GFP reporters in different culture setups for identifying genotoxicants. HepG2 cells 

were either cultured in 2D as a monolayer or in 3D as spheroids within a Matrigel layer. They 

were cultured with standard medium or with AAGLY medium increasing maturation status of 

hepatocytes53. The AAGLY medium enhanced the cytochrome P450 expression making it more 

suitable for evaluation of metabolite-mediated toxicity. HepG2 cells also stop proliferating when 

cultured using the AAGLY medium, also making them more suitable for repeated exposure 

scenarios53. In general, HepG2 cells that still proliferate, cultured in 2D with standard medium, 

are most sensitive towards genotoxicants not requiring metabolism for bioactivation, i.e. 

cisplatin and mitomycin C, to induce toxicity. Genotoxicants where the metabolites are 

responsible for the genotoxic effects, e.g. aflatoxin B1, are best recognized in the HepG2 3D setup 

or cultured with AAGLY medium having higher metabolic capacity29. Again, here the reporter 

readout is more sensitive than the cytotoxicity endpoints exemplifying the suitability of the 

reporter system for chemical screening. Furthermore, here the activation of the DNA damage 

response is evaluated being more sensitive than measuring DNA damage itself as with the 

traditional endpoints for DNA damage. However, this should be further evaluated by testing the 

reporters with a larger genotoxicant screen alongside the traditional readouts such as the comet 

assay for comparison. Most optimally, also the oxidative stress reporter should be taken along to 

discriminate indirect activation of DNA damage response through ROS formation. These results 

clearly demonstrate that the same test method that is cultured under different culture conditions 

can have different outcomes. Any substance could be a false negative in the same test systems 

depending on the culture condition. This illustrates the requirement for systematic evaluation of 

the test system under different culture conditions to determine precisely the fit-for-purpose. This 

is however often overlooked. 

Tight control of unfolded protein response activation 

Activation of the unfolded protein response (UPR), controlled by the sensors ATF6, PERK and IRE1 

upon ER stress, plays a role in the development of DILI for some DILI-inducing drugs, such as 

diclofenac and nefazodone97. Regulation of the UPR is tightly controlled to eliminate the 

accumulation of misfolded proteins within the ER. To fully understand this tight regulation and 
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how it affects cell fate upon chemical exposure, we aimed to identify key regulators of CHOP, a 

pro-apoptotic transcription factor within the UPR, during ER stress in chapter 5 and 6.   

By combining ODE-modelling and confocal imaging of HepG2 BAC-GFP UPR reporters for ATF4, 

XBP1, CHOP and BIP exposed to a broad concentration range of tunicamycin in chapter 5, it 

allowed us to dissect the contribution of each UPR signalling branch in activating CHOP. Here, the 

transcription factor ATF6 predominantly regulates CHOP during the initial phase. Upon silencing 

of ATF6, CHOP was blocked during the initial phase, however at later timepoints CHOP was 

further induced. This indicates a significant role for ATF6 in cell fate outcomes during stressed 

conditions. However, the relationship of ATF6 signalling and cell fate was not yet evaluated here 

and should be included within the model. Also, it would be of great value to have a reporter for 

ATF6 to fully capture the activation dynamics and translocation during chemical exposure which 

could feed into the model now only based on selected time points and western blot data of 

uncleaved form of ATF6. Furthermore, the regulation of CHOP by ATF6 should be further 

validated in other cell types such as PHHs and extended with other ER stress inducing 

compounds. This clearly illustrates the value of the fluorescent reporters for defining the 

temporal dynamics of their activity at the individual cell level. Such datasets are of incredible 

value to computational biologist to establish mathematical models for cellular stress response 

pathways. While here we used the HepG2 reporters to establish models for the ER stress 

pathway, the ultimate challenge will be whether the same model can be applied for the hiPSC 

reporters that are differentiated into different lineages. This will allow to establish the variability 

of the models. At Leiden we have also established mathematical models based on the DNA 

damage response reporters and the NRF2 antioxidant response313,315. The future challenge will 

also be to integrate the different models together and determine the application for the overall 

prediction of adversity. 

To identify novel regulators of CHOP in chapter 6, besides the known UPR components, we have 

performed a large RNAi screen consisting of 3,457 genes in HepG2 CHOP-GFP cells upon 

tunicamycin treatment to evaluate the role of individual genes in CHOP upregulation during ER 

stress. A secondary screen led to the validation of a total of 74 novel regulators of CHOP: 18 

potential negative regulators and 56 potential positive regulators. One of the key hits, 

transcription factor EMX1, reduced CHOP significantly upon silencing upon treatment with 

various ER stress inducers in HepG2 cells. The role in CHOP regulation could also be confirmed in 

PHHs besides HepG2 cells evaluated by transcriptomic analysis. The UPR plays also a pivotal role 

in carcinogenesis where activating the UPR extensively is advantageous for cancer cells to 

minimize ER stress240. Here, silencing of EMX1 could also block CHOP and enhance survival during 

exposure with HCC treatments regorafenib and sorafenib in HepG2 cells. To elucidate the role of 

EMX1 during HCC development, other HCC lines besides HepG2 should be tested. Furthermore, 

CRISPR/Cas9 KO strategy could be applied to establish a stable knockout cell line for EMX1 to 
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further validate and unravel its precise role in regulating CHOP316. Since EMX1 is a transcription 

factor, identifying to which DNA regions and other factors EMX1 binds to would aid in dissecting 

the mechanism in how EMX1 controls the UPR during ER stress. While we demonstrated a role 

for different modulators of the ER stress response in hepatocytes, our results could also hint for 

candidate novel drug targets that could be exploited for either protection against liver injury 

and/or sensitization of cancer cells to anticancer therapeutics.  

hiPSCs-HLCs as a model to recognize stress response activation 

Over the years major improvements have been made in establishing hiPSC-derived hepatocyte-

like cells (HLCs) using differentiation protocols mimicking the fetal liver development49,50,317. 

However, it has not been characterized how they respond towards chemical-induced stress in 

terms of stress response activation. Therefore, in chapter 7 we compared the behaviour of hiPSC-

HLCs with HepG2 and PHHs using transcriptomics upon exposure towards specific stress 

response inducers in a broad concentration range. Here, we found that HLCs were very sensitive 

towards oxidative stress and inflammatory signalling. However, PHHs were the most sensitive for 

chemical-induced UPR activation. DNA damage signalling was mostly picked up in HepG2 and 

undifferentiated hiPSCs as expected since these cell types proliferate. In general, hiPSCs-HLCs 

behaved more similarly as PHHs and HepG2 than hiPSCs, therefore also serve as a good model to 

study hepatotoxicity and for building a reporter panel for drug screening purposes. Besides, HLCs 

express higher levels of metabolizing enzymes therefore also suitable for studying metabolite-

specific hepatotoxicity49,50,317. Interestingly, gene patterns that were active for the different 

stressors were different between the different cell types. This illustrates the complexity when 

translating gene responses from hiPSCs-HLCs systems to more human relevant test systems and 

highlights the need for other methodologies to compare the activity of genes. We have 

established a weighted gene co-regulation network analysis (WGCNA) approach to define the 

activation of biological responses in PHH318. Qualifying and quantifying the activity of gene 

networks might be a better approach to compare different test systems than individual gene 

level approaches. 

Inter-individual variability in stress response activation 

During risk assessment to account for inter-individual variability within the human population, 

standard safety factors are used for both pharmacokinetic as well as pharmacodynamics59. These 

standard factors are not data-driven, endpoint or chemical specific. Therefore it is crucial to map 

the variability that exists within the human population in activating stress response pathways to 

enable to define data-driven safety factors. To study inter-individual variability in stress response 

activation in chapter 8, the transcriptome was analysed of a panel of PHHs from 50 donors upon 

exposure towards specific stress inducers. Here, the variability could be mapped of the 

concentration-dependent stress response activation. Upon dose-response modelling to define 

benchmark concentrations (BMCs)31,32, a maximum difference of the BMCs could be observed of 
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864-fold for tunicamycin exemplifying the great variability among donors. When combining with 

computational modelling, small panel sizes under-estimated the inter-individual variability and 

lowered the probability in estimating the correct variability. Besides, estimated safety factors 

were twice as high than the standard factor. This highlights the need of using data-driven safety 

factors during risk assessment to account for inter-individual variability. Here, we assessed the 

variability that exists in these plated PHHs cultured as a 2D monolayer derived from different 

individuals. Potentially, additional variation in stress response activation is due to difference in 

the isolation, plating and dedifferentiation process. A study by Blanchette et al. has characterized 

inter-individual variability in cardiotoxicity using hiPSC-derived cardiomyocytes54,295. Using 

hiPSCs enables to study multiple cell types from the same donor, however the transformation 

into pluripotent cells could also affect the observed variability between different donors. While 

not represented in this thesis, we observed that HepG2 cells do not mimic the average PHH donor 

in sensitivity. For the NRF2 pathway, HepG2 cells are much more sensitive, while for the UPR 

pathway HepG2 cells are less sensitive than PHH. This variability in sensitivity between donors 

and cell lines underscores the overall need to understand for each liver test system where it 

stands with respect to sensitivity. This will be in particular relevant when such test systems will 

be used in next generation risk assessment approaches without the use of animals to define 

safety margins for risk assessment.   

Future perspectives and conclusions 

To improve risk assessment, it is of importance to associate stress response activation with 

liabilities for the development of specific adversities within the framework of adverse outcome 

pathways (AOPs). Ideally the liability for a certain outcome should depend on duration, 

magnitude and benchmark concentration of stress response pathway activation. High-

throughput methods for transcriptome analysis, such as TempO-seq targeted RNAseq30, allows 

for mapping of stress response network activation for larger number of samples enabling to study 

dose-response relationships and temporal activation dynamics in a drug screening fashion. When 

combining with weighted co-regulated gene network analysis (WGCNA), modules of co-regulated 

genes similarly activated upon chemical exposure can be identified in an unbiased fashion and 

annotated for stress response pathway enrichment98,318,319. Associating module activation 

related to certain stress response pathways with the liability for development of adverse 

outcomes when combined with in vivo transcriptome data can give us improved insight in the 

liabilities for development of DILI upon stress response activation. Ideally, mapping of these 

module networks and there association to adverse outcome liabilities is established for all liver 

in vitro test systems used for drug screening. Moreover, the activation of each co-regulated 

module and its association towards adversity upon drug exposure may have different degrees of 

variability that exist within the human population. Therefore as part of future work, specific 

safety factors for each co-regulated gene module should be identified based on whole 

transcriptomes of a large panel of cells derived from different individuals upon chemical 
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exposures reflecting population variability. In this way, variability can be accurately accounted 

for during risk assessment for the entire gene co-regulated network upon chemical exposure for 

each test system used. 

The selection of reporter genes for stress response activation used for drug safety evaluation is 

critical. Here, it is essential to select for genes which are most predictive for the identification of 

drugs inducing adverse events also revealing its mode-of-action. By utilizing the WGCNA 

approach, genes most reflective for critical modules can be selected associated with certain 

adversities. In addition, genes could be selected based on their variability within the human 

population by either selecting for the most stable genes to minimize donor-to-donor variability 

during drug screening or on the other hand specific genes that reflect mostly the inter-individual 

variability. Future work should focus on expanding the reporter panel in hiPSCs to improve 

predictivity and allow for the evaluation of toxicity in different organ cell types. Ideally, multiple 

hiPSC lines from different donors are combined to reflect inter-individual variability in drug-

induced stress.  

Currently, the differentiation towards fully mature hepatocytes of hiPSCs is still lacking where 

the hiPSC-HLCs are in an immature state which may influence their predictivity for drug-induced 

adversity. Therefore, there is a need to further improve the differentiation process and mimic 

the 3D environment in vivo. Recent efforts led to the identification that overexpression of three 

transcription factors during differentiation and the usage of amino acid rich medium could 

improve the maturation status significantly of hiPSC-HLCs53. However, the differentiation takes 

up to 40 days being very time consuming and costly and do not yet fully reach the level of PHHs. 

The most optimal balance between maturation status and time needed for differentiation should 

be characterized for drug screening purposes. To further improve maturity, hiPSC-HLCs can also 

be grown in a 3D structure either scaffold-free or within a scaffold such as Matrigel or hydrogel, 

combined with other cell types and the inclusion of microfluidics56,320–326. Despite, these efforts 

still did not lead to fully mature hepatocytes and needs further improvement. Currently, 

comparing hiPSC-HLC differentiation strategies and culture methods is difficult since there is no 

homogenization of standard readouts for the assessment of the maturation status, making it 

more difficult to pinpoint most essential culture modifications for HLC maturation. Therefore, 

besides development of improved methods of HLC maturation, current approaches should be 

properly compared using identical readouts and references and further characterized regarding 

their sensitivity and specificity for identifying DILI-inducing drugs. 

Often patients are exposed not only to one chemical or drug, but take multiple drugs and come 

into contact with a mixture of environmental toxicants which adds another layer of complexity 

for risk assessment327. Depending on exposure levels, frequency of exposure and route of 

administration, this may impact their sensitivity in the development of adverse events upon 

exposure to a single drug. Not only exposure to other substances, but also the presence of certain 
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diseases could influence the response towards drug exposures. Ideally, the influence of 

prerequisite presence of certain stress levels and stress response activation should be taken into 

account during drug safety testing and requires novel strategies for risk assessment. By 

systematically evaluating the response towards mixtures of certain chemical or drug classes with 

a specific mode-of-action in comparison with single exposures and combining with in silico 

approaches, the influence of multiple exposures and certain exposure levels on the liability for 

adverse event development can be predicted.  

To conclude, in this thesis the improved insight in the regulation of stress response pathways 

such as the unfolded protein response and the crosstalk between oxidative stress and DNA 

damage response will aid in understanding and prediction of DILI. Comparing different liver test 

systems to identify genotoxicants or stress response activation allows for well-considered 

selection of models fit-for-purpose in a tiered fashion for drug screening. Lastly, by mapping of 

the inter-individual variability of stress response activation upon chemical exposure allows for 

accurate definition of data-driven safety factors which can be used during risk assessment. 
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Abbreviations 

2D  two dimensional 

3D  three dimensional 

AAGLY amino-acid rich medium 

supplemented with 2% glycine 

AFB  aflatoxin B1 

AIC  Akaike information criterion 

ANOVA  analysis of variance 

AnV  annexin-V 

AOP  adverse outcome pathway 

ARE  anti-oxidant response element 

AARE  amino acid response element 

ATP  adenosine triphosphate 

ATCC  American Type Culture Collection 

AUC  area under the curve 

BAC  bacterial artificial chromosome 

BCA  bicinchoninic acid 

BIC  Bayesian information criterion 

BMC  benchmark concentration 

BRE  brequinar 

BSA  bovine serum albumin 

cDNA  complementary DANN 

CI  confidence interval 

CIS  cisplatin 

Cmax maximum serum drug concentration 

CPT  cisplatin 

CV  coefficient of variation 

DDR  DNA damage response 

DEG  differentially expressed genes 

DEM  diethyl maleate 

DILI  drug-induced liver injury 

DMSO  dimethyl sulfoxide 

DMEM  dulbecco’s modified eagle medium 

DSB  double stranded breaks 

EC50  half maximal effective concentration 

ECL  enhanced chemiluminescent 

ER  endoplasmic Reticulum 

ESRE  ER stress response element 

eGFP  enhanced green fluorescent protein 

FACS  Fluorescence-activated Cell Sorting 

FBS  fetal bovine serum 

FC  fold change 

FDR  false discovery rate 

G  glycosylated 

GEM  gemcitabine 

GEO  Gene Expression Omnibus 

GFP  green fluorescent protein 

GO  gene ontology 

GSEA  gene set enrichment analysis 

HCC  hepatocellular carcinoma 

HCI  high-content imaging 

HCS  high-content screening 

HDP  human diploid fibroblasts 

hiPSC  human induced pluripotent stem cell 

HLA  human leukocyte antigen 

HLC  hepatocyte-like cell 

IC50 half-maximal inhibitory 

concentration  

iDILI idiosyncratic DILI 

IPA  ingenuity pathway analysis 

KO  knock-out 

LDM  liver differentiation medium 

maxFC  maximal fold change 

MAQC microarray quality control 

MEF  mouse embryonic fibroblasts 

MIE  molecular initiation event 

MMC  mitomycin C 

MoA  mode-of-action 

mRNA  messenger RNA 

NAFLD  non-alcoholic fatty liver disease 

NAM  new approach method 

NES  normalized enrichment score 

NGRA  next generation risk assessment 

NS  not significant 

ODE  ordinary differential equation 

OECD Organisation for Economic Co-

operation and Development 

OSR / OX oxidative stress response 

padj  adjusted p-value 

PBS  phosphate-buffered saline 

PCA  principal component analysis 

PCR  polymerase chain reaction 

PDI  protein disulfide isomerases 

PHH  primary human hepatocyte 

PI  propidium iodide 

PPIase  prolyl peptidylcis–transisomerases 

PoD  point-of-departure 
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PVDF  polyvinylidene fluoride 

RIPA  radioimmunoprecipitation assay 

RNAi  RNA interference 

ROS  reactive oxygen species 

rpm  rounds per minute 

RPMI Roswell Park Memorial Institute 

RT  room temperature 

RT-qPCR  real time quantitative PCR 

SD  standard deviation 

SDS-page sodium dodecyl-sulfate 

polyacrylamide gel electrophoresis 

SE  standard error 

siRNA  small interfering RNA 

SNP  single nucleotide polymorphisms 

TBL  total bilirubin 

TBS  tris-buffered saline 

TCGA  The Cancer Genome Atlas 

TDVF  toxicodynamic variability factor 

TF  transcription factor 

TUN  tunicamycin 

UF  uncertainty factor 

UG  unglycosylated 

ULN  upper limit of the normal range 

UPR  unfolded protein response 

WGCNA weighted gene co-regulation 

network analysis 

WT  wildtype 
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Nederlandse samenvatting 

Het optreden van leverschade door geneesmiddelen is een belangrijke reden voor het uit de 

handel nemen van geneesmiddelen of het vroegtijdig beëindigen van verdere ontwikkeling van 

het geneesmiddel tijdens preklinische of klinische studies. Het ontstaan van leverschade kan in 

het ergste geval resulteren in het nodig hebben van een lever transplantatie door leverfalen of 

zelfs leiden tot de dood. Daarom is het zeer belangrijk om een accurate voorspelling van 

leverschade door geneesmiddelen te verkrijgen tijdens een vroeg stadium van de ontwikkeling 

van geneesmiddelen. Er zijn drie vormen van geneesmiddel-gemedieerde leverschade, namelijk 

direct, idiosyncratisch en indirect. De directe vorm is voorspelbaar, afhankelijk van de dosering 

en treedt vaak op kort na blootstelling. Idiosyncratische leverschade is niet doseringsafhankelijk, 

moeilijk te voorspellen en komt weinig voor (1 op de 100.000 patiënten). De derde vorm van 

leverschade, indirect, is onlangs toegevoegd als nieuwe categorie waarbij verergering van al 

bestaande leverziekte een rol speelt. Aangezien het alleen bij een klein aantal patiënten 

voorkomt en moeilijk te voorspellen is in preklinische en klinische studies, is het van groot belang 

om in kaart te brengen waarom bepaalde patiënten gevoeliger zijn voor de ontwikkeling van 

geneesmiddel-gemedieerde leverschade. 

De lever bestaat voor een groot deel uit hepatocyten, maar ook stellaatcellen, Kupffer cellen en 

leversinusoïdale endotheelcellen zijn aanwezig. Hepatocyten zijn verantwoordelijk voor de 

stofwisseling, aanmaak van gal en het omzetten en onschadelijk maken van giftige stoffen. Echter 

blootstelling aan deze stoffen, zoals bepaalde geneesmiddelen en hun metabolieten, kunnen een 

bepaalde mate van stress veroorzaken in hepatocyten. Om dit weg te vangen hebben cellen 

specifieke adaptatie-mechanismes door middel van de activatie van specifieke stress responsen, 

zoals de NRF2 gereguleerde oxidatieve stress respons, endoplasmatisch reticulum (ER) stress 

respons gemedieerd door activatie van drie sensoren (ATF6, PERK en IRE1), p53 gereguleerde 

DNA schade respons en de immuun respons via NF-κB signaleringscascade. Echter wanneer het 

stress niveau te hoog is of te lang duurt, zal er een omschakeling plaatsvinden naar het initiëren 

van celdood. De activering van deze stress responsen tijdens blootstelling aan geneesmiddelen 

is ook één van de vroege stappen dat kan leiden tot leverschade. Daarom kan het volgen en 

kwantificeren van de activering van deze responsen tot een betere voorspelling van leverschade 

leiden.  

Voor het kunnen volgen van deze stress responsen tijdens blootstellingen, zijn er eiwitten 

specifiek voor iedere respons voorzien van een fluorescent eiwit in leverkanker HepG2 cellen. 

Zodoende kan een stress respons reporter panel worden gecreëerd om activering van toxische 

responsen te meten. Door te combineren met confocale microscopie, kan het fluorescentie 

niveau in cellen bepaald worden, hetgeen indicatief is voor stress respons activatie. Ook kan er 

op transciptoom niveau gekeken worden naar activatie van specifieke biologische processen 

door middel van TempO-seq analyse, een gerichte RNA-sequencing techniek die high throughput 
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screening van toxische responsen veroorzaakt door kandidaat geneesmiddelen mogelijk maakt. 

Wanneer dit wordt gecombineerd met de blokkering van de expressie van bepaalde genen door 

middel van RNA interferentie, kan er specifiek worden gekeken naar de rol van die individuele 

genen in stress respons activatie. In dit proefschrift hebben we de regulatie van deze stress 

responsen bestudeerd gebruikmakend van deze technieken. Ook hebben we in kaart gebracht 

wat de variabiliteit is in activatie van deze stress responsen binnen de humane populatie. Dit zal 

bijdragen aan het verkrijgen van meer inzicht en verbeteren van de voorspelling van 

geneesmiddel-gemedieerde leverschade.  

Ten eerste wordt er in hoofdstuk 2 een overzicht gegeven van het bouwen van de stress respons 

HepG2 reporter panel en het gebruik daarvan voor het screenen van geneesmiddelen voor een 

betere voorspelling van de ontwikkeling van leverschade. De verschillende stappen voor het 

maken en gebruik van deze reporters worden uitgelegd: selecteren van stress respons genen, 

maken van DNA constructen waarin de sequentie van het fluorescent eiwit is ingebouwd aan het 

eind of start van het eiwit-coderend gedeelte van het stress respons gen, transfectie van het DNA 

construct in de HepG2 cellen, selectie, validatie, beschrijving van analyse methodes en 

gebruiksdoeleinden. 

De verschillende stress respons processen kunnen ook mogelijk elkaar beïnvloeden tijdens 

blootstellingen en daarmee verschil geven in gevoeligheid voor het ontwikkelen van leverschade. 

Daarom is het van belang om dit beter in kaart te brengen. In hoofdstuk 3, bekijken we het 

samenspel tussen de oxidatieve stress en DNA schade respons gebruikmakend van de HepG2 

reporters in combinatie met confocale microscopie. Concentratie afhankelijke activatie 

dynamiek voor beide stress responsen werd gekarakteriseerd na blootstelling met zowel 

oxidatieve stress (diethyl maleaat) en DNA schade respons (etoposide) inducerende stoffen. 

Hierbij gaf blootstelling aan etoposide ook activatie van SRXN1, een target gen van transcriptie 

factor NRF2 binnen de oxidatieve stress respons, indicatief voor een mogelijke crosstalk tussen 

de twee responsen. Inderdaad, inhibitie van KEAP1, een sensor en remmer van de oxidatieve 

stress respons, leidde tot verhoogde activatie van de DNA schade respons al bij lagere 

concentraties van etoposide. Verdere gen inhibitie studies door middel van RNA interferentie gaf 

meer inzicht in hoe KEAP1 de DNA schade respons kon beïnvloeden. 

Naast de keuze van de te meten eindpunten voor het maken van een accurate voorspelling van 

leverschade, is de keuze van het test systeem ook van belang. Het kweken van HepG2 cellen in 

3D als spheroids in een Matrigel matrix zorgt ervoor dat ze niet meer gaan delen waardoor ze 

ook geschikt worden voor langere blootstellingen. Ook zien we een verhoogd expressie van 

hepatocyte markers en zijn ze meer metabool actief waardoor ook metaboliet-specifieke 

effecten kunnen worden opgepikt ten opzichte van 2D. Verder heeft ook het medium waarin de 

cellen gekweekt worden invloed op de differentiatie status van de cellen en kan dit een effect 

hebben op de gevoeligheid voor het oppikken van geneesmiddelen die leverschade veroorzaken. 
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In hoofdstuk 4 hebben we daarom de invloed bekeken van de kweekmethode van de HepG2 

DNA schade reporters op het identificeren van genotoxische stoffen. Reporter cellen werden 

gekweekt in 2D of 3D in combinatie met standaard medium of medium waarbij een hoge 

hoeveelheid aminozuren werden toegevoegd (AAGLY). Dit AAGLY medium zorgt voor verdere 

differentiatie en expressie van CYP enzymen door middel van het veranderen van het 

metabolisch profiel en zorgt ook voor een proliferatie stop. De gebruikte kweekmethodes 

hadden sterke invloed op de gevoeligheid voor het oppikken van deze stoffen, waarbij voor 

sommige stoffen proliferatie en andere stoffen die afhankelijk zijn van metaboliet formatie voor 

toxische effecten een betere differentiatie status nodig was. 

Activatie van de ER stress respons speelt ook een belangrijke rol in de ontwikkeling van 

leverschade bij sommige stoffen. In de omschakeling van adaptieve naar celdood signalering 

tijdens blootstellingen, speelt de transcriptie factor CHOP een grote rol. Daarom is het van belang 

om meer inzicht te krijgen in de regulatie van CHOP tijdens ER stress. In hoofdstuk 5 combineren 

we computationeel modelleren en confocale microscopie van HepG2 ER stress reporters na 

blootstelling aan tunicamycin, een ER stress-inducerende stof. Na het construeren van een model 

van de ER stress respons werd duidelijk dat met name ATF6, een transcriptie factor en een sensor 

van de ER stress respons, invloed had op de initiële activatie dynamiek van CHOP. Dit was verder 

gevalideerd door middel van inhibitie van gen expressie van ATF6 middels RNA interferentie, wat 

voornamelijk een sterke verlaging van CHOP gaf in de initiële fase van activatie. Hieruit blijkt de 

cruciale rol van ATF6 in CHOP regulatie tijdens ER stress. 

Om meer inzicht te krijgen in de regulatie van CHOP en ER stress, laten we in hoofdstuk 6 zien 

dat we door middel van een grootschalige RNA interferentie screen van 3,457 genen in HepG2 

CHOP reporter cellen nieuwe regulators van de ER stress respons kunnen identificeren. Na het 

inhiberen van de expressie van individuele genen en blootstelling met tunicamycin, kwantificeren 

we de CHOP expressie met confocale microscopie in HepG2 CHOP reporter cellen. Na een 

validatie screen, konden we 74 genen identificeren waarvan 18 genen mogelijke negatieve en 56 

genen mogelijke positieve regulators waren van CHOP. De invloed van deze 74 genen op andere 

componenten van de ER stress respons (ATF4, XBP1 en BIP) werd geïdentificeerd en getest met 

andere ER stress-inducerende stoffen (thapsigargin en omeprazole). Transcriptoom perturbaties 

na inhibitie van een selectie van 10 genen in HepG2 en primaire humane hepatocyten (PHHs) na 

blootstelling aan tunicamycin werd bekeken. Hieruit bleek dat de transcriptie factor, EMX1, een 

sterke invloed had op meerdere ER stress signaleringscascades in zowel HepG2 als PHHs. Het 

volledig in kaart brengen van de regulatie van ER stress signalering kan bijdragen aan een betere 

voorspelling van leverschade. 

Op het moment zijn PHHs nog steeds de gouden standaard voor het testen van geneesmiddelen 

voor levertoxiciteit in de preklinische fase van de ontwikkeling. Echter is er een beperkte 

beschikbaarheid aan PHHs, dedifferentiëren ze snel en moet er rekening worden gehouden met 
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inter-donor variabiliteit. Een nieuwe bron van hepatocyten zijn humane geïnduceerde 

pluripotente stamcellen (hiPSCs) gedifferentieerd naar hepatocyte-achtige cellen (HLCs). Echter 

is er verdere karakterisering nodig voor het gebruik als test systeem voor hepatotoxiciteit 

screening. In hoofdstuk 7 vergelijken we het verschil in stress respons activatie van hiPSC-HLCs 

met andere in vitro lever modellen (PHHs en HepG2) door middel van transcriptoom analyse na 

blootstelling aan stress respons-inducerende stoffen. HLCs bleken heel gevoelig te zijn voor 

oxidatieve stress en immuun respons inductie vergeleken met PHHs. De ER stress respons was 

het sterkst geïnduceerd in PHHs. Voor de DNA schade respons waren zowel HepG2 als hiPSC 

cellen het meest gevoelig mede door de proliferatie capaciteit van deze cellen. 

Voor het verder verbeteren van de voorspelling van leverschade door geneesmiddelen, is het 

cruciaal om inzicht te hebben in de variabiliteit tussen verschillende patiënten. Hiervoor hebben 

we in hoofdstuk 8 gekeken naar de variabiliteit van stress respons activatie in vijftig verschillende 

PHHs van verschillende patiënten na blootstelling aan specifieke stress-inducerende stoffen in 

een brede concentratie reeks. Concentratie-respons modellering maakt het mogelijk om 

benchmark concentraties te bepalen en de gevoeligheid tussen de verschillende PHHs te 

vergelijken waar tot aan ~850-maal verschil geobserveerd was. Humane populatie modellering 

onthulde dat het gebruiken van een kleine PHH panel tijdens geneesmiddelen screening sterk de 

variabiliteit onderschat en de waarschijnlijkheid om de juiste human populatie variabiliteit te 

schatten klein is. Op dit moment wordt er standaard een veiligheidsfactor van 101/2 gebruikt voor 

het corrigeren voor de variabiliteit van toxicodynamiek binnen de humane populatie. Echter op 

basis van deze data is deze standaardfactor niet genoeg en in sommige gevallen zelfs twee keer 

te laag. Daarom is het van groot belang om op data gebaseerde veiligheidsfactoren te gebruiken 

voor het corrigeren voor variabiliteit tussen patiënten. 

In het kort, in dit proefschrift is een verbeterde inzicht in de regulatie van stress respons 

signaleringscascades verkregen tijdens blootstellingen aan stress-inducerende stoffen. Dit zal 

bijdragen aan het beter begrijpen en voorspellen van geneesmiddel-gemedieerde leverschade. 

Door het vergelijken van verschillende lever in vitro modellen in stress respons activatie kan er 

een betere keuze worden gemaakt in de selectie van geschikte lever in vitro modellen voor een 

bepaalde vraagstelling. Op basis hiervan kan een integrale aanpak worden opgesteld voor het 

screenen van geneesmiddelen op potentie van ontwikkeling van leverschade. Door de 

variabiliteit in kaart te brengen van stress response activatie tussen patiënten kan op een 

nauwkeurige manier worden gecorrigeerd voor de uiteindelijke risicobeoordeling van 

geneesmiddelen.  
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