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Abstract

Background and Objectives: Accurate predictions of haemoglobin (Hb) deferral for

whole-blood donors could aid blood banks in reducing deferral rates and increasing

efficiency and donor motivation. Complex models are needed to make accurate pre-

dictions, but predictions must also be explainable. Before the implementation of a

prediction model, its impact on the blood supply should be estimated to avoid

shortages.

Materials and Methods: Donation visits between October 2017 and December

2021 were selected from Sanquin’s database system. The following variables were

available for each visit: donor sex, age, donation start time, month, number of dona-

tions in the last 24 months, most recent ferritin level, days since last ferritin measure-

ment, Hb at nth previous visit (n between 1 and 5), days since the nth previous visit.

Outcome Hb deferral has two classes: deferred and not deferred. Support vector

machines were used as prediction models, and SHapley Additive exPlanations values

were used to quantify the contribution of each variable to the model predictions.

Performance was assessed using precision and recall. The potential impact on blood

supply was estimated by predicting deferral at earlier or later donation dates.

Results: We present a model that predicts Hb deferral in an explainable way. If used

in practice, 64% of non-deferred donors would be invited on or before their original

donation date, while 80% of deferred donors would be invited later.

Conclusion: By using this model to invite donors, the number of blood bank visits

would increase by 15%, while deferral rates would decrease by 60% (currently 3%

for women and 1% for men).
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Highlights
• Support vector machines can provide explainable haemoglobin (Hb) deferral predictions that

are biologically sensible.
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• Using prediction models to guide donor invitations may increase blood bank visits and

decrease donor deferral rates.

• Including a greater number of previous Hb measurements from the same donor increases

prediction accuracy.

INTRODUCTION

Sanquin, the Dutch national blood service, collects over 400,000

whole-blood donations from non-remunerated, voluntary blood

donors every year. Women may donate a maximum of three times

per year, and men five times. Haemoglobin levels are tested before

every donation to prevent blood collection from donors with insuffi-

cient iron. The minimum haemoglobin level for blood donation is

7.8 mmol/L for women and 8.4 mmol/L for men; if the capillary Hb-

test (HemoCue) shows a lower value, the donor is deferred for

3 months, that is, sent home without donating blood. If the haemo-

globin value is more than 0.5 mmol/L below the donation threshold,

the donor is referred to a donor physician. Additionally, since

October 2017, ferritin levels have been measured in each new

donor, as well as after every fifth donation in repeat donors. Donors

are deferred for 6 months if their ferritin level is between 15 and

30 ng/ml, or for 12 months if their ferritin level is below

15 ng/ml. This ferritin deferral policy was implemented because

haemoglobin is a poor indicator of iron stores, as iron deficient

donors can still present with sufficient haemoglobin levels until the

iron deficiency is very severe.

While it is important to defer donors that do not meet donation

requirements, sending donors home without giving them the oppor-

tunity to donate is discouraging and costly. Previous studies have

shown that donors are less likely to return to the blood bank after a

deferral for low haemoglobin than after a successful donation, espe-

cially if it concerns their first blood bank visit [1]. This is less likely

after deferral for low ferritin levels, which occurs by letter after the

donation, indicating that post-donation deferral is less demotivating

for donors than on-site deferral [2]. The implementation of ferritin

testing has had a considerable impact on the blood supply, as a large

part of the existing donor population (53% of women and 42% of

men) were found to have ferritin levels below 30 ng/ml and had to

be deferred [3]. However, this has had the intended positive impact

on donor deferral rates due to low haemoglobin, which decreased

from 8% for women and 3% for men in 2016 to 3% for women and

1% for men in 2021 [4].

Although percentage-wise, haemoglobin deferral rates are quite

low in the Netherlands, they still amount to about 8000 deferrals each

year, and there is a risk of permanently losing these donors. To reduce

deferral rates and improve donor motivation, we should re-think hae-

moglobin deferral policies. One tool that can be used for this purpose

is a haemoglobin deferral prediction model. Many of these prediction

models have already been developed, including models that predict

personalized donation intervals [5–7]. Prediction models can be used

in the donor invitation process by predicting haemoglobin deferral for

eligible donors and only inviting those donors that are predicted to

not be deferred. Because deferred donors are only a small proportion

of the total donor population, it has proven difficult to accurately

identify them, and hence prediction models are not used in

practice yet.

We present a novel machine learning haemoglobin deferral pre-

diction model based on donor characteristics and donation history.

New in our approach is that we use SHapley Additive exPlanations [8]

to explain how the model uses the variables in its predictions and

relate these explanations to known physiological processes. This gives

valuable insight into the associations that are learned by the model; if

prediction models are to be used to make decisions in practice, the

user must understand how the model makes these decisions. More-

over, we show the potential impact that prediction models can have

on the total blood supply, if these are to be used to guide donor invi-

tations, by calculating deferral probabilities at multiple time points for

each donor. By both explaining the predictions and assessing the

impact of the model on the blood supply, we remove two important

limitations that currently prevent blood services from implementing

prediction models.

METHODS

Data used

Data on blood bank visits by whole-blood donors were extracted from

Sanquin’s database system eProgesa, for donations. Only data from

donors who explicitly provided informed consent for the use of their

data for scientific research were used. This consent is given by more

than 99% of all donors. For each visit, the following information was

collected: donor sex, donor age, donation date, donation (registration)

time, haemoglobin level and ferritin level. Ferritin is measured at every

new donor intake and upon every fifth donation in repeat donors.

Therefore, ferritin levels are unavailable for most donations. By using

these data, predictor variables were calculated for each visit, as

described in Table 1.

In total, 938,710 blood bank visits (excluding new donor intakes

and donation types other than whole blood) by 241,131 unique

donors were registered between October 2017 and December 2021.

After excluding visits for which no previous ferritin measurement was

available, 458,615 blood bank visits by 157,423 unique donors

remained for the analysis.

The outcome variable ‘HbOK’ is dichotomous; deferral (Hb level

below the eligibility threshold for donation) or non-deferral (Hb equal

to or above the threshold).

EXPLAINABLE HAEMOGLOBIN DEFERRAL PREDICTIONS 1263
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Analyses

Support vector machines (SVMs) [9] are used to predict haemoglo-

bin deferral. SVMs are supervised machine learning models that

find the optimal hyperplane separating the outcome classes based

on the predictor variables of a so-called training set. After fitting

the model on the training set, the model can predict the outcome

class of unseen observations called the test set. It also gives the

probability of an observation belonging to each outcome class. We

chose SVMs as a classification algorithm because all predictor vari-

ables are numeric, and it is computationally less expensive than,

for instance, K-nearest neighbours or (dynamic) linear mixed

models.

For each sex, five SVMs were trained, named SVM-n for

n between one and five, indicating the number of previous blood

bank visits (HbPrevn and DaysSinceHbn) used as predictor variables.

Donors are only included in SVM-n if they have at least n previous

visits; therefore, sample sizes decrease from SVM-1 to SVM-5.

Blood bank visits before 2021 were used as the training set, while

visits in 2021 were used as the test set to validate performance on

unseen data. This division was chosen over a random training/test

division because if these models were used in practice, they would

be trained on all historical data and applied to future data. We used

a paired t-test to assess the difference in deferral rates between

training and test sets of donors of the same sex with the same num-

ber of previous donations. To assess the generalizability of the

model to new donors, we did a separate experiment in which the

test set is comprised of the last blood bank visit of 20% of all unique

donors, and the training set includes all donations from the remain-

ing 80% of donors.

For each of the 10 models, that is, SVM-1 through SVM-5 for

both sexes, hyperparameters were optimized separately, using strati-

fied (on the outcome variable) five-fold cross-validation within the

training set data (and thus not using the test data). Hyperparameters

were optimized using grid search, using balanced accuracy as a scoring

method, defined as the weighted average of recall in both classes (see

Table 2 for the definition of recall). This method is especially suitable

for imbalanced datasets because it uses class-balanced sample

weights to determine the average recall.

Precision and recall were determined and compared for training

and test datasets for each model. Both metrics are calculated for both

outcome classes. A practical interpretation of these metrics is given in

Table 2.

To explain the model predictions, we used SHapley Additive

exPlanations (SHAP) values, a model agnostic explainer. SHAP

values show the contribution of each variable to the prediction for

each individual observation, which is even more informative than

coefficients returned by, for example, linear models. By summariz-

ing observation-based contributions, we obtain variable impor-

tance measures for a model that does not have interpretable

coefficients.

Potential impact on the blood supply

We assessed the potential impact of using SVMs to guide donor

invitations by predicting deferral for all blood bank visits that took

place in 2021 (the test set). For each observation, we used informa-

tion of all previous blood bank visits (up to five) available as predic-

tor variables. This means that SVM-1 is used when only one

previous visit is available, SVM-2 if there are two previous

visits, etc.

If prediction models are to be used in practice, they should esti-

mate the deferral probability for different days in the future and invite

a donor for the first occurrence where the non-deferral probability

would exceed a preset value. To simulate this, we predicted haemo-

globin deferral each week from 1 year before the original donation

date to 1 year after, by adjusting all time-related variables. If the

T AB L E 2 Interpretation of performance metrics

Metric Outcome class Definition

Precision Deferral The proportion of donations correctly

classified as deferrals by the model,

out of all donations classified as

deferrals.

Recall Deferral The proportion of donations correctly

classified as deferrals by the model,

out of all donations classified as true

deferrals.

Precision Non-deferral The proportion of true non-deferrals, out

of all predicted non-deferrals.

Recall Non-deferral The proportion of predicted non-

deferrals, out of all true non-deferrals.

T AB L E 1 Predictor variables

Variable Unit or values Description

Sex {male, female} Biological sex of the donor; separate

models are trained for men and

women

Age years Donor age at time of donation

Time hours Registration time when the donor

arrived at the blood bank

Month {1–12} Month of the year that the visit took

place

NumDon count Number of successful (collected

volume >250 ml) whole-blood

donations in the last 24 months

FerritinPrev ng/ml Most recent ferritin level measured in

this donor

DaysSinceFer days Time since this donor’s last ferritin
measurement

HbPrevn mmol/L Haemoglobin level at n th previous

visit, for n between 1 and 5

DaysSinceHbn days Time since related Hb measurement

at n th previous visit, for n between

1 and 5

1264 VINKENOOG ET AL.
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predicted donation interval were to be less than the minimum dona-

tion interval (57 days for men, 122 days for women), the latter would

be applied.

We compare all original donation intervals with the donation

intervals as proposed by the model. Dividing the sum of the original

donation intervals by the sum of the model-guided donation intervals

T AB L E 3 Size of training and test datasets per model

Training Test

Model Women Men Women Men

SVM-1 128,173 (4084; 3.19%) 121,746 (1339; 1.10%) 110,372 (3696; 3.35%) 98,324 (1074; 1.09%)

SVM-2 83,532 (2884; 3.45%) 96,441 (1133; 1.17%)) 85,131 (3065; 3.60%) 84,000 (984; 1.17%)

SVM-3 59,720 (2032; 3.40%) 79,690 (997; 1.25%) 67,167 (2451; 3.65%) 72,576 (902; 1.24%)

SVM-4 47,317 (1494; 3.16%) 67,934 (887; 1.31%) 54,090 (1874; 3.46%) 63,447 (806; 1.27%)

SVM-5 40,604 (1113; 2.74%) 59,611 (768; 1.29%) 45,208 (1378; 3.05%) 55,582 (699; 1.26%)

Note: The number and percentage of deferrals is given in brackets.

T AB L E 4 Marginal distributions of predictor variables, represented by median and interquartile range

Women

Variable ≥1 previous visit ≥2 previous visits ≥3 previous visits ≥4 previous visits ≥5 previous visits

Age 30 (23–47) 32 (24–48) 34 (25–50) 35 (26–51) 36 (37–52)

NumDon 1 (0–3) 2 (1–3) 3 (2–4) 3 (2–4) 3 (3–4)

FerritinPrev 47 (33–74) 46 (33–70) 44 (32–65) 41 (31–59) 39 (29–55)

DaysSinceFer 237 (125–420) 329 (197–497) 383 (260–547) 400 (230–572) 372 (204–567)

HbPrev1 8.5 (8.1–8.9) 8.5 (8.1–8.9) 8.5 (8.1–8.9) 8.5 (8.1–8.9) 8.5 (8.1–8.9)

DaysSincePrev1 135 (105–196) 154 (132–211) 158 (132–217) 167 (133–224) 173 (133–236)

HbPrev2 8.5 (8.1–8.9) 8.5 (8.1–8.9) 8.5 (8.1–8.8) 8.5 (8.1–8.8)

DaysSincePrev2 302 (255–412) 328 (271–445) 336 (273–468) 349 (280–493)

HbPrev3 8.5 (8.1–8.8) 8.4 (8.1–8.8) 8.4 (8.1–8.8)

DaysSincePrev3 482 (398–644) 511 (420–674) 528 (430–696)

HbPrev4 8.4 (8.1–8.8) 8.4 (8.1–8.8)

DaysSincePrev4 674 (553–871) 709 (581–904)

HbPrev5 8.4 (8.1–8.8)

DaysSincePrev5 877 (721–1107)

Men

Variable ≥1 previous visit ≥2 previous visits ≥3 previous visits ≥4 previous visits ≥5 previous visits

Age 34 (26–48) 35 (27–49) 36 (27–50) 37 (28–51) 38 (28–51)

NumDon 3 (1–5) 4 (2–5) 4 (3–6) 5 (3–6) 5 (4–6)

FerritinPrev 77 (44–141) 66 (40–126) 57 (38–108) 52 (36–89) 47 (35–73)

DaysSinceFer 200 (100–335) 232 (151–365) 257 (177–378) 271 (186–385) 267 (173–387)

HbPrev1 9.4 (9.0–9.9) 9.4 (9.0–9.9) 9.4 (9.0–9.8) 9.4 (8.9–9.8) 9.4 (8.9–9.8)

DaysSincePrev1 81 (63–133) 90 (67–147) 92 (69–160) 98 (70–168) 105 (70–176)

HbPrev2 9.4 (9.0–9.8) 9.4 (9.0–9.8) 9.4 (8.9–9.8) 9.4 (8.9–9.8)

DaysSincePrev2 185 (128–287) 196 (147–302) 210 (153–315) 219 (158–330)

HbPrev3 9.4 (9.0–9.8) 9.4 (9.0–9.8) 9.4 (8.9–9.8)

DaysSincePrev3 302 (225–441) 322 (238–463) 335 (245–485)

HbPrev4 9.4 (8.9–9.8) 9.4 (8.9–9.8)

DaysSincePrev4 424 (315–600) 444 (330–620)

HbPrev5 9.4 (8.9–9.8)

DaysSincePrev5 552 (416–752)

EXPLAINABLE HAEMOGLOBIN DEFERRAL PREDICTIONS 1265
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gives the relative change in blood bank visits per time unit and hence

the relative yield of blood donations.

Software

All analyses were performed in Python 3.9, using modules numpy [10]

and pandas [11] for data processing, sklearn [12] for model training

and predictions, shap [8] for calculating SHAP values, and matplotlib

[13] for creating graphs. The analysis code is available as a GitHub

repository and indexed on Zenodo with https://doi.org/10.5281/

zenodo.6938112.

RESULTS

Table 3 shows the sample sizes of training and test datasets for each

model. Deferral rates in the training datasets are 3.19% (SD 0.28) for

women and 1.22% (SD 0.09) for men; in the test sets, they are 3.42%

(SD 0.24) for women and 1.21% (SD 0.08) for men. Using a paired t-

test, the difference in deferral rate between the training and test data-

sets is significant for women (p = 0.002) but not for men (p = 0.070).

No correction was made for the differing deferral rates, as the models

are intended for future predictions, and in practice, the deferral rate

of future blood bank visits is unknown. Also, a change in deferral rate

should be correctly predicted by the model if the mechanism causing

this change can be learned from the data. Deferral rates differ

between models due to small differences in the data between subsets

of the data (see Table 4). This is not a problem as long as the same

associations between predictor variables and outcome are found in all

subsets of the data, which is described in the feature importance part

of the results.

Although the training datasets consist of 3 years of data, and the

test datasets of only 1 year, their sizes are similar and sometimes the

test dataset is even larger. This is because donations are only included

from donors for whom at least one ferritin measurement was avail-

able. As ferritin screening was implemented using a stepped wedge

approach (the first blood bank locations started in October 2017, but

only in November 2019 all locations were included), the number of

donors that could be included in the training dataset was limited [4].

F I GU R E 1 Performance metrics for all models (left: Women, right: Men). (a): Precision of class non-deferral; the proportion of successful
donations among all predicted non-deferrals. The complement of the precision is the deferral rate, should the model be used to guide invitations.
(b): Recall of class non-deferral; the proportion of successful donations that are predicted correctly. The complement of the recall is the
proportion of missed donations, should the model be used to guide invitations. Note that the y-axes in are zoomed in to highlight the differences
between various models

1266 VINKENOOG ET AL.
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Marginal distributions of predictor variables are described in Table 4.

As the number of previous donations increases, the median age increases

from 30 to 36 years for women and from 34 to 38 for men. The median

values of the last ferritin measurement decreased from 47 ng/ml in

SVM-1 to 39 ng/ml in SVM-5 for women and from 77 to 47 ng/ml for

men. The median time between consecutive donations increases from

SVM-1 to SVM-5, while previous haemoglobin levels are consistent

across models, as well as different numbers of previous visits.

Accuracy and model fit

Figure 1 compares precision and recall for class non-deferral across

all models. Performance on the training and test sets are similar,

indicating that the models are well-fitted. Both precision and recall

increase as more previous blood bank visits are used to make predic-

tions. Re-running all models only on donors with at least five previ-

ous blood bank visits did not change this observed increase in

performance. The models handle the difference between the pro-

portions of deferral in the training and test set very well: comparing

the observed difference in deferral proportion in the training and

test set to the predicted difference, the mean difference of these

differences is only 0.05 percentage points (maximum: 0.12 percent-

age points). This indicates that the models are robust against (mod-

est) changes in deferral rates.

Performance on a test set of unseen donors

Precision and recall for both outcome classes are similar for the differ-

ent types of splits in training and test set. Table 5 shows the compari-

son in performance between the time split and the random split, as

described in the methods section. Metrics are shown for SVM-5; the

differences are smaller for all other models. For women, the random

split has a higher precision and recall than the time split. For men, this

is the other way around. For both sexes, the differences are minimal.

Feature importance and explanation of predictions

SHAP values were computed based on a random subset of 100 dona-

tions in the test set. Figure 2 shows the SHAP summary plot for the

F I GU R E 2 SHAP summary plots for predictions made by SVM-5, on 100 random donations from the test set. Each point represents one
single observed donation. The location on the x-axis indicates the contribution of the predictor variable on the prediction (positive value:
Indicative class non-deferral, negative: Indicative of class deferral) while the colour of the point indicates the relative value of the feature in that
observation. The features on the y-axis are ordered by their relative importance, measured as the mean absolute SHAP value

T AB L E 5 Precision and recall for outcome class non-deferral,
compared between two different training/test splits

Sex Metric Time split Random split Difference

Female Precision 0.991 0.994 �0.003

Recall 0.698 0.701 �0.003

Male Precision 0.997 0.996 +0.001

Recall 0.804 0.791 +0.013

Note: Results are shown for the test set of SVM-5. For the time split, the

test set consists of donors whose previous donations are present in the

training set. For the random split, the test set consists of unseen donors.

EXPLAINABLE HAEMOGLOBIN DEFERRAL PREDICTIONS 1267
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SVM-5 models, the summary plots for the other eight models are

included in Figure S1.

For all models, the most important predictor variable is the previ-

ous haemoglobin measurement (HbPrev1), and in general, more

recent measurements are more important than earlier ones. The time

since the previous haemoglobin measurements also ranks high on fea-

ture importance, but their chronological order is less well-preserved

than the HbPrev variables.

The association between the feature value and impact on the pre-

diction is as expected for most variables. For haemoglobin

measurements, higher values are associated with predicted non-defer-

ral. For DaysSinceHb, longer times since the previous haemoglobin

measurement are indicative of predicted non-deferral. However, Day-

sSinceHb4 shows the opposite association, meaning that when the

fourth previous measurement was long ago, the chance of predicted

non-deferral becomes lower, while higher would be expected.

Variable NumDon has the expected impact on prediction in all

models but SVM-5 for female donors; in all other models, a higher

number of recent donations shifts the prediction towards deferral. In

most models, the number of donations is a more important predictor

F I GU R E 3 Cumulative distribution of the timing of donor invitations on basis of first predicted positive Hb level relative to the original
donation date

1268 VINKENOOG ET AL.
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for men than for women, and it is always less important than all

HbPrev variables.

The variable FerritinPrev shows the same association with the

prediction as HbPrev variables: higher ferritin levels are associated

with predicted non-deferral. Ferritin is a more important predictor for

men than for women. For both sexes, the time since the previous fer-

ritin measurement is more important than the actual ferritin level, and

a higher value for DaysSinceFer makes predicted deferral more likely.

We know that for women, higher age makes deferral less likely

(due to menopause), and the SHAP values confirm this relation. For

men, age is one of the least important predictors, and there is no clear

direction of the relation. The month of donation is of medium impor-

tance for both sexes, with predicted deferral being more likely earlier

in the year. This captures the seasonal effect of temperature on hae-

moglobin as measured by the HemoCue. Donating earlier in the day

(i.e., a lower value for variable time) increases the likelihood of pre-

dicted non-deferral, which is supported by previous research showing

that haemoglobin levels are highest in the morning and decrease

throughout the day [14].

Impact on blood supply

Figure 3 shows the cumulative count of donors as invited by the

models relative to their original donation date. Once the model pre-

dicts non-deferral, it never predicts deferral at a later date. Of non-

deferred donors, 50% would be invited more than 2 weeks earlier by

the model, and 26% within 2 weeks from around the original donation

date. Only 5% would not be invited within a year, causing a successful

donation to be missed. Of deferred donors, only 13% would be invited

earlier, while 40% would be invited over 3 months later. 28% would

not be invited within 1 year. The majority of donors would be invited

around their original donation date. For many donors, the original

donation date was shortly after the minimum donation interval had

passed, and as such, there was no room to invite them earlier.

Because the true haemoglobin level of donors on days other than

their original donation date is unknown, we must make assumptions

about the accuracy of the predictions in order to calculate a hypothet-

ical number of donations and deferrals. In the most optimistic sce-

nario, all donors who were not deferred on their original donation

date would also not be deferred if they were invited earlier; and all

donors who were deferred on their original donation date but are

invited later by the model would not be deferred by then. In that sce-

nario, only 5% of successful donations would be lost because the

model would (incorrectly) not invite those donors, while the deferral

rate would decrease by 60% (from 3% to 1% for women and from 1%

to 0.4% for men).

We estimate the impact on the blood supply by comparing the

length of the original donation interval to the donation interval as sug-

gested by the model. For women (men), the median time between

two donations decreases from 157 to 127 (92 to 63) days using the

prediction model. Therefore, the total number of blood bank visits per

time unit would increase by a maximum of 15%. This assumes that all

donors who responded to the original invitation would also respond

to the invitation if it would be sent at an earlier or later date. We also

assume that all donors visit the blood bank within 1 week of the invi-

tation. With the original invitations, 15% of donors that responded to

the invitation visited the blood bank within 8 days, so the 15%

increase in visits is likely to be a small overestimation. These assump-

tions may not hold for mobile donation sites but are reasonable for all

regular donation sites, where 95.3% of all visits in our data occurred.

DISCUSSION

This study presents an explainable machine learning approach to pre-

dict haemoglobin deferral in whole-blood donors using the informa-

tion on previous donations and various donor characteristics. We

show that we can prevent up to 60% of on-site low haemoglobin

deferrals using the model to guide donor invitations.

To our knowledge, this is the first model using machine learning

for explainable haemoglobin deferral prediction. An explainable model

outcome is crucial for prediction models that are to be used in the

context of a decision-support system concerning humans. SHAP

values show that our models are able to learn biologically sensible

associations. They support findings from other prediction models that

found the previous haemoglobin value to be the best predictor for

future deferral. We add to this by showing that including more previ-

ous donations will improve these predictions.

Although most associations found by SHAP values can be

explained biologically, some seem to be caused by organizational poli-

cies. Higher values for DaysSinceFer are associated with predicted

deferral; the opposite association is found for DaysSinceHb variables.

For donors with fewer than five donations since the start of ferritin

testing, the only ferritin measurement is the one taken at their new

donor intake, and therefore the time since that previous ferritin mea-

surement is equal to the time since their new donor intake. It is known

that deferral becomes more likely once a donor has been donating for

a longer period of time.

The precision of class deferral is low, meaning that the predicted

deferral is wrong for a substantial proportion of donors. However, by

predicting deferral for different timepoints, we see a clear difference

between deferred and non-deferred donors: non-deferred donors are

in many cases invited earlier than their original donation date by the

model, while deferred donors are mostly invited later or not at all,

thereby reducing the deferral rate. In non-deferred donors, the

median donation interval becomes shorter if invitations were guided

by the model, and thus the number of blood bank visits per time unit

would increase.

We can only calculate the accuracy of deferral predictions on the

original donation date, as haemoglobin levels on other days are

unknown. As haemoglobin levels slowly increase after a donation, non-

deferred donors would also not be deferred if they were invited later. If

they are invited earlier, we cannot know if their haemoglobin level is

already above the deferral threshold. The same applies to deferred

donors that are invited later by the model – it is plausible that their

EXPLAINABLE HAEMOGLOBIN DEFERRAL PREDICTIONS 1269
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haemoglobin levels are above the threshold then, but not certain. Based

on accuracy measures of predictions on the original donation dates, we

can be fairly confident that the predictions are reliable.

Incorporating prediction models in haemoglobin deferral policies

could bring many benefits to blood banks, but it is important to think

about how they should be used. If the model is used in practice, the

change in policy will lead to changes in the data. Models would there-

fore need updating by re-training on a regular basis. Additionally, it

would be wise not to outsource invitations to the model completely,

as that would hinder the model’s ability to learn from its mistakes.

Although deferrals incorrectly predicted to be non-deferrals would be

discovered, we would never know how many donors were incorrectly

not invited. This can be prevented by sending part of the invitations

without using the model’s predictions. In addition to using the model

to predict deferral outcomes, the model can also be used to return a

deferral probability, allowing blood banks to incorporate this probabil-

ity in their risk assessment when inviting donors.

Our model is limited to predictor variables that are presently col-

lected by Sanquin. Additional variables could be considered to

improve prediction accuracy. Donor height and weight (optionally

BMI or total blood volume), as well as smoking status, are examples

known to be related to iron levels and are relatively easy to be

included. Information on iron-related genetic markers or donor diet

may also improve accuracy but are expensive to collect.

Based on the results of this study, we conclude that using predic-

tion models to guide donor invitations would bring multiple advan-

tages to blood banks: lower deferral rates combined with shorter

donation intervals would result in motivated and healthy donors, as

well as a steady blood supply.
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