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Moderation analysis is an integral part of precision medicine research.
Concerning moderation analysis with categorical outcomes, we start with an
interesting observation, which shows that heterogeneous treatment effects could
be equivalently estimated via a role exchange between the outcome and the treat-
ment variable in logistic regression models. Hence two estimators of moderating
effects can be obtained. We then established the joint asymptotic normality for
the two estimators, on which basis refined inference can be made for modera-
tion analysis. The improved precision is helpful in addressing the lack-of-power
problem that is common in search of moderators. The above-mentioned results
hold for both experimental and observational data. We investigate the proposed
method by simulation and provide an illustration with data from a randomized
trial on wart treatment.

K E Y W O R D S

heterogeneous treatment effects, Logistic regression, Moderation analysis, Precision medicine

1 INTRODUCTION

Precision medicine aims to tailor medical treatments or interventions to the individual patient profiles, as opposed to
the “one-size-fits-all” approach in traditional medicine. This innovative approach involves a long-term endeavor and is a
high priority in clinical research.1 The same conception has been extended to comparative studies in many other fields.
To advance precision medicine, it is crucial to identify important moderators and understand their influences on the
treatment effects, which prescribes the general scope of moderation analysis. In the moderation analysis literature, closely
related concepts such as subgroup analysis, predictive or prescriptive factors, effect modification, stratified/individualized
treatment effects, and treatment-by-covariates interactions receive common referrals.

Moderation analysis faces common challenges including, but not limited to, multicollinearity and lack of power.
Multicollinearity occurs since moderation analysis is routinely performed by including cross-product terms between treat-
ment and covariates into the model. The correlations between the additive terms and the cross-product terms are naturally
high. As a result of multicollinearity, the standard errors of the coefficient estimates are inflated, leading to statistical
insignificance. Lack of power emerges since moderation analysis is rarely pre-planned as one of the study aims. Due to
time and cost constraints, designed experiments or trials are often merely empowered to establish the efficacy or effec-
tiveness of the treatment in terms of its main effect at some prespecified significance level. The planned sample size may
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not be sufficient to allow for a conclusive moderation analysis. This is particularly the case in subgroup analysis where
the treatment effects are re-assessed within several subpopulations. The reduced sample size within each subgroup can
make it difficult to uncover any interesting findings.

This research is primarily concerned with moderation analysis with a categorical endpoint, where the effect of a treat-
ment is measured by the relative risk (RR) or the odds ratio (OR). It is common practice to conduct moderation analysis
via a logistic regression model with interactions. We refer to this model as the direct model. We first present an interest-
ing observation, which shows that heterogeneous treatment effects on the endpoint are equivalent to the heterogeneous
endpoint effects on the treatment. This implies that, the roles of the response and the treatment in the logistic model
can be swapped. We refer to the interaction model after the role swap as the inverse model. The inverse model can also
be meaningfully interpreted in terms of RR or OR. This role-swapping strategy can be useful in certain scenarios where
direct modeling is difficult.

Though moderation analysis can be equivalently informed by two interaction logistic models, empirically two different
estimators for the moderating effects of covariates can be obtained. We next establish their joint asymptotic normality and
put forward a new optimally linearly combined estimator that has a smaller standard error. On this basis, more efficient
inferences can be made in moderation analysis. The assessment of the treatment effect depends on the source of data,
that is, whether the data are collected from a randomized experiment and an observational study. The above mentioned
results hold for both experimental and observational data.

The remainder of the article is arranged as follows. With initial focus on the scenario where both response and treat-
ment are binary, Section 2 describes the rationale for the role-swapping mechanism, which leads to two estimators of
moderating effects. In Section 3, the asymptotic joint normality of two estimators is established. An optimally linearly
combined estimator for the moderating effect is then developed. Section 4 presents simulation studies that are designed
to verify the conception and compare the estimators. An illustrative example from a randomized wart treatment trial is
provided in Section 5. In Section 6, we extend the results to the general scenario with categorical outcomes and treat-
ments. Finally, Section 7 concludes with a brief discussion. All proofs and additional numerical results are deferred to the
Supplementary Material.

2 THE ROLE-SWAPPING MECHANISM

Consider data {(yi, ti, xi) ∶ i = 1, … ,n} that consist of n IID copies of (y, t, x), where y is a categorical response, t is
the treatment assignment variable, and x ∈ Rp is the associated P-dimensional covariate vector. The primary goal is
to evaluate the efficacy or effectiveness of t on y. We assume both y and t are binary and 0/1-coded for the time
being. The treatment variable t has a value of 1 for the treated and 0 for the untreated; the response y has a value 1
indicating the occurrence of an event of interest (such as death) and 0 indicating the absence of the event (eg, sur-
vival). Participants with the event are termed as cases while those without the event are called controls in clinical
settings.

The treatment effect is commonly measured on either the relative risks (RR) scale or the odds ratio (OR) scale. Fixing
covariates at x, two RR measures are defined as

RR1,x =
Pr(y = 1|t = 1, x)
Pr(y = 1|t = 0, x)

and

RR0,x =
Pr(y = 0|t = 1, x)
Pr(y = 0|t = 0, x)

,

depending on whether the death rate or the survival rate is considered. The OR measure is given by

OR(y)x =
Pr(y = 1|t = 1, x)∕Pr(y = 0|t = 1, x)
Pr(y = 1|t = 0, x)∕Pr(y = 0|t = 0, x)

=
RR1,x

RR0,x
. (1)

It follows that OR(y)x ≈ RR1,x when cases (with y = 1) are rare or Pr(y = 0|t, x) ≈ 1 and OR(y)x ≈ 1∕RR0,x when controls (with
y = 0) are rare or Pr(y = 1|t, x) ≈ 1.

 10970258, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9627 by U
niversity O

f L
eiden, W

iley O
nline L

ibrary on [27/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



472 SU et al.

Moderation analysis is concerned about differential treatment effects among patients with different characteristics.
To assess the heterogeneity of treatment effects, natural measures are the ratio of relative risks (RRR) and the ratio of
odds ratios (ROR). Comparing patients with covariates x and those with covariates x′, define

RRR(y=1)(x ∶ x′) =
RR1,x

RR1,x′
=

Pr(y = 1|t = 1, x)∕Pr(y = 1|t = 0, x)
Pr(y = 1|t = 1, x′)∕Pr(y = 1|t = 0, x′)

(2)

to be the RRR for death or case (y = 1) between individuals with covariates x and individuals with covariates x′. Similarly,
define

RRR(y=0)(x ∶ x′) =
RR0,x

RR0,x′
=

Pr(y = 0|t = 1, x)∕Pr(y = 0|t = 0, x)
Pr(y = 0|t = 1, x′)∕Pr(y = 0|t = 0, x′)

(3)

for survival or control (y = 0). It is worth noting that, if RR1,x ≥ 1, then we must have RR0,x ≤ 1 concerning treatment
effect assessment; however, RRR1(x ∶ x′) ≥ 1 does not necessarily imply that RRR0(x ∶ x′) ≤ 1 concerning moderation.
On the odds ratio scale, the ratio of odds ratios (ROR) that compares the OR at x versus that at x′ is given by

ROR(y)(x ∶ x′) =
OR(y)x

OR(y)x′
=

RR1,x∕RR0,x

RR1,x′∕RR0,x′
= RRR(y=1)(x ∶ x′)

RRR(y=0)(x ∶ x′)
. (4)

By the invariance of the odds ratio, there is no need to define ROR(y)(x ∶ x′) for cases and for controls separately since
they are simply inverses of each other.

If we swap the roles of t and y, define

OR(t)y=1(x ∶ x′) =
Pr(t = 1|y = 1, x)∕Pr(t = 0|y = 1, x)

Pr(t = 1|y = 1, x′)∕Pr(t = 0|y = 1, x′)
(5)

to be the odds ratio for event t = 1 that compares cases (y = 1) with x and cases with x′. Similarly, define

OR(t)y=0(x ∶ x′) =
Pr(t = 1|y = 0, x)∕Pr(t = 0|y = 0, x)

Pr(t = 1|y = 0, x′)∕Pr(t = 0|y = 0, x′)
(6)

to be the odds ratio for event t = 1 that compares controls (y = 0) with x and controls with x′. Let 𝜑(x) = Pr(t = 1|x)
denote the propensity score.2 We have the following lemma.

Lemma 1. Concerning moderation analysis on the RRR scale,

RRR(y=1)(x ∶ x′) = OR(t)y=1(x ∶ x′) ⋅
𝜑(x′)∕(1 − 𝜑(x′))
𝜑(x)∕(1 − 𝜑(x))

, (7)

and

RRR(y=0)(x ∶ x′) = OR(t)y=0(x ∶ x′) ⋅
𝜑(x′)∕(1 − 𝜑(x′))
𝜑(x)∕(1 − 𝜑(x))

. (8)

Concerning moderation analysis on the ROR scale,

ROR(y)(x ∶ x′) = ROR(t)(x ∶ x′), (9)

where ROR(t)(x ∶ x′) is the ratio of odds ratios (ROR) after the role exchange of t and y.

If we further define the odds ratio on propensity as

OR(t)(x ∶ x′) =
𝜑(x)∕(1 − 𝜑(x))
𝜑(x′)∕(1 − 𝜑(x′))

, (10)

equations (7) and (8) in Lemma 1 can be rewritten as
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RRR(y=1)(x ∶ x′) =
OR(t)y=1(x ∶ x′)

OR(t)(x ∶ x′)
and RRR(y=0)(x ∶ x′) =

OR(t)y=0(x ∶ x′)

OR(t)(x ∶ x′)
.

The results of Lemma 1 hold no matter whether data are obtained from a randomized experiment or from
an observational study. Moreover, the OR-based equation (9) is applicable to retrospective matched case-control
studies.3

In the case of randomized experiments, the propensity score is a constant, that is, 𝜑(x) = 𝜑(x′) = 𝜋 ∈ (0, 1).
Equation (7) reduces to RRR(y=1)(x ∶ x′) = OR(t)y=1(x ∶ x′), which is referred to as the case-only analysis in the litera-
ture.4 With rare case events, RRR(y=1)(x ∶ x′) ≈ ROR(y)(x ∶ x′), implying that RRR(y=1)(x ∶ x′) can be roughly construed as
ROR(y)(x ∶ x′). The applications and extensions of case-only analysis have been explored by many authors.5-8 Clearly, a
control-only analysis could be proceeded similarly by reducing (8) to RRR(y=0)(x ∶ x′) = OR(t)y=0(x ∶ x′). With rare control
events, 1∕RRR(y=0)(x ∶ x′) ≈ ROR(y)(x ∶ x′).

The above RRR and ROR quantities can be naturally formulated via generalized linear models (GLM), as prescribed
by the following theorem.

Theorem 1. Consider the usual logistic regression model for moderation analysis on the odds ratio (OR) scale, where the
conditional distribution of (Y | t, x) is formulated by

log
Pr(y = 1|t, x)
Pr(y = 0|t, x)

= 𝛽0 + 𝛽1t + xT𝜷2 + t ⋅ xT𝜷3. (11)

Suppose that the conditional distribution of (t | y, x) is formulated by the logistic regression model

log
Pr(t = 1|y, x)
Pr(t = 0|y, x)

= 𝛼0 + 𝛼1y + xT𝜶2 + y ⋅ xT𝜶3. (12)

Then we must have

𝜷3 = 𝜶3,

regardless of whether data come from a randomized experiment or from an observational study.

Theorem 1 indicates that the moderation analysis can be conducted via the interaction logistic model (12) that
regresses the treatment variable t on the outcome y and covariates x. This amounts to a role exchange between the treat-
ment variable t and the outcome variable y. Since model (12) involves an inverse regression by swapping the roles of t and
y, we refer to it as the “inverse model” for simplicity while model (11) is referred to as the “direct model”.

We have assumed that model (11) and model (12) are correctly specified as in the case-only analysis.5-7 Similar scenar-
ios can be found in other statistical approaches such as mediation analysis and structural equation modeling (SEM) where
multiple model specifications are entailed. As pointed out by one referee, Theorem 1 still holds if the additive terms, that
is, xT𝜷2 in model (11) and xT𝜶2 in model (12), are left unspecified as unknown nonlinear functions, which won’t affect
the interpretation of 𝜷3 and 𝜶3 as logarithms of ROR. This would greatly increase the flexibility of the direct and inverse
models in approximating the true models even if misspecification occurs. To understand the inverse model (12), it is help-
ful to note that the distribution of t|x is different from that of t|x, y. For example, t⊥⊥ x when t is randomized, but t ⊥∕⊥ x | y.
model (11) cannot fully determine model (12) and vice versa; other quantities, such as the joint density f (x, y) or f (x, t),
also play a role. This allows for some leeway to compatibility9 between these two conditional models. For practical pur-
poses, the two models can be viewed as ways of making approximations and extracting the ROR quantities. As we shall
see in simulation studies, the estimates of 𝜷3 and 𝜶3 are generally close to each other even if both models are wrongly
specified.

For randomized experiments, additional interpretations concerning moderation analysis on the relative risk scale can
be extracted from model (12), as stated in the following proposition.

Proposition 1. For experiments where the assignment mechanism of treatment t is random, consider either of the following
two log-linear regression models for moderation analysis on the relative risk (RR) scale, one for the control event and the other
for the case event,
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{
log Pr(y = 0|t, x) = 𝛾 (0)0 + 𝛾 (0)1 t + xT𝜸

(0)
2 + t ⋅ xT𝜸

(0)
3 ,

log Pr(y = 1|t, x) = 𝛾 (1)0 + 𝛾 (1)1 t + xT𝜸
(1)
2 + t ⋅ xT𝜸

(1)
3 .

(13)

Furthermore assume that model (12) formulates the conditional distribution of (t | y, x). Then we must have

𝜸
(0)
3 = 𝜶2 or 𝜸(1)3 = 𝜶2 + 𝜶3.

Proposition 1 essentially breaks model (12) into two equations,

log
Pr(t = 1|y, x)
Pr(t = 0|y, x)

=

{
𝛼0 + xT𝜶2, if y = 0;
(𝛼0 + 𝛼1) + xT(𝜶2 + 𝜶3), if y = 1,

one for controls only and the other for cases only. It requires either, not necessarily both, of the two models in (13)
hold, as Pr(y = 0|t, x) + Pr(y = 1|t, x) = 1. If both models in (13) hold, then the parameters can be reduced by introducing
constraints. In this case, model (11) must hold with 𝜷 j = 𝜸

(1)
j − 𝜸(0)j for j = 0, 1, 2, 3, but not vice versa.

We defer all the proofs to the Supplementary Material. The proof of Lemma 1 essentially involves applications of Bayes’
rule. Similar arguments have been used to derive the case-only analysis4 and to show equivalence of the conditional odds
ratio obtained from a prospective study and that from a retrospective study.3 As a special case of moderation analysis
with categorical outcomes, testing heterogeneity of odds ratios across levels of a categorical covariate such as different
centers in a multicenter clinical trial has been previously considered by many authors including the classical Q-statistic.10

In this simplified scenario, Theorem 1 and Proposition 1 hold trivially. However, our results cover more general cases
that possibly involve higher-order interactions and covariate adjustment and allow for continuous covariates. In terms
of inverse regression with role swapping, Efron11 has shown that the logistic regression model for (y|x) has the same
coefficients as in the Gaussian linear discriminant analysis that models (x|y), under the assumption that x follows a
multivariate normal distribution. Our results are derived in the same spirit of Bayes’ rule, but are quite different in that
the logistic model (11) for (y|t, x) has the same set of coefficients as the logistic model (12) for (t|y, x) only for interaction
terms, regardless of the distribution of x.

3 REFINED MODERATION ANALYSIS

We have shown that moderation analysis could be equivalently conducted by swapping the roles of the response and the
treatment in logistic regression models. This motivates possibly more efficient ways of making inference on the moder-
ating effects. Note that a common estimator is not readily attainable by setting 𝜶3 = 𝜷3 in model (11) and model (12) and
simultaneously estimating both models. This is because the two models have their respective likelihood functions with
the same data set, leading to a multi-objective optimization problem. Let 𝜶̂3 and ̂𝜷3 denote the maximum likelihood esti-
mator (MLE) of 𝜶3 and 𝜷3 obtained separately from model (11) and model (12). In the following, we first establish the
joint asymptotic normality for 𝜶̂3 and ̂𝜷3 and then seek ways of making more efficient inferences.

Denote 𝜷 = (𝛽0, 𝛽1, 𝜷
T
2 , 𝜷

T
3 )T = (𝜷

T
(3), 𝜷

T
3 )T and 𝜶 = (𝛼0, 𝛼1,𝜶

T
2 ,𝜶

T
3 )

T = (𝜶T
(3),𝜶

T
3 )

T
, where 𝜷 (3) = (𝛽0, 𝛽1, 𝜷

T
2 )T contains

the parameters in model (11) excluding 𝜷3 and similarly for 𝜶(3) = (𝛼0, 𝛼1,𝜶
T
2 )

T
. Since the focus of moderation analysis is

on 𝜷3 and 𝜶3, we treat 𝜷(3) and 𝜶(3) as nuisance parameters in some sense. Let ̂𝜷 = arg max
𝜷

Ly(𝜷) and 𝜶̂ = arg max
𝜶

Lt(𝜶)

be their MLEs, where Ly(𝜷) and Lt(𝜶) are the log-likelihood functions for model (11) and model (12), respectively. We
shall derive the joint asymptotic distribution of ̂𝜷 and 𝜶̂, from which the joint asymptotic distribution of ̂𝜷3 and 𝜶̂3 follows
immediately.

To set up, consider the setting with stochastic regressors where observations (yi, ti, xT
i )

T are IID copies of (y, t, x) that
has joint density f (y, t, x;𝜶, 𝜷) with respect to some measure. The joint density can be decomposed as

f (y, t, x;𝜶, 𝜷) = f (y|t, x; 𝜷)f (t, x) = f (t|y, x;𝜶)f (y, x),

where f (y|t, x; 𝜷) is determined by model (11) and f (t|y, x; 𝜷) is determined by model (12). Let Xy = (xT
yi) and Xt =

(
xT

ti

)

denote the design matrices associated with the two models, with xT
yi = (1, ti, xT

i , t xT
i ) and xT

ti = (1, yi, xT
i , yi xT

i ) being their
respective ith row vectors for i = 1, … ,n.We further assume both Xy and Xt are of full column rank almost surely (w.p. 1)
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for any large enough n, that is, ∀n ≥ n0 for some n0 ∈ N. Denote the modeled probabilities by 𝝅y =
{

1 + exp(−Xy𝜷)
}−1

and 𝝅t = {1 + exp(−Xt𝜶)}−1
.

Estimation of 𝜷 can be made by maximizing the log-likelihood Ly(𝜷) of model (11) that is associated with f (y|t, x; 𝜷)
alone, while estimation of 𝜶 can be made by maximizing the log-likelihood Lt(𝜶) of model (12) that is associated with
f (t|y, x;𝜶) alone. Since the resultant MLEs ̂𝜷 and 𝜶̂ are obtained separately, this multi-objective problem renders the usual
arguments for M-estimators inapplicable. Nevertheless, their joint asymptotic normality can still be justified by viewing
the associated score equations as estimating equations and treating ̂𝜷 and 𝜶̂ as Z-estimators.12,13

We assume the following technical conditions:

(i) E(xxT) ≻ 0, where ‘≻ 0’ denotes “positive definite”.
(ii) The conditional probabilities 𝜋y and 𝜋t are bounded away from 0 and 1 almost everywhere (a.e.), for example, 𝜋y ∈

(a, b) for some 0 < a < b < 1; so are Pr(t = 1|x) and Pr(y = 1|x).

Theorem 2. Under conditions (i) and (ii), ̂𝜷 and 𝜶̂ asymptotically exist and are strongly consistent. Furthermore, ̂𝜷 and 𝜶̂
have a degenerate joint normal distribution asymptotically

𝚺−1∕2

[(
̂𝜷

𝜶̂

)

−

(
𝜷

𝜶

)]
d
→ (0, I).

The asymptotic variance-covariance (VCOV) matrix 𝚺 has a “sandwich” form 𝚺 = BMBT with “bread” matrix

and ‘meat’ matrix

M =

[
E
{

XT
y (y − 𝝅y)(y − 𝝅y)TXy

}
E
{

XT
y (y − 𝝅y)(t − 𝝅t)TXt

}

E
{

XT
t (t − 𝝅t)(y − 𝝅y)TXy

}
E
{

XT
t (t − 𝝅t)(t − 𝝅t)TXt

}

]

, (15)

where Wy = diag
(
𝝅y(1 − 𝝅y)

)
, Wt = diag (𝝅t(1 − 𝝅t)) , Dy = diag

(
𝛽1 + 𝜷T

3 xi
)

with diagonal elements 𝛽1 + 𝜷T
3 xi for i =

1, … ,n, Dt = diag
(
𝛼1 + 𝜶T

3 xi
)
, Xt =

[
X(A)t , X(I)t

]
with X(A)t =

(
1, yi, xT

i

)
being its sub-matrix corresponding to the addi-

tive terms in model (12) and X(I)t =
(

yixT
i

)
being the submatrix involved in the interaction terms, and similarly for Xy =

[
X(A)y , X(I)y

]
with X(A)y =

(
1, ti, xT

i

)
and X(I)y =

(
tixT

i

)
.

Several comments are in order. First, the asymptotic joint normal distribution of ̂𝜷 and 𝜶̂ is degenerate because
𝜷3 = 𝜶3. For the same reason, the bread matrix B is asymmetric. As matrix 𝚺 is not necessarily positive definite,
the square root operation 𝚺−1∕2 should be taken liberally as, for example, its Cholesky factorization. Here, 𝚺−1∕2 is
merely used as a normalization matrix in stating the asymptotic distribution. Secondly, the required assumptions for
Theorem 2 are quite simple and mild; one main reason is because both y and t are bounded. Condition (i) is a com-
mon assumption in asymptotics for GLM. Combining condition (i) with condition (ii) leads to a sufficient condition
as in Fahrmeir and Kaufmann14 to ensure consistency and asymptotic normality of ̂𝜷 and 𝜶̂. Thirdly, besides 𝜶3 = 𝜷3,
f (y|t, x; 𝜷) may depend on 𝜶(3) while f (t|y, x; 𝜷) may depend on 𝜷(3). As a result, parameters 𝜷(3) = (𝛽0, 𝛽1, 𝜷

T
2 )T and

𝜶(3) = (𝛼0, 𝛼1,𝜶
T
2 )

T are not orthogonal in the sense of Cox and Reid.15 To evaluate the corresponding components of
matrix B in (14), we have applied some approximations as detailed in Section I of the Supplementary Material. We
would like to argue that these approximated components are only related to 𝜶(3) and 𝜷(3), which may be deemed as nui-
sance parameters in moderation analysis. In numerical studies that follow, we shall see that the results based on this
approximation are quite satisfactory. Fourthly, standard ML arguments can be used to establish the marginal asymp-
totic distributions of ̂𝜷 and 𝜶̂, which follow (𝜷, {E(XT

y WyXy)}−1) and (𝜶, {E(XT
t WtXt)}−1), respectively. Numerically,

the estimated (marginal) VCOV matrices for ̂𝜷 or 𝜶̂ are very similar to those obtained using the sandwich formula
in Theorem 2.

To estimate the asymptotic VCOV matrix 𝚺, one replaces 𝜷 and 𝜶 with their MLEs ̂𝜷 and 𝜶̂ in quantities such as 𝝅y
and 𝝅t and uses the empirical form of each expectation term. Specifically, the estimated “bread” matrix is
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476 SU et al.

where ̂Wy = diag
[
𝝅̂y(1 − 𝝅̂y)

]
, ̂Wt = diag [𝝅̂t(1 − 𝝅̂t)], ̂X

(I)
t is obtained from X(I)t by replacing y with 𝝅̂y, and similarly for

̂X
(I)
y . The estimated meat matrix is

̂M =

[
XT

y RyyXy XT
y RytXt

XT
t RtyXy XT

t RttXt

]

=
⎡
⎢
⎢
⎢
⎣

∑

i=1
xyixT

yi(yi − 𝜋̂yi)2
∑n

i=1xyixT
ti (yi − 𝜋̂yi)(ti − 𝜋̂ti)

∑n
i=1xyixT

ti (yi − 𝜋̂yi)(ti − 𝜋̂ti)
∑

i=1
xtixT

ti (ti − 𝜋̂ti)2

⎤
⎥
⎥
⎥
⎦

, (17)

where Ryy = diag
[
(yi − 𝜋̂yi)2

]
, Ryt = diag

[
(yi − 𝜋̂yi)(ti − 𝜋̂ti)

]
, and Rtt = diag

[
(ti − 𝜋̂ti)2

]
are diagonal matrices containing

squares and cross-products of the residuals. For better finite-sample performance, an adjustment of ̂M ∶= n∕(n − 3p −
4) ⋅̂M, where (3p + 4) is the total number of distinct parameters in both model (11) and model (12), is recommended in
the sandwich VCOV matrix estimators.16

Given the distribution of (̂𝜷, 𝜶̂), the asymptotic joint normality of (̂𝜷3, 𝜶̂3) can be obtained by extracting the corre-
sponding components. We are interested in more efficient inference on the moderating effects. One natural approach is
to combine the two estimators, ̂𝜷3 and 𝜶̂3, into a more precise one. Optimally combining two unbiased estimators has
been discussed in the literature. Graybill17 considered combining two independent unbiased estimators; similar work can
also be seen in meta-analysis. Samuel-Cahn18 tackled the problem of how to combine two univariate correlated unbi-
ased estimators. In the following, we present a general result on optimally combining K multivariate correlated unbiased
estimators.

Proposition 2. Suppose that ̂𝜽k for k = 1, … ,K are K unbiased estimators of parameter 𝜽 ∈ Rp with variance-covariance
matrix V ∈ RpK×pK. Namely,

⎛
⎜
⎜
⎜
⎝

̂𝜽1

⋮
̂𝜽K

⎞
⎟
⎟
⎟
⎠

∼
⎡
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎜
⎝

𝜽

⋮

𝜽

⎞
⎟
⎟
⎟
⎠

,V
⎤
⎥
⎥
⎥
⎦

.

Let U = V−1 and partition U into K2 matrices
{

Ukk′ ∈ Rp×p ∶ k, k′ = 1, … ,K
}
. Then the minimum-variance unbiased

estimator of 𝜽 that linearly combines ̂𝜽k’s is given by

̃𝜽 =

[ K∑

k,k′=1
Ukk′

]−1 K∑

k=1

K∑

k′=1
Uk′k̂𝜽k, (18)

with variance

cov(̃𝜽) =

[ K∑

k,k′=1
Ukk′

]−1

.

The key step of the proof is to reformulate the problem into a linear model with correlated errors, which can be
estimated by the generalized least squares (GLS) approach. We have used the notation x ∼ [𝝁,𝚺] to denote that the
random vector x has mean 𝝁 and VCOV 𝚺. There is no need to assume normality with the GLS approach. The refine-
ment or improvement from the combined estimator is guaranteed by the Gauss-Markov theorem, unless one individual
estimator is the UMVUE (uniformly minimum-variance unbiased estimator). The difficult part of using this combining
method for estimation, however, is the derivation of the (asymptotic) joint distributions of the individual estimators. Since
these individual estimators are obtained from the same data, deriving their (asymptotic) joint distribution can be quite
challenging.
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SU et al. 477

When applied to ̂𝜷3 and 𝜶̂3 with K = 2, where

(
̂𝜷3

𝜶̂3

)

∼

[(
𝜷3

𝜷3

)

,𝚺′
]

and U = 𝚺′−1 = (Ukk′ ) for k, k′ = 1, 2, the minimum-variance unbiased estimator of 𝜷3 that linearly combines ̂𝜷3 and 𝜶̂3
is given by

̃𝜷3 = (U11 +U21 +U12 +U22)−1
{

(U11 +U21)̂𝜷3 + (U12 +U22)𝜶̂3

}

, (19)

with variance

cov( ̃𝜷3) = (U11 +U21 +U12 +U22)−1
.

One is often interested in inference on each component of 𝜷3. In the univariate case, let 𝚺′ = (𝜎kk′ ) for k, k′ = 1, 2. The
above formula reduces to the result of Samuel-Cahn:18

̃
𝛽3 = 𝜆 ̂𝛽3 + (1 − 𝜆)𝛼̂3 with var( ̃𝛽3) = 𝜆2

𝜎11 + (1 − 𝜆)2𝜎22 + 2𝜎12, (20)

where 𝜆 = (𝜎22 − 𝜎12)∕(𝜎11 + 𝜎22 − 2𝜎12). On the basis of Proposition 2, inference on 𝜷3 or its components can be made
accordingly via Wald-type tests. As have been pointed out in the literature,17,18 the optimally combined estimator may
not be a weighted average of the two unbiased estimators since the coefficients 𝜆 and (1 − 𝜆), which are essentially GLS
estimates of coefficients in a linear model, are not restricted to the range of [0, 1].

4 SIMULATION STUDIES

We validate the role-swapping mechanism and investigate different estimation methods by simulation. Data are gener-
ated from model (11), with X = (X1,X2,X3)T , 𝛽0 = −1, 𝛽1 = 0.5, 𝜷2 = (0.5,−1, 1)T , and 𝜷3 = (−0.5, 1, 0)T . Three covariates
are simulated from a multivariate uniform[0, 1] distribution with correlation matrix of form

(
𝜌

|j−j′|) for j, j′ = 1, 2, 3;
see the implementation in R19 package MultiRNG.20 Different choices of 𝜌 ∈ {0.0, 0.2, 0.5, 0.8} are tried out. To imitate
observational studies, the binary treatment t is generated from the following logistic model

log
Pr(t = 1|x)
Pr(t = 0|x)

= b0 + bT
1 x, (21)

where b0 = −0.5 and b1 = (1,−0.5, 1)T . To have data from randomized experiments, we set both b0 and b1 as 0 so that t is
simulated with Pr(t = 1) = 1∕2, which is independent of x.With this setting, both the prevalence Pr(y = 1) and propensity
Pr(t = 1) rates are about 50% in a generated data set.

For each model configuration, several sample sizes n ∈ {150,300, … , 1500} are examined. A total of 1000 simulation
runs are made for each setting. With each simulated data set, we fit model (11) and model (12) and extract the estimates, ̂𝜷3
and 𝜶̂3, of coefficients associated with the interaction terms, as well as their standard errors (SE). Then formula (20) is used
to obtain the combined estimator ̃𝜷3 and the corresponding SEs. Thus ̂𝜷3, 𝜶̂3, and ̃𝜷3 are all estimates of 𝜷3 = (−0.5, 1, 0)T .
While 𝛽33 = 0 helps evaluate the “size” issue in hypothesis testing, the two nonzero coefficients, 𝛽31 and 𝛽32, help address
the “power” issue. To this end, the P-values from the Wald z tests for each coefficient are also recorded. The empirical
power and size are computed as proportions of P-values less than 𝛼 = 0.05.

Table 1 presents the aggregated results over 1000 simulation runs for the experimental data setting with 𝜌 ∈ {0, 0.5}
and n ∈ {150,900}. The three estimation methods, that is, direct, inverse, and combined estimators, are respectively
referred to as method I, II, and III in the table. The performance measures include the mean and standard devia-
tion (SD) of the estimates and the averaged standard errors (ASE). If the standard error formula works effectively,
ASE should be close to SD. Additionally, empirical size/power values are presented in the last three columns of
the table.
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478 SU et al.

T A B L E 1 Simulation results with randomized experimental data based on 1000 simulation runs

Estimate (mean) SD ASE Size/power

𝝆 n I II III I II III I II III I II III

0 150 𝛽31 −0.569 −0.563 −0.524 1.329 1.312 1.280 1.274 1.264 1.203 0.081 0.068 0.076

𝛽32 1.043 1.028 1.022 1.326 1.321 1.293 1.281 1.267 1.185 0.133 0.130 0.168

𝛽33 0.001 0.015 0.053 1.307 1.292 1.292 1.288 1.276 1.209 0.043 0.044 0.059

900 𝛽31 −0.502 −0.484 −0.478 0.480 0.473 0.467 0.491 0.485 0.479 0.168 0.159 0.160

𝛽32 1.015 0.991 0.995 0.511 0.506 0.506 0.493 0.488 0.479 0.543 0.539 0.554

𝛽33 −0.002 0.013 0.015 0.510 0.507 0.503 0.495 0.490 0.483 0.054 0.055 0.058

0.5 150 𝛽31 −0.506 −0.506 −0.477 1.523 1.521 1.468 1.459 1.452 1.391 0.059 0.065 0.065

𝛽32 1.041 1.040 1.000 1.745 1.738 1.680 1.624 1.613 1.532 0.103 0.099 0.106

𝛽33 −0.007 −0.011 0.022 1.509 1.499 1.438 1.464 1.455 1.389 0.050 0.047 0.053

900 𝛽31 −0.526 −0.520 −0.513 0.575 0.571 0.566 0.558 0.555 0.549 0.171 0.171 0.171

𝛽32 1.014 1.001 0.994 0.644 0.634 0.633 0.622 0.616 0.607 0.374 0.368 0.378

𝛽33 0.016 0.016 0.024 0.590 0.582 0.579 0.562 0.558 0.551 0.059 0.060 0.061

Note: For each data set, the regression coefficient 𝜷3 associated with moderation analysis are estimated with three methods: (I) the direct estimator ̂𝜷3 with
model (11); (II) the inverse estimator 𝜶̂3 with model (12); and (III) the combined estimator ̃𝜷3.

First of all, it can be seen that the direct estimates ̂𝜷3 and the inverse estimates 𝜶̂3 are quite close to each other by all
measures. This empirically verifies the validity of the role-swapping mechanism. In this simulation setting, model (11)
is an over-fitted model while model (12) is only an approximating model, compared to the true models for generating
data; nevertheless, the conclusions in Theorem 1 show robustness regardlessly. We would like to point out that, although
their similarity holds well at the aggregated level, a direct estimate could be quite different from its corresponding inverse
estimate individually, especially with small samples.

On another note, we have skipped simulation studies for verifying Proposition 1. This is because Proposition 1, appli-
cable only to experimental data with randomization, has been partly investigated elsewhere; see, for example, Dai, Li,
and Gilbert,6 Dai et al,7 and Dai and LeBlanc8 for simulation studies that are designed to verify the case-only analysis.
The control-only analysis, albeit new, holds naturally by symmetry.

Among all three methods, the combined estimator (III) consistently yields the smallest variation as indicated by either
SD or ASE. Compared to SD, the SE formulas from all three methods exhibit a degree of underestimation of the true
variation when the sample size (n = 150) is small. This problem vanishes with larger samples (n = 900). In fact, SD and
ASE match very well when n = 300 or larger. This is because the SE formulas are derived as asymptotic results. In terms
of empirical sizes, we obtained two expected ranges in our setting based on concentration inequalities; see Section S.1.2
of the Supplementary Material. Applying the threshold significance level 𝛼 = 0.05, we would expect the empirical size to
fall in the interval (0.0192, 0.0808)with probability at least 95% by Chebyshev’s inequality. In addition, Chernoff’s bounds
leads to an interval of (0.0265, 0.0735). It can be seen that the empirical sizes from all three methods well stay within
these nominal ranges. In terms of empirical powers, the combined estimator tends to have a higher empirical power than
the other two methods in most cases, although the results are mixed occasionally. This can be explained by the higher
precision achieved by the combined estimator.

The correlation 𝜌 among covariates also affects the results vastly. Comparing the results when 𝜌 = 0 and the results
when 𝜌 = 0.5 in Table 1, it can be seen that the SD and ASE values increase and the empirical power reduces for every
estimation method when covariates are more correlated and multicollinearity becomes worse. However, the conclusions
concerning the comparison of the three estimation methods remain. Namely, the combined estimator outperforms the
other two by offering higher precision and increased empirical powers.

Figure 1 presents some additional graphical exploration of the results when 𝜌 = 0.5. The upper panels present the
boxplots of standard errors (SE) of ̂𝛽3j (method I in orange) and ̃

𝛽3j (method III in blue) for j = 1, 2, 3 with varying sample
sizes n ∈ {150,300, … , 1500}. The SDs of these estimates from 1000 simulation runs are also superimposed as lines on
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F I G U R E 1 Simulation results with experimental data: sample size n = 150, 300, … , 1500, nrun= 1000, and 𝜌 = 0.5. The upper
figures present the boxplots of SE values for the direct estimators (in orange) and the combined estimators (in lightblue). The superimposed
curves are the mean SE values. The lower figures present the relative differences in SE between the direct and combined estimators. Each
green curve plots their relative differences in SD. Each grey curve plots the averaged correlations between two estimators

the plots. We see that the SE values are close to SD largely. Again, the combined estimators ̃𝛽3j have lower variations and
hence are more precise than the commonly used direct estimators ̂𝛽3j.

To gain more insight into the comparison between ̃𝜷3 and ̂𝜷3, we have made some further examination in
terms of relative efficiency. For each of the 1000 simulation runs, we compute the relative difference in SE,{

SE(̂𝛽3j) − SE( ̃𝛽3j)
}

∕SE(̂𝛽3j). The boxplots of these relative differences are presented in the lower panels of Figure 1.

We also compute the relative difference in SD,
{

SD(̂𝛽3j) − SD( ̃𝛽3j)
}

∕SD(̂𝛽3j), and plot them as line-connected circles.
One striking observation is that the combined estimator ̃

𝛽3j constantly has a smaller SE (as well as SD) than the
direct estimator ̂

𝛽3j, as indicated by the positive relative differences. Even though it is known that the MLE from
the direct model is asymptotically efficient, in other words, optimal as n →∞, the combined estimator seems to
steadily offer improvement in finite samples. The relative difference ranges from slightly over 0% up to 15% in the
present model settings, showing a decreasing pattern as the sample size increases. One main reason accounting for
this pattern is that the direct estimator ̂

𝛽3j and the inverse estimator 𝛼3j become close or highly correlated when n
is large, as shown (gray dotted lines) in the lower panels of Figure 1. In this case, the strength that can be bor-
rowed from the inverse estimator 𝛼3j becomes weaker, which reduces the room for improvement with the combined
estimator ̃𝛽3j.
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480 SU et al.

T A B L E 2 Simulation results with observational data based on 1000 simulation runs

Estimate (mean) SD ASE Size/power

𝝆 n I II III I II III I II III I II III

0 150 𝛽31 −0.529 −0.482 −0.466 1.407 1.400 1.470 1.322 1.323 1.242 0.072 0.080 0.096

𝛽32 1.064 1.021 1.028 1.348 1.345 1.307 1.320 1.320 1.202 0.130 0.122 0.161

𝛽33 0.012 0.055 0.049 1.363 1.358 1.306 1.329 1.334 1.250 0.047 0.044 0.066

900 𝛽31 −0.484 −0.469 −0.475 0.513 0.513 0.504 0.505 0.505 0.498 0.171 0.167 0.166

𝛽32 1.005 0.987 0.991 0.494 0.498 0.491 0.504 0.504 0.494 0.515 0.507 0.523

𝛽33 −0.032 −0.025 −0.024 0.519 0.522 0.507 0.508 0.509 0.502 0.055 0.057 0.056

0.5 150 𝛽31 −0.571 −0.536 −0.552 1.539 1.531 1.485 1.494 1.497 1.417 0.076 0.076 0.088

𝛽32 1.144 1.127 1.119 1.746 1.721 1.668 1.665 1.665 1.559 0.114 0.109 0.128

𝛽33 −0.104 −0.076 −0.072 1.537 1.551 1.495 1.505 1.508 1.426 0.040 0.053 0.062

900 𝛽31 −0.506 −0.494 −0.506 0.570 0.576 0.567 0.572 0.573 0.566 0.135 0.134 0.141

𝛽32 1.047 1.024 1.031 0.612 0.610 0.599 0.635 0.636 0.626 0.357 0.350 0.360

𝛽33 −0.026 −0.013 −0.013 0.592 0.589 0.577 0.575 0.576 0.568 0.062 0.061 0.053

Note: For each data set, the regression coefficient 𝜷3 associated with moderation analysis are estimated with three methods: (I) the direct estimator ̂𝜷3 with
model (11); (II) the inverse estimator 𝜶̂3 with model (12); and (III) the combined estimator ̃𝜷3.

Additional simulation results with observational data are presented in Table 2 and Figure 2, which are analogous
to those with experimental data in Table 1 and Figure 1, respectively. The general conclusions are largely similar. This
confirms that the role-swapping mechanism and the properties of the estimators hold regardless of the data source. In
the Supplementary Material, Tables I and II present the results in the unbalanced scenarios where both the prevalence
rate and the propensity are approximately 80%. We have expanded the simulation study extensively and examined a wide
variety of scenarios and quantities. These include adjusting the correlation 𝜌 among covariates, examining estimation
of cov( ̃𝜷3, 𝜶̃3) via the formula in Theorem 2, sensitivity analysis with respect to model misspecification. We have found
that the results are consistent with our general findings. Both the direct and inverse methods are comparable while the
combined estimator stands out with higher precision.

5 ANALYSIS OF WART TREATMENT TRIAL DATA

To illustrate, we consider data collected from a randomized wart treatment trial.21 Warts are a type of skin disorders
caused by human papillomavirus (HPV). A wart is a small fleshy bump on the skin or mucous membrane. Cryotherapy
and immunotherapy are among the most common treatments for warts. The traditional cryotherapy freezes warts with
liquid nitrogen while the relatively new immunotherapy treats warts by using the patient’s own immune system.

To compare, n = 180 patients were randomized in this study to be treated with either the cryotherapy (cryo = 1) or
immunotherapy (cryo = 0) method, with 90 patients in either treatment group. It is known that neither cryotherapy
nor immunotherapy can heal all patients. Thus moderation analysis is crucial for designing more effective customized
treatments.

In this data set, the outcome variable response is binary with 1 indicating a positive response to the treatment and 0
otherwise. Table 3 shows summary statistics on outcome and treatment. Also included are six covariates: patient gender
(sex), age (age), self-reported time in months before treatment (time), the number of warts (nwarts), an indicator
of whether or not patient has mixed types of warts (type), and surface area in mm2 of the warts (area). Fitting the
direct logistic regression models with variable selection and regularization,22 two important covariates, age and type,
are identified as potential moderators.

Table 4 presents the fitting results from three modeling analyses, including the parameter estimates, the standard
errors, the Wald z test, and the resultant P-values. In the first approach, a logistic regression model was fit on response,
examining the interactions between the treatment variable cryo and the covariates. For illustrative purposes, we also
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F I G U R E 2 Simulation results with observational data: sample size n = 150, 300, … , 1500, nrun = 1000, and 𝜌 = 0.5. The upper
figures present the boxplots of SE values for the direct estimators (in orange) and the combined estimators (in lightblue). The superimposed
curves are the mean SE values. The lower figures present the relative differences in SE between the direct and combined estimators. Each
green curve plots their relative differences in SD. Each grey curve plots the averaged correlations between two estimators

T A B L E 3 Summary of response and type in wart data

type=0 type=1

Immunotherapy Cryotherapy Immunotherapy Cryotherapy

response = 0 16 19 3 23

response = 1 53 44 18 4

included an insignificant covariate nwarts in the model. In the second approach, the roles of response and cryo are
swapped. These two approaches are labeled as the direct model and the inverse model in the table. The third analysis was
based on the combined estimators, which are available for the coefficients associated with interaction terms only.

Comparing the direct model with the inverse model, we can see that their parameter estimates associated with the
main effects are quite different, but the parameter estimates associated with the interaction terms are within the ballpark
of each other. Both age and type show significant moderating effects, while nwarts does not. It is interesting to see
that the SEs for the combined estimates are lower than those in the direct model and the inverse model. As a result, the
interaction terms with age and type become more significant with much reduced P-values. On the other hand, nwarts
remains insignificant.
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482 SU et al.

T A B L E 4 Analysis of wart trial data

Direct model Inverse model Combined estimator

𝜷j SE z P-value 𝜶̂j SE z P-value 𝜷 j SE z P-value

Intercept 2.594 0.898 2.889 0.004 0.966 0.967 0.999 0.318

cryo 1.082 1.393 0.777 0.437 1.001 1.179 0.849 0.396

age −0.035 0.021 −1.649 0.099 −0.003 0.023 −0.131 0.896

type 0.506 0.706 0.717 0.473 1.914 0.724 2.643 0.008

nwarts −0.035 0.064 −0.555 0.579 −0.120 0.089 −1.340 0.180

cryo:age −0.084 0.039 −2.137 0.033 −0.080 0.032 −2.475 0.013 −0.081 0.016 −5.080 0.000

cryo:type −2.752 0.994 −2.769 0.006 −3.442 0.957 −3.598 0.000 −3.119 0.603 −5.176 0.000

cryo:nwarts 0.094 0.107 0.880 0.379 0.115 0.103 1.115 0.265 0.107 0.093 1.143 0.253

Note: The column z denotes the Wald z test statistics. All the P-values are two-sided.

The results of this moderation analysis can be meaningfully interpreted in terms of ROR. Take type for example.
The odds ratio that compares cryotherapy versus immunotherapy in curing non-mixed types (type =0) of warts is
exp(3.119) = 22.624 of the odds ratio in treating mixed types (type =1) of warts, showing a great heterogeneity in the
comparison. The following tabulated results provide a detailed look at such differential treatment effects without covari-
ate adjustment, showing that immunotherapy does much better than cryotherapy in treating mixed types of warts while
they have similar effects when treating non-mixed types.

An unadjusted estimate of ROR from the tabulated results can be obtained as {(16 × 44)∕(53 × 19)}∕{(3 × 4)∕(23 ×
18)} = 24.119, which is slightly different from the adjusted ROR estimate from the model. Similar way of interpreting can
be carried out for age. To conclude, both type and age are important factors to consider in determining the optimal
treatment for an individual patient.

6 EXTENSION TO CATEGORICAL OUTCOMES AND TREATMENTS

All the foregoing results are readily extended to categorical outcomes and/or treatments that have two or more levels,
though the notations are quite tedious. As seen from the proofs, the results in Lemma 1 are directly applicable to categor-
ical outcomes and treatments with multiple levels. Suppose that yi ∈ {0, 1, … ,K} is categorical with K + 1 levels while
ti ∈ {0, 1, … ,M} has M + 1 levels. Let yi ∈ RK×1 and ti ∈ RM×1 be the vectors of indicators induced by dummy variable
coding with yi and ti, respectively, where category 0 is regarded as the reference or baseline level. We have the following
result, which is analogous to those in Theorem 1.

Theorem 3. Consider the following two multinomial logistic models with interaction terms:

log
Pr(yi = k|ti, xi)
Pr(yi = 0|ti, xi)

= 𝛽k0 + tT
i 𝜷k1 + xT

i 𝜷k2 + (ti ⊗ xi)T𝜷k3 for k = 1, … ,K, (22)

and

log
Pr(ti = m|yi, xi)
Pr(ti = 0|yi, xi)

= 𝛼m0 + yT
i 𝜶m1 + xT

i 𝜶m2 + (yi ⊗ xi)T𝜶m3 for m = 1, … ,M, (23)

where ⊗ denotes the outer product for vectors or the Kronecker product operator for matrices. Hence 𝜷k3 =
(
𝛽k3mj

)
∈ RMp×1

and 𝜶m3 =
(
𝛼m3kj

)
∈ RKp×1

. We must have

𝛽k3mj = 𝛼m3kj,

for k = 1, … ,K, m = 1, … ,M, and j = 1, … , p.

For model (22), let Xy(k) denote the common design matrix shared by each of its K model equations; namely, Xy(k) is
of dimension n × (1 +M + p +Mp)with i-th row vector xy(i) =

(
1, tT

i , x
T
i , (ti ⊗ xi)T

)T . The entire design matrix for model
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SU et al. 483

(22) can be written as Xy = Xy(k) ⊗ IK , which is of dimension nK × (1 +M + p +Mp)K. Similarly, let Xt(m) denote the
n × (1 + K + p + Kp) common design matrix for each of the M model equations in (23), with its ith row vector being xt(i) =
(
1, yT

i , x
T
i , (yi ⊗ xi)T

)T
. The entire design matrix for model (22) can be written as Xt = Xt(m) ⊗ IM , which is of dimension

nM × (1 + K + p + Kp)M.

Let y = (yT
1 , y

T
2 , … , yT

n )T be the nK × 1 response vector and 𝝅y =
(
𝜋y(ik)

)
denote its corresponding probability vec-

tor with components 𝜋y(ik) = Pr(yi = k|ti, xi). Similarly, let t = (tT
1 , t

T
2 , … , tT

n )T be the nM × 1 treatment vector and 𝝅t =(
𝜋t(im)

)
denote its corresponding probability vector with components 𝜋t(im) = Pr(ti = m|yi, xi).

Furthermore, let 𝜷k = (𝛽k0, 𝜷
T
k1, 𝜷

T
k2, 𝜷

T
k3)

T and 𝜶m = (𝛼m0,𝜶
T
m1,𝜶

T
m2,𝜶

T
m3)

T
. Denote 𝜷 = (𝜷T

1 , 𝜷
T
2 , … , 𝜷T

K)T and 𝜶 =
(𝜶T

1 ,𝜶
T
2 , … ,𝜶T

M)
T
, which include all the regression parameters involved in model (22) and model (23), respectively. Let

̂𝜷 be the MLE of 𝜷 estimated from model (22) and 𝜶̂ be the MLE of 𝜶 estiamted from model (23). The joint asymptotic
normality of ̂𝜷 and 𝜶̂ is established by the following theorem.

Theorem 4. Assume that the condition probabilities Pr(y = k|t, x),Pr(t = m|y, x),Pr(y = k|x),Pr(t = m|x) are all bounded
away from 0 and 1 (a.e.). Further assume that E(xxT) ≻ 0. Then ̂𝜷 and 𝜶̂ asymptotically exist and are strongly consistent.
Their asymptotic joint normality is given by the same form as in Theorem 2 except for the definitions of the terms Xy, Xt, Wy
and Wt, which are given by

Wy = diag
(

W(y)
i

)

∈ R
nK×nK and Wt = diag

(

W(t)
i

)

∈ R
nM×nM

,

where

W(y)
i =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜋y(i1)(1 − 𝜋y(i1)) −𝜋y(i1)𝜋y(i2) · · · −𝜋y(i1)𝜋y(iK)

− 𝜋y(i2)𝜋y(i1) 𝜋y(i2)(1 − 𝜋y(i2)) · · · −𝜋y(i2)𝜋y(iK)

⋮ ⋮ ⋮

− 𝜋y(iK)𝜋y(i1) −𝜋y(iK)𝜋y(i2) · · · 𝜋y(iK)(1 − 𝜋y(iK))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
K×K

and

W(t)
i =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜋t(i1)(1 − 𝜋t(i1)) −𝜋t(i1)𝜋t(i2) · · · −𝜋t(i1)𝜋t(iM)

− 𝜋t(i2)𝜋t(i1) 𝜋t(i2)(1 − 𝜋t(i2)) · · · −𝜋t(i2)𝜋t(iM)

⋮ ⋮ ⋮

− 𝜋t(iM)𝜋t(i1) −𝜋t(iM)𝜋t(i2) · · · 𝜋t(iM)(1 − 𝜋t(iM))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
M×M

.

In the above expression, Wy is a block diagonal matrix with n block matrices W(y)
i for i = 1, … ,n on the main diag-

onal, and similarly for Wt. The asymptotic VCOV matrix 𝚺 can be estimated by replacing 𝜷 and 𝜶 with their MLEs. For

moderation analysis, the asymptotic joint normal distribution of
(
̂𝜷k3

)K

k=1
and

(
𝜶̂m3

)M
m=1 can be established by extracting

components. Their combined estimators, as well as the associated SEs, can be obtained in the same way as in Section 3.
We have designed simulation studies to verify the findings and compare the three estimators with categorical outcomes

and treatments. The results are deferred to the Supplementary Material (see Section S.3) due to page limit. An analysis of
data collected from an adolescent placement study is also provided. This example illustrates an interesting scenario that
involves a categorical outcome and a binary treatment. By switching the roles, it turns out that moderation analysis in
the direct multinomial logistic model can be equivalently conducted through the corresponding inverse binary logistic
model. Since the implementation of multinomial logistic regression related methods is not as widely available as that for
binary logistic regression, working with the inverse model brings convenience.

7 DISCUSSION

An interesting observation is made concerning moderation analysis with categorical outcomes. We have shown that,
the role swap between the outcome variable and the treatment variable does not alter the ratio of odds ratios (ROR)
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484 SU et al.

as a heterogeneity measure of treatment effects, which corresponds to the regression coefficients associated with the
interaction terms in a logistic regression model. The conclusion holds regardless of whether data are experimental or
observational. By role swap, we mean that the direct model and the inverse model have the same set of covariates and
differ only in the outcome and treatment roles, though more flexible functional forms are allowed for the additive terms
in the two models. To select variables, either the direct model or the inverse model can be used, depending on which way
is more convenient. On this basis, we have developed a combined estimator of ROR with higher precision. Our numerical
studies show that this strategy works well under a variety of model configurations and misspecifications. The results
from our numerical studies suggest that the use of this combined estimator could be advocated for testing heterogeneous
treatment effects in practical moderation analysis.

In terms of limitations of our approach, we have used both the direct and inverse models and assumed that the two
logistic models with linear interaction terms both approximately hold well. We would like to comment that fitting both
models can be seen in applications where the causal association between the response and the treatment is mutual and
hence more correlational. Take the association study between obesity and depression for example. Obesity is associ-
ated with an increased risk of developing depression over time and, at the same time, depressed people tend to have an
increased risk of obesity.23 There is a mixed literature in which either obesity or depression is considered as the outcome
and the other as the exposure or treatment. Both obesity and depression are often defined as binary variables and logistic
regression is a natural choice for modeling them. As a result, both the direct model and the inverse model can be found
in the literature; see Luppino et al24 and references therein. In addition, our approach essentially requires that the linear
interaction terms t ⋅ xT𝜷3 and t ⋅ xT𝜶3 approximate the true moderation effects well in both models. In reality, it is possi-
ble that linear approximation performs poorly when the true models have strong curvilinear interactions. One promising
remedial measure is to construct doubly robust25,26 estimators that remain valid when either the direct or inverse model
is misspecified. Such work has been done for the case-only analysis.27

Another issue is that we have focused on evaluation of the heterogeneity in treatment effects and estimation of the
corresponding ratio of odds ratios. When the treatment effects are found significantly heterogeneous, the next step in com-
mon practice is subgroup analysis, in which data are first stratified according to one or few important effect-moderators
and the treatment effect is assessed within each stratum by confidence intervals. While the combined estimator can be
useful in tree-structured post-hoc subgroup identification,28,29 our present results are not directly applicable for inter-
val estimation of the treatment effect within each subgroup, which entails the asymptotic covariance between ̂𝜷(3) and
̃𝜷3. One possible solution that warrants future research is to jointly estimate the direct and inverse models where we
set 𝜷3 = 𝜶3 explicitly. The independent estimating equation (IEE)30 method may be used for the joint model estimation.
Another way of estimating the covariance is bootstrapping.

Other issues include, but not limited to, variable selection in both models, robustness against model misspecification,
and model fitting difficulties in case of small sample sizes or complete separation. Regularization31 has been used to select
moderators in binary logistic regression models.32 It is of future research interest to investigate how our results extend
to regularized logistic models and how moderator selection with the direct model compares to that with the inverse
model. We have seen that the proposed method shows considerable robustness against model misspecification under
certain scenarios. Nevertheless, a more extensive study may be conducted to further investigate this issue under broader
circumstances. For example, if the direct model and the inverse model are developed and selected separately, would the
moderating effect estimates agree well? To handle complete separation, Firth’s33 regularization approach is commonly
used. Investigating whether our results extend well to Firth’s estimators of moderating effects can be another future
research avenue.

The proposed methods can be useful and extended in other scenarios and there are remaining issues that may warrant
future research. As one immediate potential application, consider the drug-drug interaction34-36 problem which occurs
when one drug or treatment modifies the efficacy of another. In this case with two treatments variables, two inverse
models can be formed by regressing each treatment variable and hence lead to two inverse estimators of the drug-drug
interaction effect. Plus the direct estimator, all three estimators may be combined into one with the general formula in
Proposition 2 to facilitate a refined assessment of the drug-drug interaction. The mechanism of “role swapping” is par-
ticularly useful in other scenarios where a direct study of moderation is inconvenient owing to modeling complexity,
numerical difficulty, or unavailability of implementation. The study of gene-environment interactions37 presents a sce-
nario with multiple treatments which are important genetic biomarkers. Common approaches are mostly hypothesis
testing based. The main challenge stems from multiplicity of inferences. If we swap the roles and treat the genetic vari-
ables as clustered binary outcomes, a generalized linear mixed model38 (GLMM) may facilitate an overall interaction
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SU et al. 485

test for each environmental variable conveniently. In addition, our approach is applicable to retrospective case-control
studies,39 where estimates of OR and ROR remain valid, and its use in this regard may be further explored.
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