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ABSTRACT
We have studied the galaxy-group cross-correlations in redshift space for the Galaxy And Mass Assembly (GAMA) Survey. We
use a set of mock GAMA galaxy and group catalogues to develop and test a novel ‘halo streaming’ model for redshift-space
distortions. This treats 2-halo correlations via the streaming model, plus an empirical 1-halo term derived from the mocks,
allowing accurate modelling into the nonlinear regime. In order to probe the robustness of the growth rate inferred from
redshift-space distortions, we divide galaxies by colour, and divide groups according to their total stellar mass, calibrated to total
mass via gravitational lensing. We fit our model to correlation data, to obtain estimates of the perturbation growth rate, 𝑓 𝜎8,
validating parameter errors via the dispersion between different mock realizations. In both mocks and real data, we demonstrate
that the results are closely consistent between different subsets of the group and galaxy populations, considering the use of
correlation data down to some minimum projected radius, 𝑟min. For the mock data, we can use the halo streaming model to below
𝑟min = 5 ℎ−1Mpc, finding that all subsets yield growth rates within about 3% of each other, and consistent with the true value.
For the actual GAMA data, the results are limited by cosmic variance: 𝑓 𝜎8 = 0.29 ± 0.10 at an effective redshift of 0.20; but
there is every reason to expect that this method will yield precise constraints from larger datasets of the same type, such as the
DESI bright galaxy survey.

Key words: gravitation; galaxies: groups: general; large-scale structure of Universe;

1 INTRODUCTION

The large-scale structure in the galaxy distribution has a long his-
tory of providing cosmological information. The first constituents
of the inhomogeneous galaxy density field to be identified were the
rich clusters, which today we see as marking the sites of exception-
ally massive haloes of dark matter. Proceeding down the halo mass
spectrum, we find progressively less rich groups of galaxies, lead-
ing to systems dominated by a single 𝐿∗ galaxy, such as the Local
Group (e.g. Wechsler & Tinker 2018). All these systems have been
familiar constituents of the Universe since the first telescopic explo-
rations of the sky, but it took rather longer to appreciate that they
were connected as part of the cosmic web of voids & filaments (see
e.g. Peacock 2016 for some selective history). In part, the history
here showed a complex interaction of theory and observation, since
redshift surveys through the 1980s lacked the depth and sampling
to reveal the cosmic web with complete clarity. For a period, it was
therefore a question of asking whether the real Universe displayed

★ E-mail: qhang@roe.ac.uk

the same structures that were predicted in numerical simulations of
structure formation in theColdDarkMattermodel (Bond et al. 1996).
But since those times, there has been an increasing confidence that
galaxy groups are indeed particularly extreme nonlinear points in
the general field of cosmic density fluctuations, and this makes them
interesting in two ways. First of all, groups are readily identified in
galaxy surveys, providing a relatively robust dataset (Eke et al. 2004;
Robotham et al. 2011). Secondly, their nonlinear nature makes them
an informative probe of theory. Modelling nonlinear behaviour is
by its nature challenging compared to linear theory, but by studying
structure formation further into the nonlinear regime, we have the
chance to test the robustness of our cosmological conclusions.

Our specific aim in this direction is to use galaxy groups as a
probe of the cosmological peculiar velocity field. Such deviations
from uniform expansion must exist through continuity, and density
concentrations such as groups should be associated with an average
infall velocity in regions surrounding the groups. The amplitude of
these velocities depends in part on the strength of gravity on cosmo-
logical scales, and the peculiar velocity field has thus increasingly
been seen as a means of probing the nature of gravity and testing al-

© 2022 The Authors

ar
X

iv
:2

20
6.

05
06

5v
2 

 [
as

tr
o-

ph
.C

O
] 

 7
 S

ep
 2

02
2
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ternative theories (e.g. Jain & Khoury 2010). Although it is possible
to probe peculiar velocities directly using absolute distance indica-
tors (Davis et al. 2011), the most powerful tool has been Redshift
Space Distortions (RSD). These arise inevitably in the study of the
3D galaxy distribution because the distances to galaxies observed on
the sky are inferred from their redshifts, 𝑧, via the standard relation

𝑑 (𝑧) =
∫ 𝑧

0

𝑐 𝑑𝑧′

𝐻 (𝑧′) , (1)

where 𝑐 is the speed of light and𝐻 (𝑧) = ¤𝑎/𝑎 is the Hubble parameter.
But this equation does not give the true distances, because Doppler
shifts from the peculiar velocities modify the observed redshift: 1 +
𝑧 → (1+𝑧) (1+𝑣𝑟 /𝑐), where 𝑣𝑟 is the radial component of the peculiar
velocity. If we then use the observed redshift as if it were a true
indicator of distance, we obtain a distribution of galaxies in ‘redshift
space’ – in which the apparent properties of galaxy clustering are
distorted in an anisotropic way.
These distortions have characteristics that depends on scale: out-

side large density concentrations, galaxies fall coherently together
under gravity; while the orbital velocities inside dark-matter haloes
are effectively randomised. The latter effect convolves the redshift-
space density field in the radial direction, leading to the characteristic
radial elongations of high-density regions known as ‘Fingers of God’
(FoG). RSD due to coherent flows in the linear regime were first stud-
ied by Kaiser (1987). The growth factor 𝑓 is defined by

𝑓 ≡ 𝜕 ln 𝛿
𝜕 ln 𝑎

' Ω𝑚 (𝑧)0.55, (2)

where 𝛿 is the matter overdensity, 𝑎 is the expansion factor, and Ω𝑚

is the matter fraction; The approximation for 𝑓 (Ω𝑚) only applies for
flat ΛCDM models in standard gravity (Lahav et al. 1991; Wang &
Steinhardt 1998; Linder 2005). In Fourier space, and in the small-
angle limit of a distant observer, the matter power spectra in redshift
space and in real space are related by

𝑃𝑠𝑚 (𝑘, 𝜇) = 𝑃𝑟𝑚 (𝑘) (1 + 𝑓 𝜇2)2, (3)

where 𝜇 is the cosine of the angle between the wave-vector 𝑘 and the
line of sight. This simple equation was highly influential from its first
appearance (Kaiser 1987), as it offered the chance of measuring Ω𝑚

from measuring the RSD anisotropy. But eventually goals shifted
as Ω𝑚 became very well determined from other routes (especially
the Cosmic Microwave Background). Following Guzzo et al. (2008),
the modern view is therefore to emphasise that the growth rate for a
given density is also proportional to the strength of gravity, so that
RSD can be used as a test of theories of gravity.
The RSD signal has been measured by a number of surveys, in-

cluding the 2dFGRS at 𝑧 ' 0.2 (Peacock et al. 2001; Hawkins et al.
2003); the 6dFGS at 𝑧 ' 0.1 (Beutler et al. 2012); the SDSS BOSS&
eBOSS surveys at 𝑧 ' 0.6 (Reid et al. 2012; Alam et al. 2017, 2021a);
and at 𝑧 ' 1 by the 8m VVDS and VIPERS surveys (Guzzo et al.
2008; Pezzotta et al. 2017). For the GAMA survey at 𝑧 ' 0.4, aspects
of RSDwere studied by Blake et al. (2013) and Loveday et al. (2018),
who measured the pair-wise velocity dispersion to small scales and
as a function of luminosity. The above studies all focused on galaxy
auto-correlations.
The challenge in modelling RSD is that truly linear modes are

rare. In observation, large scales are affected by cosmic variance due
to the finite survey volume. McDonald & Seljak (2009) proposed
the use of multiple tracers in order to overcome cosmic variance,
although in practice the improvement is slight (Blake et al. 2013). To
gain more information, one needs to probe smaller scales, where the
effect of non-linearity can systematically bias the results (de la Torre
& Guzzo 2012).

One possible solution to this dilemma is to use galaxy groups to
probe the velocity field. Due to the small random virial velocity of
the central galaxy at the group centre, the coherent large-scale infall
velocities of groups are dominant down to intermediate and small
scales. The group auto-correlation would thus have reduced FoG,
aiding the extraction of the linear growth rate (Padilla et al. 2001;
Mohammad et al. 2016). In practice, the group catalogue inGAMA is
sparse, with a number density of 4.3× 10−3ℎ3Mpc−3 between 0.1 <
𝑧 < 0.3, and measurements of the auto-correlation will have high
statistical noise. The cross-correlation between groups and galaxies is
thus an intermediate route, which effectively improves the statistical
power while still reducing the non-linear pairwise velocities at small
scales. The clustering of GAMA groups has been recently studied in
Riggs et al. (2021), and the present work extends this study to further
subsets of the data, concentrating in more detail on their different
RSD signals.
Our aim here is thus to test the robustness of RSDmethods down to

small or intermediate scales using multiple tracers involving galaxy
groups. By cross-correlating galaxies of different colours, and groups
in different mass bins, we examine the consistency of the inferred
cosmological results between the subsamples. In order to pursue this
investigation, we develop a new model for RSD in cross-correlation,
involving a combination of the halo model and the streaming model,
whichwe implement by including some information taken frommock
data. Throughout the analysis, we adopt the WMAP7 Cosmology
(Komatsu et al. 2011) with 𝜎8 = 0.81, Ω𝑚 = 0.27, ℎ = 0.70, and
𝑛𝑠 = 0.967, consistent with the mock catalogue.
The GAMA data set and its mocks are detailed in Section 2 fol-

lowed by Section 3.1 where we introduce the statistics for measuring
the 2-point function in the data. In Section 3.2 we present the re-
sulting 2D correlation function measurements for sub-samples, In
Section 4 we discuss the theoretical modelling of RSD in galaxy-
group cross-correlations, and in section 5 we confront this modelling
with real and mock GAMA data. The models are validated in Sec-
tion 5.1 via detailed comparison with the GAMA mocks, where we
establish the scales to which the different theories can work without
bias; we present the fitting of the real GAMA data in Section 5.2.
Finally, we summarize the work in Section 6.

MNRAS 000, 1–21 (2022)



Modelling RSD in galaxy-group cross-correlations 3

2 GAMA DATA AND MOCKS

This analysis is based on the Galaxy And Mass Assembly (GAMA)
spectroscopic survey. This was conducted using the 2dF facility at
the Anglo-Australian 4m telescope over 210 nights between 2008
& 2014, accumulating spectra of 265 958 distinct galaxies. Together
with existing data, this yielded a catalogue of 330 542 redshifts over
five survey fields totalling 250 deg2, with a mean redshift of 𝑧 ' 0.2
(Driver et al. 2022). The three main fields near the equator, G09,
G12, and G15 are used here, each covering an area of 12 × 5 deg2.
The survey has an extinction-corrected 𝑟-band flux limit of 𝑟 < 19.8,
based on SDSS photometry.
The overall redshift completeness of the GAMA equatorial region

is 98.5%: this high completeness was achieved by a large number
of repeated visits to 2dF fields covering the survey area in different
ways. This property is greatly advantageous for small scale galaxy
and group studies compared to much larger surveys such as BOSS,
where fibre collisions can lead to substantial undercounting of close
galaxy pairs and thus bias the measured galaxy 2-point correlation
function (Guo et al. 2012).
The present analysis uses theDR3 data release (Baldry et al. 2018),

which differs slightly from the final data release, DR4 (Driver et al.
2022). DR4 implements revised flux completeness limits through the
use of new KiDS photometry. The original SDSS limit of 𝑟 < 19.8
was trimmed in DR4 to 𝑟 < 19.58 for 98% completeness in the
equatorial fields. Galaxies for the present study are selected from the
SpecObjv27 DMU (Data Management Unit), with CMB frame red-
shifts adopted from DistancesFramesv14. We apply the following
criteria: redshift quality nQ> 3, angular completeness mask > 80%,
and visual classification VIS_CLASS = 0, 1, 2551. The spectroscopic
redshifts are computed by the code runz (Driver et al. 2011), which
has a 1𝜎 redshift error of 50 km s−1 in terms of peculiar velocity
(Liske et al. 2015). In order to compute correlation statistics, it is
essential to accompany the galaxy sample with a knowledge of the
survey selection in angle and redshift. As usual, this information is
captured by a random catalogue Randomsv02 of fictitious unclus-
tered galaxies; this catalogue was generated by Farrow et al. (2015)
from the actual GAMA galaxy catalogue using a modified method
followingCole (2011). The idea of thismethod is to clone each galaxy
𝑛 times and distribute them randomly within the maximum volume
𝑉max that the galaxy can be observed given the survey magnitude
limits,

𝑛 = 𝑛clones
𝑉max
𝑉max,dc

, (4)

where 𝑛clones = 400 is the total number of randoms divided by
data, and 𝑉max,dc is the maximum volume weighted by overdensity
Δ(𝑧). This method is iterated until Δ(𝑧) converges, and the redshift
distribution of the resultant random catalogue is smoothwithout large
scale features (see Fig. 4 in Farrow et al. 2015).
The official GAMA group catalogue (G3C) was constructed by

Robotham et al. (2011).Most of the groups are foundwithin 𝑧 . 0.35
(see Fig. 16 in Robotham et al. 2011): thus we impose a redshift cut
0.1 < 𝑧 < 0.3 for the groups. The group catalogue is derived using
an anisotropic friends-of-friends (FoF) algorithm calibrated against
an 𝑁-body mock catalogue. However, in order to have consistently
defined groups in the GAMAmocks (see Section 2.3), we do not use
the official G3C catalogue. Instead, we apply a similar FoF group

1 VIS_CLASS = 0: Not visually inspected but suspicious based on SDSS
flags; VIS_CLASS = 1: Visually inspected and a valid target; VIS_CLASS
= 255: Not visually inspected but should be OK based on SDSS flags.

Table 1. Number of selected galaxies and groups from GAMA fields with
redshifts 0.1 < 𝑧 < 0.3 and flux limit 𝑟 < 19.8. Galaxies are split into two
colour classes, red and blue, by Eq. 5. Groups are split into three stellar mass
bins: 40% (LM), 50% (MM), and 10% (HM) by mass ranking from low to
high, covering the mass range log10 (𝑀∗/ℎ−2𝑀�) = 9.5 − 12.5.

Number of G09 G12 G15

Galaxies Blue 17 335 18 719 19 053
Red 20 584 22 155 21 141
Total 37 919 40 874 40 194

Groups LM 1877 2084 2054
MM 2347 2606 2569
HM 470 522 514
Total 4694 5212 5137

G3C Total 4937 5367 5358

finder algorithm due to Treyer et al. (2018) to both data and mocks
(see Kraljic et al. 2018 for an application to GAMA). The main
difference between the two algorithms is the parameterisation of
the linking length, and a detailed description of the algorithm and
assessment of the group reconstruction quality can be found in the
Appendix of Treyer et al. (2018).
In addition to the above selections, we further split galaxies and

groups into subsamples based on galaxy colour and group mass. The
number of selected galaxies and groups in each GAMA field and for
each subsample is summarised in Table 1. We describe the selection
in more detail below.

2.1 GAMA galaxy colour selection

Galaxies are divided into two populations that are known to have
distinct clustering properties: the ‘red’ galaxies, which tend to be
older, with little or no active star formation, and the ‘blue’ cloud,
where galaxies are younger with active star formation. To obtain the
galaxy colours, we use the extinction corrected SDSS magnitudes
from the TilingCatv46 DMU. It is however non-trivial to separate
the galaxy population into these subsets, because the colour distri-
bution is continuous without gaps: elaborate approaches have been
discussed in e.g. Taylor et al. (2015). For the purpose of this study,
we adopt a simple quadratic cut in the apparent 𝑔 − 𝑖 colour versus
redshift plane:

𝑔 − 𝑖 = 6.220𝑧2 + 1.383𝑧 + 0.831. (5)

A cut of this form ismotivated empirically by the apparent bimodality
in the colour-redshift plane, as shown in Fig. 1. The precise location
of the cut was adjusted in order to match the red and blue fraction
at each redshift in the GAMA data with the corresponding result in
the mocks (which are discussed below in Section 2.3). The overall
fraction of red or blue galaxies is very close to 0.5, and it changes
only slightly with redshift: at the low redshift end, the red and blue
fractions are similar, while towards higher redshifts, the fraction of
red galaxies increases mildly until 𝑧 ∼ 0.2, and the difference in
the red and blue fraction then becomes small at 𝑧 ∼ 0.3. We create
random catalogues for the red and blue galaxy subsamples where
required by applying this smoothly-varying colour balance to the
redshift distribution of the main random catalogue.

MNRAS 000, 1–21 (2022)
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Figure 1. Distribution of the 𝑔 − 𝑖 colour of galaxies in the redshift range
0.1 < 𝑧 < 0.3, for the real GAMA data (upper panel) and the average of 25
mocks combined (lower panel). Red and blue populations are separated by
the dashed cyan lines. The cut in GAMA is chosen such that both GAMA and
mocks have similar red and blue fractions at any given redshift. The dotted
lines show the cut for an alternative ‘contaminated’ red sample (see text).

2.2 GAMA group mass selection

Groups are accepted with > 2 group members, and the centre of the
group is determined by the most (more) massive member in terms
of stellar mass. The 2-member systems make up 66% of the total
groups in the GAMA data, but are likely to have poor fidelity. Thus,
we emphasise that having the same group finder algorithm for the
data and mocks is vital in order for these low-fidelity groups to be
comparable. There are several approaches for determining the group
centre. The simplest choice is to select the most massive member to
be the central galaxy, and assume that it overlaps with the halo centre.
Other approaches include determining a weighted centre by averag-
ing over the positions of the group members, or iteratively excluding
members that are most distantly separated (see e.g. Robotham et al.
2011). The iterative centres are used in the G3C catalogue, and it
is shown in Robotham et al. (2011) that the agreement with using
the brightest group galaxy (BCG) as group centre is 95% for groups
with 𝑁 > 5, and that both BCG and iterative centres give highly
consistent results for 2 6 𝑁 6 4 compared with the mock, and that
the BCG centres are only degraded by about 3% compared to the
iterative centres. The effects of different group centre choices on the
group-galaxy cross-correlation concern mainly the 1-halo regime at
𝑟 6 1 ℎ−1Mpc, and the correlation functions converge on larger
scales (Yang et al. 2005).
The halo mass of GAMA groups was found to be tightly correlated

with the group total luminosity (Han et al. 2015; Viola et al. 2015;
Rana et al. 2022), based on using stackedweak lensingmeasurements

to determine the mass distribution of the GAMA groups. The halo
mass of groups is related to the 𝑟-band luminosity 𝐿grp via

𝑀ℎ = 𝑀𝑝

(
𝐿grp
𝐿0

)𝛼
, (6)

where 𝐿0 = 2 × 1011ℎ−2𝐿� , log10 (𝑀𝑝/ℎ−1𝑀�) = 13.48 − 0.08 ±
0.12, and 𝛼 = 1.08 + 0.01 ± 0.22 (Han et al. 2015). The group
halo mass can be used to compute the expected mean group bias,
as shown in Section 5.3, where we also consider alternative mass
calibrations. It should be noted that in these works, only groups with
three members or above are used. Robotham et al. (2011) showed
that the mass function is noisier, but not biased when including
two-member groups. Although these systems are individually of low
reliability, this aspect should be allowed for by the mock catalogue,
allowing us to gain the statistical advantage of using a larger sample.
The luminosity is computed from the apparent 𝑟-band magnitude:

−2.5 log(𝐿/𝐿�) = 𝑚 − 𝐾 (𝑧) − 5 log(𝑑𝐿) − 25 − 𝑀� , (7)

where 𝐾 (𝑧) the 𝑘-correction up to 𝑧 = 0 (kcorr_z00), 𝑑𝐿 is the
luminosity distance, and𝑀� = 4.67 is the 𝑟-band absolutemagnitude
of the sun. The luminosity distance is expressed with unit ℎ−1Mpc
so that the luminosity has units of ℎ−2𝐿� .
The total luminosity of the group is computed in Robotham et al.

(2011) via

𝐿FoF = 𝐵𝐿ob

∫ −14
−30 10

−0.4𝑀𝑟 𝜙GAMA (𝑀𝑟 ) 𝑑𝑀𝑟∫ 𝑀𝑟−lim
−30 10−0.4𝑀𝑟 𝜙GAMA (𝑀𝑟 ) 𝑑𝑀𝑟

, (8)

where 𝐿ob is the total observed luminosity in the 𝑟AB band, 𝐵 = 1.04
is the correction for median unbiased estimate for 𝑁 > 5 groups, and
𝑀𝑟−lim is the absolute magnitude limit of the group depending on the
redshift 𝑧. 𝜙GAMA is the luminosity function defined in Robotham
et al. (2011). The luminosity function at the faint end for GAMA
galaxies is well approximated by 𝜙 ∝ 𝐿−1 exp(−𝐿/𝐿∗) (Loveday
et al. 2012). Thus in practice we take the simpler approach of esti-
mating a total group luminosity by scaling the observed luminosity
by a redshift-dependent correction factor exp(𝑧2/𝑧2∗) with 𝑧∗ = 0.33,
where 𝑧 is the mean redshift of the group members. This correction
factor has been checked using the G3C groups to produce a total
luminosity consistent with the official TotFluxProxy.
The total stellar mass is another proxy for the total group mass. We

take the StellarMassesv19 DMU from Taylor et al. (2011), where
stellar population synthesis is used to model the optical photometry
of the GAMA galaxies. Because the modelling uses rest frame lumi-
nosities, which depends on distance, the stellar mass is expressed in
units of ℎ−2𝑀�2.Furthermore, for each group, we correct the total
stellar mass by the same redshift dependent factor as the total lumi-
nosity. Notice that we do not apply the fluxscale correction here,
which accounts for the missing flux from matched aperture photom-
etry, because our results do not rely on the absolute stellar mass of
the groups. This correction therefore does not affect our primary aim
of splitting the groups into a few bins based on their ranking in mass.
The calibration of the total stellar mass and the halo mass from

weak lensing of the GAMA groups is shown in Fig. 2 for the official
G3C groups from the G3CFoFGroupv09 DMU (dashed line) and the
group catalogue used in this work (solid line). The contours show

2 Notice that this is only approximately true, because the stellar mass to light
ratio, 𝑀/𝐿, which is used to obtain the stellar mass, depends on age and
is therefore specific to the choice of ℎ. The stellar mass used here assumes
ℎ = 0.72.

MNRAS 000, 1–21 (2022)
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Figure 2. Upper panel: Correlation between the stellar mass, corrected to
total by a factor exp(𝑧2/𝑧2∗ ) and the halo mass estimate derived from the
total group luminosity mass proxy, together with a lensing-based absolute
calibration from Han et al. (2015), for the GAMA groups with two or more
members between redshifts 0.1 < 𝑧 < 0.3. The contours denote 95%, 50%,
and 20% of the total sample. The solid lines show the groups used in this
work using the group finder algorithm in Treyer et al. (2018), and the dashed
lines show the the official G3C groups (Robotham et al. 2011). Lower panel:
The same relation for the mock catalogue. In this case, 𝑀ℎ is not estimated
from the luminosity, but directly taken as the arithmetic mean host halo mass
of the group member. The difference in the distributions indicates that the
stellar populations in the mock data are not entirely realistic, but it also warns
us that the exact values of halo mass corresponding to the different GAMA
group subsets must be treated empirically, and should not be treated as being
known precisely.

95%, 50%, and 20% of the total sample, and are highly consistent
between the two group catalogues. We choose to divide groups into
three stellar mass bins based on percentiles: the Low Mass (LM) bin
consists of the least massive 40% groups, the Medium Mass (MM)
bin corresponds to the middle 50%, and the High Mass (HM) bin
contains the most massive 10%. The signal-to-noise of high mass
haloes is expected to be high, despite the low number in the HM bin.

2.3 Mocks

We include mock catalogues for two reasons: (1) to validate the
RSD models and assess the bias on the recovered growth rate, and
(2) to quantify the impact of cosmic variance via the construction
of covariance matrices. We used 25 realisations of a lightcone mock
catalogue based on the GALFORM semi-analytical galaxy formation
(Gonzalez-Perez et al. 2014). The catalogue exploits the Millennium
Simulation (Boylan-Kolchin et al. 2009) with the WMAP7 cosmol-
ogy. These mocks can be obtained from the Durham hosted Virgo-
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Figure 3. The mean redshift distribution of the 25 GAMA mocks (square)
is offset from that of the random sample (dotted line). A random catalogue
is created for the mocks to have matched redshift distribution as the mock
mean. The redshift distribution of the GAMA galaxy sample is also shown
(histogram) for comparison.

Millennium Database13 (Lemson & Virgo Consortium 2006). For
more details regarding the mock catalogue, see Farrow et al. (2015).
By Eq. 2, the fiducial value of growth rate at the mean redshift of the
mocks, 𝑧 = 0.195, is 𝑓fid = 0.593. The lightcone is constructed using
the methods in Merson et al. (2013), where, given an observer, the
galaxy is placed at the epoch where it first enters the past lightcone of
the observer. The galaxy trajectories are interpolated between snap-
shots. Each mock covers the five GAMAfields with the SDSS 𝑟-band
apparent magnitude SDSS_r_obs_app < 21, and 𝑧 < 0.9.
We use galaxies in the G09, G12, and G15 fields and apply the

same selection in redshifts 0.1 < 𝑧 < 0.3 and the apparent 𝑟-band
magnitude cut SDSS_r_obs_app < 19.8. We also apply the same
survey mask generated using the random catalogue. The masked
areas are obtained by binning random galaxies in each field with an
average of ∼ 2000 counts in each bin. Pixels with counts smaller than
five times the Poisson noise are masked. The total masked area in the
three fields is about 0.14 deg2. Because themock redshift distribution
is not matched exactly with GAMA data and random (see Fig. 3),
we create a random catalogue for these mocks by down-sampling the
random catalogue for the GAMA data, such that the 𝑛(𝑧) matches
the mean of 25 mocks.
The red and blue subsamples for the mean of the mocks are sepa-

rated by the empirical line given by

𝑔 − 𝑖 = 0.46 + 3.2𝑧, (9)

as shown in the lower panel of Fig. 1. The line is chosen to go through
the green valley of the mock galaxy 𝑔−𝑖 colour. The GAMA galaxies
have a more concentrated red sequence overlapping with an extended
blue population, without a distinct green valley in between. On the
contrary, the mocks have a broader red population which is well
separated from the blue population by a green valley. Since the mock
catalogues have more distinctive separation for the two populations,
we find the corresponding colour cut in the GAMA data by matching
red and blue fractions in the two catalogues for 20 redshift bins
in 0.1 < 𝑧 < 0.3. The cut is smoothed by fitting a second order
polynomial, as shown in the upper panel of Fig. 1.
The contamination of the red and blue sub-samples in the GAMA

data resulting from the colour cut is quantified in the following way:

3 http://virgodb.dur.ac.uk:8080/MyMillennium/Help?page=

databases/gama_v1/lc_multi_gonzalez2014a
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for each redshift bin, the red and blue sub-samples are fitted by a
doubleGaussian. It is a reasonable fit except for the green valley in the
mocks, as shown in Fig. 4. Given a colour cut, the contamination of
the red sub-sample is defined as the area under the blue Gaussian over
the area under the redGaussian, and similarly for the contamination of
the blue sub-sample. Clearly, GAMAdata contain a contaminated red
sample and a pure blue sample. Therefore, we create a contaminated
red sub-sample using themock catalogues by placing themock colour
cut such that extra blue galaxies are included with the same level of
contamination asGAMAdata. The contaminated red cut in themocks
(see Fig. 1) is smoothed by fitting a quadratic polynomial of the form

𝑔 − 𝑖 = 2.43𝑧2 + 1.55𝑧 + 0.388. (10)

For mock groups, the stellar mass is computed by the sum of
diskstellarmass and bulgemass of all group members, and cor-
rected by the same redshift-dependent factor as the data. We do not
estimate the group halo mass from the same mass-luminosity rela-
tion in Eq. 6. Instead, we use the host halo mass of the mock galaxy
directly. Because some haloes contain more than one galaxy, for each
group, we test the largest, the arithmetic mean, and the median halo
mass of the group member, and find that they give similar results.
We also test using the sum of unique host haloes in the group. This
increases the total group halo mass in the lower mass end, but does
not affect the higher mass end. The stellar-halo mass relation of the
groups using the total stellar mass and the arithmetic mean host halo
mass of the group members is shown in the lower panel of Fig. 2. It is
clear that the mocks show a much larger scatter in the 𝑀ℎ −𝑀∗ plane
and the slope is smaller compared to data, i.e., at fixed stellar mass,
the halo mass is larger. The total stellar mass of the mock groups is
also smaller by about 0.5 dex compared to data. The clear difference
between data and the mocks shows that estimating the halo mass
from luminosity using Eq. 6 is not very reliable. The luminosity is
itself strongly correlated with stellar mass via the luminosity-mass
relation, thus the upper panel of Fig. 2 does not show the true scatter
of 𝑀ℎ at fixed 𝑀∗ faithfully (or vice versa). A comparison between
the group and the halo catalogue in the GAMAmocks reveals that the
2-member groups have low fidelity, also discussed in Robotham et al.
(2011). This again emphasises the importance of using a consistent
group finder algorithm between the GAMA data and the mock cat-
alogues. The mock group catalogues are separated into three stellar
mass bins based on the 40%, 50%, and 10% percentiles as measured
in the data.

3 CROSS-CORRELATION MEASUREMENTS

3.1 Correlation statistics

We estimate the 2-point correlation function by counting pairs of
galaxies and randoms using the Davis–Peebles estimator (Davis &
Peebles 1983):

𝜉 (𝑟𝑝 , 𝜋) =
𝐷1𝐷2
𝐷1𝑅2

− 1, (11)

where the subscript 𝑖 = 1, 2 denotes the two samples to be correlated
(in case of auto-correlation, the same sample), 𝐷𝑖 denotes data,
and 𝑅𝑖 denotes the corresponding random points. Each term in the
equation (e.g., 𝐷1𝐷2) is the normalised pair count between data and
(or) random points, measured in bins of the pair separation (𝑟𝑝 , 𝜋)
defined below. For two objects located at s1 and s2, their separation
is given by s = s1 − s2. The line of sight is defined along the mean
position of the pair, r = (s1 + s2)/2. One can then decompose the

separation into components parallel and perpendicular to the line of
sight:

𝜋 =
s · r
|r| ; 𝑟𝑝 =

√︁
s2 − 𝜋2. (12)

The random catalogue 𝑅 captures various properties of the actual
data, such as the survey mask and the sample redshift distribution
𝑛(𝑧), but has no spatial correlation. Thus, these estimators essentially
measure the excess clustering of the data points compared to a ran-
dom distribution. For the red and blue galaxy samples, the random
𝑛(𝑧) is modulated by the redshift-dependent red and blue fraction
respectively (see Section 2.1).
For the case of auto-correlations, the Landy–Szalay estimator

(Landy & Szalay 1993) is known to be superior to the Davis–Peebles
approach, and there is a natural generalisation to cross-correlation:

𝜉 (𝑟𝑝 , 𝜋) =
𝐷1𝐷2 − 𝐷1𝑅2 − 𝐷2𝑅1 + 𝑅1𝑅2

𝑅1𝑅2
. (13)

However, implementing this estimator would require a random cat-
alogue for galaxy groups in different mass ranges, and we prefer
to avoid this complication. In contrast, the Davis–Peebles estimator
requires a random catalogue for only one of the populations being
correlated. Both Mohammad et al. (2016) and Riggs et al. (2021)
estimated cross-correlations using a form of Landy–Szalay where
𝑅2 was replaced by 𝑅1, but this has no justification, and will yield
incorrect results when the selection functions of the two tracers are
very different. We measured the galaxy auto-correlations using both
estimators, and found negligible difference for our sample. Through-
out the analysis, the size of random catalogue used is 20 times that
of data.
The 2D correlation functions are measured out to a maximum

scale of 40 ℎ−1Mpc for both the 𝑟𝑝 and 𝜋 directions in bins of
1 ℎ−1Mpc. This maximum scale is chosen due to the limited volume
of the GAMA survey. It may appear to be a concern that at this
scale perturbation theory starts to break down (thus the scale is often
chosen as the cut-off scales for larger data sets). However, we shall
show later that empirical models based on linear theory can still give
relatively unbiased results below this scale. For the halo streaming
model, which we will elaborate in Section 4.2, we use a 1-halo
template to absorb the deviation of non-linear clustering from the
perturbative 2-halo term. Although in principle, 𝑟𝑝 and 𝜋 should be
measured in the range [−40, 40] ℎ−1Mpc, in practice, pair counts
in the positive and negative bins are combined and our correlation
functions have two mirror planes of symmetry. This is the standard
practice for 𝑟𝑝 , because the correlation function is symmetric around
the transverse direction. Along the line of sight, positive and negative
𝜋measurements can in fact be distinctive in cross-correlations due to
secondary gravitational effects. For example, gravitational redshift
can give rise to a non-vanishing dipole between two samples that
differ significantly in mass (Bonvin et al. 2014; Wojtak et al. 2011;
Cai et al. 2017; Beutler & Dio 2020). However, given the size of the
sample, we shall not investigate this issue in the present study. The
combination of the 𝜋 bins also improves the signal-to-noise for our
measurements.

3.2 Results

In the following analysis, we will refer to the group subsamples
as LM (low mass bin), MM (medium mass bin), and HM (high
mass bin). We thus have six configurations for the group-galaxy
cross-correlations: LMred, MMred, HMred, LMblue, MMblue, and
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Figure 4. The 𝑔 − 𝑖 colour distribution of GAMA and 25 mocks combined at 5 of the 20 redshift bins in 0.1 < 𝑧 < 0.3. The black dashed lines are double
Gaussian fits to the distributions, characterizing the blue and red populations. The yellow cuts show a linear cut in the green valley in the mocks, and the
corresponding cuts in GAMA which give the same red and blue fraction. The green dotted cuts in mock is the cut for the impure red sample.

HMblue. In addition, we also measure the red and blue galaxy auto-
correlations. The inclusion of galaxy auto-correlations in the analysis
helps in breaking the near degeneracy between 𝑏gal and 𝑏grp. Ideally,
one would also include the auto-correlations for the group catalogue.
These are excluded here: as mentioned above, we do not construct
random versions of the group catalogue.

Fig. 5 shows the red and blue galaxy auto-correlations (top row)
and the cross-correlation functions for the six configurations (lower
three rows) measured from the GAMA data (first and third column),
and the corresponding mocks average (second and forth column).
The first noticeable feature is that the red configurations (left two
columns) have larger clustering signals compared to the blue ones
(right two columns). This is most obvious in the two galaxy auto-
correlations. On relatively large scales, the squashing is also stronger
in the blue configurations. This effect is controlled by the Kaiser dis-
tortion parameter 𝛽 = 𝑓 /𝑏 (see Section 4.1 below), and is expected
to be stronger for samples with a smaller bias 𝑏 (vice versa), given
that the growth rate 𝑓 is fixed. The fact that red galaxies have a larger
galaxy bias compared to blue galaxies implies that red galaxies are
preferentially associated with more massive dark matter haloes, in
agreement with other studies (e.g. Guo et al. 2014;Mandelbaum et al.
2016; Bilicki et al. 2021). On smaller scales, the red configurations
also show a much more prominent FoG signal compared to the blue
ones. This is intuitively sensible because more massive haloes are as-
sociated with a larger velocity dispersion. Comparing the correlation
functions across different groups for a specific galaxy selection, we
see a similar trend on both small and large scales: with the increase
in group mass, a larger clustering amplitude, group bias, and FoG
effect are observed. Notice the high signal-to-noise at small scales
in the HM groups, despite that the sample size in this mass range is
only about 1/4 of the other mass ranges. These observations confirm
that the identification of the galaxy groups, as well as the separation
of group masses based on the effective halo mass (total luminosity)
are successful for the purpose of this study.

The agreement between the mock average and the GAMA data is

good in general – the same trends in galaxy colour and group mass
are captured. In regions where 𝑟𝑝 is close to zero, the mock average
seem to produce weaker clustering compared to the actual data in the
blue configurations. The match in the red configuration, on the other
hand, is excellent. The mock contaminated red sample is also shown
as dotted contours (second column). The inclusion of extra blue
galaxies has the effect of slightly reducing the overall amplitude in
this contaminated sample compared to the pure red sample. On larger
scales, the signal in data is noise and cosmic variance dominated.
This is most noticeable in the LM subsamples, where the signal
greatly exceeds the mock average on 𝑟 > 20 ℎ−1Mpc. Inspecting
the measurement in each mock sample, this level of fluctuation in
the data is expected. It should be noted that cosmology adopted in
the mock catalogue is Ω𝑚 = 0.27, which is lower than the current
constraint from Planck, Ω𝑚 = 0.315 ± 0.007 (Planck Collaboration
et al. 2020). Thus, one may expect some difference in clustering
between the mock average and the data. However, given the noise in
the GAMA data, a percent-level shift in the growth rate 𝑓 ∝ Ω0.55𝑚

is hard to discern. It is also found in Farrow et al. (2015) (e.g. their
Figure 8) that the mock can capture similar clustering trends as the
GAMA data, when split into bins of redshift and stellar mass. Notice
that there are significant deviations at small scales (𝑟𝑝 < 1 ℎ−1Mpc)
in the shape of the projected correlation functions, but these scales
are not explored in this analysis.

4 RSD MODELS

4.1 Quasilinear dispersion model

To describe the RSD in galaxy density field, one can extend Eq. 3 by
including the galaxy bias 𝑏:

𝑃𝑠𝑔 (𝑘, 𝜇) = 𝑏2𝑃𝑟 (𝑘) (1 + 𝛽𝜇2)2, (14)

where 𝛽 = 𝑓 /𝑏 is often referred to as the distortion parameter.
The above formalism is valid for galaxy auto-correlation, but it is
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straightforward to generalise to cross-correlation:

𝑃𝑠𝑐 (𝑘, 𝜇) =
𝑏2gal
𝑏12

(1 + 𝛽gal𝜇2) (1 + 𝑏12𝛽gal𝜇2)𝑃𝑟 (𝑘), (15)

where 𝑏gal is the galaxy bias, and 𝑏12 is the ratio between galaxy and
group bias:

𝑏12 ≡ 𝑏gal/𝑏grp. (16)

The 2-point correlation function is the Fourier transform of the
power spectrum. It is convenient to express the correlation functions
in terms of Legendre polynomials Pℓ (𝜇) with ℓ = 0, 2, 4 (Hamilton
1992):

𝜉𝑠𝑔 = 𝜉0 (𝑟)P0 (𝜇) + 𝜉2 (𝑟)P2 (𝜇) + 𝜉4 (𝑟)P4 (𝜇). (17)

In this expression, the coefficients of the Legendre polynomials,
𝜉0 (𝑟), 𝜉2 (𝑟), and 𝜉4 (𝑟) are referred to as the monopole, quadrupole,
and hexadecapole. In linear theory, only evenmodes are present up to
the forth order because of theRSDeffectmodifies the power spectrum
by the factor (1 + 𝛽𝜇2)2. The specific form of these multipoles are
computed by Hamilton (1992) for auto-correlation, and Mohammad
et al. (2016) for cross-correlation. We summarise these formulae in
Appendix A.
The FoG effect is accounted for by a convolution of the correlation

function with some distribution of the non-linear random peculiar
velocity along the line of sight (Peacock & Dodds 1994). 𝑁-body
simulations show that the actual distribution is non-Gaussian (e.g.
Sheth 1996; Scoccimarro 2004; Cuesta-Lazaro et al. 2020). Thus,
we adopt:

𝐷 (𝜋) = 1
√
2𝜎12

exp
(
−
√
2𝐻0𝜋/𝜎12

)
, (18)

where 𝜎12 is the pairwise velocity dispersion. In Fourier space, this
function takes the form of a Lorentzian function, 𝐷̃ (𝑘𝜇) = [1 +
(𝑘𝜇𝜎12)2/2]−1, which damps the high-𝑘 modes of the anisotropic
power spectrum.
At quasilinear scales, non-linearity may introduce systematic bi-

ases in the inferred cosmological parameters (de la Torre & Guzzo
2012). There are multiple challenges in extending the model beyond
linear regime. There, the peculiar velocities can be large, and the
formalism described breaks down at linear order. Nonlinearities alter
the small scale shape of the matter power spectrum and correlate
the density and velocity fluctuations. Accounting for these effects
requires higher order expansion in the Perturbation Theory and the
inclusion of the velocity spectrum, 𝑃𝜃 𝜃 (𝑘), and the density-velocity
cross spectrum, 𝑃𝛿𝜃 (𝑘), e.g. the TNS model by Taruya et al. (2010).
Galaxy bias can also be nonlinear and stochastic on small scales
(Dekel & Lahav 1999). Furthermore, the approximate velocity dis-
persion in equation 18 fails to fit auto-correlation data on the smallest
scales. More elaborate velocity distributions are proposed by e.g.,
Reid & White (2011); Zu & Weinberg (2013); Bianchi et al. (2015)
based on simulations.
One simple approach is the replacement of the linear power spec-

trum in the linear Kaiser model (Eq. 14) by the non-linear power
spectrum. This is reasonable because the redshift space power spec-
trum should match that in real space at 𝜇 = 0. Blake et al. (2011)
showed that this combination is actually among the best-performing
RSD models when fitting down to 𝑘max = 0.2 ℎMpc−1 with fixed
cosmology4. For this model, we adopt the non-linear power spec-
trum from Halofit (Smith et al. 2003; Takahashi et al. 2012). In the

4 Although it should be noted that if the model could introduce bias to Ω𝑚

if the cosmology is not fixed, as shown in Parkinson et al. (2012).

nonlinear regime we should in principle allow for a scale-dependent
bias. But in practice it is a good approximation to assume that the
nonlinear galaxy and matter power spectra are in a constant ratio
(see Camacho et al. 2019). In the following analysis, we refer to this
model as the ‘quasilinear dispersion’ (QD) model.

4.2 RSD in the halo model

The main deficiency of the QDmodel is that it does not address post-
linear couplings between density and velocity, which will modify
the simple Kaiser angular anisotropy. There is an extensive literature
of attempts to improve such modelling, based on various forms of
perturbation theory. Themodel of Taruya et al. (2010) is widely used,
although more recent efforts have concentrated on the Effective Field
Theory approach. This adds additional terms dictated by symmetry
in a way that can also capture bias effects, including non-linearity
and non-locality (e.g. Carrasco et al. 2012; Senatore 2015; d’Amico
et al. 2020). These results are impressive, but have the limitation
that they are presented in Fourier space and are not reliable beyond
𝑘 ' 0.3 ℎMpc−1. For a robust prediction of correlation functions,
we need a formalism that still behaves correctly in the large-𝑘 limit.
For this reason, we have developed a model that seeks to access

the highly nonlinear regime by using the halo model. In real space,
this involves correlations that count pairs of galaxies in the same halo
or in different haloes:

𝜉 (𝑟) = 𝜉1ℎ (𝑟) + 𝜉2ℎ (𝑟). (19)

The 1-halo term is determined by the form of the halo density pro-
file, and the 2-halo term is close to a linearly biased version of the
matter two-point function. The bias in turn is determined by the halo
occupation number, 𝑁 (𝑀), of galaxies in haloes as a function of
their mass. This halo model has proved a highly effective way to un-
derstand the relation between the clustering of galaxies and of mass
(Seljak 2000; Peacock & Smith 2000; Cooray & Sheth 2002), and for
the case of dark matter alone has led to the highly precise HALOFIT
framework (Smith et al. 2003; Takahashi et al. 2012).
The halo-model separation into two independent pair contributions

must also apply for the redshift-space correlations, namely

𝜉 (𝑟𝑝 , 𝜋) = 𝜉1ℎ (𝑟𝑝 , 𝜋) + 𝜉2ℎ (𝑟𝑝 , 𝜋), (20)

but it should be clear from the outset that the 1-halo and 2-halo
contributions would be expected to have rather different anisotropy
signals. The characteristic quadrupole plus hexadecapole Kaiser dis-
tortion arises from the coherent component of the velocity field, and
this will apply to the 2-halo term only, since pairs from within the
same halo are unaffected by bulk motion of the halo. This redshift-
space decomposition using the halo model was advocated by Hand
et al. (2017), who invested much effort in trying to predict the two
distinct components using perturbation theory. Our work bears some
resemblance to their approach, with two distinct differences: wework
directly in configuration space, and we base the 1-halo term on em-
pirical simulation results, rather than attempting to calculate it a
priori.
A particular point to clarify in this decomposition is the treat-

ment of Fingers of God. Random motions within a halo are treated
in the dispersion model by a radial convolution – but in fact the
appropriate convolution will be different for the 1-halo and 2-halo
terms. The main reason for this is that the 1-halo and 2-halo terms
weight contributions as a function of halo mass differently, with a
higher weight given to high-mass haloes in the 1-halo term (see e.g.
equations 8 & 10 of Seljak 2000). Since the pairwise dispersion 𝜎12
increases with halo mass, we expect larger FoG effects to apply to the
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1-halo term. This is further complicated by the existence of central
and satellite galaxies, since the weighting of these is different in the
1-halo and 2-halo terms. For example, suppose each halo contains
either just a single central or one central and one satellite, where the
velocity dispersion of satellites is 𝜎. The 1-halo contribution must
pair a central with a satellite, so the pairwise dispersion is 𝜎. But
the 2-halo term can also pair centrals with centrals (assumed to have
negligible pairwise dispersion – although Reid et al. 2014 showed
that the actual pairwise velocity could be up to 30% of 𝜎) and satel-
lites with satellites (pairwise dispersion

√
2𝜎), so the average rms

pairwise dispersion depends on the fraction of haloes that contain a
satellite. If most haloes are central-only (as in BOSS CMASS, for
example), the pairwise dispersion for the 2-halo term will be� 𝜎. In
the opposite direction, one can argue that the velocity field of haloes
will contain some stochastic component in addition to the coherent
velocities that generate the Kaiser distortion.
With this perspective, an improved simple model for the cross-

power between tracers 𝑎 and 𝑏 would be as follows:

𝑃𝑎𝑏 (𝑘, 𝜇) =𝑃1ℎ (𝑘) 𝐷1 (𝑘𝜇)

+ 𝑏𝑎𝑏𝑏𝑃lin (𝑘) (1 + 𝛽𝑎𝜇2) (1 + 𝛽𝑏𝜇2) 𝐷2 (𝑘𝜇).
(21)

Leaving aside the 1-halo term for the moment, one way in which we
can seek to improve this expression further is in terms of quasilinear
effects on the 2-halo term. A first requirement is that the real-space
spectrum (at 𝜇 = 0) should have the full nonlinear form. When
discussing the dispersion model, we achieved this by replacing 𝑃lin
by the nonlinear spectrum. In the halo model, we should not do this,
since the 2-halo term in real space is close to linear theory, and
the 1-halo term supplies most of the nonlinear corrections (Smith
et al. 2003). We do however adopt the HALOFIT 2-halo term, with
scale-independent bias, as the best model for the real-space 2-halo
term.
The next step is to seek improvement in the density-velocity cou-

pling that leads to theKaiser distortion factors.An attractive approach
here is the streaming model (e.g. Fisher 1995; Vlah et al. 2016), in
which we consider the quasilinear relative velocity distribution as
a function of pair separation, and use this to transform to redshift
space while exactly conserving pair counts. The details of the con-
struction of this model are given in Appendix B. As with the linear
model for the 2-halo term, there are three main free parameters, the
tracer biases and the growth rate: (𝑏𝑎 , 𝑏𝑏 , 𝑓 ). This assumes that the
mass power spectrum is known exactly, whereas it depends on all
fundamental ΛCDM parameters. The main variation of the power is
∝ 𝜎28 , so it is common to factor out this degree of freedom and take
the main RSD parameters to be (𝑏𝑎𝜎8, 𝑏𝑏𝜎8, 𝑓 𝜎8). However, there
is a weaker further dependence on 𝜎8 when we adopt the HALOFIT
prediction of the 2-halo matter power spectrum, rather than taking
this to be pure linear theory (although the difference is not important
in practice).
In addition to these three main RSD parameters, we have pa-

rameters connected to the FoG damping. As described earlier, it is
conventional to model FoG effects by radial convolution, taking the
velocity PDF to be a Lorentzian and using a velocity dispersion as
the single free parameter. But in the present context, it is important
to be clear that the empirical evidence for the Lorentzian form comes
mainly from the 1-halo term. This is 𝐷1 (𝑘𝑧) in Eq. 21; but we want
the effect on the 2-halo term, 𝐷2 (𝑘𝑧). We have argued that this will
be characterised by a different dispersion, but in addition there is no
strong reason to assume it will have a Lorentzian form. As a more
general alternative, we considered a modified Lorentzian:

𝐷2 (𝑘𝜇) =
(
1 + (𝑘𝜇𝜎12)2/2𝛾

)−𝛾
(22)

and experimentedwith different values of 𝛾. But in practice the results
were rather insensitive to the choice of this parameter, so we retained
the Lorentzian 𝛾 = 1. It is shown in e.g. Scoccimarro (2004); Bianchi
et al. (2015); Cuesta-Lazaro et al. (2020) that the shape of the PDF
is only relevant where the correlation function changes significantly
over a scale comparable to the width of the smoothing function. But
the issue of the exact form of the PDF for FoG corrections to the
2-halo term is a problem that merits further study.
In summary, we therefore have two models with similar real-space

correlations, but different degrees of RSD: (1) QD: quasilinear dis-
persion model and (2) HS: halo+streaming model. Both of these
converge to the linear Kaiser model on large scales, so what is of
interest is the smallest scale to which their predictions are reliable.
We will assess these by comparison with mock data.

4.2.1 The 1-halo term

The real-space 1-halo term can in principle be computed in the
usual halo model framework, given the occupation numbers for the
tracers and the halo radial profile. But there is also a case for taking
an empirical approach, given that the real-space correlations are in
principle observable directly, in a manner free of RSD effects, via
the projected correlation function 𝑤𝑝 (𝑟𝑝). One might for example
model the real-space 1-halo term by a power-law of free amplitude
and slope, or via an NFW profile.
But whatever approach is taken in real space, there is then the

question of how the 1-halo term appears in redshift space. As de-
scribed above, the simplest approach is to assume that the transition
to redshift space consists of a radial convolution with a single FoG
function. However, it is not hard to see that this must be an over-
simplification. The 1-halo term arises from random orbital velocities
within the halo, but the velocity dispersion is unlikely to be constant.
If for example we consider the case of isotropic orbits, then the dis-
persion would need to fall to zero at the virial radius of the halo,
beyond which the density is assumed to vanish.
Here we address this concern directly by using the mocks. Given a

hypothesis for the 2-halo term, we can subtract the 2-halo prediction
from the mock data to obtain an empirical 𝜉1ℎ (𝑟𝑝 , 𝜋) that sums
with the 2-halo term to give exactly the mock data (specifically, we
apply this approach to the average of all the mocks). The 2-halo
term can be deduced by fitting to the mock data in a regime where
we assume the 1-halo contribution to be negligible. The exact cuts
adopted in the process are not critical; in practice, we chose to match
to the data at radii 𝑟 > 10 ℎ−1Mpc, with the additional criterion that
𝑟𝑝 > 3 ℎ−1Mpc. The operation of this procedure is illustrated in
Figure 6. The resulting residual 1-halo term is clearly well localised
near the origin, and indeed it can be seen that the RSD effects in
the 1-halo term are complicated, with the FoG effect being largest
at 𝑟𝑝 = 0, whereas the function appears more isotropic close to its
outer limit at 𝑟𝑝 ' 5 ℎ−1Mpc. This interesting behaviour is clearly
worthy of being modelled in detail, but we shall not do that here.
We now have a decomposition of the redshift-space correlations

that by construction exactly matches the average of the mocks. How-
ever, each mock realization will be different, as will be the real data,
so can these different datasets be fitted in this framework? The 2-halo
term is already parameterised, and these parameters can be varied for
any given dataset. But the 1-halo termmust also have some variation.
Our approach is to assume that themocks are sufficiently realistic that
the effective 1-halo term in any given case will be close to the mock
average, and that the difference can be captured by two nuisance
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Figure 6. Illustrating the decomposition of the measured mock correlation data (left panel) into a 2-halo fit (middle panel) and an empirical 1-halo term in the
form of the residual of the fit (right panel), for the particular case of red-MM cross-correlation. The 2-halo term is computed using the streaming model, and is
matched to the data at radii 𝑟 > 10 ℎ−1Mpc, with the additional criterion that 𝑟𝑝 > 3 ℎ−1Mpc.

parameters:

𝜉1ℎ (𝑟𝑝 , 𝜋) → 𝛼𝜉1ℎ (𝑟𝑝 , 𝜂 𝜋). (23)

In other words, assume that we have roughly the right functional
form, but that the amplitude may be off (scale by 𝛼), and that the
FoG strength may be off (stretch in the radial direction by 1/𝜂).
Physically, the amplitude parameter 𝛼 can be related to the way in
which galaxies populate haloes: there may be different numbers of
satellite galaxies in a given halo compared to the mock, leading to
a different small-scale clustering signal. We have previously seen
that an empirical rescaling of the 1-halo amplitude can yield an
accurate fit to correlation data in real space (Hang et al. 2021). The 𝜂
parameter attempts to capture the velocity dispersion of the galaxies
in the halo: a smaller 𝜂 produces a larger FoG effect. Again, this can
be understood in terms of an uncertain halo occupation, which can
alter the mean mass of the haloes that contribute the 1-halo term.
As we show below, this approach is able to succeed in matching

the individual mock realizations, and so we see no reason not to apply
the same model to the real data. We emphasise that we do not need
to assume that the mocks are completely realistic, as long as they are
qualitatively similar to reality. The reliability of this approach can be
judged by whether or not the fitted values of 𝛼 and 𝜂 are close to unity
(as indeed turns out to be the case). We only consider this minimal
set of two empirical nuisance parameters in the current analysis;
for forthcoming large data sets of higher statistical precision, more
parameters may be required in order to make the model acceptably
accurate. Eventually, we will need to validate the model by deriving
1-halo templates from a given set of mocks and showing that they
can fit data derived from mocks produced according to different
assumptions. We intend to pursue this high-precision robustness test
in a future study.

4.3 Fitting methodology

4.3.1 Covariance matrix and likelihood inference

In the above discussion, we have not been explicit about exactly what
it means to fit the averaged mock data. In principle, one would like to
have an understanding of the errors on the data, so that the likelihood
can be computed as a figure of merit that is used to optimise the
fit. For an individual dataset, this can be done in the standard way
by using an ensemble of mocks to estimate the covariance matrix of
the data, and then appealing the to central limit theorem to compute

the likelihood in the Gaussian approximation. For fitting the stacked
mocks, the appropriate covariance matrix is less obvious, but in any
case it is less important to have a likelihood in that case, where
the aim is simply to estimate a 1-halo contribution as a basis for
further modelling. We are not interested in placing errors on the best-
fitting parameters of the 2-halo term, for which a likelihood would
be required. In practice, therefore, we took the simple approach of
seeking a least-squares fit in ln(1+ 𝜉) to the mock average. The exact
figure of merit chosen is unimportant as regards the 1-halo residual.
The covariance matrix for a single data realization is most often

estimated in one of two ways: either directly via the scatter over a
number of mock realizations, or via Jackknife resampling of a single
realization. Both of these approaches have their limitations, but the
best strategy is when they are combined: an expanded set of mock
realizations is created by Jackknife resampling of each one, yielding
an improved estimate of the covariance matrix (Alam et al. 2021b).
For a data vector with component 𝑥𝑖 and a model vector 𝑦𝑖 , where
𝑖 = 1, ..., 𝑚, the 𝜒2 is defined as

𝜒2 =
𝑚∑︁
𝑖, 𝑗

[𝑥𝑖 − 𝑦𝑖]𝐶−1
𝑖 𝑗 [𝑥 𝑗 − 𝑦 𝑗 ] . (24)

In the above equation, 𝐶𝑖 𝑗 is the covariance matrix, estimated from
𝑁 independent realizations of mock data:

𝐶̂𝑖 𝑗 =
1

𝑁 − 1

𝑁∑︁
𝑘=1

[𝑥𝑘𝑖 − 〈𝑥𝑘𝑖 〉] [𝑥
𝑘
𝑗 − 〈𝑥𝑘𝑗 〉] . (25)

Given a model with 𝑝 parameters, there are 𝑚 − 𝑝 degrees of free-
dom in the 𝜒2-fitting. Due to the small number of mocks, we apply
Jackknife re-sampling on the mocks by dividing each survey field
into 18 sub-regions, giving a total of 𝑁𝐽 = 54 samples for each
mock. The covariance matrix for an individual mock sample is esti-
mated using equation 25, with an extra factor (𝑁𝐽 − 1) to account
for correlations between the Jackknife samples. We average over the
covariance matrices of the 25 mocks to obtain the final covariance
matrix. It is pointed out in Escoffier et al. (2016) that this method
can reduce the noise on the covariance estimation, and fast approach
the truth. However, we caution that these mocks are not completely
independent, because they are constructed from the same N-body
simulation (Gonzalez-Perez et al. 2014).
The posterior of the model parameters 𝜃 given data 𝐷 is estimated

MNRAS 000, 1–21 (2022)



12 Q. Hang et al.

in a Bayesian way:

𝑃(𝜃 |𝐷) = 𝑃(𝐷 |𝜃)𝑃(𝜃)
𝑃(𝐷) , (26)

where 𝑃(𝜃) is the prior and 𝑃(𝐷) is treated as a normalization. The
term 𝑃(𝐷 |𝜃) is proportional the likelihood L, which we assume to
be Gaussian:

L ∝ exp(−𝜒2/2).

We use Monte-Carlo Markov Chain (MCMC) sampling of the pa-
rameter space, implementing the python package emcee5.

4.3.2 Data compression

Instead of fitting the whole 2D correlation function, which requires
an 𝑁 (𝑟𝑝) ×𝑁 (𝜋) – dimensional covariance matrix, we compress the
2D information into the multipoles defined as

𝜉ℓ (𝑟) =
2ℓ + 1
2

∫ 1

−1
𝜉𝑐 (𝑟, 𝜇) Pℓ (𝜇) 𝑑𝜇; ℓ = 0, 2, 4. (27)

We ignore higher order multipoles because they are typically noisy
and more sensitive to non-linearity. Multipoles are computed by
interpolating the 2Dcorrelation function, and this is done consistently
for both the measurements and the models. In the QD model, we
exclude 𝜉4 from the fitting, because the non-zero signal at scales
𝑟 > 10 ℎ−1Mpc cannot be well reproduced by this model.
We also considered adding the projected correlation function 𝑤𝑝 :

𝑤𝑝 (𝑟𝑝) =
∫ 𝜋max

−𝜋max
𝜉 (𝑟𝑝 , 𝜋) 𝑑𝜋. (28)

This has the merit that it is in principle independent of RSD for
large enough 𝜋max, and a knowledge of the true real-space clustering
should be advantageous if we are focusing on redshift-space effects
that cause deviations from this. However, we found in practice that
it was not possible to choose a large enough 𝜋max to achieve results
that converged to the true real-space clustering without the results
being too noisy to be useful. The 𝑤𝑝 statistic may be useful at small
separations, 𝑟 < 10 ℎ−1Mpc, as a means of probing the real-space
1-halo term, but as discussed above we do not need to do this in
the present work. We included 𝑤𝑝 in the fitting for the QD model;
however, due to the limited information it could provide in addition
to the multipoles, the 𝑤𝑝 was excluded in the HS model fitting.
For each of the six cross-correlation configurations, we fit the

measurement simultaneously with its corresponding galaxy auto-
correlation. This allows us to break the degeneracy between the
galaxy and group bias.

4.3.3 Scale cuts

Below quasilinear scales 𝑟 ∼ 10 ℎ−1Mpc, both models may fail
to capture the full non-linear features. Fitting data points at these
scales may introduce significant bias into the measured growth rate.
Therefore, we test the models on a set of minimum fitting scales,
𝑟min = 2, 5, 10, 15, 20 ℎ−1Mpc using the mock catalogues, and adopt
the most appropriate cut for each subsample. For the HS model,
because the model is designed to be able to fit smaller scales, we
only test the model at 𝑟min = 2, 5, 10 ℎ−1Mpc.

5 http://dfm.io/emcee/

Table 2. Range of the uniform priors of the RSD fitting parameters. For
growth rate, the usual constraint from RSD is 𝑓 𝜎8, but we fix 𝜎8 = 0.81 in
this analysis. The 𝛼, and 𝜂 parameters are the 1-halo parameters applied in
the GSM model only.

Parameter Prior (QD) Prior (HS)

𝑏gal [0.1, 2.5] [0.5, 2]
𝑏12 [0.1, 2.5] [0.25, 3]
𝑓 [0, 2] [0, 2]
𝜎𝑎 [km s−1] [143, 1140] [30, 800]
𝜎𝑐 [km s−1] [143, 1140] [30, 800]
𝐼𝑎 [0, 0.1] fixed
𝐼𝑐 [0, 0.1] fixed
𝛼𝑎 - [0.1, 2]
𝛼𝑐 - [0.1, 2]
𝜂𝑎 - [0.5, 2.5]
𝜂𝑐 - [0.5, 2.5]

4.3.4 Integral constraints

To account for the missing power for modes larger than the GAMA
survey scale, we include the integral constraint 𝐼, which is a small
constant added to the 2D correlation function. The expected integral
constraint is given by:

𝐼 ≡ 𝑏1𝑏2
3

𝜎2eff =
𝑏1𝑏2
3

∫
Δ2 (𝑘)𝑊2 (𝑘, 𝑟 = 𝑟eff) 𝑑 ln 𝑘, (29)

where Δ2 (𝑘) is the dimensionless linear matter power spectrum,
𝑏1 and 𝑏2 are the tracer biases, 𝑊 (𝑘, 𝑟) = 3[sin(𝑘𝑟)/(𝑘𝑟)3 −
cos(𝑘𝑟)/(𝑘𝑟)2], and 𝑟eff is the effective radius of the survey volume
in one of the GAMA fields, 𝑉 = 4𝜋𝑟3eff/3. The factor 1/3 accounts
for the fact that we combine measurements over three GAMA fields.
Eq. 29 gives 𝐼 = 0.0017𝑏1𝑏2. This can also be measured in the mock
data directly, by comparing the projected correlation function 𝑤𝑝 at
large scales between the average of 25 samples and the combination
of all mock samples. The measured values are consistent with the
expectation given the statistical errors. In the QD model, we allowed
𝐼 to be a free parameter, and found that it has little impact on other
parameters, with a posterior consistent with zero (e.g. see Table D1
and D2). The integral constraints are then fixed to the measured val-
ues from mock for the streaming model, as shown in Table D3 and
D4.

4.3.5 Priors

The parameters used in the two models and their uniform prior
ranges can be found in Table 2. For each of the group-galaxy sub-
sample, the galaxy auto-correlation is fitted simultaneously with the
cross-correlation. Parameters with subscript ‘𝑎’ are used for auto-
correlations and ‘𝑐’ for cross-correlations. There is another cosmo-
logical parameter that should be considered: the normalisation of
the (linear) matter power spectrum 𝜎8. From Eq. 14, it is clear that
on linear scales, 𝜎8 and 𝑏 are completely degenerate, hence RSD
measurements are usually quoted in the combination 𝑓 𝜎8. At large
𝑘 , the shape of the non-linear power spectrum is actually sensitive to
𝜎8. However, such dependence is weak for the scales probed here,
and we fix 𝜎8 = 0.81 throughout the analysis.

MNRAS 000, 1–21 (2022)

http://dfm.io/emcee/


Modelling RSD in galaxy-group cross-correlations 13

0.0

0.5

1.0

f
QD

2 5 10 15 20
rmin [h 1Mpc]

0.0

0.5f

HS

LMred
MMred
HMred

LMblue
MMblue
HMblue

Figure 7. The means and scatter of the best-fit growth rate 𝑓 from 25 mocks as a function of the minimum fitting scale, 𝑟min, for the quasilinear dispersion
(QD: top) and the halo streaming (HS: bottom) models. Data points at each 𝑟min are displaced by 0.1 ℎ−1Mpc for clarity. The grey band marks the 10% regions
around the mock fiducial value 𝑓 = 0.593 at 𝑧 = 0.195. Note that the error bars are for a single survey, so that the errors on the mean of the mocks are 5 times
smaller than shown.

5 RESULTS

5.1 Mocks

We fit both models to each of the 25 mock samples, and compute
the mean and scatter of the best-fit parameters. The aim is to assess
the scale at which an unbiased growth rate can be recovered. The
result is shown in Fig. 7 for the set of 𝑟min as mentioned in previous
sections, and for each of the six configurations. The fiducial value of
𝑓 with ±10% range is marked by the grey band in each panel. The
error bar is comparable to, but should not be taken directly as the
expected error size on the GAMA sample. The specific values of all
model parameters are summarised in Tab. D1 and Tab. D3.
Notice that in the case of halo streaming model, there is a caveat

that the 1-halo templates are obtained from the average of the same set
of mocks as they are tested on. Ideally, we would like to have access
to multiple sets of simulations covering different cosmology and
HOD prescription, with matched survey configurations as GAMA.
Then, we would test the halo streaming model on by extracting the
1-halo templates from one set of simulations and apply it to the
measurements from the others. In this way, we can assess whether the
model is robust against bias due to a different cosmology or change
of the simulation settings. Such test will be particularly relevant for
the forth-coming large data sets, where the demand of the precision
of the model is high. However, this is beyond the scope of this paper
given the noise level of the GAMA data. We would like to defer such
detailed comparison to a future study.
The top panel of Fig. 7 shows the recovered growth rate 𝑓 us-

ing the QD model (Section 4.1). As expected, when the small
scales are included (𝑟min 6 5 ℎ−1Mpc), the fitted growth rates
are significantly biased in all configurations, while at larger scales
(𝑟min > 15 ℎ−1Mpc), they converge to the fiducial value. The over-
all growth rate seems to be under-estimated by about 5 − 10% for
most scale cuts, but this is much smaller compared to the statistical
error of the GAMA sample. It is noticeable that the blue configu-
rations are less biased down to smaller scales, with 𝑓 recovered to
within 10% at 𝑟min = 5 − 10 ℎ−1Mpc, compared to the red con-
figurations which are only unbiased at 𝑟min = 15 − 20 ℎ−1Mpc.
This may be due to the smaller FoG effect in the blue configu-
rations compared to the red. From this test, we choose to adopt
𝑟min = {10, 10, 10, 15, 20, 20} ℎ−1Mpc for the LMblue, MMblue,
HMblue, LMred, MMred, and HMred subsamples respectively for
the QD model in the application to the GAMA data. The bottom

panel of Fig. 7 shows the the recovered growth rate 𝑓 using the HS
model, where the results are impressively consistent. The growth
rates for the different subsets are consistent to within an rms of 3%
in the mock average results, and the global average of these different
subsets is within 2% of the fiducial value. This successful perfor-
mance holds down to even 𝑟min = 2 ℎ−1Mpc, although the estimated
errors at that point are little different to those at 𝑟min = 5 ℎ−1Mpc,
so we conservatively adopt the larger figure in our HS analysis.
Fig. 8 shows the linear and streaming model with the mean best-

fit parameters from the mock subsamples, at the respective 𝑟min as
mentioned above. The mock average measurement as well as the
1𝜎 error on the mean is also shown. In addition, we also show the
corresponding 2-halo term of the streaming model in dotted black
lines. On large scales (𝑟 > 15 ℎ−1Mpc), all of the model curves
converge, and match well with the mock average. It is noticeable that
the full streaming model (with the addition of the 1-halo template)
and its 2-halo term do not coincide exactly on these scales: the
extracted 1-halo template still has some residuals in the monopole
and quadrupole. The largest difference is seen in the hexadecapole.
The slightly positive values seem to be produced only by the 1-halo
FoG, which both the linear and the 2-halo terms of the streaming
model fail to capture. Looking at smaller scales (𝑟 6 10 ℎ−1Mpc),
it seems that the QD model under-predicts the power in the red
configurations, and over-predicts that in the blue configurations.

5.2 GAMA

Fig. 9 shows the measured GAMA multipoles (filled circles), the
best-fit QD models (black dashed lines), and the HS models (black
solid lines). In addition, the corresponding HS model 2-halo term
is shown in the dotted black lines. The same scale cuts, 𝑟min, are
adopted as in the mock case for each of the models. The 𝜒2 and
parameter values are shown in Table D2 and D4. The full HS model
2D models are contrasted with the GAMA data in Appendix C.
We see that theQDmodel provides a reasonable fit to themonopole

and quadrupole at given 𝑟min in most configurations. The only ex-
ception is the LMred and LMblue subsamples, where the monopole
power is boosted at large scales and the quadrupole power is con-
sistent with zero. Despite the visual discrepancy, the 𝜒2 of these
models are consistent with the degrees of freedom of the data. The
HS model is able to capture the shape of the multipoles down to
smaller scales, especially the hexadecapole at scales 𝑟 > 5 ℎ−1Mpc.
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Figure 8. The multipoles of the group-galaxy cross-correlation functions in the mock average (open diamond). The coloured bands show the scatter on the mean.
The best-fit QD models are shown in dashed black line, with 𝑟min = {10, 10, 10, 15, 20, 20} ℎ−1Mpc for the LMblue, MMblue, HMblue, LMred, MMred, and
HMred subsamples respectively. The best-fit Gaussian streaming models with a 1-halo template are shown in solid black lines, with a fixed 𝑟min = 5 ℎ−1Mpc
for all sub-samples, with the corresponding 2-halo term shown in dotted black lines. For the presentation purpose, the multipoles have been multiplied by 𝑟1.5.

At smaller scales (𝑟 < 5 ℎ−1Mpc), although excluded from fitting,
the mock 1-halo template continues to provide a reasonable fit to the
red configurations. But this is not the case for the blue configurations,
where the non-linear velocity dispersion seems to be stronger in the
actual data compared to the mock catalogues. One possible explana-
tion could be the impact of redshift measuring errors. These are not
included in themocks, and so anymeasured velocity dispersion in the
real data only will include the redshift error in quadrature. The typi-
cal GAMA error is 50 km −1, but in detail Liske et al. (2015) showed
that redshift errors can depend on spectral and target properties. The
redshift error for galaxies classified as the ‘absorption’ type (i.e. the
spectrum is dominated by absorption features) is 101 km s−1, com-
pared to the ‘emission’ type, which is 33 km s−1. But red galaxies
have a larger measured velocity dispersion, so the impact of redshift
errors on the total measured dispersion will be less in that case.

Fig. 10 shows the the mean and 1𝜎 error on the model parameters
from the MCMC posterior for the GAMA data, fitted at respective
𝑟min. The open and filled symbols denote parameter constraints from
the QD model and the HS model respectively. In the latter case, we
also show the constraints measured using the 1-halo template from
the ‘contaminated’ red galaxy sample (purple filled symbols). All
sets of constraints show good consistency. Notice that the size of
the error bar in the blue configurations is similar in both models,
although the QD model has a scale cut at 10 ℎ−1Mpc while the
HS model at 5 ℎ−1Mpc. This is the consequence of the additional
nuisance parameters added in the lattermodel. The specific parameter
values, including the 1-halo parameters in the HS model, can be
found in Table D2 and D4. In Fig. E1-E4, we further show the full

posteriors from MCMC for all parameters in both models, grouped
by the red and blue configurations. In the HS model, the 1-halo
parameters 𝛼 and 𝜂 have no primary degeneracy with the growth
rate, although the growth rate can be shifted slightly through their
small degeneracywith the velocity dispersion parameters. In practice,
one would always marginalise over the 1-halo parameters.

The middle two panels show the measured group and galaxy bi-
ases in both models. The LM, MM, and HM group biases measured
consistently between the red and blue configurations in both models.
For our selection of galaxies, we find that 𝑏gal ≈ 1 for the blue galax-
ies, and 𝑏gal ≈ 1.3 for the red galaxies; for the groups, we find that
𝑏grp ≈ 1.2, 1.4, 1.8 for the low, medium and high mass ranges. The
𝑏grp measurements are in qualitative agreement with that in Riggs
et al. (2021) on large scales (e.g. see their Fig. 8), although direct
comparison is non-trivial due to difference in the group selection. The
consistency between the two models is good in general, although for
the blue configuration, the HS model gives systematically lower bi-
ases compared to theQDmodel by 0.5𝜎−1.5𝜎. The lower two panels
show the measured auto- and cross-correlation velocity dispersion,
𝜎𝑎 and 𝜎𝑐 . The two models measure consistent velocity dispersion,
despite slightly different form for the FoG term. Notice that for the
red configuration in the QDmodel, because of the large scale cut, the
velocity dispersion posterior is prior driven. There is a tentative trend
(at ∼ 2𝜎) that the red configurations have larger velocity dispersion
compared to the blue configurations, with 𝜎𝑎,𝑐 ∼ 400 − 500 kms−1
for the red configurations, and 𝜎𝑎,𝑐 ∼ 300 kms−1 for the blue config-
urations in both auto- and cross-correlations. There is, however, no
clear dependence on the group mass. These measured galaxy biases
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Figure 9. Same as 8 but for the actual GAMA data, with the same 𝑟min adopted. The coloured bands show Jack-knife errors. The 𝜒2 for each of the models can
be found in Table D2 and D4.

and velocity dispersion are in good agreement with other measure-
ments from GAMA (e.g. Blake et al. 2013; Loveday et al. 2018). The
marginalised posterior for 𝑓 , 𝑏gal, and 𝑏12 for the six configurations
is shown in Fig. 11 and 12 for the QD and HS models respectively.
The top panel shows the measured growth rate, consistent across

the six subsamples for both models. Here, we have presented the re-
sults in the more general form of 𝑓 𝜎8 (𝑧). The rationale for this is that
our modelling assumes that the background cosmology (WMAP7
parameters) is known exactly. This is not precisely true, and the ob-
served distortion parameter, 𝛽 = 𝑓 /𝑏, is actually∝ 𝑓 𝜎8 (since 𝑏𝜎8 is
observable). We therefore multiply our fitted 𝑓 by the fiducial 𝜎8 (𝑧)
in order to obtain a combination that should be insensitive to the
exact fiducial model.
We also note that RSD analyses commonly also allow for the

Alcock-Paczynski effect (Alcock & Paczynski 1979; Ballinger et al.
1996), which introduces additional distortions of the 2D correlation
function from distance measurements using a ‘wrong’ cosmology.
This degree of freedom can boost the errors on 𝑓 𝜎8 substantially if
the cosmological model is left free. But the AP effect is unimportant
if the model is constrained by precise external CMB data as here.
A further reason that this is reasonable is that the interest in RSD
comes from the desire to test gravity: the CMB data give a precise
prediction of 𝑓 𝜎8 and we want to know if this is what we measure.
In detail, then, we take𝜎8 (𝑧) = 𝑔(𝑧)𝜎8 (0) = 0.73,where 𝑧 = 0.20,

𝜎8 (0) = 0.81, and 𝑔(𝑧) is the time-dependence of the (linear) density
fluctuation in linear theory, normalised to 𝑔(0) = 1. The measure-
ments give a mean of 𝑓 𝜎8 = 0.27 with uncertainties ranging from
0.07 − 0.20 for the QD model, and 𝑓 𝜎8 = 0.29 with uncertainties
ranging from 0.07 − 0.14 for the HS model. We combine our mea-
surements from the six cross-correlation configurations for the HS

model, accounting for their correlations using the mock catalogues.
We compute the scatter on the average as well as the covariance of
the best-fit 𝑓 for the six configurations in the 25 mock samples. Ide-
ally, one would like to use the the full posterior. However, this would
require the time consuming step of running MCMC for each of the
mock sample, thus the simple average of the maximum likelihood
values is adopted. Our combined constraint from the HS model thus
gives

𝑓 𝜎8 (𝑧 = 0.20) = 0.29 ± 0.10. (30)

The corresponding figure for the QD model is 0.27 ± 0.14, showing
the extra information gained through the smaller scales that the HS
model is able to probe. We note that the limited number of mock
samples means that our covariance matrices will be imprecise, so
that the errors on the growth rate for an individual sample may be
underestimated (Hartlap et al. 2007; Sellentin & Heavens 2016).
However, the empirical dispersion in the mean of the maximum-
likelihood values should be robust.
The striking thing about this GAMA-based figure is that it is rather

low compared to the fiducial Planck figure of 𝑓 𝜎8 (𝑧 = 0.20) =

0.47±0.01, derived from the Planck TT, TE, EE+lowE+lensing cos-
mological parameters (Planck Collaboration et al. 2020): our figure
is 1.8𝜎 below this Planck value. This discrepancy is certainly un-
expected given how well our modelling was able to account for the
RSD signal in the different mock realizations, and how the recovered
growth rates were consistent between different methods of model
fitting. Furthermore, the figures recovered from the different GAMA
subsamples show the same level of consistency with each other as is
seen in subsamples within the mocks.
There are a number of things that can be said about the low ob-
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fiducial growth rate at 𝑧 = 0.195 using Ω𝑚 and 𝜎8 constraints from Planck Collaboration et al. (2020). The specific values for all model parameters are shown
in Table D2 and D4.

served figure. The first is that there is some evidence that the fiducial
Planck figure may be too high, with local gravitational lensing data
consistently arguing for a reduction of about 10% (see e.g. Hang et al.
2021). Our measurement would then be in 1.3𝜎 disagreement with
a revised fiducial value of 0.42, implying that GAMA is an unusual
dataset, but not unreasonably so. And we do have evidence that this
is the case: inspection of Fig. 3 shows that 𝑁 (𝑧) has a substantial dip
at 𝑧 ' 0.24, which is seen consistently in all three fields. One might
suspect a problem with the redshift pipeline, but this feature is absent
in a subsequent fourth GAMA field, not used here; the three main
GAMA fields are simply rather unusual regions of space. Finally,
note that a multitracer analysis of RSD in GAMA by Blake et al.
(2013) gave 𝑓 𝜎8 (𝑧 = 0.18) = 0.36 ± 0.09, which is also slightly
lower than Planck, albeit not inconsistently so.

5.3 Group bias

Finally, it is interesting to ask if the group biases that we measure
are in accord with what is expected for haloes of these masses. We
compute the expected group bias in GAMA from the calibrated halo
mass for the groups based on Eq. 6. We adopt the Tinker et al. (2010)
fitting formula for the linear halo bias. The halo bias is expressed

in terms of the peak height parameter 𝜈 ≡ 𝛿𝑐/𝜎𝑅 , where 𝛿𝑐 ≈
1.686, and 𝜎𝑅 is the rms of the linear power spectrum filtered with a
spherical top hat function with radius 𝑅 (cf. Eq. 29). This is related
to the halo mass via 𝑀ℎ = 200𝜌̄𝑚4𝜋𝑅3/3, where 𝜌̄𝑚 is the mean
background density. The mean group bias in a stellar mass range is
estimated by

𝑏̂grp =

∑
𝑖 𝑁 (log𝑀𝑖

ℎ
) 𝑏(log𝑀𝑖

ℎ
)∑

𝑖 𝑁 (log𝑀𝑖
ℎ
)

, (31)

where 𝑁 (log𝑀𝑖
ℎ
) is the number of groups in the logarithmic halo

mass bin 𝑖. The halo mass adopted in case of mock and GAMA are
as shown in Fig. 2. For GAMA, we also include the uncertainty in
the calibrated halo mass due to the uncertainties in log𝑀𝑝 and 𝛼 in
Eq. 6. We combine the error via:

Δlog𝑀ℎ
= Δlog𝑀𝑝

+ |Δ𝛼 log(𝐿grp/𝐿0) |. (32)

For the mass range concerned here, Δlog𝑀ℎ
= 0.8 − 0.2 dex from

low mass to high mass. We account for this scatter by convolving the
number of objects with a Gaussian distribution with width Δlog𝑀ℎ

in each log𝑀ℎ bin. The predicted and measured group biases using
mocks and GAMA data are summarised in Table 3. We also show
biases computed at the logarithmicmean halomass 𝑀̄ℎ . These values
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Table 3. Bias for the groups in the LM, MM, and HM stellar mass bins for the mock average and GAMA. The first column shows the mean bias value computed
from the fitting formula Tinker et al. (2010), and the second column shows the corresponding bias computed at the mean halo mass in each case. The next two
columns marked with a ‘*’ show the bias computed in the same way, but with the GAMA group halo mass computed from a more up-to-date mass-luminosity
relation (Rana et al. 2022). The rest of the columns show the fitted biases from the six cross-correlation configurations in the mocks and the GAMA data.

Group bias T10 T10 𝑏 (𝑀̄ℎ) T10∗ T10∗ 𝑏 (𝑀̄ℎ) QD-red QD-blue HS-red HS-blue

Mocks LM 1.02 0.92 - - 1.20 ± 0.04 1.20 ± 0.02 1.18 ± 0.03 1.20 ± 0.02
MM 1.26 1.13 - - 1.48 ± 0.05 1.46 ± 0.02 1.42 ± 0.02 1.38 ± 0.02
HM 1.83 1.65 - - 1.90 ± 0.06 2.09 ± 0.03 1.96 ± 0.03 1.92 ± 0.03

GAMA LM 1.00 0.96 1.12 1.11 1.07 ± 0.24 1.27 ± 0.10 1.14 ± 0.11 1.24 ± 0.08
MM 1.20 1.17 1.41 1.39 1.58 ± 0.30 1.52 ± 0.10 1.41 ± 0.10 1.34 ± 0.07
HM 1.52 1.49 1.85 1.81 1.71 ± 0.46 1.98 ± 0.19 1.81 ± 0.20 1.79 ± 0.14
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Figure 11.Marginalised MCMC posteriors for the QD model.

are close to the average bias computed from Eq. 31 in the case of
GAMA, but they deviate from the mock average significantly. This
indicates that estimating the bias from the mean halo mass depends
heavily on the distribution of the halo mass of the sample considered.
In addition, we include the case where the more up-to-date mass-
luminosity relation from Rana et al. (2022) is used to compute the
group halo mass. The equivalent parameters to Eq. 6 are 𝑀𝑝 =

(8.1± 0.4) × 1013ℎ−1𝑀� , 𝐿0 = 1011.5ℎ−2𝐿� , and 𝛼 = 1.01± 0.07.
The halo mass computed with this calibration is larger than using
the fiducial Han et al. (2015), resulting in good consistency with
the fitted group bias from both the QD and HS models as shown in
Table 3.
In the mock catalogues, the predicted group bias for the LM,

MM, and HM subsamples are all lower than the fitted values. These
differences are significant given the error bar on the average of the
mock measurements. In all cases, the group bias has apparently been
under-estimated by about 20%. This deviation in the group bias
may arise because the arithmetic mean host halo mass of the group
members is used as a proxy for the group halo mass. However, if
one uses the total mass of unique host haloes in the group as 𝑀ℎ ,
then the bias in each mass range only increases by ∼ 10%. Since
the mock group masses are calibrated using ‘real’ simulation halo
masses, the difference illustrates clearly that our galaxy groups are
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Figure 12.MarginalisedMCMCposteriors for theHSmodel. The best-fit bias
parameters are very different among different sub-samples, but the recovered
𝑓 values are consistent.

not in 1-to-1 correspondence with single haloes, emphasising once
again the importance of analysing real and mock data with the same
group finder.

6 SUMMARY AND CONCLUSIONS

In this work, we have investigated the Redshift-Space Distortions
(RSD) of group-galaxy cross-correlations, with the aim of under-
standing the robustness with which measurements of the density
fluctuation growth rate can be extracted from such measurements.
We have focused on the differences in the measured RSD using dif-
ferent types of galaxy and group, and developed new methods for
fitting such data down to the small-scale nonlinear regime.
We have used data from the GAMA survey in the redshift range

0.1 < 𝑧 < 0.3 to measure the 2D cross-correlation function 𝜉 (𝑟𝑝 , 𝜋)
between groups and galaxies. The groups were found using a FoF
algorithm from Treyer et al. (2018), and were subdivided into three
stellar mass bins (LM: 40%, MM: 50%, and HM: 10%). The corre-
sponding halomass for the groups was calibrated using the relation in
Han et al. (2015), and the groups are expected to have typical masses
of (1012.2, 1012.7, 1013.2) 𝑀� . For Rana et al. (2022), the mean halo

MNRAS 000, 1–21 (2022)



18 Q. Hang et al.

masses are (1012.6, 1013.1, 1013.5) 𝑀� . The galaxies were split into
red and blue subsets using a cut in the 𝑔 − 𝑖 vs 𝑧 plane, yielding in
total six cross-correlation configurations: LMred, MMred, HMred,
LMblue, MMblue, and HMblue.
We have used 25 GAMA lightcone mocks from Farrow et al.

(2015) to test RSD models and to construct Jackknife covariance
matrices for likelihoodfitting.Mock group catalogueswere generated
using the identical algorithm that was applied to the real GAMA
data. The mock catalogues are distinct from observation in several
aspects: the mean redshift distribution, the bimodal 𝑔 − 𝑖 colour
distribution, and the total stellar mass of the groups. We discuss the
appropriate empirical selection that yields the best match between
the mocks and the data subsamples. The measured 2D correlation
functions show good consistency between the data and the mocks
down to small scales, and the same variation of the signals with
galaxy colours and group masses are observed. The different cross-
correlation results yield group biases that increase with mass, as
expected. For GAMA, the predicted group bias from Tinker et al.
(2010) is lower but consistent with the fitted values using the halo
mass calibration in Han et al. (2015), whereas that from Rana et al.
(2022) agrees well with the fitted values. For mocks, however, these
values tend to be higher than predicted. This difference illustrates
that the groups found in redshift space do not constitute a pure halo
sample.
We have compared these measurements with two RSDmodels: (1)

a Quasilinear Dispersion (QD) model; (2) a novel Halo Streaming
(HS)model. TheQDmodel is a generalization of the linear dispersion
model of Mohammad et al. (2016) to use the non-linear real-space
power spectrum. We found from testing on the mocks that this model
provides unbiased measurements of the growth rate at 𝑟min = 10 −
20 ℎ−1Mpc depending on the subsample. The HD model uses a
halo model decomposition of the correlations, where a streaming
model 2-halo term is combined with an empirical 1-halo template
adopted from the mock average. This promising model, with the
addition of two nuisance parameters, allows unbiased results on the
growth rate down to 𝑟min = 5 ℎ−1Mpc when fitting individual mock
realizations, and for all group-galaxy combinations. For the GAMA
measurements, an MCMC analysis was used to obtain the posterior
of our model parameters. We found that given the scale cuts, all of
the subsamples recover consistent growth rates in both models. The
average growth rate from the six subsamples using the HS model is
𝑓 𝜎8 = 0.29± 0.10 at 𝑧 = 0.20, where the error should be robust as it
is taken directly from the dispersion in maximum-likelihood values
for the mock data. This figure is 1.8𝜎 lower than the fiducial Planck
value of 𝑓 𝜎8 = 0.47±0.01, and we have considered the implications
of this result. At face value, the low GAMA result is consistent with
the suggestions from gravitational lensing that the true value of 𝑓 𝜎8
may be about 10% lower than the Planck central figure (e.g. Hang
et al. 2021. But there are objective reasons to believe that the GAMA
dataset may be a statistical outlier, based on known anomalies in the
redshift distribution in the GAMA fields.
Therefore, the real test of theRSDmodelling presented herewill be

when it can be applied to much larger and more precise datasets, such
as the Bright Galaxy Sample from the Dark Energy Spectroscopic
Instrument (DESI) survey
(Martini et al. 2018) and the the Wide Area VISTA Extra-Galactic
Survey (WAVES) (Driver et al. 2016). We are greatly encouraged by
the success of our halo streaming model in reproducing mock cross-
correlations down to the smallest scales, and in yielding consistent
values of 𝑓 𝜎8 from different tracers, to a tolerance of better than
3%. This hybrid approach, taking advantage of ever more realistic
mock data, therefore seems an attractive way of obtaining robust

constraints on the growth of cosmological density fluctuations, and
we look forward to seeing it applied to next-generation surveys.
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APPENDIX A: THE LINEAR MODEL FOR
REDSHIFT-SPACE CROSS-CORRELATIONS

The redshift-space 2-point correlation function can be expanded in
terms of Legendre polynomials Pℓ (𝜇) with ℓ = 0, 2, 4 (Hamilton
1992):

𝜉𝑠𝑔 = 𝜉0 (𝑟)P0 (𝜇) + 𝜉2 (𝑟)P2 (𝜇) + 𝜉4 (𝑟)P4 (𝜇). (A1)

The multipoles are given by

𝜉0 (𝑟) =
(
1 + 2
3
𝛽 + 1
5
𝛽2

)
𝜉𝑔 (𝑟), (A2)

𝜉2 (𝑟) =
( 4
3
𝛽 + 4
7
𝛽2

)
[𝜉𝑔 (𝑟) − 𝜉𝑔 (𝑟)], (A3)

𝜉4 (𝑟) =
8
35

𝛽2
[
𝜉𝑔 (𝑟) +

5
2
𝜉𝑔 (𝑟) −

7
2
¯̄𝜉𝑔 (𝑟)

]
, (A4)

where,

𝜉 (𝑟) =
∫ ∞

0
𝑑 ln 𝑘 Δ2 (𝑘) sin(𝑘𝑟)

𝑘𝑟
, (A5)

𝜉 (𝑟) = (3/𝑟3)
∫ 𝑟

0
𝜉 (𝑥) 𝑥2 𝑑𝑥

=

∫
3Δ2 (𝑘)
(𝑘𝑟)3

𝑑 ln 𝑘 (sin 𝑘𝑟 − 𝑘𝑟 cos 𝑘𝑟) ; (A6)

𝜉 (𝑟) = (5/𝑟5)
∫ 𝑟

0
𝜉 (𝑥) 𝑥4 𝑑𝑥

=

∫
5Δ2 (𝑘)
(𝑘𝑟)5

𝑑 ln 𝑘 (𝑘𝑟 (6 − 𝑘2𝑟2) cos 𝑘𝑟 − (6 − 3𝑘2𝑟2) sin 𝑘𝑟),

(A7)
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and the subscript ‘𝑔’ indicates an extra factor of 𝑏2. For practical
purposes it is useful to have an explicit direct expression:

𝜉𝑠𝑔 (𝑟, 𝜇) = 𝜉𝑔 +
(
2𝛽
3

+ 𝛽2

2

)
𝜉𝑔 − 3𝛽

2

10
𝜉𝑔

+
(
2𝛽(𝜉𝑔 − 𝜉𝑔) + 3𝛽2 (𝜉𝑔 − 𝜉𝑔)

)
𝜇2

+ 𝛽2
(
𝜉𝑔 + 5𝜉𝑔/2 − 7𝜉𝑔/2

)
𝜇4.

(A8)

Since this expression is linear in the different contributions to 𝑃,
we immediately see that Hamilton’s expression can be generalised
by the replacements 2𝛽 → (𝛽1 + 𝛽2) and 𝛽2 → 𝛽1𝛽2. In the case of
two tracers with biases 𝑏gal and 𝑏grp = 𝑏gal/𝑏12, equations A2 – A4
are therefore modified to (Mohammad et al. 2016)

𝜉0,𝑐 (𝑟) =
(
1 + 1
3
𝛽gal (1 + 𝑏12) +

1
5
𝛽2gal𝑏12

)
𝜉𝑐 (𝑟), (A9)

𝜉2,𝑐 (𝑟) =
( 2
3
𝛽gal (1 + 𝑏12) +

4
7
𝛽2gal𝑏12

)
[𝜉𝑐 (𝑟) − 𝜉𝑐 (𝑟)], (A10)

𝜉4,𝑐 (𝑟) =
8
35
𝛽2gal𝑏12

[
𝜉𝑐 (𝑟) +

5
2
𝜉𝑐 (𝑟) −

7
2
¯̄𝜉𝑐 (𝑟)

]
, (A11)

where 𝛽gal = 𝑓 /𝑏gal, and 𝛽grp = 𝑓 𝑏12/𝑏gal. The various moments
with a subscript ‘𝑐’ are defined as in equations A5 – A7, but with a
factor 𝑏2gal/𝑏12.

APPENDIX B: THE STREAMING MODEL FOR
REDSHIFT-SPACE CROSS-CORRELATIONS

Redshift-space correlations are frequently discussed using the
streaming model (e.g. Fisher 1995), in which the total observed pair
counts are related to the true counts in real space by a scale-dependent
shift and smoothing:

1 + 𝜉𝑠 (𝜎, 𝑥) =
∫

(1 + 𝜉𝑟 (𝜎, 𝑦)) P(𝑥 − 𝑦 | 𝑦) 𝑑𝑦, (B1)

where 𝜎 is the transverse separation and 𝑥 & 𝑦 are the radial sepa-
rations in respectively redshift space and real space. For the correct
true choice of the distribution function P, this equation should be
exact by definition as it just expresses conservation of pairs. The
same equation should apply to both the auto- and cross-correlation
case.
Commonly, the distribution function is assumed to be a Gaussian:

P(𝑥 − 𝑦 | 𝑦) = 1
√
2𝜋 𝜎(𝑦)

exp
(
− (𝑥 − 𝑦 − 𝑢(𝑦))2

2𝜎2 (𝑦)

)
, (B2)

where 𝑢(𝑦) is the line of sight comoving offset caused by the mean
pairwise streaming velocity: 𝑢(𝑦) = 𝜇𝑣12 (𝑟)/𝑎𝐻, where 𝜇 = 𝑦/𝑟
and 𝑟2 = 𝜎2 + 𝑦2. Although we do not need to assume that the
correlations are small, it is convenient to adopt the standard linear-
theory prescription for the mean pairwise velocity that results from
a given correlation, in which the mean proper relative infall velocity
of a pair of biased tracers at comoving separation 𝑟 is

𝑣12 (𝑟)
𝑎𝐻𝑟

= −1
3
𝑓 (𝑏1 + 𝑏2) 𝜉𝑚 (𝑟) = −1

3
(𝛽1 + 𝛽2) 𝜉𝑥 (𝑟), (B3)

where the cross-correlation for the tracers is related to the autocor-
relation of the mass by 𝜉× = 𝑏1𝑏2𝜉𝑚. The appearance of only 𝛽
factors without any explicit bias parameter then makes it plausible
that direct consideration of pairwise peculiar velocities will yield the
correct Kaiser–Hamilton form in the linear 𝜉 � 1 limit, although
proving this is not straightforward (see Fisher 1995).

To achieve the correct linear limit, it is necessary to include not
only the mean streaming, but also the scale-dependent dispersion in
pairwise velocity that must arise in a Gaussian velocity field. Note
that the velocity field smooths 1 + 𝜉, and any effects on 𝜉 itself from
the smoothing will introduce corrections beyond linear order in 𝜉.
Therefore, almost paradoxically, the linear corrections to 𝜉 come
from smoothing the unity term in 1 + 𝜉: this gives a non-unity result
because the smoothing is not exactly a convolution. Therefore we
have

1 + 𝜉𝑠 (𝜎, 𝑥) = 𝜉𝑟 (𝜎, 𝑥) +
∫

P(𝑥 − 𝑦 | 𝑦) 𝑑𝑦. (B4)

Incidentally, this shows that there is an error in Fisher’s final equation
(26), which omits the critical unity term.
To evaluate the integral for the linear correction term, one can

Taylor expand the integrand. But this needs to be done with care,
since the argument of the exponential will not always be small. We
have to consider the effects of the scale-dependent streaming, 𝑢(𝑦),
and the scale-dependent squared dispersion,𝑉 (𝑦) ≡ 𝜎2 (𝑦). But both
of these quantities scale in proportion to 𝜉, so to linear order we will
never need to consider terms in which they are multiplied. Therefore,
the two effects can be considered in turn. Variations in 𝑢 so the
leading effect is to scale 𝑧 by a factor 1 + 𝑢′ (where 𝑢′ ≡ 𝑑𝑢/𝑑𝑦),
lead to a correction to 𝜉 of

Δ𝜉 = −𝑢′, (B5)

where 𝑢′ ≡ 𝑑𝑢/𝑑𝑦. This is just a Jacobian correction.
Allowing for variation in the dispersion is more complicated. We

need to expand P up to order 𝑧4, where 𝑧 ≡ 𝑦 − 𝑥 + 𝑢(𝑥), and use the
Gaussian result that 〈𝑧4〉 = 3〈𝑧2〉2. This then yields

Δ𝜉 = 𝑉 ′′/2, (B6)

in agreement with Fisher’s equation (24). This term is critical, as it
generates the hexadecapole distortion.

The pairwise dispersion
Implementing the streaming model thus requires two steps: (1) al-
lowing for the mean infall as a function of scale; (2) smoothing by
a scale-dependent pairwise dispersion, in order to achieve the linear
Kaiser limit correctly. The second step sounds like the FoG con-
volution, but that would be a separate correction that allows for a
random ‘dither’ in the large-scale velocity field. The smoothing here
is present purely through the statistics of the linear velocity field. For
the streaming model, we require the line of sight pairwise velocity
dispersion:

𝜎2 = 〈(𝑣𝑏𝑧 − 𝑣𝑎𝑧 )2〉 − 〈(𝑣𝑏𝑧 − 𝑣𝑎𝑧 )〉2. (B7)

Recall that the averages here are density weighted, otherwise the
mean relative velocity would vanish. But the result of this is that
〈(𝑣𝑏𝑧 −𝑣𝑎𝑧 )〉 is of order the linear correlation function, so 〈(𝑣𝑏𝑧 −𝑣𝑎𝑧 )〉2
is of second order in 𝜉lin. If we keep only the lowest order terms, then

𝜎2 = 2〈𝑣2𝑧〉 − 2〈𝑣𝑎𝑧 𝑣𝑏𝑧 〉 (B8)

(and the effects of density weighting are neglected as also being
of higher order). These terms can be evaluated using the theory of
correlated velocity fields as presented in Gorski (1988):

𝜎2 = 2Ψ⊥ (0) − 2Ψ⊥ (𝑟) − 2[Ψ‖ (𝑟) −Ψ⊥ (𝑟)] 𝜇2, (B9)

where 𝜇 = 𝑟 ‖/𝑟 and

Ψ‖,⊥ (𝑟) = 𝑎2𝐻 (𝑧)2 𝑓 2 (𝑧)
∫

Δ2 (𝑘, 𝑧) 𝑘−2 𝑑 ln 𝑘 𝐾 (𝑘𝑟), (B10)
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with the kernels being respectively

𝐾⊥ (𝑥) = [sin(𝑥) − 𝑥 cos(𝑥)]/𝑥3;

𝐾 ‖ (𝑥) = sin(𝑥)/𝑥 − 2[sin(𝑥) − 𝑥 cos(𝑥)]/𝑥3,
(B11)

both of which tend to 1/3 as 𝑥 → 0.

A hybrid streaming + halo model
In real space, it is common to decompose the matter power spectrum
as

𝑃(𝑘) = 𝑃2ℎ (𝑘) + 𝑃1ℎ (𝑘), (B12)

Where the 2-halo term is close to linear theory and the 1-halo term
is a discreteness term that reflects the finite number density of haloes
– of the form of shot noise but filtered on small scales to reflect the
extended nature of haloes. Hang et al. (2021) proposed an effective
model for decomposing the auto-power of biased tracers:

𝑃(𝑘) = 𝑏22ℎ𝑃2ℎ (𝑘) + 𝑏
2
1ℎ𝑃1ℎ (𝑘), (B13)

where 𝑃2ℎ and 𝑃1ℎ are provided by HALOFIT. In the same spirit,
then, one might propose a model for cross-correlations:

𝜉12 = 𝑏1𝑏2𝜉2ℎ + 𝑏21ℎ𝜉1ℎ . (B14)

It is not clear in advance that the 1-halo term is appropriate here, since
𝜉1ℎ is defined for autocorrelation and averaging over all halo masses,
so the appropriate shape of the 1-halo correction for cross-correlation
and with halo mass bins may not be universal. But this simple 1-
parameter form for the 1-halo term seems worth investigating as
a first approximation. More generally, we can add an empirical 1-
halo term, 𝜉12,1ℎ , to the large-scale linear power, which could be
described via a number of nuisance parameters: the 1-parameter
𝑏1ℎ prescription is the simplest, but one might have two parameters
describing the slope and amplitude of a power law etc.
To convert to redshift space, we first have to allow for large-

scale peculiar velocities affecting halo positions, so that 𝑏1𝑏2𝜉2ℎ is
replaced by the quasilinear 𝜉12,𝑠 discussed above:

𝜉12,𝑠 = 𝜉12,stream (𝑟⊥, 𝑟 ‖) + 𝜉12,1ℎ (𝑟) (B15)

The advantage of using the streaming model over linear theory is that
the function includes non-trivial quasilinear corrections even when
the linear coupling between density and velocity is assumed. We can
go further than this and add an assumed quasilinear correction to the
pairwise infall itself, by making the reasonable assumption that the
peculiar velocities will approximately cancel the Hubble flow if the
clustering is sufficiently nonlinear. This motivates the form

𝑣12 (𝑟)
𝑎𝐻𝑟

= − (𝛽1 + 𝛽2) 𝜉× (𝑟)/3
1 + (𝛽1 + 𝛽2) 𝜉× (𝑟)/3

. (B16)

Finally, we need to allow for nonlinear peculiar velocities that
convolve the galaxy distribution in the radial direction, so that we
convolve the correlation in 𝑟 ‖ by some FoG damping factor, 𝐷 (Δ𝑟 ‖):

𝜉12,𝑠 → 𝜉12,𝑠 ∗ 𝐷 (Δ𝑟 ‖). (B17)

The FoG term is generally taken to be an exponential,

𝐷 (Δ𝑟 ‖) = (
√
2𝜎FoG)−1 exp(−

√
2|Δ𝑟 ‖ |/𝜎FoG), (B18)

corresponding to a Lorentzian filtering of the power spectrum:

𝐷̃ (𝑘 ‖) =
(
1 + (𝑘 ‖𝜎FoG)2/2

)−1
. (B19)

As we argue in the body of the paper, it is necessary to use a different

convolution for the 1-halo and 2-halo terms. But in any case we
have not derived a full model for the 1-halo term in redshift space,
and in the present paper we take this empirically from simulations,
supplementing the above 2-halo term described via the streaming
model.

APPENDIX C: FITS TO INDIVIDUAL DATASETS

In this Appendix, we present the full 2D correlation function model
fits to the GAMA data, as obtained using the HS (halo streaming)
model. Fig. C1 shows the results for red galaxies and Fig. C2 shows
the results for blue galaxies.

APPENDIX D: SUMMARY OF MODEL PARAMETERS

We summarise the mean and standard deviation of the model param-
eters for the quasilinear dispersion (QD) model (Tab. D1 and D2)
and the halo streaming (HS) model (Tab. D3 and D4) for the auto-
correlation only and the six cross-correlation configurations. Tab. D1
and D3 show the mock results, where the mean and scatter from the
best-fit of each mock sample is presented. Tab. D2 and D4 show
the GAMA data results, where the mean and scatter from MCMC is
presented.

APPENDIX E: MCMC POSTERIORS

We present the full parameter posterior for the QD and HS model
applied to the GAMAmeasurements for the six configurations in this
section. Fig. E1 shows the three red configurations in the QD model,
and Fig. E2 shows the blue configurations. Fig. E3 shows the three
red configurations in the HS model, and Fig. E4.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure C1. False colour images of auto- and cross-correlation functions in redshift space for the actual red-galaxy GAMA data and the corresponding model
derived according to the H (halo streaming) approach. 𝑟𝑝 denotes transverse separation; 𝜋 is radial separation. LM, MM, and HM denote the three group mass
bins.
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Figure C2. False colour images of auto- and cross-correlation functions in redshift space for the actual blue-galaxy GAMA data and the corresponding model
derived according to the H (halo streaming) approach. 𝑟𝑝 denotes transverse separation; 𝜋 is radial separation. LM, MM, and HM denote the three group mass
bins.
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Table D1. Mock measurements using the quasilinear dispersion (QD) model. The values are at smallest 𝑟min which gives 𝑓 below 10% bias compared to the
fiducial value. 𝜎8 has been fixed to 0.81.

All LMred LMblue MMred MMblue HMred HMblue

𝑟min 10 15 10 20 10 20 10
𝜒̄2/dof 61.9/101 44.7/75 62.7/101 29.8/49 62.4/101 30.1/49 62.8/101
𝑓 0.55 ± 0.19 0.56 ± 0.26 0.57 ± 0.16 0.58 ± 0.36 0.55 ± 0.19 0.63 ± 0.37 0.54 ± 0.18
𝑏gal 1.22 ± 0.08 1.47 ± 0.14 0.89 ± 0.06 1.44 ± 0.20 0.90 ± 0.07 1.41 ± 0.21 0.90 ± 0.06
𝑏12 0.86 ± 0.02 1.26 ± 0.17 0.74 ± 0.05 0.98 ± 0.10 0.62 ± 0.03 0.74 ± 0.09 0.43 ± 0.03
𝜎𝑎 487 ± 106 496 ± 237 392 ± 107 550 ± 340 379 ± 130 601 ± 417 378 ± 117
𝜎𝑐 473 ± 109 489 ± 179 437 ± 116 533 ± 356 410 ± 120 556 ± 357 350 ± 129
𝐼𝑎 0.019 ± 0.012 0.028 ± 0.020 0.008 ± 0.007 0.029 ± 0.023 0.008 ± 0.006 0.023 ± 0.022 0.009 ± 0.006
𝐼𝑐 0.021 ± 0.014 0.026 ± 0.031 0.014 ± 0.020 0.029 ± 0.026 0.015 ± 0.013 0.028 ± 0.029 0.023 ± 0.016

𝑏grp 1.42 ± 0.09 1.20 ± 0.22 1.20 ± 0.11 1.48 ± 0.23 1.46 ± 0.09 1.90 ± 0.30 2.09 ± 0.17

Table D2. Same as Table D1, but for the GAMA measurements. The error bars come from MCMC posterior.

All LMred LMblue MMred MMblue HMred HMblue

𝑟min 10 15 10 20 10 20 10
𝜒̄2/dof 76/101 39/75 78/101 21/49 79/101 36/49 76/101
𝑓 0.33 ± 0.15 0.37 ± 0.26 0.35 ± 0.10 0.37 ± 0.25 0.33 ± 0.10 0.43 ± 0.28 0.35 ± 0.11
𝑏gal 1.32 ± 0.08 1.19 ± 0.16 1.03 ± 0.05 1.31 ± 0.19 1.06 ± 0.05 1.32 ± 0.19 1.04 ± 0.06
𝑏12 0.87 ± 0.02 1.11 ± 0.20 0.81 ± 0.05 0.83 ± 0.11 0.70 ± 0.03 0.77 ± 0.18 0.53 ± 0.04
𝜎𝑎 378 ± 95 670 ± 250 268 ± 85 631 ± 283 258 ± 78 595 ± 276 273 ± 83
𝜎𝑐 363 ± 99 684 ± 276 298 ± 90 622 ± 252 297 ± 72 636 ± 263 278 ± 81
𝐼𝑎 0.015 ± 0.005 0.014 ± 0.011 0.005 ± 0.004 0.011 ± 0.009 0.003 ± 0.003 0.011 + 0.009 0.003 ± 0.003
𝐼𝑐 0.006 ± 0.005 0.010 ± 0.009 0.007 ± 0.006 0.036 ± 0.018 0.026 ± 0.025 0.038 ± 0.023 0.037 ± 0.016

𝑏grp 1.52 ± 0.10 1.07 ± 0.24 1.27 ± 0.10 1.58 ± 0.30 1.52 ± 0.10 1.71 ± 0.46 1.98 ± 0.19

Table D3. Mock measurements using the halo streaming (HS) model. 𝜎8 has been fixed to 0.81. The error bars come from the standard deviation of best-fit
values over the 25 mock samples.

LMred LMblue MMred MMblue HMred HMblue

𝑟min 5 5 5 5 5 5
𝜒̄2/dof 77 ± 15/118 77 ± 11/118 81 ± 12/118 78 ± 11/118 81 ± 15/118 76 ± 11/118
𝑓 0.61 ± 0.17 0.60 ± 0.13 0.57 ± 0.19 0.62 ± 0.16 0.59 ± 0.16 0.62 ± 0.15
𝑏gal 1.38 ± 0.08 0.87 ± 0.04 1.38 ± 0.07 0.87 ± 0.05 1.37 ± 0.07 0.87 ± 0.05
𝑏12 1.17 ± 0.09 0.73 ± 0.06 0.97 ± 0.04 0.63 ± 0.04 0.70 ± 0.06 0.46 ± 0.04
𝜎𝑎 482 ± 76 358 ± 67 459 ± 95 369 ± 84 467 ± 71 371 ± 66
𝜎𝑐 524 ± 87 458 ± 77 484 ± 99 417 ± 94 469 ± 81 383 ± 85
𝛼𝑎 0.99 ± 0.08 1.00 ± 0.18 0.99 ± 0.11 1.04 ± 0.22 0.98 ± 0.11 1.02 ± 0.23
𝛼𝑐 0.96 ± 0.09 0.95 ± 0.19 0.96 ± 0.10 1.00 ± 0.13 1.01 ± 0.08 1.02 ± 0.12
𝜂𝑎 1.02 ± 0.05 1.01 ± 0.04 1.00 ± 0.05 1.00 ± 0.03 1.01 ± 0.06 0.99 ± 0.05
𝜂𝑐 1.04 ± 0.04 1.02 ± 0.04 1.02 ± 0.04 1.00 ± 0.04 0.99 ± 0.04 0.98 ± 0.05
𝐼𝑎 0.0035 0.0015 0.0035 0.0015 0.0035 0.0015
𝐼𝑐 0.0020 0.0018 0.0032 0.0018 0.0036 0.0019

𝑏grp 1.18 ± 0.13 1.20 ± 0.12 1.42 ± 0.09 1.38 ± 0.09 1.96 ± 0.17 1.92 ± 0.16
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Table D4. Same as Tab. D3 but for the GAMA data. The error bars come from MCMC posterior.

red blue LMred LMblue MMred MMblue HMred HMblue

𝑟min 5 5 5 5 5 5 5 5
𝜒̄2/dof 40/59 41/59 68/118 88/118 80/118 89/118 85/118 84/118
𝑓 0.49 ± 0.24 0.39 ± 0.11 0.40 ± 0.20 0.33 ± 0.08 0.41 ± 0.20 0.39 ± 0.11 0.45 ± 0.22 0.37 ± 0.11
𝑏gal 1.34 ± 0.09 1.00 ± 0.04 1.26 ± 0.08 1.01 ± 0.04 1.40 ± 0.08 1.02 ± 0.04 1.36 ± 0.09 1.02 ± 0.04
𝑏12 - - 1.10 ± 0.08 0.81 ± 0.04 0.99 ± 0.04 0.76 ± 0.03 0.75 ± 0.07 0.57 ± 0.04
𝜎𝑎 454 ± 130 242 ± 73 350 ± 109 197 ± 60 400 ± 101 270 ± 77 459 ± 121 247 ± 80
𝜎𝑐 - - 391 ± 122 325 ± 67 440 ± 99 281 ± 69 378 ± 145 263 ± 83
𝛼𝑎 1.07 ± 0.14 0.82 ± 0.26 0.95 ± 0.11 0.70 ± 0.18 0.89 ± 0.09 0.83 ± 0.23 1.05 ± 0.14 0.78 ± 0.28
𝛼𝑐 - - 0.88 ± 0.20 0.80 ± 0.29 0.93 ± 0.14 0.69 ± 0.15 1.04 ± 0.22 0.94 ± 0.18
𝜂𝑎 0.76 ± 0.14 1.54 ± 0.21 0.77 ± 0.12 1.67 ± 0.21 1.03 ± 0.14 1.51 ± 0.20 0.79 ± 0.14 1.56 ± 0.24
𝜂𝑐 - - 0.87 ± 0.16 1.21 ± 0.21 1.11 ± 0.13 1.62 ± 0.19 0.99 ± 0.13 1.32 ± 0.17
𝐼𝑎 0.0035 0.0015 0.0035 0.0015 0.0035 0.0015 0.0035 0.0015
𝐼𝑐 - - 0.0020 0.0018 0.0032 0.0018 0.0036 0.0019

𝑏grp - - 1.14 ± 0.11 1.24 ± 0.08 1.41 ± 0.10 1.34 ± 0.07 1.81 ± 0.20 1.79 ± 0.14

Table D5. Same as Tab. D4 but for the 1-halo templated adopted from the mock contaminated red samples.

LMred∗ MMred∗ HMred∗

𝑟min 5 5 5
𝜒̄2/dof 119/118 137/118 144/118
𝑓 0.52 ± 0.17 0.48 ± 0.17 0.42 ± 0.16
𝑏gal 1.24 ± 0.07 1.35 ± 0.06 1.33 ± 0.06
𝑏12 1.17 ± 0.10 0.95 ± 0.03 0.74 ± 0.05
𝜎𝑎 424 ± 85 427 ± 76 427 ± 93
𝜎𝑐 454 ± 114 492 ± 75 362 ± 116
𝛼𝑎 1.51 ± 0.16 1.37 ± 0.10 1.51 ± 0.16
𝛼𝑐 1.16 ± 0.21 1.14 ± 0.11 1.22 ± 0.18
𝜂𝑎 0.81 ± 0.10 1.03 ± 0.10 0.90 ± 0.12
𝜂𝑐 0.86 ± 0.15 1.12 ± 0.07 1.04 ± 0.10
𝐼𝑎 0.0031 0.0031 0.0031
𝐼𝑐 0.0011 0.0046 0.0049

𝑏grp 1.05 ± 0.11 1.42 ± 0.08 1.78 ± 0.15
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Figure E1. The posteriors for fitting the QD model to the red galaxy cross-correlations.
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Figure E2. The posteriors for fitting the QD model to the blue galaxy cross-correlations.
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Figure E3. The posteriors for fitting the HS model to the red galaxy cross-correlations.

MNRAS 000, 1–21 (2022)



Modelling RSD in galaxy-group cross-correlations 29

0.9 1.0 1.1

bgal

1

2

3

4

5

cr
os

s

1

2

3

4

5

6

au
to

1.0

1.5

2.0

cr
os

s

1.0

1.5

2.0

au
to

0.5

1.0

1.5

cr
os

s

0.5

1.0

1.5

au
to

0.2

0.4

0.6

0.8

f

0.5

0.6

0.7

0.8

0.9

b 1
2

0.5 0.6 0.7 0.8 0.9

b12

0.2 0.4 0.6 0.8

f
0.5 1.0 1.5

auto

0.5 1.0 1.5

cross

1.0 1.5 2.0

auto

1.0 1.5 2.0

cross

1 2 3 4 5 6

auto

1 2 3 4 5

cross

LMblue
MMblue
HMblue

Figure E4. The posteriors for fitting the HS model to the blue galaxy cross-correlations.
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